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Overview

Response to Referee 1: We would like to thank the referee for the careful review throughout the paper and
the in-depth comments, especially for the way we processed the formaldehyde column observations which
was improper. We accepted all of the referee’s suggestion for using the satellite formaldehyde retrievals.
The posterior results now also differ from the previous results significantly. Because there are too many
modifications throughout the manuscript, we did not highlight all of them.

Major concerns

1) Clarity and Consistency in Satellite Usage (Major) The manuscript lacks consistency in describing
which satellite datasets are assimilated and which are used for validation. The abstract suggests that only
OMPS is used for assimilation and TROPOMI is used as an independent validation dataset. However, the
methods section refers to assimilation experiments involving OMPS, TROPOMI, and their combination.
Furthermore, Eq. (3) implies the use of a single observational constraint. If the combination refers to
an average of OMPS and TROPOMI data, this should be clearly stated and methodologically justified.
Averaging observations reduces variance and effectively increases their weight in the cost function-this is
not equivalent to joint multi-satellite assimilation. This distinction must be clarified and its implications
explicitly discussed.

We express our gratitude to the reviewer for highlighting the inconsistency in our description of the satellite
datasets used for assimilation and validation. We acknowledge that the "OMPS+TROPOMI combined
assimilation" approach in the original submission was inadequately described and methodologically flawed.
As the reviewer accurately pointed out, simply averaging OMPS and TROPOMI retrievals does not constitute
true multi-satellite joint assimilation, as it artificially reduces observational variance and disproportionately
weights the cost function without properly accounting for observational errors. In the revised manuscript,
we have removed the combined assimilation experiment entirely, focusing solely on the OMPS-only and
TROPOMI-only assimilation experiments. We have ensured consistent descriptions throughout the Abstract,
Methods, and Results sections to eliminate ambiguity. Additionally, we have introduced a consistency analysis
in the Results section to highlight the benefit of using the TROPOMI-based and OMPS-based assimilation
results, and details could be found in our revised manuscript.
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Abstract.

Monthly NMVOC emissions over China in 2020 are then optimized by independently assimilatin
formaldehyde retrlevals either from OMPS or from TROPOMI using a self developed 4DEnVar-based

feaehmg—}eve}&eempafab}e%e%PQM{%lDEnVar a551m11at10n emission inversion system.

1 Introduction

NMVOCs-compared-to-OMI-retrievalsemission optimization at the national scale. Subsequently, the
monthly NMVOC emission optimization in China is conducted. This is achieved by independently

assimilating formaldehyde observations frem-OMPS-and-¢either from OMPS or from TROPOMI,
based on the emission inversion system that couples the four-dimensional ensemble variational
(4DEnVar) data assimilation algorithm and GEOS-Chem model. The effectiveness of thls emis-
sion inversion system has been evaluated in our recent study 3
(Tin et al.l 2023} Xia et al.| mm&m
results for 2019 are also presented in the Supplementary Information to provide additional context and
support,

2) Lack of Bias Correction for Satellite Data (Major) The study does not apply bias correction across
satellite datasets, which is a critical omission. HCHO retrievals from OMPS and TROPOMI differ due
to varying retrieval algorithms, cloud screening, and a priori assumptions. These systematic differences
must be addressed before assimilation. Previous studies (e.g., Zhu et al., 2020; Miiller et al., 2024) have
shown the importance of bias correction using independent datasets such as aircraft or FTIR observations.
At minimum, the authors should:

* Justify the omission of bias correction
 Discuss associated uncertainties

* Provide quantitative comparisons between satellite datasets prior to assimilation (with figures in the
main text)

* Display and discuss the observation uncertainties used in the assimilation

AR: We sincerely thank the reviewer for their valuable feedback on bias correction. In the revised manuscript, we

have incorporated the following additions and clarifications:



Lack of independent observations for satellite data bias correction: Due to the unavailability of temporally
coincident independent measurements (e.g., aircraft or FTIR data) over China in 2020, rigorous cross-
satellite bias correction could not be performed. This limitation, as well as our mitigation approach, is now
clearly acknowledged and discussed in the manuscript. To improve the comparability between OMPS and
TROPOMI, we apply vertical profile corrections before the assimilation, including averaging kernel (AVK)
adjustments for TROPOMI and air mass factor (AMF) recalculations for OMPS. In the assimilation, OMPS
retrievals are used as total columns as provided by the product, while TROPOMI retrievals are assimilated as
tropospheric columns. We did not construct total columns from TROPOMI, since doing so would introduce
additional uncertainties. This choice does not affect comparability, because the model provides full vertical
concentration profiles that can be integrated to both total and tropospheric columns, and formaldehyde is
primarily distributed below the tropopause. These treatments make the assimilation more reliable.

Uncertainty discussion: We have expanded the Methods and Discussion sections to address observational
uncertainties and their potential impacts on the assimilation results. Inter-satellite comparison: Prior to
assimilation, we conducted a quantitative comparison of OMPS and TROPOMI retrievals, highlighting their
differences relative to the prior. Both spatial and statistical comparisons are now included in the main text.

Presentation of observational uncertainties: Remarks concerning vertical profiles of observational uncertainties
are now presented in the manuscript, with the Figures illustrating their spatial distributions provided in the
Supplementary Material.

Text Lack of independent observations for satellite data bias correction in manuscript

2.3.1 NOAA-20 OMPS

Formaldehyde vertical column densities (VCDs) retrieved from satellite observations are derived using
air mass factors (AMF), which strongly depend on the a priori vertical profiles of formaldehyde.
Direct comparisons between satellite products and model simulations may be biased if the a priori
profiles used in the retrieval differ from the simulated ones. To ensure consistency between the satellite
observations and GEOS-Chem simulation, we applied an AMF correction by recalculating the AMF
with model-simulated profiles following the method used in/Palmer et al.| (2001):

-0
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p

s

The processed OMPS satellite observations were ultimately assimilated as total columns, which are
resented in Figure [Tl (c.1-c.4).

2.3.2 Sentinel-5SP TROPOMI

Beyond the recommended quality screening, a key consideration when comparing TROPOMI formaldehyde
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Figure 1. Spatial distributions of formaldehyde columns from GEOS-Chem model-simulated prior

tropospheric columns (a) and posterior tropospheric columns constrained by OMPS assimilation (b), satellite
observations of OMPS total columns (c), and satellite observations of TROPOMI tropospheric columns (d

in February (a.1-d.1), May (a.2-d.2), August (a.3-d.3), and November (a.4-d.4) of 2020.
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Figure 2. Spatial distributions of the formaldehyde total columns from GEOS-Chem model-simulated prior
a,c) and posterior (b,d) results in Febru a.1-d.1), May (a.2-d.2), August (a.3-d.3), November (a.4-d.4)




retrievals with model outputs is the dependence on the assumed a priori vertical profile. Traditionally,
studies have relied on AMF-based corrections, in which AMEF is recalculated using model-derived
profiles to reduce such discrepancies (Palmer et all 2001; [Boersma et al.| 2004} [Zhu et al ., 2016} [Cooper et al.l 2020)
- More recently, the availability of averaging kernel (AVK) information in _the TROPOMI product
has allowed a _more consistent comparison by accounting for the impact of the assumed vertical
profile shape in the retrieval, following the approach introduced in the IAST NH; version 4 product
(Clarisse et al},[2023} [Xia et al, 2023). In this study, we apply AVK-based correction for TROPOMI
formaldehyde by projecting the model profiles onto the satellite pressure grid, thereby achieving a
more harmonized comparison with GEOS-Chem simulations. The corrected column is calculated as:

N Xe_ B
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The processed TROPOMI retrievals were assimilated as tropospheric columns, which are presented
in Figure[T] (d.1-d.4), with their vertical shape profiles shown in Figure 3] (green line) to illustrate the
normalized contribution of each pressure layer to the tropospheric columns. We adopted tropospheric
rather than total columns because the retrieval product itself provides tropospheric columns, and
recalculating total columns would introduce substantial uncertainties.

2.3.3 Aura OMI

The OMI observations are then aggregated to monthly means on a 0.5° x 0.625° grid, consistent with
the GEOS-Chem model resolution. To ensure sufficient sampling per grid cell, we also applied two
filtering schemes based on the number of observations, excluding grid cells with fewer than 10 or
fewer than 50 valid pixels. Unlike OMPS and TROPOMI, however, OMI shows a strong reduction
in data coverage under these constraints, and the product becomes sparse after applying the threshold
of 50 observations. This indicates that OMI suffers from insufficient sampling density in China for
high-resolution assimilation. The vertical profile correction of OMI formaldehyde was conducted
using the same approach as applied to OMPS, by recalculating AMF with model-simulated vertical
profiles.

4 Summary and conclusion

Future efforts should reassess assimilation performance with updated emission inventories and incorporate
source-specific uncertainties, assigning different uncertainties to anthropogenic, biogenic, and biomass

burning sectors, in order to better constrain their respective emissions. Moreover, because no independent

validation data such as aircraft or FTIR measurements were available over China in 2020, future

studies could further evaluate the assimilation results once such observational datasets become accessiblg.

—

Text Uncertainty discussion and Presentation of observational uncertainties in manuscript
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Figure 3.  Vertical distributions of the regional mean formaldehyde columns from GEOS-Chem

model-simulated prior (black) and satellite observations by OMPS (blue), TROPOMI (red), and OMI (green).
Panels (a)-(d) correspond to the North China Plain, Yangtze River Delta, Pearl River Delta, and Northeast

. Sub-

anels

a.l-d.1)

and November 2020, respectively. Values in parentheses indicate the biases of satellite observations relative
to the prior simulation. Shaded areas denote the observational uncertainties.



OMI total column 202002 ‘OMI total column 202005 OMI total column 202008 OMI total column 202011

TROP tropospheric column 202005

r)/ \\'\

0.00 0.25 0.50 0.75 1.00 1.25 1.50 2.00 2.50
10%€ molec cm™2

Figure 4. Comparison of monthly mean formaldehyde column concentrations in February, May, August, and
November 2020 after applying different data filtering thresholds. Panels (a.1-a.4), (c.1-c.4), and (d.1-d.4

show OMI, OMPS, and TROPOMI results, respectively, after removing egrid cells with fewer than 10
observations. Panels (b.1-b.4) show OMI results after removing grid cells with fewer than 50 observations.




3-+-Semi-variogram-analysis3.1 Satellite data evaluation

Uncertainty is a ke component in the assimilation process and serves as a crucial indicator of satellite
i illustrates the vertical distribution of retrieval uncertainties. In the mid- to

er troposphere (200-600 hPa), OMPS and OMI show comparable levels of uncertainty. However,
below 600 hPa, OMPS uncertainties become substantially larger, likely due to cloud contamination

and retrleval algorithm a rox1mat10ns Gonzélez Abad et alJ,MjNowlan et al LMAS shown

WW%MM
of the other two satellite datasets. At first glance, OMI data may appear superior, but this advantage
largely results from strict filtering, which excludes a substantial fraction of problematic data, As
mmaawplﬁmﬁlg&aeA(a bﬂ%by—eﬁe&ehefmmﬂmwda#hese

; - 5 with-lare ¢ e , applying a threshold
of 50 observatlons er grid cell drastlcall reduces spatial coverage, rendering OMI unsuitable for
national-scale assimilation. Previous studies that assimilated OMI over China have typically interpolated

onl OMPS and 4°

the data to coarser resolutions toensure a 11cab111t Cao et al. OISL Mg/azakl et al. [, 2020). Thereforev

Text Inter-satellite comparison in manuscript

3.1 Satellite data evaluation

satellite datasets exhibit the same sign of deviation (positive or negative) relative to the model, they are
considered consistent. Such consistency is observed, for example, in February, May, and November
over NCP and in February over PRD and SCB, where all three datasets show positive deviations; and
in February and November over YRD and in August over SCB, where all show negative deviations.
These cases indicate stronger reliability. In other situations, when OMPS and TROPOMI exhibit

the same b1as dlrectlon they are also considered consistent, as in November over PRD and SCB.
Overall s wh with-hieh
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3.3 Formaldehyde tetal-columns evaluation
The spatial distributions of formaldehyde columns in Februar Ma Au ust. and November 2020 are

shown in Figure

d1s lay the prior simulations of tropos her1c columns, (b.1-b.4) present the posterior simulations

of tropospheric columns assimilated by OMPS, (c.1-c.4) show the OMPS satellite observations of
total columns, and (d.1-d.4) illustrate the TROPOMI satelhte observanons g&r&g&s\pl@gc:wggl\%

In addition, the prior

MWWWMM@WWMQQA
are also provided in the Supplementary Figure As indicated by the vertical profiles in Figure
Bl _formaldehyde Jevels-is mainly distributed below the tropopause. Comparisons between the prior
and posterior results show that the differences between total and tropospheric columns are relatively
MM&%WMMWIH

0 O o-the-obse d ac aitha or—OMP d

regions w1th the oster1or results showm an expanded hlgh value feafufes—m%mﬁan-&u%heu—beeame

Mﬁmmmmwm%
YRD. In May, overall concentrations increase nationwide, with particularly pronounced growth in the
NCP and PRD. In August, concentrations increase in the NCP, YRD, and PRD, while they decrease
in the SCB. In November, the changes are modest, but all four regions exhibit reduced concentrations.

3) Unrealistic Assumptions for Emission Uncertainty (Major) The manuscript assumes a uniform 100%
random uncertainty for all emission sectors and species. This is overly simplistic and not representative
of known variability-biogenic and biomass burning emissions typically carry much greater uncertainty
than anthropogenic sources. Furthermore, the spatial correlation structure of errors and the regular-
ization approach are not well described. These assumptions critically affect the inversion and should be
better supported by literature references, sensitivity tests, or at minimum, a comprehensive uncertainty
discussion.

We thank the reviewer for this important comment. For testing the uncertainty choice, we adopted sector-
specific prior uncertainties of 150% for anthropogenic VOCs, 200% for biogenic VOCs, and 300% for
biomass burning VOCs (following [Souri et al| (2020)). These were combined using a weighted quadratic
formulation, which yielded a total uncertainty of about 120%. Accordingly, we set the standard deviation
of the multiplicative factor to 0.4. To test the simplification of applying a uniform total uncertainty, we
compared emissions based on sector-weighted uncertainties with those obtained by uniformly scaling the
prior by 120% (Figure [5), and found the two distributions to be generally consistent. This supports the
reasonableness of our assumption, while we acknowledge that uniform uncertainties remain a simplification,
and sector-specific inversions will be explored in future work. Remarks concerning the spatial correlation
structure in the background error covariance have also been added in the revised manuscript.
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Text in manuscript

Table 1. Uncertainty assumptions for different emission sectors.

Anthropogenic  Biogenic Biomass burning

voC 150% 200% 300%

PRIOR Plus Emission 2020 PRIOR Total Emission 2020 x120%

0 5 10 20 40 80 120 160 200 0 5 10 20 40 80 120 160 200
107 kgC 1074 keC

2.5 Assimilation algorithm

The uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission
inventories, and can be compensated using a spatially varying tuning factor a:

f (@) = fo (i) - a(d) 3)

in here f; (¢) denotes the NMVOC emission rate in the given grid cell i. The « values are defined

to be random variables with a mean of 1.0, a minimum of 0.1 and a standard deviation 5=-6-20f

0.4, corresponding to a uniform 120% uncertainty applied to the total NMVOC emissions rather than
sector-specific settings as adopted in previous studies (Choi et al,[2022; [Jung et al.l 2022} [Souri et al] 2|

Figure 5. Comparison of prior NMVOC emissions estimated by combining sector-specific uncertainties (a)
nd by uniformly scaling the prior total emissions by 120% (b) in 2020. The two distributions are generall
onsistent, supporting the applicability of the total uncertainty assumption used in this study.

020)

. The rationale for this choice is provided in the Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance B,

11



is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

B, (i,7) =04 - C(i,5) “)

where C (i, j) represents a distance-based spatial correlation between two s in the grid cell ¢ and j,
and is defined as:

C (i, j) = e~ (/D)2 5)

where d; ; represents the distance between two grid cells ¢ and j. [ here denotes the correlation length
scale which controls the spatlally Varlablllty freedom of the as. A small yglAlleAQL | means-more-errors
1 fin : h -indicates that the

tunin factors Qs are less S atrall correlated thereb enabhn emission optimization at a finer spatial

scale. However, this also necessitates a larger number of ensemble runs to adequately represent the
model realization from emission to simulation. An empirical parameterl-parameter [ = 300 km which

is used in (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is
obtained via a Schur Product:

B=B,oC 6)

Supplement

1 Emission Uncertaint

Following previous studies (Souri et al., , sector-specific prior uncertainties for anthropogenic,
biogenic, and biomass burning emissions can be combined into a total uncertainty using a weighted
approach.

2 _r2 2 2 2 2 2
Ototal = fanthro * Oanthro + fbiogenic " Obiogenic + fbiobum * Obioburn (7

~Applying this method to the uncertainty values reported in earlier work, we obtained a total prior
uncertainty of 120.22%. Accordingly, we set the standard deviation of the multiplicative factor to
0.4 in this study. To assess the validity of this simplification, we compared the sector-weighted prior
results are generally consistent, supporting the reasonableness of adopting a uniform total uncertainty
in this study. Sector-specific inversion will be considered in future work.

RC: 4) Inversion Framework and Terminology (Major) The manuscript describes the method as 4DEnVar, yet
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no ensemble component appears to be used. The inversion resembles a standard 4D-Var framework. If
an ensemble is not implemented, the use of '""EnVar'' terminology is misleading and should be corrected.
If an ensemble is used, key details are missing, including ensemble generation, localization, hybrid co-
variance structures, etc. Additionally, the manuscript does not explain:

 The optimization method used to minimize the cost function

* Convergence criteria and number of iterations

* Use and selection of regularization

» Whether the GEOS-Chem adjoint model is used, and how it is implemented
We agree with the referee that the more details concerning the 4DEnVar should be given. The methodology
used in this paper is actually 4DEnVar, which emulates the GEOS-Chem formaldehyde simulating model

using an ensemble-based linear approximation and hence is adjoint-free. More remarks are now added in the
revised manuscript and the supplement.

Text in manuscript

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehydeobservations-to-constrain NMVOCemissions-optimize NMVOC emissions with satellite
formaldehyde observations. The goal of this-the assimilation is to find the most likely estimate of
the state vector, which is the monthly NMVOC emission inventories f over the entire model do-

main. Note that f represents the vector of total NMVOC emissions, rather than separately eridded
anthropogenic, biogenic, or biomass burning VOC emissions. To optimize emissions from these three

sectors, additional observations or a well-defined spatial correlation structure are required, which are
not available in this study. The prior estimate f, is from the inventories described in Section 2.2,

and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,
assimilation is performed via minimizing the cost function J as follows:

T(F) = 5(F ~ £ BT~ £i) + 5y~ HM() Oy~ HM(£) ®

The cost function J is the sum of two partparts: background and observation penal term. The

background term quantifies the difference between the optimal f and the prior emission inventories fb,
while the observation term calculates the difference between the simulation driven by f and the satellite
observations ¢. In addition to the f, that represents the prior NMVOC emission vector calculated
from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The
uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories,
and can be compensated using a spatially varying tuning factor a:

f @) = fo (i) - a(i) ©)

13



in here fj (i) denotes the NMVOC emission rate in the given grid cell i. The « values are defined
to be random variables with a mean of 1.0, a minimum of 0.1 and a standard deviation 5=-6-20f

0.4, corresponding to a uniform 120% uncertainty applied to the total NMVOC emissions rather than
sector-specific settings as adopted in previous studies (Choi et al., 2022} Jung et al.l 2022} [Souri et al .} 2|

020)

. The rationale for this choice is provided in the Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance B,
is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Ba(ivj):Ua'C(i7j) (10)

where C (i, j) represents a distance-based spatial correlation between two «s in the grid cell ¢ and j,
and is defined as:

C (i,7) :e_(di,j/l)Z/Q an

where d; ; represents the distance between two grid cells ¢ and j. [ here denotes the correlation length
scale which controls the spatlally Varlablhty freedom of the as. A small M | means-more-errors
i h -indicates that the

tunin factors Qs are less S at1a11 correlated thereby enabling emission optimization at a finer spatial

scale. However, this also necessitates a larger number of ensemble runs to adequately represent the
model realization from emission to simulation. An empirical parameterk-parameter [ = 300 km which

is used in (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is
obtained via a Schur Product:

B=B,oC (12)

In the observation term, ¥ is the observation vector, representing satellite observations, M is the GEOS-
Chem model driven by emissions f, H is the observation operator that transfer-the-three-dimensional
transfers the three-dimensional concentration into the observational space, and O is the observation

covariance matrix. In this study, the assimilated observations include the OMPS total columns and
TROPOMI tropospheric columns. A distinct observation operator H is configured to enable a fair

comparison of the observation-minus-simulation mismatch. The satellite formaldehyde observations
are assumed to be independent, therefore O is a diagonal matrix. The diagonal value here is calculated

as:

— 2 2
Ototal — \/Uinstrument + Urepresent (13)

14



In the-Equation 34] oy is defined as the total uncertainty, which is the square root of the sum
of the squares of the instrument uncertainty Gipsgument from the formaldehyde observations and the
representative uncertainty oyepresent introduced when processing the data into monthly averages. The
representative Uncertainty orepresent 1S represented by the standard deviation of the data.

latter-two-experiments-are-arehived-in-The spatial distribution of the total uncertainty is provided in
Figure [@in the Supplement.

The assimilation methodology used in this paper is the four-dimensional ensemble variational (4DEnVar|

Different from the classic 4DVar that requires adjoint in the cost function minimization, 4DEnVar

emulates the GEOS-Chem formaldehyde simulating model using an ensemble-based linear approximation
and hence is adjoint-free. The method is first |

in our recent dust aerosol (

. The detailed procedures for minimizing the cost function Equation are illustrated in section

"Minimization of the Cost Function in 4DEnVar’ in supplementary material.

Supplement

2 Minimization of the Cost Function in 4DEnVar
The minimization of the cost function follows the 4DEnVar processes. An ensemble of emission
inventory is generated randomly using the prior emission vector f and the assumed emission error

covariance B:

1] a4

An_ensemble of GEOS-Chem model simulations is then forward run with the ensemble emission

inventories in parallel:

M), M(f) a3

Denote the emission ensemble perturbation matrix by:

F’:\/%[fﬁf,...,fwf’] (16)

15



and the mean of ensemble simulation by:

M(]) = %ZM(L—) (17)

where f is the mean of the ensemble emission inventories. In the 4DEnVar assimilation algorithm,
the optimal emission f is defined as a weighted sum of the columns of the perturbation matrix F”
using weights from a control variable vector w:

feFtFlw (18)
The cost function could then be reformulated as:

J(w) = %wTw + % {HM'w + HM(f) — y}T o! {HM’w + HM(f) — y} (19)

where M is the linearization of the GEOS-Chem formaldehyde simulating model required for cost
function minimization, and is approximated by:

MF % — [M(f)) = M(F), ... M(fx) — M(]) ¢

5

With the uncertainty in emission transferred into the observation space, the minimum of the cost
function in Equation 40| could then be directly calculated, and the posterior emission { subsequentl
updated.

M™ — B,
" MT-B @b

Here M™ represents the modeled concentration of formaldehyde at altitude z, B, is the background
concentration of formaldehyde at the same altitude, M ™ represents the total modeled concentration

16
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of formaldehyde in the atmosphere, and B is the total background concentration.

A=N% s (22)

Here X ¢ represents the a priori (or assumed) concentration of formaldehyde at altitude z, B. is again

the background concentration at the same altitude, X is the total a priori concentration, and N is a
normalization factor ensuring the matrix A% sums correctly to account for all altitudes.

5) Incomplete Statistical Evaluation of Results (Major) The validation of the inversion results relies solely
on RMSE. A more complete suite of statistical metrics is needed, including correlation coefficient, bias,
normalized mean bias (NMB), and potentially others. This will allow for a more comprehensive under-
standing of model performance and assimilation impact.

Thank you for this helpful comment. We agree that RMSE alone is insufficient for a comprehensive evaluation.
In the revised manuscript, we have added additional statistical metrics, including correlation coefficient (R),
coefficient of determination (R?), mean absolute error (MAE), regression slope, and intercept, in addition to
RMSE. As shown in Figure 6, these metrics consistently demonstrate improved agreement of the posterior
simulations with TROPOMI across China and in key regions (NCP, YRD, PRD, SCB). This provides a more
complete and robust assessment of the assimilation impact.

Text in manuscript

3.3 Formaldehyde tetal-columns evaluation

The prior and OMPS-driven posterior simulations of formaldehyde tropospheric columns were compared
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Figure 6. Scatter density plots comparing GEOS-Chem simulated formaldehyde columns with TROPOMI
observations in 2020, Panels (a.l-e.1) show comparisons between prior simulations and TROPOMI,
while panels (a.2-e.2) show comparisons between posterior simulations constrained by assimilating OMPS
observations and TROPOML. The regions considered are China (a), the North China Plain (b), the Yangtze
River Delta (c), the Pearl River Delta (d), and the Sichuan Basin (e). The probability density of the data
points is indicated by the color scale. The correlation coefficient (R), coefficient of determination (R?),
mean absolute error (MAE), root mean square error (RMSE), regression slope, and intercept are reported in
each panel.

6) Insufficient Discussion of Scientific Implications (Major) The target year, 2020, was heavily influenced
by COVID-19-related emission reductions. This critical context is not introduced in the manuscript and
must be incorporated into both the introduction and discussion sections. Specifically:

» Why was 2020 chosen for the inversion?

* How do inversion results indicating underestimation in prior emissions reconcile with pandemic-
related expectations of reduced emissions?

» What implications do the findings have for air quality modeling or emission policy evaluation?

We sincerely thank the reviewer for highlighting the importance of contextualizing our study with respect
to COVID-19-related emission reductions. Although 2020 was indeed influenced by COVID-19, this was
not the primary reason for selecting it as the study year. To avoid potential biases arising from a single
anomalous year, we additionally conducted assimilation experiments for 2019 as a comparison. The results
show that formaldehyde concentrations in 2019 were generally higher than in 2020, but in both years the
prior consistently underestimated the observations to some extent. Assimilation substantially improved the
simulation of both formaldehyde and ozone across multiple regions and seasons. For example, notable
consistency enhancements and RMSE reductions were observed over the North China Plain in June, the
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Yangtze River Delta in February and October, the Pearl River Delta in January, February, June, and July, and
the Sichuan Basin in January, February, June, July, and September-December (Figure |§|) These findings
indicate that the prior underestimation cannot be fully attributed to pandemic-related emission changes, but
rather reflects intrinsic uncertainties in the bottom-up emission inventories.

Text in manuscript
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Figure 7. Spatial distributions of formaldehyde columns from GEOS-Chem model-simulated prior
tropospheric columns (a) and posterior tropospheric columns constrained by OMPS assimilation (b), satellite
observations of OMPS total columns (c), and satellite observations of TROPOMI tropospheric columns (d)
in February (a.1-d.1), May (a.2-d.2), August (a.3-d.3), and November (a.4-d.4) of 2019.

1 Introduction

In this study, we focus on the year 2020 for the main analysis, while results for 2019 are also presented
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2019 Total NMVOC Emissions Increments by Assimilating Different Satellites

NCP_OMPS NCP_TROP  YRD_OMPS  YRD_TROP  PRD_OMPS PRD_TROP SCB_OMPS SCB_TROP

g +17.64% -3.09% +7.73% -10.88% -15.09% -49.05% 29.459 -33.95%
E +20.26% -2.16% -21.58% -0.90%
§ +23.78% +7.98% -0.99% -0.56% +26.86% +37.39%
EN +26.73% +6.64% -23.70% +24.87% +19.77%
g

-14.60% -21.61% 58.30 -46.22% -38.42%

+39.86% +23.30% -12.75% 48.219 -41.77%

Jul

%‘7 +12.49% -35.48% d -32.39%
F| +2284% +2.92% +8.43% -13.38% 4 -47.51%

g +10.13% +0.05% -12.75%

§ +4.22% 9.94% -14.50% -18.61% -33.45%
E +11.45% -3.35% +5.90% -3.68% -10.90%

Figure 8. Monthly increments in total NMVOC emissions between the posterior and prior simulations
derived from the assimilation of OMPS and TROPOMI formaldehyde observations over four key regions of
China: the North China Plain, Yangtze River Delta, Pearl River Delta, and Sichuan Basin in 2019. Positive
values indicate an increase in posterior emissions relative to the prior, while negative values indicate a
decrease.
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a 2019 Formaldehyde Increments by Assimilating Different Satellites
NCP_OMPS  NCP_TROP  YRD_OMPS  YRD_TROP _ PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP

5 -1.79% +3.74% ©.34% 228% 9.36% -13.57%
] 101% 6.84% 6.96% 5.29% 2.06%
§ +4.53% +1.07% 0.28% +4.30% -1.46% +1.15% 49.24%
5 2.84% +2.09% 922% +4.88% 8.96% +2.15% +5.38%
g +5.36% +2.80% ©.85% +0.42% 9.11% 0.69% 036%
5 0.86% +9.55% IM% 533%

=

L
= 277% +6.91% 9.11% 5.87%

g sa0% +521% 3.19%
5 2.19% B.71% 520% 0.83%
g s0% 085% 471% 9 251% 6%
5| +ssw 5.96% 5.98% 435% 151%
Z| +069% -1.60% +3.05% 3.02% 290% 7.48% 4.56%

b 2019 Ozone ARMSE by Assimilating Different Satellites

NCP_OMPS ~ NCP_TROP  YRD_OMPS ~ YRD_TROP  PRD_OMPS  PRD_TROP  SCB_OMPS  SCB_TROP

5t 0% +1.4% +12% -10.6% 49% 9.4% 6 Degraded
2 0.6% 54% 14% -142% 63% 69%
N 5.6% 25% 1.0% +11.8% 5.8% +.0%
5 +5.3% 9.1% +1.7% -1.5%
g 26% 54% +1.6% -1.5% 54%
5 -10.0%
3 3% -10.5%
g -10.7% +6.6% 2.5% 1.5%
5 2m 49.7% +0.9% +8.4% -135%
gl H01% 3.6% 16% 4.1% -135%
3 -1.0% 6% 8.5% 38% 6
g1 B0% 20% | +111% 54% 9.8% -113% Improved

Figure 9. Monthly increments in (a) formaldehyde column concentrations between posterior and prior
simulations and (b) the relative changes in MDA ozone RMSE (ARMSE) after assimilating OMPS and
TROPOMI observations in 2019. Results are shown for the North China Plain, Yangtze River Delta, Pearl

River Delta, and Sichuan Basin, Positive values indicate an increase relative to the prior, while negative
values indicate a decrease.
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in the Supplementary Information to provide additional context and support.

NMVOC emissions

In 2020, anthropogenic emissions in China were influenced by the COVID-19 pandemic, leadin
to observable changes. To better evaluate the general applicability of the proposed method, it is also
necessary to conductacom aratlve anal sis for the pre- andemlc ear of 2019 Flgureé%&%—{ﬂ—spﬂﬂg

SS in the Supplement presents

MM&%@M
of OMPS and TROPOMI observations. In the NCP region, strong consistency is again observed
in June, with posterior emissions increasing by 57.71% and 30.09% from OMPS and TROPOMI
WM%@%@WQ&%&MM

to%al—NM%#QGefmssteﬁs—m—eas{emGhma—lﬁYRD Febmar October and November are 1dent1ﬁed as

consistent months, aligning with the consistent periods in 2020, suggesting a likely overestimation in
the prior 1nventor during these months In the PRD region consmtenc is found in Januar February,

—4 —47. /02

MME
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with those in 2020, though some differences are evident. For example, June and July emerge as new
consistent months in PRD, while October and November remain consistent but exhibit notably smaller
emission decreases compared to 2020. In SCB, April and May appear as additional consistent months,
while the remaining consistent periods continue to exhibit decreases in emissions. Notably, from June
to November, the two posterior datasets show an average decrease of 42.26% compared to the prior
emissions, indicating a high probability of overestimation in the prior inventory for this region during
that period.

3.4 Impact of Formaldehyde Assimilation on O3 Surface Concentration

To more robustly substantiate this conclusion, it is necessary to examine whether similar features can
also be identified in 2019. In that year, OMPS and TROPOMI satellite observations were assimilated
independently to constrain NMVOC emissions. The posterior-prior increments from the OMPS- and
TROPOMI-driven assimilations, together with the changes in MDAS ozone ARMSE, are presented in
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Figure[8l of the Supplement. In NCP, March, May, and June are identified as consistent months, durin

which the ozone RMSE values decrease, with the most pronounced improvement occurring in June.
In YRD, the consistent months are February, October, and November, where the ozone improvements
are relatively limited but nevertheless show better agreement with ground-based observations. In
PRD, the consistent months include January, February, and June-December: with the exception of
August, September, and November, the ozone RMSE decreases in the other months, with notable
improvements in June and July. In SCB, the two posterior datasets exhibit the highest level of
consistency in 2019, with synchronous increases and decreases throughout the year. Ozone simulations
in this region show better performance in all months except March and April, with particularly large

improvements in June, July, and September-November, when the RMSE decreases by an average of
25.74%.

Across the four regions, 27 months are classified as consistent in 2019. Of these, 22 months exhibit
improved ozone simulations, which corresponds to 81.48% of all consistent months, with both assimilations
producing MDAS8 ozone values closer to ground-based observations. This proportion differs from
that of 2020 by only 0.23%, providing further evidence that ozone improvements are particularly
significant in the months defined as consistent across the four regions.

4 Summary and conclusion

To further test the robustness of our approach, OMPS and TROPOMI satellite observations were
independently assimilated to constrain NMVOC emissions for 2019 (Figure|/). The spatial distribution

of formaldehyde hotspots is similar to 2020 but with overall higher concentrations. At the regional

scale, most consistent months between OMPS- and TROPOMI-constrained results indicate that the

prior inventory underestimates emissions in NCP and overestimates them in YRD, PRD, and SCB.
Importantly, 22 of the 27 consistent months (81.48%) show reduced ozone RMSE, with the largest
improvements in SCB, confirming that consistent cases are strongly associated with enhanced ozone
simulation_performance. _These findings also lend greater confidence to the optimized NMVOC
emissions during the consistent months in these regions.

7) (Minor) Clarify whether the assimilation used OMPS only or both OMPS and TROPOMI. Identify
which dataset(s) are considered ''independent'’ validation.

Thank you for pointing this out. We have clarified the description of the assimilation datasets in the revised
manuscript. Specifically, the monthly NMVOC emissions over China in 2020 are optimized by independently
assimilating formaldehyde retrievals either from OMPS or from TROPOMI using our assimilation system.
This means that two separate assimilation experiments are performed (OMPS-only and TROPOMI-only),
rather than a combined assimilation. In Section 3.3, we use the TROPOMI measurements as independent data
to validate the OMPS-based posterior, while in Section 3.4, we use ground-based surface ozone concentration
measurements as independent data to validate both the TROPOMI- and OMPS-based posteriors. Additional
remarks have been added in the revised manuscript to explicitly explain these validation strategies and avoid
possible misunderstandings.

Text in manuscript
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Figure 10.

derived from the assimilation of OMPS and TROPOMI formaldehyde observations over four key regions o

2020 Total NMVOC Emissions Increments by Assimilating Different Satellites

NCP_OMPS NCP_TROP YRD OMPS YRD TROP PRD OMPS PRD TROP  SCB OMPS  SCB_TROP
E +9.18% -5.46% -17.20% -52.48% -24.65% -48.27% -20.93%
’E +4.28% +1.33% -24.08% -7.34% -23.99% -8.89% +12.47%
§ +12.62% -0.51% -12.23% -18.16% +5.73% -9.06% -8.50%
5 +16.72% -1.47% 2.77% -21.28% +11.74% -11.67% -4.58% +14.08%
§ +21.01% +16.73% +0.25% +3.00% +0.37% +9.59%
E +6.61% -11.01% -10.00% -41.48%
::: +3.98% +22.59% +7.24% +12.08% -39.46% -45.16%
%ﬂ -16.47% +16.67% -15.87% +14.38% -41.35% -40.92%
(}3’; +20.51% -8.94% +16.60% +1.40% +14.23% -46.00% -44.09%
g +12.78% +4.21% -11.89% -44.24%
é -2.02% +3.82% -18.15% -38.30% -19.36% -46.12% 21.41% -15.06%
g -4.23% -11.56% -29.26% -4 -18.64%
Monthly increments in total NMVOC emissions between the posterior and prior simulations

f

China: the North China Plain, Yangtze River Delta, Pearl River Delta, and Sichuan Basin in 2020. Positive

values indicate an increase in posterior emissions relative to the prior, while negative values indicate a

decrease.
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Figure 11.

a

2020 Formaldehyde Increments by Assimilating Different Satellites
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b 2020 Ozone ARMSE by Assimilating Different Satellites
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Monthly increments in (a) formaldehyde columns between posterior and prior simulations

and (b) the relative changes in MDAS ozone RMSE (ARMSE) after assimilatine OMPS and TROPOMI

observations in 2020. Results are shown for the North China Plain, Yangtze River Delta, Pearl River Delta,

and Sichuan Basin. Positive values indicate an increase relative to the prior, while negative values indicate a

decrease.
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Figure 12. Spatial distributions of surface ozone concentrations in February, May, August, and
November 2020. Panels (a.1-a.4) show ground-based observations, panels (b.1-b.4) show prior simulations,

anels (c.1-c.4) show posterior simulations constrained by assimilating OMPS formaldehyde observations,
and panels (d.1-d.4) show posterior simulations constrained by assimilating TROPOMI formaldehyde

observations.
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3.3 Formaldehyde columns evaluation

The prior and OMPS-driven posterior simulations of formaldehyde tropospheric columns were compare
W1th the TROPOMI formaldeh de tropos herlc columns to evaluate the changes in {ﬁneFMeﬂgeha
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line and exhibiting strong correlations with observations. Nevertheless, further improvements are still
MM the posterior simulation-in-these-regionsstitb-remainstow;

2-a-3results compared with TROPOMI show

h1 her R2 Values across all regions th&mtmmal—ehaﬂgeﬁfr&lese—afeas—a{seﬂffeeted—th&ﬂﬂﬁeﬂa}

949%6]:9—&16}66/61}1— ndicating strengthened correlatlons For Chma and NCP the improvements
are com arable with R? increasing by about 0.027 (from 0.870 to 946%6}9%0}ee/em—HeweveF

mewm@gm@%mw
rising from 0.882 to 0.918, and the scatter around the regression line substantially reduced, with many
outliers corrected. The most significant improvements occur in PRD and SCB. where R? increases
by approximately 0.05. In these regions, the overestimations present in the prior simulations are
effectively mitigated, particularly for high-value cases. In terms of RMSE and MAE, decreases
Wm&@&m@m@%&mw@w@
mmgrt@mmgnd W averag ,

wmfﬁmmmwwﬂe%&w&bm@@m
whereas substantial overestimations appear in the high-value range. This issue is likely related to

the instrumental errors of OMPS observations, as discussed in Sections 2.3.1 and 3.2, which introduce

considerable uncertainties.

3.4 Impact of formaldehyde assimilation on ozone surface concentration
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density-(a);seatterplots-(b)-and-eorrelation-coefficients{e)ozone at ground stations (a.1-a.4), together
with the prior (b.1-b. 4 and osterior simulations based on OMPS and TROPOMI assimilation (c.1-c.4,
As shown in Figure-9-(a)thefrequeney—distribution-histogram
WWMLW
May, and August), YRD (May and August), PRD (May, August, and November), and SCB (May and

August). This is ver s1m11ar to the observatlons shown in panels (a.1-a.4). It indicates that the prlor

MWWWMM
is clearly overestimated in PRD during February, May, and August, while underestimated in SCB
during May and August. After assimilation with OMPS or TROPOMI, the NEP-region—#As-can-be
seen-in-Figure-9-posterior MDAS ozone simulations retain the overall hotspot distribution, but the
direction and magnitude of changes vary by region. For instance, in August, ozone concentrations
increase in NCP and PRD with OMPS assimilation but decrease with TROPOMI assimilation. In
February, both assimilation results decrease in YRD, although the decrease is more pronounced in the
TROPOMI-based results. Moreover, many regional changes are difficult to discern visually from the

The RMSE values between the simulated MDAS ozone and the ground-based observations are calculated.

To better visualize the assimilation benefits, the RMSE variation either assimilating the TROPOMI or
assimilating the OMPS in the four key regions are also shown in Figure [[T] (b). Larger decreases in
RMSE (darker blue) indicate more significant improvements, with the posterior ozone being closer
to ground-based observations; conversely, larger increases in RMSE (darker red) indicate degraded
performance, with the posterior ozone diverging further from the observations. In those inconsistent
cases where the OMPS and TROPOMI posterior increments exhibit opposite signs (i.e., one increases
while the other decreases), ozone simulation improvement is not guaranteed. For instance, in NCP
during January-April and July, in YRD during June and September, and in PRD during April, May,
August, and September, one assimilation leads to improvement while the other indicates deterioration.
Moreover, in several additional months both posteriors even show degradation, making it difficult to
effectively evaluate the improvement in posterior ozone simulations. By contrast, ozone simulation
improvements are clearly observed in consistent cases where the OMPS- and TROPOMI-constrained
RMW&WWQM *he%MS%éfee{—meaﬂ
Mﬁ%ﬁ%@mm
RMSE decrease in June, in agreement with the high-consistency pattern shown in Figure [Tl (a). In
YRD and PRD, RMSE decreases by more than 30% in December, representing the most significant
improvement; in addition, PRD also shows clear improvements in January and October. These
improvement months all correspond to periods of high consistency. In SCB, RMSE also decreases
markedly during high-consistency months, including January, June, July, and September-December.

To further quantify ozone simulation improvements in consistent regions, statistics were performed for
the months classified as consistent. Considering the similarity in monthly behavior between YRD and
PRD, the two regions were combined in the analysis. The results indicate that the consistent regions
include NCP in May-June, YRD/m+0-20-22+¢PRD in January-March and October-December, and
SCB in January and June-December. Within these regions, except for March and November in
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consistent months exhibit improvements, accounting for 81.25%, with an average RMSE reduction of
24.7% This result suggests that constraining NMVOC emissions through formaldehyde assimilation
not only substantially improves formaldehyde simulations, but also exerts a positive impact on ozone
simulations, with particularly significant improvements in regions and months characterized by high
consistency.

8) (Minor) Define acronyms such as ""NCP'' (North China Plain) and explicitly mention the study year
(2020).

We thank the reviewer for this comment. In the revised Abstract, we have explicitly stated the study year
(2020) and defined the four focus regions at first mention: the North China Plain (NCP), the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB). These acronyms are then used
consistently throughout the manuscript.

Text in manuscript

Abstract

4DEnVar assimilation emission inversion system. The OMPS- and TROPOMI-driven assimilation
yields consistent seasonal and regional increments in NMVOC emissions in general, but distinctions
are also notable. A consistency analysis is introduced to assess the reliability of these two posterior
emissions. Highly consistent increments are obtained in the North China Plain (May-June), the
Yangtze River Delta and Pearl River Delta (January-March, with-the RMSE-droppingfrom 652
to-0:37<16*-meleeQctober-December), and the Sichuan Basin (January, June-December). These
adjustments significantly improve surface ozone simulations, with 81.25% of consistent cases demonstrating
reduced biases and an average RMSE reduction of 24.7%. These findings highlight the effectiveness
of OMPS and TROPOMI formaldehyde assimilation, coupled with consistency analysis, in refining

NMVOC emission estimates and enhancm ozone simulation accuracy. Similar promising results are
achieved in the OMPS/ems e ; et

M@M

9) (Minor) The statement ''validated through comparisons against the independent satellite measure-
ments and the surface ozone measurements'' should specify which satellite and ozone datasets were used
and what "'validated'' means quantitatively.

We thank the reviewer for raising this point. In the revised Abstract, we removed the ambiguous phrase
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"validated through comparisons against the independent satellite measurements and the surface ozone
measurements” and replaced it with a clearer and quantitative description. Specifically, the validation is
now based on posterior ozone simulations obtained from the OMPS-only and TROPOMI-only assimilation
experiments, compared against surface ozone observations. Both assimilation cases yield reduced RMSE
relative to the prior, with 81.25% of consistent cases showing bias reduction and an average RMSE decrease
of 24.7%. This provides a more explicit and robust demonstration of validation through ozone metrics.

Text in manuscript

Abstract

4DEnVar assimilation emission inversion system. The OMPS- and TROPOMI-driven assimilation
yields consistent seasonal and regional increments in NMVOC emissions in general, but distinctions
are also notable. A consistency analysis is introduced to assess the reliability of these two posterior
emissions. Highly consistent increments are obtained in the North China Plain (May-June). the
Yangtze River Delta and Pearl River Delta (January-March, swith-the RMSE-droppingfrom 052
to-0:37<16"-meleeQctober-December), and the Sichuan Basin (January, June-December). These
adjustments significantly improve surface ozone simulations, with 81.25% of consistent cases demonstrating
reduced biases and an average RMSE reduction of 24.7%. These findings highlight the effectiveness
of OMPS and TROPOMI formaldehyde assimilation, coupled with consistency analysis, in refining
Wm@m&@@m
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3.3 Formaldehyde total columns evaluation

The prior and OMPS-driven posterior simulations of formaldehyde tropospheric columns were compared
W1th the TROPOMI formaldeh de tropos herlc columns to evaluate the changes in {ﬂﬂeﬁMeﬂgﬁh—&
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possible. After assimilating OMPS data, the posterior simulation-in-these-regionsstill-remainstow;
resulting inlittle change—As-ilustrated-in Figure 7-(a:2-a-3results compared with TROPOMI show
Mm th&fﬂmﬂﬂal—ehaﬂge&wthese—afeas—a{seﬂffeeted—th&ﬂaﬂeﬂa}
MM%&%WW@%M
%mmww%wo%%ﬂ%ﬂm

30



RC:

AR:

MWWtOOM—me}ee/emﬂeﬁeeﬁw}%

mﬁﬁ%%m@m%ﬂﬂwmga&%w&%
with R? rising from 0.882 to 0.918, and the scatter around the regression line substantially reduced,
with many outliers corrected. The most significant improvements occur in PRD and SCB, where R?
increases by approximately 0.03. In these regions, the overestimations present in the prior simulations
are effectively mitigated, particularly for high-value cases. In terms of RMSE and MAE, decreases
@WM&MM&@Q
mw%mnd W W averag '

we—plot-the-time—series—for-the- NCP-region—alone;—theresults—are-better—The-mid-value ranges,
whereas substantial overestimations appear in the high-value range. This issue is likely related to

the instrumental errors of OMPS observations, as discussed in Sections 2.3.1 and 3.2, which introduce

considerable uncertainties.

3.4 Impact of formaldehyde assimilation on ozone surface concentration

OQuverall, 13 out of the 16 consistent months exhibit improvements, accounting for 81.25%, with an
average RMSE reduction of 24.7%. This result suggests that constraining NMVOC emissions through
formaldehyde assimilation not only substantially improves formaldehyde simulations, but also exerts
months characterized by high consistency.

To more robustly substantiate this conclusion, it is necessary to examine whether similar features can
also be identified in 2019. In that year, OMPS and TROPOMI satellite observations were assimilated
independently to constrain NMVOC emissions. ... Ozone simulations in this region show better
performance in all months except March and April, with particularly large improvements in June,
July, and September-November, when the RMSE decreases by an average of 25.74%.

Across the four regions, 27 months are classified as consistent in 2019. Of these, 22 months exhibit
improved ozone simulations, which corresponds to 81.48% of all consistent months, with both assimilations
producing MDAS8 ozone values closer to ground-based observations. This proportion differs from
that of 2020 by only 0.23%, providing further evidence that ozone improvements are particularly
significant in the months defined as consistent across the four regions.

10) (Major) Provide more detail on bottom-up NMVOC emission uncertainties by sector (anthropogenic,
biogenic, biomass burning).

We thank the reviewer for this important comment. In the revised manuscript, we have added detailed
descriptions of sector-specific bottom-up NMVOC emission uncertainties. Following [Souri et al.| (2020},
we assigned prior uncertainties of 150% for anthropogenic VOCs, 200% for biogenic VOCs, and 300% for
biomass burning VOCs. These values reflect the larger variability typically associated with natural and fire
emissions compared to anthropogenic sources. To incorporate these sectoral uncertainties into our inversion
framework, they were combined using a weighted quadratic formulation, which yielded an overall uncertainty
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of about 120%. Accordingly, the standard deviation of the multiplicative factor was set to 0.4. This treatment
is now explicitly described in the manuscript with supporting references.

Text in manuscript

2.5 Assimilation algorithm

The uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission
inventories, and can be compensated using a spatially varying tuning factor a:

f @) = fo (i) - a(i) (23)

in here f, (7) denotes the NMVOC emission rate in the given grid cell i. The « values are defined

to be random variables with a mean of 1.0, a minimum of 0.1 and a standard deviation 5—=-6-20f

0.4, corresponding to a uniform 120% uncertainty applied to the total NMVOC emissions rather than
sector-specific settings as adopted in previous studies (Choi et al} 2022} Jung et al.|, 2022 [Souri et al., 2020)
._The rationale for this choice is provided in the Supplement. This empirical value was found to provide
sufficient spaces for resolving the observation-minus-simulation errors. A background covariance B,
is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

B, (i,j) =0 - C(i,7) 24)

where C (i, j) represents a distance-based spatial correlation between two as in the grid cell ¢ and j,
and is defined as:

C (i, ) = e~ Ha/D7/2 (25)

where d; ; represents the distance between two grid cells ¢ and j. [ here denotes the correlation length
scale which controls the spatially variability freedom of the as. A small value of | means-mere-errors
tuning factors as are less spatially correlated, thereby enabling emission optimization at a finer spatial

scale. However, this also necessitates a larger number of ensemble runs to adequately represent the
model realization from emission to simulation. An empirical parameterk-parameter [ = 300 km which

is used inJin et al.| (2023)) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is
obtained via a Schur Product:

B=B,oC (26)
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Supplement

1 Emission Uncertaint

Following previous studies (Souri et al., 2020), sector-specific prior uncertainties for anthropogenic,
biogenic, and biomass burning emissions can be combined into a total uncertainty using a weighted
approach.

2 _r2 2 2 2 2 2
Oiotal — famhro " Oanthro T fbiogenic * Obiogenic + fbiobum " Obioburn 27

~Applying this method to the uncertainty values reported in earlier work, we obtained a total prior
uncertainty of 120.22%. Accordingly, we set the standard deviation of the multiplicative factor to
0.4 in this study. To assess the validity of this simplification, we compared the sector-weighted prior
results are generally consistent, supporting the reasonableness of adopting a uniform total uncertainty
in this study. Sector-specific inversion will be considered in future work.

11) (Major) Expand the literature review of top-down VOC inversions. Important studies using various
methods (e.g., Martin et al., 2003; Wells et al., 2020, 2022; Choi et al., 2022; Cao et al., 2018; Miiller et
al., 2024) are missing.

We thank the reviewer for this helpful suggestion. In the revised manuscript, we have expanded the literature
review of top-down VOC inversions by incorporating the recommended studies and additional references.
This provides a more comprehensive background and highlights both the methodological advances and the
need for high-resolution emission optimization over China.

Text in manuscript

1 Introduction

Studies focusing on top-down NMVOC emission optimization over China remain relatively limited
in recent years. |Shim et al.|(2005)) assimilated formaldehyde observations from the GOME using a
global Bayesian inversion to constrain isoprene emissions. Although China was included within their
East Asia region, the analysis lacked region-specific focus and did not provide detailed characterization
of emission patterns over China—Furthermeore;-, and the coarse spatial resolution (4° x-x 5°) in that
study further limited the ability to resolve subregional emission features. |Stavrakou et al.|(2016)
conducted a regional inversion in Eastern China using multi-year satellite formaldehyde data from
GOME and OMI to constrain VOC emissions during the post-harvest burning period—Their-, and
they indicated that the crop burning fluxes of VOCs in June exeeed-exceeded by a factor of 2-two the
combined emissions from other anthropogenic activities in the NCP region from 2005 to 2012. (Cao
et al. (2018)) conducted a relatively systematic satellite-based emission inversion study over China-
TFhey-tsed-, using a 4DVar method and asstmitated-assimilating OMI and GOME-2A formaldehyde
products to estimate monthly NMVOC emissions ever-China-in 2007, with-a-coarse-spatialreselution
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variability in VOC emissions, the-biomass buring emission-is-now redueed-to-arelatively low-levelbut
the analysis was conducted only for May-June. Beyond China, a number of important studies have
advanced top-down VOC inversion methodologies: [Palmer et al.| (2003) pioneered the use of GOME
formaldehyde observations in a Bayesian framework to constrain global isoprene emissions, laying
the foundation for subsequent satellite-based VOC studies; Wells et al| (2020}2022) further advanced
this field by retrieving isoprene emissions from CrlS measurements and providing high-resolution
constraints on VOC oxidation chemistry at the global scale; and [Oomen et al.|(2024) derived weekly
top-down VOC fluxes over Europe from TROPOMI formaldehyde data using the MAGRITTEv].1

model, providing improved constralnts on isoprene, biomass burning, and anthropogenic VOC emissions.

Considering the increasing pollution control in China (Wu et al.,[2024)), there is an ur-
gent need for high-resolution top- down effnssteﬂ—epﬂmﬂa&eﬂ—evethmaNMVOC emission optimizatior

12) (Minor) p2, 12: Add a supporting reference for ""became the major source region globally."

Text in manuscript

1 Introduction

Moreover, NMVOCs such as benzene, trichloroethylene, and chloroform are recognized for their
toxicity (Billionnet et al} 2011} [Cerner et al |[2012), and prolonged exposure to elevated concentrations
can pose significant health risks (He et al., m Chlna has seen a rapld anthropogemc NMVOC
emissions increase over the last three decades e g

oradually becoming

g one of the important contrlbutors to lobal NMVOC emissions 1, KO)E|
Investigating NMVOC dynamics and their emission distributions is critical for addressing air pollution
challenges in China (Yuan et all,[2013};[Hao and Xie| 2018).

13) (Minor) p2, 19: Include reference to biomass burning inventories.

AR: Accepted. In the revised Introduction, we have added references to biomass burning emission inventories.

Text in manuscript

1 Introduction

NMVOC:s are primarily released through anthropogenic activities, biogenic emissions, and biomass
burning processes. Huge efforts have been devoted to constructing inventories recording these emissions

34

1.

We thank the reviewer for pointing this out. We could not find a direct reference supporting the original
phrasing "became the major source region globally." To avoid overstatement, we have revised the sentence to:
"China has seen a rapid anthropogenic NMVOC emissions increase over the last three decades, gradually
becoming one of the important contributors to global NMVOC emissions (2019)." This modification
provides a more accurate and properly referenced statement.
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AR:

RC:
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in a bottom-up way, such as the global Community Emission Data System (CEDS) (Hao and Xie|, 2018)),
the regional Multi-resolution Emission Inventory for China (MEIC) (L1 et al.,2019)), and the Model of
Emissions of Gases and Aerosols from Nature v2.1 (MEGAN) (Guenther et al., 2012). These NMVOEC

emission-inventories-eoupled-For biomass burning, widely used inventories include the Global Fire
Emissions Database (GFED) and the Fire INventory from NCAR (FINN) (Wiedinmyer et alt 2011).
Coupled with chemical transport models like GEOS-Chem (Tto et al| W 2007) and WRF-Chem (Azmi|
et al} [2022), are-capable-ofrep 2 s ading-these inventories are widely
used to simulate transport depos1t10n and chemlcal feaeﬁoﬂsJPm%ﬂofoﬂ}y%%}pﬁoJoe&e%qﬂaﬁﬁfy
the-environmentalimpaettransformations of NMVOCs, but-also-provides-essential-toolsfor predicting
future-trends-and-making emissionreduetion_supporting air quality assessments and emission control

str ategles

14) (Minor) p2, 113: Mention both emission factors and activity data.

We thank the reviewer for the suggestion. In the revised Introduction, we have modified the text to mention
both emission factors and activity data as key sources of uncertainty in bottom-up inventories.

Text in manuscript

1 Introduction

WW&MW
greatly in space and time and are often poorly constrained (Bo et al.}[2008; [Sharma et al} 2015). For
anthropogenic_sources, nationwide uncertainties of +68-78% have been reported due to variable
activity data and emission factors under rapid structural transitions in industry, solvent use, and trans-
portation seetors-(Li et al.t 2017, 2019). Biogenic emissions are even more uncertain, highly sensitive
to land-cover, meteorology, and parameterizations, with Chinese BVOC estimates varying from 10 to
58.9 Tg Cyr_! (Li et all 2020 Wang et all 2021} [Pei et alll 2023).

15) (Minor) Include references for VOC measurement techniques.

Thank you for the suggestion. References for VOC measurement techniques, including gas chromatography,
mass spectrometry, Fourier transform infrared spectroscopy, and non-dispersive infrared analysis, have now
been added in the revised manuscript.

Text in manuscript

1 Introduction

There are numerous well-established techniques for measuring the concentrations of various volatile
organic compounds in the atmosphere. These include gas chromatography, mass spectrometry, Fourier
transform infrared spectroscopy, and non-dispersive infrared analysis. While these methods are highly
effective for meeting the requirements of experimental studies and real-time monitoring, their complex-
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ity and the associated high labor costs pose signiﬁcant challenges for long-term measurements Or assess-
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16) (Minor) p2, 130-p3, 12: The discussion of glyoxal is unnecessary as it is not used in the study-suggest
removing.

We thank the reviewer for this comment. While glyoxal is not directly used in this study, we have intentionally
kept a brief discussion in the Introduction. This is to provide context that, among the numerous NMVOCs,
only very few species can be retrieved from satellites on a long-term and large-scale basis. Formaldehyde and
glyoxal are such species, but since formaldehyde products are more mature and of higher quality, we focus on
formaldehyde in this study. We believe this comparison is important for justifying the choice of constraint
species.

17) (Minor) p4, 110: Remove the word "'sources'.

We thank the reviewer for carefully pointing out this wording error. We have revised the text accordingly in
the manuscript.

Text in manuscript

2 Data and methods

This section begins by introducing the GEOS-Chem model utilized for simulations in Section 2.1.

Section 2.2 presents an overview of the input-emisston-soureesfor-the-modelemissions used as the
rior NMVOC inventories, including anthropogenicsotrees;-biogeniesourees, biogenic, and biomass

burning inventories. Section 2.3 introduces the three satellite observations employed in the analysis in
this study In Sectlon 2 4, the ground observations used for %ozone Validation are presented Sectlon
2 5 s o 5 o ,

whﬂe%ee&ma%éﬂﬁ&eduee%me@%ﬁnggguggsthevi@v@nyar algorithm used for data assrmilation

18) (Minor) p6, 14: Clarify what is meant by biogenic emissions being the main source-this may not apply
to NCP.

We thank the reviewer for raising this point. To avoid potential misinterpretation, we have removed the
statement about biogenic emissions being the main source in the revised manuscript.

Text in manuscript

2 Data and methods

For chemical species used in GEOS-Chem but not included in MEIC and anthropogenic NMVOC
emissions 0utsrde Chlna we use the 2019 CEDS global inventory as a supplement.-The-variationsin
s:The prior estimates of biogenic NMVOC
emissions in th1s study are obtamed from the MEGAN 2.1 model (Guenther et al.,[2012).

19) (Minor) p6, 110: The claim about biogenic dominance is inconsistent with the previous sentence.
Please reconcile.
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We thank the reviewer for pointing this out. In the revised manuscript, we have corrected the wording to
ensure consistency: both statements now indicate that anthropogenic sources dominate NMVOC emissions
over China. The inconsistency in the earlier version has been removed.

Text in manuscript

2 Data and methods

Figure 3] (a) presents the prior NMVOC emission inventories for 2020, which primarily relies on
the anthropogenic emission inventory from MEIC, supplemented by the CEDS inventory for species
not included in MEIC. Additionally, the-biogenic-emission-inventory—from-biogenic emissions are
provided by MEGAN (offline calculation) and-the-biomass-burning-tnventory-for the year 2020 with
an hourly temporal resolution, directly through the HEMCO emission component of GEOS-Chem;
&%@QMM&MMMM&W

0mb1nat10n of these three sources is treated as the prior emission inventor used in the f0110W1n
NMVOC emission optimization.

20) (Major) Section 2.3: Filtering criteria for OMPS and TROPOMI should be clearly described. Why
are negative values removed only for TROPOMI? What thresholds are used for high outliers? What is
the sensitivity to these choices?

We appreciate the referee for pointing out the improper filtering method used in the previous submission.
In the original manuscript, our treatment of satellite data filtering was incorrect or improper, especially the
practice of removing negative values directly, which could introduce a serious positive bias. In the revised
version, we have substantially rewritten Section 2.3 to clearly describe and rigorously implement standardized
quality control for OMPS, TROPOMI, and OMI data. For OMPS, we applied the recommended product
screening, excluded outliers above 2 x 107 molecules cm~2, applied thresholds for solar zenith angle, cloud
fraction, air mass factors, and removed negative or unphysical values. For TROPOMI, we adopted the official
QA value (>0.5) together with constraints on SZA, cloud radiance fraction, albedo, and snow/ice flags, and
for OMI we followed established filtering practices considering row anomalies, cloud thresholds, and RMS
fitting criteria. After filtering, all datasets were regridded to 0.5° x 0.625° monthly means consistent with
GEOS-Chem. To ensure robust sampling, we tested two schemes in which grid cells with fewer than 10 or
fewer than 50 valid pixels were excluded; the differences are minor, particularly across the study regions,
and are provided in the main text and Supplement. However, for OMI, the coverage becomes sparse after
applying these thresholds, indicating that it does not support high-resolution assimilation studies.

Text in manuscript

2.3.1 NOAA-20 OMPS

In this study, the quality control scheme recommended in OMPS product documentation was ap-
pliedwhen—uasing-OMPS—data. Data points with formaldehyde column densities exceeding 2el7
molecules/cm? were excluded to minimize the impact of outliers. After removing outliers, we further

excluded data points where the sum of formaldehyde column and twice the observation uncertaint
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Figure 13. Spatial distributions of the total NMVOC emissions from the prior (a) and posterior (b) results in
January-February (a.1, b.1), ApritMay (a.2, b.2), July-August (a.3, b.3), Oetober-November (a.4, b.4) 2020.

Panels (d.1-d.4) and (e.1-¢.4) show the corresponding emission increments (posterior minus prior) derived
from OMPS and TROPOMI assimilation.
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was less than zero. Furthermore, the geometric air mass factors (AM F(;) were defined as follows:

AMFq = sec(SZA) + sec(VZA) (28)

Here, S ZA represents the solar zenith angle and VZA denotes the Vrewrng zenith angle After

%&%WIWWWS 24 e*eeedeek&rsak%vth@
70°, the-an air mass factor was-less than 0.1, the-a geometric air mass factor exceeded-5;-or-the
MMWWMWMMMO 4—Snapshots-offiltered-, or with
positive snow and ice fractions. All screened data were then averaged to a spatial resolution of 0.5°
latitude x 0.6257 longitude on a monthly basis, consistent with the GEOS-Chem model configuration.
To make a fair comparison between the observed and simulation formaldehyde column concentration
in the assimilation, we further imposed constraints on the number of observations within each grid
cell. Specifically, two filtering schemes were tested, in which grid cells with fewer than 10 or fewer
than 30 original observations were excluded. The OMPS formaldehyde columns is-after applying the
threshold of 50 are shown in Figure +dJ] (c), while the results with the threshold of 10 are provided in
the Supplement. The differences between the two filtering schemes are minor, particularly across the
four study regions considered in this work.

2.3.2 Sentinel-5P TROPOMI

When usmg Level 2 TROPOMI formaldehyde data for the validation in this papef—weexe}uded—eﬂer

Mﬂ%%dmwmwﬁwﬂ@wm@ﬂm
filtering by retaining only pixels with a qa value greater than 0.5 This criterion ensures the exclusion
of error flags and requires that the cloud radiance fraction at 340 nm is below 0.3, the solar zenith angle
(SZA) does not exceed 70°, the surface albedo is below 0.2, no snow or ice warning is present, and
the air mass factor (AMF) is larger than 0.1, The TROPOMI product provides vertical information on
34 layers, but the retrieval is primarily sensitive to the troposphere and thus reports the formaldehyde
tropospheric column. After filtering, the TROPOMI observations were aggregated to monthly means
ona0.5° x 0.625° grid, ensuring consistency with the resolution used in the GEOS-Chem simulations.
In addition, we further constrained the number of observations per grid cell: Figure[I(d) shows the
results after excluding grid cells with fewer than 50 observations, while the results with a threshold of
10 are also provided in the Supplement. The differences between the two filtering schemes are minor,
particularly over the study regions.

2.3.3 Aura OMI

In this study, we use the OMI/Aura formaldehyde Total Column Daily L2 Global Version 3 prod-
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0.3arefurther-exeluded, solar zenith angle < 707, and a main data quality flag = 0 were retained.
To avoid poor-quality measurements at large pixel sizes, the five marginal pixels on each side of the

swath were discarded, and only pixels within rows 6-55 were used (Zhu et al, 2017, Xue et al.} 2020)
- Because OMI has experienced a row anomaly since 2007, pixels with Xtrack quality flags = 0 were
further selected to eliminate its impact. Additionally, given the large uncertainties in formaldehyde
retrievals, pixels with a fitting root mean square (RMS) < 0.003 were retained to remove most outliers

The OMI observations are then aggregated to monthly means on a 0.5° x 0.625° grid, consistent with
the GEOS-Chem model resolution. To ensure sufficient sampling per grid cell, we also applied two
filtering schemes based on the number of observations, excluding grid cells with fewer than 10 or
fewer than 50 valid pixels. Unlike OMPS and TROPOMI, however, OMI shows a strong reduction
in data coverage under these constraints, and the product becomes sparse after applying the threshold
of 50 observations. This indicates that OMI suffers from insufficient sampling density in China for
high-resolution assimilation. The vertical profile correction of OMI formaldehyde was conducted
using the same approach as applied to OMPS, by recalculating AME with model-simulated vertical
profiles.

21) (Major) Section 2.6: Provide full details on the inversion algorithm, adjoint model (if used), regular-
ization, convergence, and assimilation setup for multiple satellite datasets.

We thank the reviewer for this important comment. As explained in detail in our response to RC 4, we
have clarified the inversion framework as a 4DEnVar system, which is adjoint-free and based on ensemble
linearization of the GEOS-Chem formaldehyde simulation. Additional details concerning the algorithm,
regularization, convergence, and assimilation setup have been added in the revised manuscript and the
Supplement.

Text in manuscript

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehyde-observations-to-constrain NMVOCemissions-optimize NMVOC emissions with satellite
formaldehyde observations. The goal of this-the assimilation is to find the most likely estimate of
the state vector, which is the monthly NMVOC emission inventories f over the entire model do-

main. Note that f represents the vector of total NMVOC emissions, rather than separately gridded
anthropogenic, biogenic, or biomass burning VOC emissions. To optimize emissions from these three

sectors, additional observations or a well-defined spatial correlation structure are required, which are
not available in this study. The prior estimate f, is from the inventories described in Section 2.2,

and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,
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assimilation is performed via minimizing the cost function J as follows:

T(F) = 5(F = £ BT~ £i) + 5y =~ HM(D)T Oy~ WM (£) 9)

The cost function J is the sum of two partparts: background and observation penal term. The

background term quantifies the difference between the optimal f and the prior emission inventories ﬁ;,
while the observation term calculates the difference between the simulation driven by f and the satellite
observations ¢. In addition to the f, that represents the prior NMVOC emission vector calculated
from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The
uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories,
and can be compensated using a spatially varying tuning factor «:

J (i) = fo (i) - a(i) (30)

in here f; (¢) denotes the NMVOC emission rate in the given grid cell . The « values are defined

to be random variables with a mean of 1.0, a minimum of 0.1 and a standard deviation 5=-6-20f

0.4, corresponding to a uniform 120% uncertainty applied to the total NMVOC emissions rather than
sector-specific settings as adopted in previous studies (Chor et al , 2022} Jung et al., 2022; Sour et al., 2
. The rationale for this choice is provided in the Supplement. This empirical value was found to provide
sufficient spaces for resolving the observation-minus-simulation errors. A background covariance B,

is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

B, (i,7) =04 - C(i,5) (€28)

where C (i, j) represents a distance-based spatial correlation between two as in the grid cell ¢ and j,
and is defined as:

C(i,j) = e—(di/D)?/2 (32)

where d; ; represents the distance between two grid cells ¢ and j. [ here denotes the correlation length
scale which controls the spatlally Varlablhty freedom of the as. A small ygluAeAQi | means-more-errors

tunin factors Qs are less S at1a11 correlated thereb enabhn emission optimization at a finer spatial

scale. However, this also necessitates a larger number of ensemble runs to adequately represent the
model realization from emission to simulation. An empirical parametert-parameter [ = 300 km which

is used inJin et al.| (2023)) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is

020)
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obtained via a Schur Product:

B=B,oC (33)

In the observation term, ¥ is the observation vector, representing satellite observations, M is the GEOS-
Chem model driven by emissions f, H is the observation operator that transferthe-three-dimensionat
transfers the three-dimensional concentration into the observational space, and O is the observation

covariance matrix. In this study, the assimilated observations include the OMPS total columns and
TROPOMI tropospheric columns. A distinct observation operator H is configured to enable a fair
comparison of the observation-minus-simulation mismatch. The satellite formaldehyde observations

are assumed to be independent, therefore O is a diagonal matrix. The diagonal value here is calculated
as:

_ 2 2
Ototal = \/ O instrument + Orepresent (34)

In the-Equation @ Owotal 18 defined as the total uncertainty, which is the square root of the sum
of the squares of the instrument uncertainty gipsgument from the formaldehyde observations and the
representative uncertainty oepresent introduced when processing the data into monthly averages. The
representative uncertainty orepresent 1S represented by the standard deviation of the data.

mAa —analvze-the-results

latter-two-experiments-are-archived-in-The spatial distribution of the total uncertainty is provided in
Figure ?? in the Supplement,
The assimilation methodology used in this paper is the four-dimensional ensemble variational (4DEn Var).

Different from the classic 4DVar that requires adjoint in the cost function minimization, 4DEnVar
emulates the GEOS-Chem formaldehyde simulating model using an ensemble-based linear approximation

. The detailed procedures for minimizing the cost function Equation are illustrated in section
"Minimization of the Cost Function in 4DEnVar” in supplementary material.

Supplement

2 Minimization of the Cost Function in 4DEnVar.

The minimization of the cost function follows the 4DEnVar processes. An ensemble of emission
inventory is generated randomly using the prior emission vector f and the assumed emission error
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covariance B:

[f].a"'afN} (35)

AN

An_ensemble of GEOS-Chem model simulations is then forward run with the ensemble emission

Mo M) (36)

Denote the emission ensemble perturbation matrix by:

/ 1 _F _F
P e d <0

and the mean of ensemble simulation by:

N
M) = 5 S M) (38)
i=1

where f is the mean of the ensemble emission inventories. In the 4DEnVar assimilation algorithm,
the optimal emission f is defined as a weighted sum of the columns of the perturbation matrix F’
using weights from a control variable vector w:

f=fFu @)

The cost function could then be reformulated as:

J(w) = %wTw + % {HM'w+ HM(f) - y}T O " {HMw+ HM(f) -y} (40)
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where M is the linearization of the GEOS-Chem formaldehyde simulating model required for cost
function minimization, and is approximated by:

MF' ~ —= [M(f1) = M(f), .., M(fn) = M(])] “D

2l

With the uncertainty in emission transferred into the observation space, the minimum of the cost
function in Equation 40| could then be directly calculated, and the posterior emission f subsequentl

M™— B,
m, = ———

42
" MT-B “2)

Here M™ represents the modeled concentration of formaldehyde at altitude z, B. is the background
concentration of formaldehyde at the same altitude, M ™ represents the total modeled concentration
of formaldehyde in the atmosphere, and B is the total background concentration.

1 X“—B

A= =
N X!—B

z

(43)

Here X ¢ represents the a priori (or assumed) concentration of formaldehyde at altitude z, B, is again

the backeround concentration at the same altitude, X is the total a priori concentration, and N is a
normalization factor ensuring the matrix A sums correctly to account for all altitudes.

22) (Minor) p9, 12-5: Add references for each cited method.

We thank the reviewer for this comment. The section referring to semi-variogram analysis (p9, 12-5) has been
removed in the revised manuscript following Reviewer #2’s suggestion.

23) (Minor) p9, 114: Add publication year for Souri et al.

The section referring to semi-variogram analysis, where the citation of Souri et al. appeared, has been
removed in the revised manuscript following Reviewer #2’s suggestion. Nevertheless, we have carefully
checked the remaining references to ensure that all citations include publication years, so this issue will not
occur elsewhere.

24) (Minor) p9, 1l15: Replace "'superiority'’ with a specific performance attribute (e.g., lower noise, finer
resolution).

We thank the reviewer for this comment. The section on semi-variogram analysis, where the term "superiority"
appeared, has been removed in the revised manuscript following Reviewer #2’s suggestion.

25) (Major) Begin the discussion by comparing OMPS and TROPOMI retrievals pre-assimilation. Quan-
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tify differences and their potential impact.

We thank the reviewer for this important suggestion. As detailed in our response to RC 2, we have added
a pre-assimilation comparison between OMPS and TROPOMI retrievals, quantified their differences, and
discussed the potential impacts on the assimilation results in the revised manuscript.

Text in manuscript

3-H-Semi-variogram-anatysis3.1 Satellite data evaluation

Uncertainty is a key component in the assimilation process and serves as a crucial indicator of satellite
data quality. Figure [§] illustrates the vertical distribution of retrieval uncertainties. In the mid- to
upper troposphere (200-600 hPa), OMPS and OMI show comparable levels of uncertainty. However,
below 600 hPa, OMPS uncertainties become substantially larger, likely due to cloud contamination
WWGOHZMGZ Abad et allMlNowlan et al. LMAS shown

Wmmmm
of the other two satellite datasets. At first glance, OMI data may appear superior, but this advantage
largely results from strict filtering, which excludes a substantial fraction of problematic data. As
WM@@V@ b%}e%by@E@S—Ghem—stmtﬂ&&e&%paﬂeHda—’Phe%e

iHformaldehyde retrievals-withJarger spatiak-grid-interve ), applying a threshold
MWM&WMWM
national-scale assimilation. Previous studies that assimilated OMI over China have typically interpolated.
the data to coarser resolutions toensure a 11cab111t Cao et al. WWMJ
Q@x&mand° exhibit inere At —Th

3.3 Formaldehyde tetal-columns evaluation

The spatial distributions of formaldehyde columns in Februar Ma Au ust and November 2020 are
shown in Figure +(a)-and-(b hem-stmulated-the and-posteriorestimate ,

dlS lay the prior s1mulat10ns of tropos herlc columns, (b.1-b.4) present the posterior simulations
of tropospheric columns assimilated by OMPS, (c.1-c.4) show the OMPS satellite observations of
total columns, and (d.1-d.4) illustrate the TROPOMI satellite observations of tropospheric columns.
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In addition, the prior

W%HHWM&%W@QQQ%W%
ELformaldehyde Mwmmmwwwwmlmm
and posterior results show that the differences between total and tropospheric columns are relatively

small. Re ardm the s atlal atterns, high formaldehyde values in February are concentrated 1n

%MWMH%W%M@%MN&EMWMMN
YRD. In May, overall concentrations increase nationwide, with particularly pronounced growth in the
NCP and PRD. In August, concentrations increase in the NCP, YRD, and PRD, while they decrease
in the SCB. In November, the changes are modest, but all four regions exhibit reduced concentrations.

26) (Major) Clarify whether the system constrains species and sectors independently. If so, discuss impli-
cations for chemical speciation and whether the results are physically plausible.

We thank the reviewer for this suggestion. Our study focuses on optimizing the total NMVOC emissions
rather than sector-specific sources. This has now been clarified in the manuscript.

Text in manuscript

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehyde-observations-to-constrain NMVOCemissions-optimize NMVOC emissions with satellite
formaldehyde observations. The goal of this-the assimilation is to find the most likely estimate of
the state vector, which is the monthly NMVOC emission inventories f over the entire model do-

main. Note that f represents the vector of total NMVOC emissions, rather than separately gridded
anthropogenic, biogenic, or biomass burning VOC emissions. To optimize emissions from these three
sectors, additional observations or a well-defined spatial correlation structure are required, which are
not available in this study.

27) (Major) Discuss the impact of COVID-19 on emissions in 2020 and how it relates to your findings.

We thank the reviewer for this important comment. As explained in RC 6, we have addressed the impact
of COVID-19 by comparing 2020 with 2019, and clarified how this relates to our findings in the revised
manuscript.

Text in manuscript
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1 Introduction

In this study, we focus on the year 2020 for the main analysis, while results for 2019 are also presented
in the Supplementary Information to provide additional context and support.

NMVOC emissions

In 2020, anthropogenic emissions in China were influenced by the COVID-19 pandemic, leadin
to observable changes. To better evaluate the general applicability of the proposed method, it is also
necessary to Conductacom aratlve anal sis for the pre- andemlc ear of 2019 Flgureééa—)—{ﬂ—spﬂﬂg

SS in the Supplement presents

WWWM
of OMPS and TROPOMI observations. In the NCP region, strong consistency is again observed
in June, with posterior emissions increasing by 57.71% and 30.09% from OMPS and TROPOMI
assimilation, respectively, further confirming the underestimation of prior emissions in this period.

fo%al—NMXlGGemeStoﬂs—m—eaS{emGhma—tﬁYRD Februar October and November are 1dent1ﬁed as

consistent months, aligning with the consistent periods in 2020, suggesting a likely overestimation in
the prior 1nventor during these months In the PRD region consmtenc is found in Januar February,

—4 —4 .

= =Hegfmi s, November, and December, while in the SCB

WWMWMM
with those in 2020, though some differences are evident. For example, June and July emerge as new
consistent months in PRD, while October and November remain consistent but exhibit notably smaller
emission decreases compared to 2020. In SCB, April and May appear as additional consistent months,
while the remaining consistent periods continue to exhibit decreases in emissions. Notably, from June
to November, the two posterior datasets show an average decrease of 42.26% compared to the prior
emissions, indicating a high probability of overestimation in the prior inventory for this region during
that period.

3.4 Impact of Formaldehyde Assimilation on O3 Surface Concentration
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To more robustly substantiate this conclusion, it is necessary to examine whether similar features can
also be identified in 2019. In that year, OMPS and TROPOMI satellite observations were assimilated
independently to constrain NMVOC emissions. The posterior-prior increments from the OMPS- and
TROPOMI-driven assimilations, together with the changes in MDA8 ozone ARMSE, are presented in
Figure[9 of the Supplement. In NCP, March, May, and June are identified as consistent months, durin

which the ozone RMSE values decrease, with the most pronounced improvement occurring in June.
In YRD, the consistent months are February, October, and November, where the ozone improvements
are relatively limited but nevertheless show better agreement with ground-based observations. In
PRD, the consistent months include January, February, and June-December: with the exception of
August, September, and November, the ozone RMSE decreases in the other months, with notable
improvements _in June and July. In SCB, the two posterior datasets exhibit the highest level of
consistency in 2019, with synchronous increases and decreases throughout the year. Ozone simulations
in this region show better performance in all months except March and April, with particularly large

improvements in June, July, and September-November, when the RMSE decreases by an average of
25.74%.

Across the four regions, 27 months are classified as consistent in 2019. Of these, 22 months exhibit
improved ozone simulations, which corresponds to 81.48% of all consistent months, with both assimilatipns
producing MDAS ozone values closer to ground-based observations. This proportion differs from
that of 2020 by only 0.23%, providing further evidence that ozone improvements are particularly
significant in the months defined as consistent across the four regions.

4 Summary and conclusion

To further test the robustness of our approach, OMPS and TROPOMI satellite observations were
independently assimilated to constrain NMVOC emissions for 2019 (Figure[/)). The spatial distribution

of formaldehyde hotspots is similar to 2020 but with overall higher concentrations. At the regional

scale, most consistent months between OMPS- and TROPOMI-constrained results indicate that the

prior inventory underestimates emissions in NCP and overestimates them in YRD, PRD, and SCB.
Importantly, 22 of the 27 consistent months (81.48%) show reduced ozone RMSE, with the largest
improvements in SCB, confirming that consistent cases are strongly associated with enhanced ozone
simulation performance. These findings also lend greater confidence to_the optimized NMVOC

28) Define all acronyms at first use (e.g., NCP, MEIC, CEDS).

We thank the reviewer for this helpful comment. In the revised manuscript, we have ensured that all acronyms
are defined at first use. The four study regions (e.g., North China Plain) and inventories such as CEDS and
GFED are introduced with their full names at first mention. For MEIC, we used the acronym in the Abstract
only as an example, since the full name is too long for that context, but the complete form Multi-resolution
Emission Inventory for China (MEIC) is provided at its first appearance in the main text.

Text in manuscript
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Abstract

As one of the world’s lar est NMVOC emltters accurate emission 1nventor1es are essential for un-
derstanding and een . Aainstreaminventories—are—con o

mitigating air pollution in Chlna Commonl used 1nvent0r1es e.g.
bottom-up approache

which often fail to ca ture the spatiotem oral variabilit of NMVOC emissions, resultlng in peer
model-outeomessignificant model-observation mismatches.

MEIC) are lar el based on

methods,

Highly consistent increments are obtained in the North China Plain (May-June), the Yangtze River
Delta and Pearl River Delta (January-March, with-the- RMSE-dropping—from—0-52-to—037—x<1010
meleeOctober-December), and the Sichuan Basin (January, June-December).

1 Introduction

NMVOC:s are primarily released through anthropogenic activities, biogenic emissions, and biomass
burning processes. Huge efforts have been devoted to constructing inventories recording these emissions
in a bottom-up way, such as the global Community Emission Data System (CEDS) (Hao and Xie| [2018),
the regional Multi-resolution Emission Inventory for China (MEIC) (Li et al., 2019), and the Model of
Emissions of Gases and Aerosols from Nature v2.1 (MEGAN) (Guenther et al., |2012). Fhese NMVOE

emission-inventories-coupled-For biomass burning, widely used inventories include the Global Fire
WMMMMRMTH}& ctal12011).
gggplcz@{w1th chemical transport models like GEOS-Chem (Ito et al},[2007) and WRF-Chem (Azmi|
et al.}[2022), are-eapable-of reproducing-the-complex-processes-ineluding these inventories are widely
used to simulate transport, deposition, and chemical feaeﬁeﬂs—qihiﬂe%eﬂlry%w}pﬁe»«be&efqﬁaﬁ&fy
the-environmental-impaettransformations of NMVOCs, als -essentit 5
W%M%WW&WW&QW

strategies.

29) Ensure units, abbreviations, and mathematical notations are consistently applied.

We thank the reviewer for this comment. Units, abbreviations, and mathematical notations have been carefully
reviewed and revised, and we have sought to apply them as consistently as possible throughout the manuscript.

30) Review manuscript for grammar, sentence clarity, and fluency.

We thank the reviewer for this comment. We have carefully read through the manuscript to improve grammar,
sentence clarity, and fluency, and have revised the text where needed to enhance readability.
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