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Overview

Response to Referee 2:We would like to sincerely thank the referee for the careful review of our manuscript.
We acknowledge that the original submission contained inaccuracies and shortcomings, and we are grateful
that these were pointed out. We have carefully revised and corrected the manuscript in response. We truly
appreciate the referee’s efforts and sincerely hope that the revised version can be re-evaluated in light of these
changes.

Major concerns

1) The satellite data are not properly used. An important issue is filtering. Let’s begin with OMI. Figure
3 shows very high columns over Tibet ( 2E16 molec cm-2), which are clearly impossible. This feature
is not seen in other studies using OMI, e.g. Cao et al. 2018 (also using SAO OMI, ) and Muller et
al. 2024 (). Although OMI filtering information is missing in this manuscript, I strongly suspect that
negative columns are filtered out, leading to strong positive bias in the averaged columns. The effect is
most prominent in regions with low columns and high uncertainties (like Tibet), but it affects all regions.
Filtering of negative values is also done by Xu et al. for TROPOMI data (see Sect. 2.3.2), which also
leads to overestimation, although at a smaller extent compared to OMI, simply because TROPOMI is
less noisy. Regarding OMPS, the authors claim that they ''filtered out data points where the product of
Jormaldehyde columns and three times the observation uncertainty was less than zero'' (Sect. 2.3.1). This
is very strange. I suppose that they meant ''the sum'’, not the product. In any case, the filtering likely
causes a positive bias.

We appreciate the reviewer’s detailed diagnosis and agree that our original use of the satellite data—and, in
particular, the filtering—was improper. In the initial version we (wrongly) removed negative values directly,
which indeed introduces a positive bias in low-column, high-uncertainty regions (e.g., Tibet) and can yield
unrealistically high averages. We also confirm the reviewer’s suspicion about the typo: “product” should have
been “sum”’; this has been corrected.

In the revised manuscript, we have completely rewritten the description of satellite data filtering and applied
clear, standardized quality control rules for all instruments. In brief, the main principles are summarized here,
with the full details given in the revised manuscript:

For OMPS, we applied the recommended product screening, excluded outliers above 2 x 107 molecules
cm™2, applied thresholds for solar zenith angle, cloud fraction, air mass factors, and removed negative or



unphysical values. For TROPOMI, we adopted the official QA value (>0.5) together with constraints on SZA,
cloud radiance fraction, albedo, and snow/ice flags, and for OMI we followed established filtering practices
considering row anomalies, cloud thresholds, and RMS fitting criteria.

After filtering, all datasets are regridded to 0.5° x 0.625° monthly means to match GEOS-Chem. Then, we
tested two sampling requirements—removing grid cells with < 10 or < 50 original observations per 0.5°
x 0.625° cell. Results are very similar for OMPS and TROPOMI (figures provided in the main text and
Supplement), confirming low sensitivity to this choice in our focus regions. For OMI, coverage becomes
sparse under these thresholds; we therefore do not use OMI as a high-resolution assimilation constraint.

With these corrections, the spurious high columns over Tibet disappear, and cross-satellite consistency im-
proves. We re-ran all inversions, now performing two independent experiments (OMPS-only and TROPOMI-
only) and removed any “combined average” design. The revised analysis (shown for 2020, with 2019 in the
Supplement) includes a pre-assimilation comparison, explicit observation-uncertainty figures (vertical in the
main text; spatial in the Supplement), and independent evaluation using surface ozone. In high-consistency
regions/seasons, posterior ozone shows reduced biases in 81.2% of cases, with an average RMSE reduction
of 24.7%.

We sincerely apologize for the earlier oversight in quality control and thank the reviewer again for pointing
this out. We hope that the revised, standardized filtering and reanalysis will allow the study to be considered
again with a fresh evaluation.

Text in manuscript

2.3.1 NOAA-20 OMPS

In this study, the quality control scheme recommended in OMPS product documentation was ap-
phedwheHﬁﬂgGMP&dd&x Data points with formaldehyde column densities exceeding 2el7
molecules/cm? were excluded to minimize the impact of outliers. After removing outliers, we further

excluded data points where the sum of formaldehyde column and twice the observation uncertaint
was less than zero. Furthermore, the geometric air mass factors (AM Fi;) were defined as follows:

AMFg = sec(SZA) + sec(VZA) (1)

Here, SZ A represents the solar zenith angle and V Z A denotes the V1eW1ng zenith angle Adter

%wWWWMMMNS ZA e*eeedeérgrsm
70°, the-an_air mass factor was-less than 0.1, the-a geometric air mass factor exeeeded-5;-or-the
MH%WWWMWO 4—Snapshots-of-filtered, or with
positive snow and ice fractions. All screened data were then averaged to a spatial resolution of 0.5°
latitude x 0.625° longitude on a monthly basis. consistent with the GEOS-Chem model configuration.
To make a fair comparison between the observed and simulation formaldehyde column concentration
in_the assimilation, we further imposed constraints on the number of observations within each grid
cell. Specifically, two filtering schemes were tested, in which grid cells with fewer than 10 or fewer
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Figure 1. Spatial distributions of formaldehyde columns from GEOS-Chem model-simulated prior

tropospheric columns (a) and posterior tropospheric columns constrained by OMPS assimilation (b), satellite
observations of OMPS total columns (c), and satellite observations of TROPOMI tropospheric columns (d

in February (a.1-d.1), May (a.2-d.2), August (a.3-d.3), and November (a.4-d.4) of 2020.
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Figure 2. Comparison of monthly mean formaldehyde column concentrations in February, May, August, and
November 2020 after applying different data filtering thresholds. Panels (a.1-a.4), (c.1-c.4), and (d.1-d.4

show OMI, OMPS, and TROPOMI results, respectively, after removing egrid cells with fewer than 10
observations. Panels (b.1-b.4) show OMI results after removing grid cells with fewer than 50 observations.




than 30 original observations were excluded. The OMPS formaldehyde columns is-after applying the
threshold of 50 are shown in Figure +d]] (), while the results with the threshold of 10 are provided in
the Supplement. The differences between the two filtering schemes are minor, particularly across the
four study regions considered in this work.

2.3.2 Sentinel-5P TROPOMI

When usmg Level 2 TROPOMI formaldehyde data for the validation in this papef—weexe}&ded—eﬂlry

M%WW@WMWMQ&%W
filtering by retaining only pixels with a ga value greater than 0.5. This criterion ensures the exclusion
of error flags and requires that the cloud radiance fraction at 340 nm is below 0.5, the solar zenith angle
(SZA) does not exceed 70°, the surface albedo is below 0.2, no snow or ice warning is present, and
the air mass factor (AMF) is larger than 0.1, The TROPOMI product provides vertical information on
34 layers, but the retrieval is primarily sensitive to the troposphere and thus reports the formaldehyde
tropospheric column. After filtering, the TROPOMI observations were aggregated to monthly means
ona0.57 x 0.625° grid, ensuring consistency with the resolution used in the GEOS-Chem simulations.
In addition, we further constrained the number of observations per grid cell: Figure [l (d) shows the
results after excluding grid cells with fewer than 50 observations, while the results with a threshold of
10 are also provided in the Supplement. The differences between the two filtering schemes are minor,
particularly over the study regions.

2.3.3 Aura OMI

MMOMI/Aura formaldehyde Total Column Da11y L2 Global Vers10n 3 prod-

uct (Clance, 2013

chﬁw

influence of poor-qualit data we applied strict uaht filtering. Only pixels with cloud fraction <
0.3are—further-exeluded, solar zenith angle < 70°, and a main data quality flag = O were retained.
To avoid poor-quality measurements at large pixel sizes, the five marginal pixels on each side of the

swath were discarded, and only pixels within rows 6-55 were used (Zhu et al., 2017; Xue et al., 2020)
- Because OMI has experienced a row anomaly since 2007, pixels with Xtrack quality flags = 0 were
further selected to eliminate its impact. Additionally, given the large uncertainties in formaldehyde
retrievals, pixels with a fitting root mean square (RMS) < 0.003 were retained to remove most outliers
(Souri et al.l 2017).

The OMI observations are then aggregated to monthly means on a 0.5° x 0.625° grid, consistent with
the GEOS-Chem model resolution. To ensure sufficient sampling per grid cell, we also applied two
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filtering schemes based on the number of observations, excluding grid cells with fewer than 10 or
fewer than 50 valid pixels. Unlike OMPS and TROPOMLI, however, OML shows a strong reduction
in data coverage under these constraints, and the product becomes sparse after applying the threshold
of 50 observations. This indicates that OMI suffers from insufficient sampling density in China for
high-resolution assimilation. The vertical profile correction of OMI formaldehyde was conducted
using the same approach as applied to OMPS, by recalculating AMF with model-simulated vertical
profiles.

2) The optimization of emissions relies on the comparison of monthly averaged modelled and satellite
columns. However, the satellite average excludes cloudy pixels, whereas the model average does not. In-
cluding the cloudy days in the model averages causes a negative bias with respect to the satellite averages.
Furthermore, it is not even stated whether the model columns are sampled at the satellite overpass time.
This should be clarified. Finally, the manuscript makes no mention of averaging kernels (or scattering
weights). Applying averaging kernels to the model profiles is essential to minimize the effect of vertical
profile shapes between your model and the profiles adopted in the satellite retrieval.

We appreciate the reviewer for these valuable suggestions, which helps a lot to improve the quality of the
emission inversion.

Regarding cloudy conditions, we acknowledge that cloudy pixels were not excluded from the model averages.
To minimize the potential bias, we required at least 50 valid satellite pixels in each 0.5° x0.625° grid cell
when computing the monthly mean, ensuring sufficient data density and reducing the impact of outliers. The
model columns were sampled between 12:00 and 14:00 local time to match the afternoon overpass of the
satellites over China. Finally, we agree that applying vertical profile corrections is essential to minimize
inconsistencies between model and retrieval profile shapes.

In the revised manuscript, we have substantially expanded this description. Specifically, for OMI and OMPS
total column products, we recalculated air mass factors (AMF) using the model vertical profiles, while for the
TROPOMI tropospheric column product, we applied the averaging kernel (AVK) method recently used in IASI
v4 retrievals. These corrections increase the consistency between model simulations and satellite observations
and improve the robustness of the assimilation results. Since there are too many revisions, we only list some
of the key changes in this revised manuscript below. In the assimilation, OMPS retrievals are used as total
columns as provided by the product, while TROPOMI retrievals are assimilated as tropospheric columns. We
did not construct total columns from TROPOMI, since doing so would introduce additional uncertainties.
This choice does not affect comparability, because the model provides full vertical concentration profiles that
can be integrated to both total and tropospheric columns, and formaldehyde is primarily distributed below the
tropopause.

Text in manuscript

2.1 Model simulation

Since the satellite overpasses China mainly between 12:00 and 14:00 local time, the model outputs
within this time window are sampled to calculate the formaldehyde columns for fair comparison with
the satellite observations. Our GEOS-Chem model outputs both total and tropospheric formaldehyde
column concentrations, enabling comparison with OMPS total column data and TROPOMI formaldehyd
column measurements as will be introduced later. Samples of the formaldehyde tropospheric column
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Figure 3.  Vertical distributions of the regional mean formaldehyde columns from GEOS-Chem

model-simulated prior (black) and satellite observations by OMPS (blue), TROPOMI (red), and OMI (green).
Panels (a)-(d) correspond to the North China Plain, Yangtze River Delta, Pearl River Delta, and Northeast

. Sub-

anels

a.l-d.1)

and November 2020, respectively. Values in parentheses indicate the biases of satellite observations relative
to the prior simulation. Shaded areas denote the observational uncertainties.
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Figure 4. Uncertainties of formaldehyde column retrievals from OMI (a.1-a.4), OMPS (b.1-b.4), and
TROPOMI (c.1-c.4) in February, May, August, and November 2020.



simulation are presented in Figure[Il(a).

2.3.1 NOAA-20 OMPS

To make a fair comparison between the observed and simulation formaldehyde column concentration
in the assimilation, we further imposed constraints on the number of observations within each grid
cell. Specifically, two filtering schemes were tested, in which grid cells with fewer than 10 or fewer
than 50 original observations were excluded. The OMPS formaldehyde columns is-after applying the
threshold of 50 are shown in Figure +dJ] (c), while the results with the threshold of 10 are provided in
the Supplement. The differences between the two filtering schemes are minor, particularly across the
four study regions considered in this work,

Formaldehyde vertical column densities (VCDs) retrieved from satellite observations are derived using
air mass factors (AMF), which strongly depend on the a priori vertical profiles of formaldehyde.
Direct comparisons between satellite products and model simulations may be biased if the a priori
profiles used in the retrieval differ from the simulated ones. To ensure consistency between the satellite
observations and GEOS-Chem simulation, we applied an AMF correction by recalculating the AMF
with model-simulated profiles following the method used in[Palmer et al[(2001):

AMF:/ w (p)S (p)dp (2)

s

The right-hand side of the equation represents the vertically integrated product of the scattering weight
w(p) and the shape factor S(p) as a function of pressure p, where w(p) characterizes the sensitivity of

the satellite measurement to a given atmospheric layer and S describes the normalized vertical
distribution of formaldehyde. The scattering weights w are primarily determined by satellite
observational geometry (e.g.. solar and viewing zenith angles), surface albedo, and cloud fraction,
while the shape factor S depends on the vertical profiles of formaldehyde. The integration is
performed over the pressure coordinate from the surface (ps) to the top of the atmosphere. Figure
Bl illustrates the vertical distribution of the shape profile, highlighting the relative contributions of
different layers. The vertical column density (VCD) is obtained from the ratio of the slant column
SCD

VoD = anr )

In the OMPS formaldehyde product, the SCD is derived as the sum of three components: the fitted
differential slant column amount (ASC D), the reference sector correction (SC D and the bias




correction (SCDp):.

SCD = ASCD+SCDres +5CDp @)

Here, ASC'D represents the differential slant column amount retrieved from the DOAS spectral
fitting, SCD gy is the reference sector correction that accounts for background contributions and
instrumental offsets by using clean reference regions, and SC D, denotes an additional bias correction
to mitigate systematic errors.

The processed OMPS satellite observations were ultimately assimilated as total columns, which are
resented in Figure[Il (c.1-c.4).

2.3.2 Sentinel-SP TROPOMI

After filtering, the TROPOMI observations were aggregated to monthly means on a 0.5° x 0.625° grid,
ensuring consistency with the resolution used in the GEOS-Chem simulations. In addition, we further
constrained the number of observations per grid cell: Figure [l (d) shows the results after excluding
grid cells with fewer than 50 observations, while the results with a threshold of 10 are also provided
in the Supplement. The differences between the two filtering schemes are minor, particularly over the
study regions.

Beyond the recommended quality screening, a key consideration when comparing TROPOMI formaldeh
retrievals with model outputs is the dependence on the assumed a priori vertical profile. Traditionally,
studies have relied on AMF-based corrections, in which AMF is recalculated using model-derived

yde

rofiles to reduce such discrepancies (Palmer et al., 2001, [Boersma et al.} [2004; [Zhu et all 2016} [Coopd

r et al) 2020

- More recently, the availability of averaging kernel (AVK) information in the TROPOMI product
has allowed a more consistent comparison by accounting for the impact of the assumed vertical
profile shape in the retrieval, following the approach introduced in the IAST NH; version 4 product
(Clarisse et al.} 2023; [Xia et al} 2025). In this study, we apply AVK-based correction for TROPOMI
formaldehyde by projecting the model profiles onto the satellite pressure grid, thereby achieving a
more harmonized comparison with GEOS-Chem simulations. The corrected column is calculated as:

N Xe— B

Xm== "2 4B &)
Zp Agml)

where X™ denotes the formaldehyde column adjusted with the model profile, X is the retrieved

column based on the a priori profile, and B is the background concentration. The term A® represents
the AVK at pressure level p, and m, is the normalized model shape factor at the same level, defined
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The processed TROPOMI retrievals were assimilated as tropospheric columns, which are presented
in Fi d.1-d.4), with their vertical shape profiles shown in Figure [3| (green line) to illustrate the
normalized contribution of each pressure layer to the tropospheric columns. We adopted tropospheric
rather_than total columns because the retrieval product itself provides tropospheric columns, and
recalculating total columns would introduce substantial uncertainties.

2.3.3 Aura OMI

The OMI observations are then aggregated to monthly means on a 0.5° x 0.625° grid, consistent with
the GEOS-Chem model resolution. To ensure sufficient sampling per grid cell, we also applied two
filtering schemes based on the number of observations, excluding grid cells with fewer than 10 or
fewer than 50 valid pixels. Unlike OMPS and TROPOMI, however, OMI shows a strong reduction
in data coverage under these constraints, and the product becomes sparse after applying the threshold
of 50 observations. This indicates that OMI suffers from insufficient sampling density in China for
high-resolution assimilation. The vertical profile correction of OMI formaldehyde was conducted
using the same approach as applied to OMPS, by recalculating AMF with model-simulated vertical
profiles.

3.1 Satellite data evaluation

DIFaddbegm Uncertamt is a ke component in the assimilation process and serves as a crucial

illustrates the vertical distribution of retrieval uncertainties.

In the mid- to upper troposphere (200-600 hPa), OMPS and OMI show comparable levels of uncertainty.
Howeyver, below 600 hPa, OMPS uncertainties become substantially larger, likely due to cloud contaming

and retrleval algorithm a r0x1mat10ns Gonzalez Abad et alJ, OlG];jNowlan et alL 023) As shown

%&WMM&WMM&
of the other two satellite datasets. At first glance, OMI data may appear superior, but this advantage
largely results from strict filtering, which excludes a substantial fraction of problematic data, As
MMMMMMa b%)eﬁb%GEGS-Gheﬂ%sm}quaﬂefrﬁpaﬂeHd—}—These
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v 53 y -V Ser-S s Rtery , applying a threshold
of 50 observatlons er grid cell drastlcall reduces spatial coverage, rendering OMI unsuitable for

national-scale assimilation. Previous studies that assimilated OMI over China have typically interpolated
the data to coarser resolutions to ensure aj 11cab111t Cao et al. 018[; Vilyazakl et al. [, 2020). Thereforev

A0

onl OMPS and 4°

at—ereeafsefeeelﬁﬁenﬂf~4+§—TROPOMI formaldeh de columns are ass1m11ated in this study, while
OMI is excluded for our high-resolution emission inversion due to the poor data coverage.

satellite datasets exhibit the same sign of deviation (positive or negative) relative to the model, they are
considered consistent. Such consistency is observed, for example, in February, May, and November
over NCP and in February over PRD and SCB, where all three datasets show positive deviations; and
in February and November over YRD and in August over SCB, where all show negative deviations.
These cases indicate stronger reliability. In other situations, when OMPS and TROPOMI exhibit

the same blas dlrectlon they are also considered consistent, as in November over PRD and SCB.
Overall 0 i : ; hy : with-high

mem%mfable«fef%ﬂgh-fese}&&eﬂ{él—}efmssreﬁp&rm%aﬂeﬂf O out of 16 cases (62 5% exh1b1
consistency, with higher coherence primarily occurring in the cold season and during spring and

autumn months over NCP and SCB. Subsequent analyses will explicitly consider this consistenc
to enhance the robustness of the conclusions.

3.3 Formaldehyde columns evaluation

The spatial distributions of formaldehyde columns in Februar Ma Au ust and November 2020 are
shown in Figure +(a)-an m-stmula aldehs
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of tropospheric columns assimilated by OMPS, (c.1-c.4 show the OMPS satellite observations of

total columns, and (d.1-d.4) illustrate the TROPOMI satelhte observatlons 9&&‘%@3@%@&

In addition, the prior res

WWWWMW@W%MMWMMM@MQA
are also provided in the Supplementary Figure S7. As indicated by the vertical profiles in Figure
Bl _formaldehyde fevels-is mainly distributed below the tropopause. Comparisons between the prior
and posterior results show that the differences between total and tropospheric columns are relatively

small. Regarding the s atlal atterns, high formaldehyde values in February are concentrated i in
the NCPregion were m-le 4 nl6 aelem arou - -

M%WW%%WMMMWA&
YRD. In May, overall concentrations increase nationwide, with particularly pronounced growth in the
NCP and PRD. In August, concentrations increase in the NCP, YRD, and PRD, while they decrease
in the SCB. In November, the changes are modest, but all four regions exhibit reduced concentrations.

3) TROPOMI and OMI HCHO products have significant biases — see Zhu et al. (), Vigouroux et al. 2020
(), Oomen et al. 2024 (), Muller et al. 2024 (https://doi.org/10.5194/acp-24-2207-2024). I am not sure
whether OMPS data were similarly evaluated. In any case, the biases should be either corrected for, or
discussed within the manuscript, as well as the potential implications for the emissions.

We thank the reviewer for this important comment. By reviewing the literature (Zhu et al.; Vigouroux et
al., 2020; Oomen et al., 2024; Miiller et al., 2024) and comparing with their results, we realized that our
satellite datasets indeed showed biases relative to previous studies. The treatment of these biases and their
implications have already been explained in RC 1 and RC 2. In the revised manuscript, we have clarified this
point and ensured that our data processing now follows approaches consistent with, or stricter than, those used
in earlier work, so that the satellite inputs to our assimilation are comparable and reliable. We also apology
that we did not conduct bias correction before assimilation in this study since we don’t have independent
surface or aircraft-based measurements.

4) The methodology is not well described. For example:
We thank the reviewer for these detailed comments. Our replies are as follows:

- no detail is provided on the implementation of MEGAN, besides the fact that the emissions are calculated
off-line. What is their temporal resolution, what meteorological fields are used, what vegetation maps and
emission factors, etc.?

In this study, MEGAN emissions were not generated by running MEGAN separately. Instead, they were
provided directly through the HEMCO module of GEOS-Chem and used as an offline inventory. The data
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were interpolated to 0.5° x 0.625° to match the model resolution. This point has been clarified in the revised
manuscript.

Text in manuscript

2.2 Prior NMVOC emission inventories

Before these prior emissions are used to drive GEOS-Chem simulations, the spatial resolution is coars-
ened to an average value on a 0.5° %-x 0.625° grid resolution consistent with the model configuration
as used in Section 2.1.

Figure [3] (a) presents the prior NMVOC emission inventories for 2020, which primarily relies on
the anthropogenic emission inventory from MEIC, supplemented by the CEDS inventory for species
not included in MEIC. Additionally, the-biogenic-emission-inventory—from-biogenic emissions are
provided by MEGAN (offline calculation) and-the-biomass-burning-tnventory-for the year 2020 with
an hourly temporal resolution, directly through the HEMCO emission component of GEOS-Chem;
WMMMWMW

0mb1nat10n of these three sources is treated as the prior emission inventor used in the followm
NMVOC emission optimization.

RC: - the description of OMI data is too short
AR: We have expanded the description of the OMI HCHO dataset in the revised manuscript.

Text in manuscript

2.3.3 Aura OMI

The Ozone Monitoring Instrument (OMI) is an 1mportant satellite 1nstrument mounteekefrgnpgard
the Aura satellite, launched on July 15, - 53 o aey-th §
%Q(MMIWMM&atmosphene gases, aerosols, and clouds to eﬂhaﬂe& -improve
our understandrng of atmosphenc chemistry and climate change. OMI provides daily global coverage

with a wide swath of 2600 km and a spatial resolutlon of approx1mate1y 13 %

X 24 km

at-at nadir, with an equator crossing time of about 13 45 LTeael%day—@Ml» The sensor contains
three spectral channels +(UV-1, UV-2, and VIS), covering the wavelength ranges of 264-31+1-nm;

307-383-264-311 nm, 307-383 nm, and 349-564-349-504 nm, respectively—These-channels-enable

the-observation-of-vartous—trace-gases—, which enable the retrieval of key trace gases including Os,
nitrogen-dioxide(NOy);sulfur-dioxide{, SOy), and formaldehyde (Zhang et al., 2019).

MMOMI/Aura formaldehyde Total Column Da1ly L2 Global Versron 3 prod-

uct Clance, 2013
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Figure 5. Spatial distributions of the total NMVOC emissions from the prior (a) and posterior (b) results in
January-February (a.1, b.1), ApritMay (a.2, b.2), July-August (a.3, b.3), Oetober-November (a.4, b.4) 2020.

Panels (d.1-d.4) and (e.1-¢.4) show the corresponding emission increments (posterior minus prior) derived
from OMPS and TROPOMI assimilation.
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3 ation ata—with-a £ n-ereater-than qua ._In order to minimize the
influence of poor-quality data, we applied strict quality filtering, Only pixels with cloud fraction <
0.3arefurtherexeluded, solar zenith angle < 707, and a main data quality flag = 0 were retained.
To avoid poor-quality measurements at large pixel sizes, the five marginal pixels on each side of the
swath were discarded, and only pixels within rows 6-55 were used (Zhu et al, 2017, Xue et al.} 2020)
- Because OMI has experienced a row anomaly since 2007, pixels with Xtrack quality flags = 0 were
further selected to eliminate its impact. Additionally, given the large uncertainties in formaldehyde
retrievals, pixels with a fitting root mean square (RMS) < 0.003 were retained to remove most outliers

The OMI observations are then aggregated to monthly means on a 0.5° x 0.625° grid, consistent with
the GEOS-Chem model resolution. To ensure sufficient sampling per grid cell, we also applied two
filtering schemes based on the number of observations, excluding grid cells with fewer than 10 or
fewer than 50 valid pixels. Unlike OMPS and TROPOMI, however, OMI shows a strong reduction
in data coverage under these constraints, and the product becomes sparse after applying the threshold
of 50 observations. This indicates that OMI suffers from insufficient sampling density in China for
high-resolution assimilation. The vertical profile correction of OMI formaldehyde was conducted
using the same approach as applied to OMPS, by recalculating AME with model-simulated vertical
profiles.

- the motivation and added value of the semi-variogram analysis is not clear. No surprise that OMI data
are revealed to be more noisy than the other datasets, since year 2020 is used here, >15 years after the
launch of OML.

We agree with the reviewer that the original treatment was inappropriate. After reprocessing and re-evaluation,
we have decided to follow the reviewer’s advice and remove the semi-variogram analysis from the manuscript.

- more information is needed to explain the details of how emissions are really optimized. The assumed
uncertainty on the prior emissions should be given and justified.

We thank the reviewer for this important comment. Following Souri et al. (2020), we assigned sector-specific
prior uncertainties of 150% for anthropogenic VOCs, 200% for biogenic VOCs, and 300% for biomass
burning VOCs. These uncertainties were combined using a weighted quadratic formulation, which yielded
an overall uncertainty of about 120%; accordingly, the standard deviation of the multiplicative factor was
set to 0.4. This treatment is now explicitly described in the manuscript with supporting references. We
have also clarified that the optimization is performed using a 4DEnVar data assimilation system, which is
adjoint-free and based on ensemble linearization of the GEOS-Chem formaldehyde simulation. Additional
details concerning the algorithm, regularization, convergence, and assimilation setup have been added in the
revised manuscript and the Supplement.

Text in manuscript

Table 1. Uncertainty assumptions for different emission sectors.

Anthropogenic  Biogenic Biomass burning

voC 150% 200% 300%
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Figure 6. Comparison of prior NMVOC emissions estimated by combining sector-specific uncertainties (a)
and by uniformly scaling the prior total emissions by 120% (b) in 2020. The two distributions are generall
consistent, supporting the applicability of the total uncertainty assumption used in this study.

2.5 Assimilation algorithm

ThlS study employs the four-dlmensmnal ensemble Varlatlonal (4DEnVar) methodology to assimilate
roptimize NMVOC emissions with satellite
formaldehyde observations. The goal of this-the a551m11at10n is to find the most likely estimate of
the state vector, which is the monthly NMVOC emission inventories f over the entire model do-

main. Note that f represents the vector of total NMVOC emissions, rather than separately gridded
anthropogenic, biogenic, or biomass burning VOC emissions. To optimize emissions from these three

sectors, additional observations or a well-defined spatial correlation structure are required, which are
not available in this study. The prior estimate f, is from the inventories described in Section 2.2,

and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,
assimilation is performed via minimizing the cost function J as follows:

T(F) = 5(F ~ F BT~ £+ 5y = HM(P)T Oy — MM (£) )

The cost function J is the sum of two partparts: background and observation penal term. The

background term quantifies the difference between the optimal j? and the prior emission inventories ﬁ,,
while the observation term calculates the difference between the simulation driven by f and the satellite
observations ¢. In addition to the f, that represents the prior NMVOC emission vector calculated
from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The
uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories,
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and can be compensated using a spatially varying tuning factor «:

f (@) = fo (i) - a(d) ®)

in here f; (¢) denotes the NMVOC emission rate in the given grid cell . The « values are defined
to be random variables with a mean of 1.0, a minimum of 0.1 and a standard deviation 5=-6-20f

0.4, corresponding to a uniform 120% uncertainty applied to the total NMVOC emissions rather than
sector-specific settings as adopted in previous studies (Choi et al},[2022; [Jung et al.l 2022} [Souri et al.] 2|

020)

. The rationale for this choice is provided in the Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance B,,
is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Ba (i,)) = 0o - C (4, ]) )

where C (i, j) represents a distance-based spatial correlation between two s in the grid cell ¢ and j,
and is defined as:

C(i,j) = e_(di,j/l)Z/Q (10)

where d; ; represents the distance between two grid cells ¢ and j. [ here denotes the correlation length
scale which controls the spatrally Varrabrhty freedom of the as. A small m | means-more-errors
7 h -more indicates that the

tunin factors Qs are less S atrall correlated thereb enabhn emission optimization at a finer spatial

scale. However, this also necessitates a larger number of ensemble runs to adequately represent the
model realization from emission to simulation. An empirical parametert-parameter [ = 300 km which

is used in (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is
obtained via a Schur Product:

B=B,oC (11)

In the observation term, ¥ is the observation vector, representing satellite observations, M is the GEOS-
Chem model driven by emissions f, H is the observation operator that transferthe-three-dimensionat
transfers the three-dimensional concentration into the observational space, and O is the observation

covariance matrix. In this study, the assimilated observations include the OMPS total columns and
TROPOMI tropospheric columns. A distinct observation operator  is configured to enable a fair
comparison of the observation-minus-simulation mismatch. The satellite formaldehyde observations

are assumed to be independent, therefore O is a diagonal matrix. The diagonal value here is calculated
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as:

_ 2 2
Ototal = \/ O instrument + Orepresent (12)

In the-Equation Ootal 18 defined as the total uncertainty, which is the square root of the sum
of the squares of the instrument uncertainty Gipsryment from the formaldehyde observations and the
representative uncertainty oepresent introduced when processing the data into monthly averages. The
representative uncertainty represent 1S represented by the standard deviation of the data.

latter-two-experiments-are-archived-in-The spatial distribution of the total uncertainty is provided in
Figure M in the Supplement.
The assimilation methodology used in this paper is the four-dimensional ensemble variational (4DEn Var).

Different from the classic 4DVar that requires adjoint in the cost function minimization, 4DEnVar
emulates the GEOS-Chem formaldehyde simulating model using an ensemble-based linear approximation

. The detailed procedures for minimizing the cost function Equation [7] are illustrated in section

"Minimization of the Cost Function in 4DEnVar’ in supplementary material.

Supplement

1 Emission Uncertaint

Following previous studies (Souri et al.,[2020), sector-specific prior uncertainties for anthropogenic,
biogenic, and biomass burning emissions can be combined into a total uncertainty using a weighted
approach.

2 _ f2 2 2 2 2 2
Ototal = f anthro * Tanthro T f biogenic ~ Pbiogenic + f bioburn ~ Pbioburn (13)

~Applying this method to the uncertainty values reported in earlier work, we obtained a total prior
uncertainty of 120.22%. Accordingly, we set the standard deviation of the multiplicative factor to
0.4 in this study. To assess the validity of this simplification, we compared the sector-weighted prior
emissions (Figure [6] (a)) with the prior emissions uniformly scaled by 120% (Figure [6](b)). The two
results are generally consistent, supporting the reasonableness of adopting a uniform total uncertainty
in this study. Sector-specific inversion will be considered in future work.
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The minimization of the cost function follows the 4DEnVar processes. An ensemble of emission
inventory is generated randomly using the prior emission vector f and the assumed emission error

covariance B:

[fla"'va] (14)

B R e e e

An_ensemble of GEOS-Chem model simulations is then forward run with the ensemble emission

M), ... M(f) 13

Denote the emission ensemble perturbation matrix by:

L

R LA 1o

and the mean of ensemble simulation by:

M(]) = %ZM(L—) (17)

where f is the mean of the ensemble emission inventories. In the 4DEnVar assimilation algorithm,
the optimal emission f is defined as a weighted sum of the columns of the perturbation matrix F”
using weights from a control variable vector w:

[=fHFw (18)

The cost function could then be reformulated as:

J(w) = %wTw—&- % {HM'w + HM(f) —y}TO_1 {HM'w+ HM(f) -y} (19)
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where M is the linearization of the GEOS-Chem formaldehyde simulating model required for cost
function minimization, and is approximated by:

MF' ~ —= [M(f1) = M(f), .., M(fn) = M(])] (20)

2l

With the uncertainty in emission transferred into the observation space, the minimum of the cost
function in Equation [19] could then be directly calculated, and the posterior emission f subsequentl

MM™ — B
=z 21
" M B ey

Here M™ represents the modeled concentration of formaldehyde at altitude z, B. is the background
concentration of formaldehyde at the same altitude, M ™ represents the total modeled concentration
of formaldehyde in the atmosphere, and B is the total background concentration.

1 X“—B

A= =
N X!—B

z

(22)

Here X ¢ represents the a priori (or assumed) concentration of formaldehyde at altitude z, B, is again

the backeround concentration at the same altitude, X is the total a priori concentration, and N is a
normalization factor ensuring the matrix A sums correctly to account for all altitudes.

- it is impossible to understand some sentences, for example (I. 14 on page 10) ""A small | means more
errors in fine scale could be resolved using the assimilation, while however requires more ensemble runs
to represent the model realization from emission to simulation''. Please clarify.

To make it clear, "A small 1 means more errors in fine scale could be resolved using the assimilation, while
however requires more ensemble runs to represent the model realization from emission to simulation" is
now changed to “A small value of [ indicates that the tuning factors as are less spatially correlated, thereby
enabling emission optimization at a finer spatial scale. However, this also necessitates a larger number of
ensemble runs to adequately represent the model realization from emission to simulation."

- the representativity error is taken as the standard deviation of the columns around their monthly means:
see remark above on the temporal sampling issue. This error can and should be taken care of through
appropriate sampling of model concentrations.

We agree with the reviewer’s point and have redone the temporal sampling of model data to be consistent
with satellite overpass times.

Text in manuscript
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2.1 Model simulation

Since the satellite overpasses China mainly between 12:00 and 14:00 local time, the model outputs
within this time window are sampled to calculate the formaldehyde columns for fair comparison with
the satellite observations. Our GEOS-Chem model outputs both total and tropospheric formaldehyde
column concentrations, enabling comparison with OMPS total column data and TROPOMI formaldehyde
column measurements as will be introduced later. Samples of the formaldehyde tropospheric column
simulation are presented in Figure[ll (a).

[¢]

- from Sect. 2.3.1, it would seem that geometric air mass factors are used for the OMPS retrieval, which is
very strange since the retrieval described by Nowlan et al. 2023 () incorporates a detailed AMF calculation.
This should be clarified. If really geometric AMFs are being used, the product would be inappropriate for
emission optimization.

After carefully checking the product documentation, we confirm that geometric AMFs were not used in
calculating VCDs. This variable only appeared during the initial data screening, while the actual AMF
construction for VCDs followed the retrieval algorithm described by [Nowlan et al.| (2023).

Text in manuscript

2.3.1 NOAA-20 OMPS

In this study, the quality control scheme recommended in OMPS product documentation was ap-
phedWheﬂ—ﬂ%lﬂg—@N[—P—S—d—&P& Data points with formaldehyde column densities exceeding 2el7
molecules/cm? were excluded to minimize the impact of outliers. After removing outliers, we further

excluded data points where the sum of formaldehyde column and twice the observation uncertaint

was less than zero. Furthermore, the geometric air mass factors (AN F;) were defined as follows:

AMPF¢g = sec(SZA) + sec(VZA) (23)

Here, S ZA represents the solar zenith angle and VZA denotes the V1ew1ng zenith angle After

#MWWWWWWMWMNS 24 e*eeedeégrs@m
70°, the-an _air mass factor was-less than 0.1, the-a geometric air mass factor execeeded—5;-orthe
m&%&%%g@gm(mo 4—Snapshots-of-filtered-, or with
positive snow and ice fractions. All screened data were then averaged to a spatial resolution of 0.5°
latitude x 0.625° longitude on a monthly basis, consistent with the GEOS-Chem model configuration.
To make a fair comparison between the observed and simulation formaldehyde column concentration
in the assimilation, we further imposed constraints on the number of observations within each grid
cell. Specifically, two filtering schemes were tested, in which grid cells with fewer than 10 or fewer
than 50 original observations were excluded. The OMPS formaldehyde columns is-after applying the
threshold of 50 are shown in Figure +dJ] (c), while the results with the threshold of 10 are provided in
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the Supplement. The differences between the two filtering schemes are minor, particularly across the
four study regions considered in this work.

Formaldehyde vertical column densities (VCDs) retrieved from satellite observations are derived using
air mass factors (AMF), which strongly depend on the a priori vertical profiles of formaldehyde.
Direct comparisons between satellite products and model simulations may be biased if the a priori
profiles used in the retrieval differ from the simulated ones. To ensure consistency between the satellite
observations and GEOS-Chem simulation, we applied an AMF correction by recalculating the AMF
with model-simulated profiles following the method used in[Palmer et al.| (2001):

-0
AMF = / w (p)S (p) dp 24)
p

s

5) The results are insufficiently discussed and validated against independent datasets such as ground-
based HCHO or VOC concentration data and flux measurements.

We sincerely thank the reviewer for carefully reading our manuscript and raising this important point.
Unfortunately, for China in 2020 we were unable to identify suitable independent HCHO datasets (e.g.,
aircraft campaigns, FTIR, or ground-based observations) for direct validation, which we acknowledge as a
limitation.

Assimilation of OMPS retrievals leads to posterior results that exhibit clear improvements when compared
with TROPOMI observations, as demonstrated by higher correlation coefficients (R?) and reduced errors
(MAE and RMSE) relative to the prior simulation.

To further address this limitation, we refined our methodology and emphasized a consistency analysis of
the posterior results obtained by independently assimilating OMPS and TROPOMI datasets with the same
framework. Here, consistency refers to cases where both assimilations indicate the same correction direction
relative to the prior (i.e., both increases or both decreases). In these consistent regions, we observed significant
improvements in surface ozone simulations: 81.25% of the regions showed improvements, with the mean
RMSE of MDAS ozone reduced by 24.7%. These results demonstrate that when two independent assimilations
based on different satellite datasets yield similar posterior corrections in direction, ozone simulations are
substantially improved, thereby supporting the robustness of our inversion. We hope the reviewer will
re-evaluate the revised manuscript in light of these methodological updates and the strengthened validation
through ozone.

Text in manuscript

3.3 Formaldehyde tetal-columns evaluation

The prior and OMPS-driven posterior simulations of formaldehyde tropospheric columns were compared
W1th the TROPOMI formaldeh de tropos herlc columns to evaluate the Changes in Iﬂﬂei’—Meﬂgﬁhft

fb—pfepefﬁeﬁﬂ-l—f& ormaldeh de. Scatter 1ots together w1th stat1st1cal metrics R2 R MAE and
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Figure 7. Scatter density plots comparing GEOS-Chem simulated formaldehyde columns with TROPOMI
observations in 2020. Panels (a.l-e.1) show comparisons between prior simulations and TROPOMI,
while panels (a.2-¢.2) show comparisons between posterior simulations constrained by assimilating OMPS
observations and TROPOML The regions considered are China (a), the North China Plain (b), the Yangtze
River Delta (c), the Pearl River Delta (d), and the Sichuan Basin (e). The probability density of the data
points is indicated by the color scale, The correlation coefficient (R), coefficient of determination (R?),
mean absolute error (MAE), root mean square error (RMSE), regression slope, and intercept are reported in
each panel.

sotme-grid-points-in-these regions-are-even-fess-than-whole country and four subregions in 2020 are
resented in Figure [/l The prior simulation already shows reasonably good performance (a.1-e.1),

with most points distributed close to the 1516="kg/m>—Fheugh-assimitating- OMPS-ebservations: 1
line and exhibiting strong correlations with observations. Nevertheless, further improvements are
still possible. After assimilating OMPS data, the posterior simutation-in-theseregionssti-remains
low;resulting-in-titte-change—As-iHustrated-in-Figure-7-(a-2-a3)results compared with TROPOMI
M&Ww %heﬂﬂﬂﬂal—ehaﬂges—nﬁheseafeas—alse—affeeted—th&ﬂa&eﬂa}

949%6}9—melee/em— ndlcatln strengthened correlatlons For Chma and NCP the improvements
are com, arable with R? increasing by about 0.027 (from 0.870 to 0461016 moleefem?—Heowever;

M%MWMM@%M
rising from 0.882 to 0.918, and the scatter around the regression line substantially reduced, with many
outliers corrected. The most significant improvements occur in PRD and SCB, where R? increases
by approximately 0.05. In these regions, the overestimations present in the prior simulations are
effectively mitigated, particularly for high-value cases. 1In terms of RMSE and MAE, decreases
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a 2019 Formaldehyde Increments by Assimilating Different Satellites
NCP_OMPS  NCP_TROP  YRD_OMPS  YRD_TROP _ PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP

5 -1.79% +3.74% ©.34% 228% 9.36% -13.57%
] 101% 6.84% 6.96% 5.29% 2.06%
§ +4.53% +1.07% 0.28% +4.30% -1.46% +1.15% 49.24%
5 2.84% +2.09% 922% +4.88% 8.96% +2.15% +5.38%
g +5.36% +2.80% ©.85% +0.42% 9.11% 0.69% 036%
5 0.86% +9.55% IM% 533%

=

L
= 277% +6.91% 9.11% 5.87%

g sa0% +521% 3.19%
5 2.19% B.71% 520% 0.83%
g s0% 085% 471% 9 251% 6%
5| +ssw 5.96% 5.98% 435% 151%
Z| +069% -1.60% +3.05% 3.02% 290% 7.48% 4.56%

b 2019 Ozone ARMSE by Assimilating Different Satellites

NCP_OMPS ~ NCP_TROP  YRD_OMPS ~ YRD_TROP  PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP

5t 0% +1.4% +12% -10.6% 49% 9.4% 6 Degraded
2 0.6% 54% 14% -142% 63% 69%
N 5.6% 25% 1.0% +11.8% 5.8% +.0%
5 +5.3% 9.1% +1.7% -1.5%
g 26% 54% +1.6% -1.5% 54%
5 -10.0%
3 3% -10.5%
g -10.7% +6.6% 2.5% 1.5%
5 2m 49.7% +0.9% +8.4% -135%
gl H01% 3.6% 16% 4.1% -135%
3 -1.0% 6% 8.5% 38% 6
g1 B0% 20% | +111% 54% 9.8% -113% Improved

Figure 8. Monthly increments in (a) formaldehyde column concentrations between posterior and prior
simulations and (b) the relative changes in MDA ozone RMSE (ARMSE) after assimilating OMPS and
TROPOMI observations in 2019. Results are shown for the North China Plain, Yangtze River Delta, Pearl

River Delta, and Sichuan Basin, Positive values indicate an increase relative to the prior, while negative
values indicate a decrease.
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Figure 9.

observations in 2020. Results are shown for the North China Plain, Yangtze River Delta, Pear]l River Delta

a

2020 Formaldehyde Increments by Assimilating Different Satellites

NCP_OMPS  NCP_TROP  YRD_OMPS  YRD_TROP ~ PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP
5| +606% 2.96% 534% -18.69% £6.70% -13.88%
B 8% 242% £13% 172% 5.61% 250% 2.17%
§| 5% 030% 3.79% 496% +1.00% 033% 093% 49.61%
5l % +0.52% 0.60% 112% +1.76% 2.10% 0.14% +3.80%
+1191% +591% 039% +223% -1032% +1.39% 3.05%
+13.46% +0.22% 935% 2.14%

£

E

g

=

+7.08% 3.58% +3.64% 0°
+5.61% -1001% +4.42% 9.63%
5| #on% 2.74% +6.38% 0.70% B71% 932%
g| 4% +1.54% 495% 9.76%
3| -1os% 0.18% 7.06% £.98% 6.85% £.08%
g 9% 5.28% 9.84% 6.54%
b 2020 Ozone ARMSE by Assimilating Different Satellites
NCP_OMPS  NCP_TROP  YRD_OMPS  YRD_TROP  PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP

st 83% 2.9% 2% +103% -143% -144%
2 3.6% +3.9% +4.0% 48% 21%
£ $.1% +.2% 04% 0.4% +109%
Bb 123% 23% 73% +12% +3.6%
§' +15.8% o 22%

+15.5%

26.6%

8 $.1% 4.3%
3 +6.8% +H4.1%
g1 % +13.1%

40.7°

-

-19.9%

+1.8%

Degraded

Improved

Monthly increments in (a) formaldehyde columns between posterior and prior simulations
and (b) the relative changes in MDAS ozone RMSE (ARMSE) after assimilatine OMPS and TROPOMI

)

and Sichuan Basin. Positive values indicate an increase relative to the prior, while negative values indicate a

decrease.
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Figure 10. Spatial distributions of surface ozone concentrations in February, May, August, and
November 2020. Panels (a.1-a.4) show ground-based observations, panels (b.1-b.4) show prior simulations,

anels (c.1-c.4) show posterior simulations constrained by assimilating OMPS formaldehyde observations,
and panels (d.1-d.4) show posterior simulations constrained by assimilating TROPOMI formaldehyde

observations.
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are observed in all regions except NCP. A comparison between Figures (b.1) and (b.2 1nd1cate
im rovements in the low- and Wes W nthly-averas ’ .

mﬂﬂﬁmmwﬁmﬂﬁwﬁmwm

whereas substantial overestimations appear in the high-value range. This issue is likely related to
the instrumental errors of OMPS observations, as discussed in Sections 2.3.1 and 3.2, which introduce

considerable uncertainties.

3.4 Impact of formaldehyde assimilation on ozone surface concentration

maﬂrhe%spefs—ePThe spatial dlstrlbutlons bserved MDA8 Oﬁuffaeefeﬂeeﬂ&a%ﬂfs—espeexa&y

deﬁsrfyfa}—sea&eﬁp}e%s—éb}—md—eeffe}&&eﬁeeefﬁeteﬂfs—(e)ozone at ground statlons al a4 to ether
with the prior (b.1-b.4) and posterior simulations based on OMPS and TROPOMI assimilation (c.1-c.4,

d.1-d.4), are shown in Figure As shown in Figure-9(a);thefrequeney—distribution-histogram
elearly—demenstrates—panels (b.1-b.4), pronounced ozone hotspots are observed in NCP (February,
May, and August), YRD (May and August), PRD (May, August, and November), and SCB (May and

s1m11ar to the observatlons shown in panels (a.1-a.4). It indicates that the pr10r

mmmm
is clearly overestimated in PRD during February, May, and August, while underestimated in SCB
during May and August. After assimilation with OMPS or TROPOMI, the NEP region—#Asean-be
seenin-Figure-9-posterior MDAS ozone simulations retain the overall hotspot distribution, but the
direction and magnitude of changes vary by region. For instance, in August, ozone concentrations
increase in NCP and PRD with OMPS assimilation but decrease with TROPOMI assimilation. In
February, both assimilation results decrease in YRD, although the decrease is more pronounced in the
TROPOMI:-based results. Moreover, many regional changes are difficult to discern visually from the

spatial maps alone, highlighting the necessity of using statistical metrics to quantitatively assess ozone

The RMSE values between the simulated MDAS ozone and the ground-based observations are calculated.
To better visualize the assimilation benefits, the RMSE variation either assimilating the TROPOMI or
assimilating the OMPS in the four key regions are also shown in Figure @ (b). Larger decreases in
RMSE (darker blue) indicate more significant improvements, with the posterior ozone being closer
to_ground-based observations; conversely, larger increases in RMSE (darker red) indicate degraded
performance, with the posterior ozone diverging further from the observations. In those inconsistent
cases where the OMPS and TROPOMI posterior increments exhibit opposite signs (i.e., one increases
while the other decreases), ozone simulation improvement is not guaranteed. For instance, in NCP
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during January-April and July, in YRD during June and September, and in PRD during April, May,
August, and September, one assimilation leads to improvement while the other indicates deterioration.
Moreover, in several additional months both posteriors even show degradation, making it difficult to
effectively evaluate the improvement in posterior ozone simulations. By contrast, ozone simulation
improvements are clearly observed in consistent cases where the OMPS- and TROPOMI-constrained
%ﬂmmg&%mﬂ%%m& fh%RMS%&e%meaﬂ

%M%memﬁ
RMSE decrease in June, in agreement with the high-consistency pattern shown in Figure 9Ol (a). In
YRD and PRD, RMSE decreases by more than 30% in December, representing the most significant
improvement; in addition, PRD also shows clear improvements in January and October. These
improvement months all correspond to periods of high consistency. In SCB, RMSE also decreases
markedly during high-consistency months, including January, June, July, and September-December.

To further quantify ozone simulation improvements in consistent regions, statistics were performed for
the months classified as consistent. Considering the similarity in monthly behavior between YRD and
PRD,; the two regions were combined in the analysis. The results indicate that the consistent regions
include NCP in May-June, YRD/mt0-26-221+¢PRD in January-March and October-December, and
Mw@%

MMMWW
consistent months exhibit improvements, accounting for 81.25%, with an average RMSE reduction of
24.7% This result suggests that constraining NMVOC emissions through formaldehyde assimilation
not only substantially improves formaldehyde simulations, but also exerts a positive impact on ozone
simulations, with particularly significant improvements in regions and months characterized by high
consistency.
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