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1. Overview

Response to Referee 1: We would like to thank the referee for the careful review throughout the paper and
the in-depth comments, especially for the way we processed the formaldehyde column observations which
was improper. We accepted all of the referee’s suggestion for using the satellite formaldehyde retrievals.
The posterior results now also differ from the previous results significantly. Because there are too many
modifications throughout the manuscript, we did not highlight all of them.

2. Major concerns

RC: 1) Clarity and Consistency in Satellite Usage (Major) The manuscript lacks consistency in describing
which satellite datasets are assimilated and which are used for validation. The abstract suggests that only
OMPS is used for assimilation and TROPOMI is used as an independent validation dataset. However, the
methods section refers to assimilation experiments involving OMPS, TROPOMI, and their combination.
Furthermore, Eq. (3) implies the use of a single observational constraint. If the combination refers to
an average of OMPS and TROPOMI data, this should be clearly stated and methodologically justified.
Averaging observations reduces variance and effectively increases their weight in the cost function-this is
not equivalent to joint multi-satellite assimilation. This distinction must be clarified and its implications
explicitly discussed.

AR: We express our gratitude to the reviewer for highlighting the inconsistency in our description of the satellite
datasets used for assimilation and validation. We acknowledge that the "OMPS+TROPOMI combined
assimilation" approach in the original submission was inadequately described and methodologically flawed.
As the reviewer accurately pointed out, simply averaging OMPS and TROPOMI retrievals does not constitute
true multi-satellite joint assimilation, as it artificially reduces observational variance and disproportionately
weights the cost function without properly accounting for observational errors. In the revised manuscript,
we have removed the combined assimilation experiment entirely, focusing solely on the OMPS-only and
TROPOMI-only assimilation experiments. We have ensured consistent descriptions throughout the Abstract,
Methods, and Results sections to eliminate ambiguity. Additionally, we have introduced a consistency analysis
in the Results section to highlight the benefit of using the TROPOMI-based and OMPS-based assimilation
results, and details could be found in our revised manuscript.

Text in manuscript
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Abstract.

...

:::::::
Monthly

::::::::
NMVOC

:::::::::
emissions

::::
over

:::::
China

::
in
:::::

2020
:::
are

::::
then

:::::::::
optimized

:::
by

::::::::::::
independently

::::::::::
assimilating

:::::::::::
formaldehyde

::::::::
retrievals

:::::
either

::::
from

::::::
OMPS

::
or

::::
from

::::::::::
TROPOMI,

:::::
using

:
a self-developed 4DEnVar-based

system. A positive increment of NMVOC emissions was obtained by assimilating OMPS formaldehyde
, with annual anthropogenic emissions rising from 22.40 to 41.32 Tg, biogenic emissions increasing
from 16.56 to 28.01 Tg, and biomass burning emissions rising from 0.29 to 0.65 Tg. Our model
simulations, driven by the posterior inventories, demonstrate superior performance compared to the
prior. This is validated through comparisons against the independent satellite measurements and the
surface ozone measurements. The RMSE of the posterior formaldehyde columns decreased from
0.49 to 0.45 ×1016 molec/cm2 nationwide. In the severe-polluted NCP, it was improved effectively,
reaching levels comparable to TROPOMI

:::::::
4DEnVar

::::::::::
assimilation

::::::::
emission

::::::::
inversion

::::::
system.

...

1 Introduction

...

NMVOCs compared to OMI retrievals
:::::::
emission

:::::::::::
optimization

::
at

:::
the

:::::::
national

::::
scale. Subsequently, the

monthly NMVOC emission optimization in China is conducted. This is achieved by
:::::::::::
independently

assimilating formaldehyde observations from OMPS and
:::::
either

:::::
from

::::::
OMPS

::
or

:::::
from

:
TROPOMI,

based on the emission inversion system that couples the four-dimensional ensemble variational
(4DEnVar) data assimilation algorithm and GEOS-Chem model. The effectiveness of this emis-
sion inversion system has been evaluated in our recent study (Jin et al., 2023; Xia et al., 2025).

::::::
studies

::::::::::::::::::::::::::
(Jin et al., 2023; Xia et al., 2025)

:
.
::
In

:::
this

::::::
study,

::
we

:::::
focus

:::
on

::
the

::::
year

:::::
2020

::
for

:::
the

:::::
main

:::::::
analysis,

:::::
while

:::::
results

:::
for

::::
2019

:::
are

::::
also

::::::::
presented

::
in

:::
the

::::::::::::
Supplementary

::::::::::
Information

::
to
:::::::
provide

::::::::
additional

:::::::
context

:::
and

:::::::
support.

:

RC: 2) Lack of Bias Correction for Satellite Data (Major) The study does not apply bias correction across
satellite datasets, which is a critical omission. HCHO retrievals from OMPS and TROPOMI differ due
to varying retrieval algorithms, cloud screening, and a priori assumptions. These systematic differences
must be addressed before assimilation. Previous studies (e.g., Zhu et al., 2020; Müller et al., 2024) have
shown the importance of bias correction using independent datasets such as aircraft or FTIR observations.
At minimum, the authors should:

• Justify the omission of bias correction

• Discuss associated uncertainties

• Provide quantitative comparisons between satellite datasets prior to assimilation (with figures in the
main text)

• Display and discuss the observation uncertainties used in the assimilation

AR: We sincerely thank the reviewer for their valuable feedback on bias correction. In the revised manuscript, we
have incorporated the following additions and clarifications:
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Lack of independent observations for satellite data bias correction: Due to the unavailability of temporally
coincident independent measurements (e.g., aircraft or FTIR data) over China in 2020, rigorous cross-
satellite bias correction could not be performed. This limitation, as well as our mitigation approach, is now
clearly acknowledged and discussed in the manuscript. To improve the comparability between OMPS and
TROPOMI, we apply vertical profile corrections before the assimilation, including averaging kernel (AVK)
adjustments for TROPOMI and air mass factor (AMF) recalculations for OMPS. In the assimilation, OMPS
retrievals are used as total columns as provided by the product, while TROPOMI retrievals are assimilated as
tropospheric columns. We did not construct total columns from TROPOMI, since doing so would introduce
additional uncertainties. This choice does not affect comparability, because the model provides full vertical
concentration profiles that can be integrated to both total and tropospheric columns, and formaldehyde is
primarily distributed below the tropopause. These treatments make the assimilation more reliable.

Uncertainty discussion: We have expanded the Methods and Discussion sections to address observational
uncertainties and their potential impacts on the assimilation results. Inter-satellite comparison: Prior to
assimilation, we conducted a quantitative comparison of OMPS and TROPOMI retrievals, highlighting their
differences relative to the prior. Both spatial and statistical comparisons are now included in the main text.

Presentation of observational uncertainties: Remarks concerning vertical profiles of observational uncertainties
are now presented in the manuscript, with the Figures illustrating their spatial distributions provided in the
Supplementary Material.

Text Lack of independent observations for satellite data bias correction in manuscript

2.3.1 NOAA-20 OMPS

...

::::::::::::
Formaldehyde

::::::
vertical

::::::
column

::::::::
densities

::::::
(VCDs)

::::::::
retrieved

::::
from

:::::::
satellite

::::::::::
observations

:::
are

::::::
derived

:::::
using

::
air

:::::
mass

::::::
factors

:::::::
(AMF),

::::::
which

:::::::
strongly

:::::::
depend

:::
on

:::
the

::
a

:::::
priori

:::::::
vertical

::::::
profiles

:::
of

::::::::::::
formaldehyde.

:::::
Direct

:::::::::::
comparisons

:::::::
between

:::::::
satellite

::::::::
products

:::
and

::::::
model

::::::::::
simulations

::::
may

:::
be

:::::
biased

::
if
:::
the

::
a
:::::
priori

::::::
profiles

::::
used

::
in

:::
the

:::::::
retrieval

:::::
differ

::::
from

:::
the

::::::::
simulated

:::::
ones.

::
To

::::::
ensure

::::::::::
consistency

:::::::
between

::
the

:::::::
satellite

::::::::::
observations

::::
and

:::::::::::
GEOS-Chem

:::::::::
simulation,

:::
we

:::::::
applied

::
an

:::::
AMF

:::::::::
correction

::
by

:::::::::::
recalculating

:::
the

:::::
AMF

::::
with

:::::::::::::
model-simulated

:::::::
profiles

::::::::
following

:::
the

:::::::
method

::::
used

::
in

::::::::::::::::
Palmer et al. (2001)

:
:

AMF =

∫ 0

ps

w (p)S (p) dp

::::::::::::::::::::::

(1)

...

:::
The

:::::::::
processed

::::::
OMPS

:::::::
satellite

::::::::::
observations

:::::
were

::::::::
ultimately

::::::::::
assimilated

::
as

:::::
total

:::::::
columns,

::::::
which

:::
are

::::::::
presented

::
in

:::::
Figure

::
1
:::::::
(c.1-c.4).

...

2.3.2 Sentinel-5P TROPOMI

...

::::::
Beyond

:::
the

::::::::::::
recommended

::::::
quality

::::::::
screening,

:
a
::::
key

:::::::::::
consideration

:::::
when

:::::::::
comparing

:::::::::
TROPOMI

:::::::::::
formaldehyde

3



Figure 1.
::::::
Spatial

:::::::::::
distributions

:::
of

::::::::::::
formaldehyde

::::::::
columns

:::::
from

::::::::::::
GEOS-Chem

::::::::::::::
model-simulated

:::::
prior

::::::::::
tropospheric

:::::::
columns

:::
(a)

:::
and

::::::::
posterior

::::::::::
tropospheric

:::::::
columns

::::::::::
constrained

::
by

::::::
OMPS

::::::::::
assimilation

:::
(b),

:::::::
satellite

::::::::::
observations

::
of

::::::
OMPS

::::
total

::::::::
columns

:::
(c),

:::
and

:::::::
satellite

:::::::::::
observations

::
of

:::::::::
TROPOMI

:::::::::::
tropospheric

:::::::
columns

:::
(d)

::
in

:::::::
February

::::::::
(a.1-d.1),

::::
May

::::::::
(a.2-d.2),

::::::
August

::::::::
(a.3-d.3),

::::
and

:::::::::
November

:::::::
(a.4-d.4)

::
of

:::::
2020.

:
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Figure 2.
::::::
Spatial

::::::::::
distributions

::
of

:::
the

::::::::::::
formaldehyde

::::
total

:::::::
columns

:::::
from

:::::::::::
GEOS-Chem

::::::::::::::
model-simulated

::::
prior

::::
(a,c)

:::
and

::::::::
posterior

::::
(b,d)

::::::
results

::
in

::::::::
February

::::::::
(a.1-d.1),

::::
May

::::::::
(a.2-d.2),

:::::::
August

::::::::
(a.3-d.3),

:::::::::
November

:::::::
(a.4-d.4)

::
for

::::::::::
2020/2019.

:
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:::::::
retrievals

::::
with

::::::
model

::::::
outputs

::
is
:::
the

::::::::::
dependence

:::
on

::
the

::::::::
assumed

:
a
:::::
priori

:::::::
vertical

::::::
profile.

:::::::::::
Traditionally,

::::::
studies

::::
have

:::::
relied

:::
on

::::::::::
AMF-based

::::::::::
corrections,

:::
in

:::::
which

:::::
AMF

::
is
:::::::::::

recalculated
:::::
using

::::::::::::
model-derived

::::::
profiles

::
to

::::::
reduce

::::
such

:::::::::::
discrepancies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Palmer et al., 2001; Boersma et al., 2004; Zhu et al., 2016; Cooper et al., 2020)

:
.
:::::
More

::::::::
recently,

:::
the

:::::::::
availability

:::
of

::::::::
averaging

::::::
kernel

::::::
(AVK)

::::::::::
information

::
in
::::

the
:::::::::
TROPOMI

:::::::
product

:::
has

:::::::
allowed

::
a

::::
more

:::::::::
consistent

::::::::::
comparison

:::
by

::::::::::
accounting

:::
for

:::
the

:::::::
impact

::
of

:::
the

::::::::
assumed

:::::::
vertical

:::::
profile

:::::
shape

:::
in

:::
the

:::::::
retrieval,

:::::::::
following

:::
the

::::::::
approach

:::::::::
introduced

::
in

:::
the

:::::
IASI

::::
NH3:::::::

version
:
4
:::::::
product

::::::::::::::::::::::::::::::
(Clarisse et al., 2023; Xia et al., 2025)

:
.
::
In
::::

this
:::::
study,

:::
we

:::::
apply

::::::::::
AVK-based

:::::::::
correction

:::
for

:::::::::
TROPOMI

:::::::::::
formaldehyde

:::
by

:::::::::
projecting

:::
the

:::::
model

:::::::
profiles

::::
onto

::::
the

::::::
satellite

::::::::
pressure

::::
grid,

:::::::
thereby

::::::::
achieving

::
a

::::
more

::::::::::
harmonized

::::::::::
comparison

::::
with

:::::::::::
GEOS-Chem

::::::::::
simulations.

::::
The

::::::::
corrected

::::::
column

::
is
:::::::::
calculated

::
as:

:

X̂m =
X̂a −B∑
pA

a
pmp

+B

:::::::::::::::::::

(2)

...

:::
The

:::::::::
processed

:::::::::
TROPOMI

::::::::
retrievals

:::::
were

:::::::::
assimilated

:::
as

::::::::::
tropospheric

::::::::
columns,

::::::
which

:::
are

::::::::
presented

::
in

:::::
Figure

::
1
::::::::
(d.1-d.4),

::::
with

::::
their

:::::::
vertical

:::::
shape

::::::
profiles

::::::
shown

::
in

::::::
Figure

::
3

:::::
(green

::::
line)

:::
to

:::::::
illustrate

:::
the

:::::::::
normalized

::::::::::
contribution

::
of

:::::
each

:::::::
pressure

::::
layer

::
to

:::
the

:::::::::::
tropospheric

:::::::
columns.

::::
We

:::::::
adopted

::::::::::
tropospheric

:::::
rather

::::
than

::::
total

::::::::
columns

:::::::
because

:::
the

::::::::
retrieval

:::::::
product

:::::
itself

:::::::
provides

:::::::::::
tropospheric

::::::::
columns,

::::
and

::::::::::
recalculating

::::
total

::::::::
columns

:::::
would

::::::::
introduce

:::::::::
substantial

:::::::::::
uncertainties.

...

2.3.3 Aura OMI

:::
The

::::
OMI

:::::::::::
observations

:::
are

::::
then

:::::::::
aggregated

::
to

:::::::
monthly

::::::
means

::
on

::
a
:::
0.5°

:::
×

:::::
0.625°

:::::
grid,

::::::::
consistent

::::
with

::
the

::::::::::::
GEOS-Chem

:::::
model

:::::::::
resolution.

:::
To

::::::
ensure

::::::::
sufficient

::::::::
sampling

:::
per

::::
grid

::::
cell,

:::
we

::::
also

::::::
applied

::::
two

::::::
filtering

::::::::
schemes

:::::
based

:::
on

:::
the

:::::::
number

::
of

:::::::::::
observations,

:::::::::
excluding

::::
grid

::::
cells

:::::
with

:::::
fewer

::::
than

:::
10

::
or

:::::
fewer

::::
than

::
50

:::::
valid

::::::
pixels.

::::::
Unlike

::::::
OMPS

::::
and

::::::::::
TROPOMI,

::::::::
however,

::::
OMI

::::::
shows

:
a
::::::
strong

::::::::
reduction

::
in

:::
data

::::::::
coverage

:::::
under

:::::
these

:::::::::
constraints,

::::
and

:::
the

::::::
product

::::::::
becomes

:::::
sparse

:::::
after

:::::::
applying

:::
the

::::::::
threshold

::
of

::
50

:::::::::::
observations.

:::::
This

::::::::
indicates

:::
that

:::::
OMI

::::::
suffers

:::::
from

:::::::::
insufficient

::::::::
sampling

:::::::
density

::
in

:::::
China

:::
for

::::::::::::
high-resolution

:::::::::::
assimilation.

:::::
The

::::::
vertical

::::::
profile

:::::::::
correction

:::
of

::::
OMI

::::::::::::
formaldehyde

::::
was

:::::::::
conducted

::::
using

:::
the

:::::
same

::::::::
approach

::
as

:::::::
applied

::
to

:::::::
OMPS,

::
by

:::::::::::
recalculating

:::::
AMF

::::
with

::::::::::::::
model-simulated

:::::::
vertical

::::::
profiles.

...

4 Summary and conclusion

...

:::::
Future

::::::
efforts

:::::
should

:::::::
reassess

::::::::::
assimilation

:::::::::::
performance

::::
with

::::::
updated

::::::::
emission

:::::::::
inventories

:::
and

::::::::::
incorporate

::::::::::::
source-specific

:::::::::::
uncertainties,

::::::::
assigning

:::::::
different

:::::::::::
uncertainties

::
to

::::::::::::
anthropogenic,

::::::::
biogenic,

:::
and

:::::::
biomass

::::::
burning

:::::::
sectors,

::
in

::::
order

::
to

:::::
better

::::::::
constrain

::::
their

::::::::
respective

:::::::::
emissions.

:::::::::
Moreover,

:::::::
because

::
no

::::::::::
independent

::::::::
validation

::::
data

:::::
such

::
as

:::::::
aircraft

::
or

:::::
FTIR

::::::::::::
measurements

:::::
were

::::::::
available

::::
over

::::::
China

::
in

:::::
2020,

::::::
future

::::::
studies

::::
could

::::::
further

:::::::
evaluate

:::
the

::::::::::
assimilation

::::::
results

::::
once

::::
such

:::::::::::
observational

:::::::
datasets

::::::
become

:::::::::
accessible.

Text Uncertainty discussion and Presentation of observational uncertainties in manuscript

6



Figure 3.
::::::
Vertical

:::::::::::
distributions

:::
of

::::
the

::::::::
regional

::::::
mean

::::::::::::
formaldehyde

::::::::
columns

:::::
from

::::::::::::
GEOS-Chem

:::::::::::::
model-simulated

:::::
prior

::::::
(black)

:::
and

:::::::
satellite

::::::::::
observations

:::
by

:::::
OMPS

::::::
(blue),

:::::::::
TROPOMI

:::::
(red),

:::
and

:::::
OMI

::::::
(green).

:::::
Panels

::::::
(a)-(d)

:::::::::
correspond

:::
to

:::
the

:::::
North

:::::
China

::::::
Plain,

:::::::
Yangtze

:::::
River

:::::
Delta,

:::::
Pearl

:::::
River

:::::
Delta,

::::
and

::::::::
Northeast

:::::
China,

:::::::::::
respectively.

:::::::::
Sub-panels

::::::::
(a.1-d.1),

::::::::
(a.2-d.2),

::::::::
(a.3-d.3),

:::
and

:::::::
(a.4-d.4)

::::::::
represent

::::::::
February,

:::::
May,

::::::
August,

:::
and

:::::::::
November

:::::
2020,

::::::::::
respectively.

::::::
Values

::
in

::::::::::
parentheses

:::::::
indicate

:::
the

:::::
biases

::
of

:::::::
satellite

:::::::::::
observations

::::::
relative

::
to

:::
the

:::::
prior

:::::::::
simulation.

:::::::
Shaded

::::
areas

::::::
denote

:::
the

:::::::::::
observational

::::::::::::
uncertainties.
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Figure 4.
:::::::::
Comparison

:::
of

:::::::
monthly

::::
mean

::::::::::::
formaldehyde

::::::
column

::::::::::::
concentrations

::
in
::::::::
February,

:::::
May,

:::::::
August,

:::
and

::::::::
November

:::::
2020

::::
after

::::::::
applying

:::::::
different

::::
data

:::::::
filtering

::::::::::
thresholds.

::::::
Panels

::::::::
(a.1-a.4),

::::::::
(c.1-c.4),

:::
and

::::::::
(d.1-d.4)

::::
show

:::::
OMI,

:::::::
OMPS,

::::
and

::::::::::
TROPOMI

::::::
results,

:::::::::::
respectively,

:::::
after

::::::::
removing

::::
grid

:::::
cells

::::
with

::::::
fewer

::::
than

:::
10

:::::::::::
observations.

:::::
Panels

::::::::
(b.1-b.4)

::::
show

:::::
OMI

:::::
results

:::::
after

::::::::
removing

::::
grid

::::
cells

::::
with

:::::
fewer

::::
than

::
50

:::::::::::
observations.

:
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3.1 Semi-variogram analysis
:::::::::::::::::::::::
3.1 Satellite data evaluation

...

:::::::::
Uncertainty

::
is
::
a

:::
key

:::::::::
component

::
in

:::
the

::::::::::
assimilation

:::::::
process

:::
and

:::::
serves

::
as
::
a
::::::
crucial

:::::::
indicator

::
of

:::::::
satellite

:::
data

:::::::
quality.

:::::::
Figure

:
3
:::::::::

illustrates
:::
the

:::::::
vertical

::::::::::
distribution

::
of

:::::::
retrieval

::::::::::::
uncertainties.

:::
In

:::
the

:::::
mid-

::
to

:::::
upper

::::::::::
troposphere

:::::::
(200-600

:::::
hPa),

::::::
OMPS

::::
and

::::
OMI

:::::
show

::::::::::
comparable

:::::
levels

::
of

::::::::::
uncertainty.

::::::::
However,

:::::
below

:::
600

:::::
hPa,

::::::
OMPS

:::::::::::
uncertainties

::::::
become

:::::::::::
substantially

::::::
larger,

:::::
likely

::::
due

::
to

:::::
cloud

::::::::::::
contamination

:::
and

:::::::
retrieval

::::::::
algorithm

:::::::::::::
approximations

:::::::::::::::::::::::::::::::::::::::::
(González Abad et al., 2016; Nowlan et al., 2023).

:
As shown

in the four interpolated results in Figure 3, the spatial distribution of high formaldehyde values is
consistently captured across different horizontal resolutions, either by the satellite observations in
Figure 3

::::::::::::
Supplementary

::::::
Figure

:::
??,

:::
the

::::::
overall

::::::::::
uncertainty

::
of

::::::
OMPS

::
is

:::::::::::
significantly

:::::
higher

::::
than

::::
that

::
of

:::
the

::::
other

::::
two

:::::::
satellite

:::::::
datasets.

:::
At

::::
first

::::::
glance,

::::
OMI

::::
data

::::
may

::::::
appear

::::::::
superior,

:::
but

:::
this

:::::::::
advantage

::::::
largely

::::::
results

::::
from

:::::
strict

::::::::
filtering,

:::::
which

::::::::
excludes

::
a

:::::::::
substantial

:::::::
fraction

::
of

:::::::::::
problematic

::::
data.

::::
As

::::::::
illustrated

::
in

:::::::::::::
Supplementary

::::::
Figure

::
4
:
(a, b, c)or by GEOS-Chem simulation in panel (d). These

hot spots are particularly prominent in the North China Plain (NCP) and Jiangsu-Zhejiang-Shanghai
regions. However, at the higher resolution of 0.5° x 0.5°, OMI formaldehyde data exhibits noticeable
noise all over China and lacks the spatial continuity observed in TROPOMI, OMPS, and GEOS-Chem
datasets. The significant spatial variability in the NMVOC emission field might account for the
discontinuity observed in OMI formaldehyde data . However, this discontinuity contradicts the model
simulation and the other two satellite products obtained from the more advanced instruments. Moreover,
such discontinuities are not observedin OMI formaldehyde retrievals over the United States, where
(Kaiser et al., 2018) demonstrated continuous and high-quality data. Therefore, the discrepancies
observed in China may be attributed to uncertain input parameters, such as aerosols and surface
albedo. OMI formaldehyde retrievals with larger spatial grid intervals (2° x 2°

:
),
::::::::
applying

:
a
::::::::
threshold

::
of

::
50

:::::::::::
observations

:::
per

::::
grid

::::
cell

:::::::::
drastically

:::::::
reduces

::::::
spatial

::::::::
coverage,

:::::::::
rendering

::::
OMI

:::::::::
unsuitable

:::
for

:::::::::::
national-scale

:::::::::::
assimilation.

:::::::
Previous

::::::
studies

::::
that

:::::::::
assimilated

::::
OMI

::::
over

:::::
China

::::
have

::::::::
typically

::::::::::
interpolated

::
the

::::
data

::
to

::::::
coarser

:::::::::
resolutions

::
to

::::::
ensure

::::::::::
applicability

:::::::::::::::::::::::::::::::::
(Cao et al., 2018; Miyazaki et al., 2020).

:::::::::
Therefore,

::::
only

::::::
OMPS and 4° x 4°) exhibit increased continuity and smoothness, as shown in Figure 3(a). This

improvement is attributed to spatial averaging, which effectively filters out white noise (Lee, 1980).

Text Inter-satellite comparison in manuscript

3.1 Satellite data evaluation

...

:::::
Figure

::
3
::::
also

:::::::
presents

:::::::
satellite

:::::::
retrieval

:::::::::
deviations

:::::
from

:::
the

::::
prior

::::::
model

:::::::::
estimates.

::::::
When

::
all

:::::
three

::::::
satellite

:::::::
datasets

::::::
exhibit

:::
the

::::
same

::::
sign

::
of

::::::::
deviation

:::::::
(positive

::
or

::::::::
negative)

:::::::
relative

::
to

::
the

::::::
model,

::::
they

:::
are

:::::::::
considered

:::::::::
consistent.

:::::
Such

::::::::::
consistency

:
is
:::::::::

observed,
:::
for

::::::::
example,

::
in

::::::::
February,

:::::
May,

:::
and

:::::::::
November

:::
over

:::::
NCP

:::
and

::
in
::::::::
February

::::
over

::::
PRD

::::
and

:::::
SCB,

:::::
where

:::
all

::::
three

:::::::
datasets

:::::
show

::::::
positive

::::::::::
deviations;

:::
and

::
in

:::::::
February

::::
and

:::::::::
November

::::
over

:::::
YRD

:::
and

:::
in

::::::
August

::::
over

:::::
SCB,

:::::
where

:::
all

:::::
show

:::::::
negative

:::::::::
deviations.

:::::
These

:::::
cases

:::::::
indicate

:::::::
stronger

:::::::::
reliability.

:::
In

:::::
other

:::::::::
situations,

:::::
when

::::::
OMPS

::::
and

::::::::::
TROPOMI

::::::
exhibit

::
the

:::::
same

::::
bias

:::::::::
direction,

::::
they

:::
are

::::
also

::::::::::
considered

:::::::::
consistent,

::
as

:::
in

:::::::::
November

::::
over

:::::
PRD

:::
and

:::::
SCB.

Overall, at higher spatial resolutions, OMI formaldehyde data exhibit more white noise, with higher
semi-variance values and weaker spatial autocorrelation.

...
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3.3 Formaldehyde total columns evaluation

:::
The

::::::
spatial

::::::::::
distributions

::
of

::::::::::::
formaldehyde

:::::::
columns

::
in

::::::::
February,

:::::
May,

::::::
August,

::::
and

:::::::::
November

::::
2020

:::
are

shown in Figure 1 (a) and (b), GEOS-Chem simulated the prior and posterior estimates of formaldehyde
for four months of the year 2020 over China. In Figure 1 (a) , the prior results exhibit a spatial
distribution similar to satellite observations . When compared to OMPS and

::
1.

:::::::
Panels

:::::::
(a.1-a.4)

::::::
display

:::
the

:::::
prior

::::::::::
simulations

::
of

:::::::::::
tropospheric

::::::::
columns,

::::::::
(b.1-b.4)

:::::::
present

:::
the

::::::::
posterior

::::::::::
simulations

::
of

::::::::::
tropospheric

::::::::
columns

::::::::::
assimilated

::
by

:::::::
OMPS,

::::::::
(c.1-c.4)

:::::
show

:::
the

::::::
OMPS

:::::::
satellite

:::::::::::
observations

::
of

::::
total

:::::::
columns,

::::
and

::::::::
(d.1-d.4)

:::::::
illustrate

:::
the

:
TROPOMI satellite observations

::
of

:::::::::::
tropospheric

:::::::
columns.

::
In

:::::::
addition, the prior results accurately reproduce high-value features in most regions, including

Yunnan-Guizhou, Guangxi-Guangdong, NCP, the southeastern coast, and the northeast. However,
the previous simulation did not accurately represent the actual formaldehyde levels. Specifically, it
underestimated formaldehyde concentrations to varying degrees across different regions. By assimilating
OMPS formaldehyde columns, improvement was obtained steadily in the posterior simulations. Nationwide,
the posterior formaldehyde columns were raised by approximately 50%. Comparing to TROPOMI
data used as independent measurements, the

:::
and

::::::::
posterior

::::::::::
simulations

::
of

::::
total

::::::::
columns

:::
for

:::::
2020

::
are

::::
also

::::::::
provided

:::
in

:::
the

:::::::::::::
Supplementary

::::::
Figure

::
2.

::::
As

::::::::
indicated

:::
by

:::
the

:::::::
vertical

:::::::
profiles

::
in

::::::
Figure

::
3, formaldehyde levels

::
is

::::::
mainly

:::::::::
distributed

::::::
below

:::
the

::::::::::
tropopause.

:::::::::::
Comparisons

:::::::
between

::::
the

::::
prior

:::
and

::::::::
posterior

:::::
results

:::::
show

::::
that

:::
the

:::::::::
differences

:::::::
between

:::::
total

:::
and

:::::::::::
tropospheric

:::::::
columns

:::
are

::::::::
relatively

:::::
small.

::::::::::
Regarding

:::
the

::::::
spatial

::::::::
patterns,

::::
high

::::::::::::
formaldehyde

::::::
values

::
in

::::::::
February

::::
are

:::::::::::
concentrated in

the NCPregion were raised from less than 1.2 ×1016 molec/cm2 to around 2.4 ×1016 molec/cm2

in January, closer to the observed values either from OMPS and TROPOMI. The
:
,
:::::
YRD,

:::
and

:::::
PRD

::::::
regions,

::::
with

:::
the

::::::::
posterior

:::::
results

:::::::
showing

:::
an

::::::::
expanded high-value features in Yunnan-Guizhou became

more prominent in April, and significant improvements were also observed in the southeastern coast,
NCP, and the northeast in July and October. However,

:::
area

:::
in

:::
the

::::
NCP

:::
but

:
a
:::::::
reduced

::::::::
coverage

::
in

:::
the

:::::
YRD.

::
In

::::
May,

::::::
overall

::::::::::::
concentrations

::::::::
increase

:::::::::
nationwide,

::::
with

::::::::::
particularly

::::::::::
pronounced

::::::
growth

::
in

:::
the

::::
NCP

:::
and

:::::
PRD.

:::
In

::::::
August,

:::::::::::::
concentrations

:::::::
increase

::
in

:::
the

:::::
NCP,

:::::
YRD,

::::
and

:::::
PRD,

:::::
while

::::
they

:::::::
decrease

::
in

::
the

:::::
SCB.

::
In

::::::::::
November,

:::
the

:::::::
changes

::
are

:::::::
modest,

:::
but

:::
all

::::
four

::::::
regions

::::::
exhibit

:::::::
reduced

::::::::::::
concentrations.

RC: 3) Unrealistic Assumptions for Emission Uncertainty (Major) The manuscript assumes a uniform 100%
random uncertainty for all emission sectors and species. This is overly simplistic and not representative
of known variability-biogenic and biomass burning emissions typically carry much greater uncertainty
than anthropogenic sources. Furthermore, the spatial correlation structure of errors and the regular-
ization approach are not well described. These assumptions critically affect the inversion and should be
better supported by literature references, sensitivity tests, or at minimum, a comprehensive uncertainty
discussion.

AR: We thank the reviewer for this important comment. For testing the uncertainty choice, we adopted sector-
specific prior uncertainties of 150% for anthropogenic VOCs, 200% for biogenic VOCs, and 300% for
biomass burning VOCs (following Souri et al. (2020)). These were combined using a weighted quadratic
formulation, which yielded a total uncertainty of about 120%. Accordingly, we set the standard deviation
of the multiplicative factor to 0.4. To test the simplification of applying a uniform total uncertainty, we
compared emissions based on sector-weighted uncertainties with those obtained by uniformly scaling the
prior by 120% (Figure 5), and found the two distributions to be generally consistent. This supports the
reasonableness of our assumption, while we acknowledge that uniform uncertainties remain a simplification,
and sector-specific inversions will be explored in future work. Remarks concerning the spatial correlation
structure in the background error covariance have also been added in the revised manuscript.
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Text in manuscript

Table 1.
::::::::::
Uncertainty

::::::::::
assumptions

:::
for

:::::::
different

::::::::
emission

:::::::
sectors.

Anthropogenic Biogenic Biomass burning

VOC 150% 200% 300%

Figure 5.
::::::::::
Comparison

::
of

::::
prior

::::::::
NMVOC

:::::::::
emissions

::::::::
estimated

:::
by

:::::::::
combining

::::::::::::
sector-specific

::::::::::
uncertainties

:::
(a)

:::
and

::
by

:::::::::
uniformly

::::::
scaling

:::
the

::::
prior

::::
total

:::::::::
emissions

::
by

::::::
120%

::
(b)

::
in
:::::
2020.

::::
The

::::
two

::::::::::
distributions

:::
are

::::::::
generally

::::::::
consistent,

::::::::::
supporting

::
the

:::::::::::
applicability

::
of

:::
the

::::
total

::::::::::
uncertainty

:::::::::
assumption

::::
used

::
in
::::
this

:::::
study.

:

2.5 Assimilation algorithm

...

The uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission
inventories, and can be compensated using a spatially varying tuning factor α:

f (i) = fb (i) · α (i) (3)

in here fb (i) denotes the NMVOC emission rate in the given grid cell i. The α values are defined
to be random variables with a mean of 1.0

:
,
:
a
:::::::::
minimum

::
of

:::
0.1

:
and a standard deviation σα = 0.2

::
of

:::
0.4,

::::::::::::
corresponding

::
to

:
a
:::::::
uniform

::::::
120%

:::::::::
uncertainty

:::::::
applied

::
to

:::
the

::::
total

:::::::
NMVOC

:::::::::
emissions

:::::
rather

::::
than

::::::::::::
sector-specific

::::::
settings

::
as

:::::::
adopted

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::
(Choi et al., 2022; Jung et al., 2022; Souri et al., 2020)

:
.
:::
The

::::::::
rationale

::
for

::::
this

:::::
choice

::
is

::::::::
provided

:
in
:::
the

::::::::::
Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance Bα
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is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Bα (i, j) = σα ·C (i, j) (4)

where C (i, j) represents a distance-based spatial correlation between two αs
:
in the grid cell i and j,

and is defined as:

C (i, j) = e−(di,j/l)
2/2 (5)

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length
scale which controls the spatially variability freedom of the α

:
s. A small

::::
value

:::
of l means more errors

in fine scale could be resolved using the assimilation, while however requires more
::::::::
indicates

:::
that

:::
the

:::::
tuning

::::::
factors

:::
αs

::
are

::::
less

:::::::
spatially

:::::::::
correlated,

:::::::
thereby

:::::::
enabling

:::::::
emission

:::::::::::
optimization

::
at

:
a
::::
finer

::::::
spatial

::::
scale.

:::::::::
However,

::::
this

:::
also

::::::::::
necessitates

::
a
:::::
larger

:::::::
number

::
of

:
ensemble runs to

:::::::::
adequately represent the

model realization from emission to simulation. An empirical parameterl
::::::::
parameter

:
l
:
= 300 km which

is used in Jin et al. (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix Bα, the NMVOC emission background covariance B is
obtained via a Schur Product:

B = Bα ◦C (6)

...

Supplement

:
1
::::::::
Emission

:::::::::::
Uncertainty

::::::::
Following

::::::::
previous

::::::
studies

::::::::::::::::
(Souri et al., 2020),

::::::::::::
sector-specific

:::::
prior

:::::::::::
uncertainties

:::
for

::::::::::::
anthropogenic,

:::::::
biogenic,

::::
and

:::::::
biomass

:::::::
burning

::::::::
emissions

::::
can

::
be

:::::::::
combined

:::
into

::
a
::::
total

::::::::::
uncertainty

:::::
using

:
a
::::::::
weighted

::::::::
approach.

σ2
total = f2anthro · σ2

anthro + f2biogenic · σ2
biogenic + f2bioburn · σ2

bioburn
::::::::::::::::::::::::::::::::::::::::::::::::

(7)

::::::::
Applying

::::
this

:::::::
method

::
to

:::
the

::::::::::
uncertainty

:::::
values

::::::::
reported

::
in

::::::
earlier

:::::
work,

:::
we

::::::::
obtained

:
a
::::
total

:::::
prior

:::::::::
uncertainty

::
of

:::::::::
120.22%.

:::::::::::
Accordingly,

:::
we

:::
set

::::
the

:::::::
standard

::::::::
deviation

:::
of

:::
the

:::::::::::
multiplicative

::::::
factor

::
to

:::
0.4

::
in

:::
this

:::::
study.

:::
To

::::::
assess

:::
the

::::::
validity

::
of
::::

this
::::::::::::
simplification,

:::
we

::::::::
compared

:::
the

::::::::::::::
sector-weighted

::::
prior

::::::::
emissions

::::::
(Figure

::
5
:::
(a))

:::::
with

:::
the

::::
prior

::::::::
emissions

:::::::::
uniformly

::::::
scaled

::
by

:::::
120%

:::::::
(Figure

:
5
:::::

(b)).
:::
The

::::
two

:::::
results

:::
are

::::::::
generally

:::::::::
consistent,

:::::::::
supporting

:::
the

:::::::::::::
reasonableness

::
of

:::::::
adopting

::
a

:::::::
uniform

::::
total

:::::::::
uncertainty

::
in

:::
this

:::::
study.

:::::::::::::
Sector-specific

:::::::
inversion

::::
will

::
be

::::::::::
considered

::
in

:::::
future

:::::
work.

RC: 4) Inversion Framework and Terminology (Major) The manuscript describes the method as 4DEnVar, yet
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no ensemble component appears to be used. The inversion resembles a standard 4D-Var framework. If
an ensemble is not implemented, the use of "EnVar" terminology is misleading and should be corrected.
If an ensemble is used, key details are missing, including ensemble generation, localization, hybrid co-
variance structures, etc. Additionally, the manuscript does not explain:

• The optimization method used to minimize the cost function

• Convergence criteria and number of iterations

• Use and selection of regularization

• Whether the GEOS-Chem adjoint model is used, and how it is implemented

AR: We agree with the referee that the more details concerning the 4DEnVar should be given. The methodology
used in this paper is actually 4DEnVar, which emulates the GEOS-Chem formaldehyde simulating model
using an ensemble-based linear approximation and hence is adjoint-free. More remarks are now added in the
revised manuscript and the supplement.

Text in manuscript

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehyde observations to constrain NMVOC emissions

:::::::
optimize

:::::::
NMVOC

:::::::::
emissions

::::
with

::::::
satellite

:::::::::::
formaldehyde

:::::::::::
observations. The goal of this

:::
the assimilation is to find the most likely estimate of

the state vector, which is the monthly NMVOC emission inventories f over the entire model do-
main.

::::
Note

:::
that

::
f

:::::::::
represents

:::
the

::::::
vector

::
of

::::
total

::::::::
NMVOC

:::::::::
emissions,

:::::
rather

:::::
than

::::::::
separately

:::::::
gridded

::::::::::::
anthropogenic,

::::::::
biogenic,

::
or

:::::::
biomass

:::::::
burning

::::
VOC

:::::::::
emissions.

:::
To

:::::::
optimize

:::::::::
emissions

::::
from

:::::
these

::::
three

::::::
sectors,

:::::::::
additional

::::::::::
observations

::
or

::
a
::::::::::
well-defined

::::::
spatial

:::::::::
correlation

::::::::
structure

:::
are

::::::::
required,

:::::
which

:::
are

:::
not

:::::::
available

:::
in

:::
this

:::::
study.

::
The prior estimate f b is from the inventories described in Section 2.2,

and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,
assimilation is performed via minimizing the cost function J as follows:

J (f) =
1

2
(f − f b)

TB−1(f − f b) +
1

2
{y −HM (f)}T O−

1 {y −HM (f)} (8)

The cost function J is
:::
the sum of two part

::::
parts: background and observation penal term. The

background term quantifies the difference between the optimal ~f and the prior emission inventories ~fb,
while the observation term calculates the difference between the simulation driven by ~f and the satellite
observations ~y. In addition to the f b that represents the prior NMVOC emission vector calculated
from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The
uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories,
and can be compensated using a spatially varying tuning factor α:

f (i) = fb (i) · α (i) (9)
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in here fb (i) denotes the NMVOC emission rate in the given grid cell i. The α values are defined
to be random variables with a mean of 1.0

:
,
:
a
:::::::::
minimum

::
of

:::
0.1

:
and a standard deviation σα = 0.2

::
of

:::
0.4,

::::::::::::
corresponding

::
to

:
a
:::::::
uniform

::::::
120%

:::::::::
uncertainty

:::::::
applied

::
to

:::
the

::::
total

:::::::
NMVOC

:::::::::
emissions

:::::
rather

::::
than

::::::::::::
sector-specific

::::::
settings

::
as

:::::::
adopted

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::
(Choi et al., 2022; Jung et al., 2022; Souri et al., 2020)

:
.
:::
The

::::::::
rationale

::
for

::::
this

:::::
choice

::
is

::::::::
provided

:
in
:::
the

::::::::::
Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance Bα

is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Bα (i, j) = σα ·C (i, j) (10)

where C (i, j) represents a distance-based spatial correlation between two αs
:
in the grid cell i and j,

and is defined as:

C (i, j) = e−(di,j/l)
2/2 (11)

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length
scale which controls the spatially variability freedom of the α

:
s. A small

::::
value

:::
of l means more errors

in fine scale could be resolved using the assimilation, while however requires more
::::::::
indicates

:::
that

:::
the

:::::
tuning

::::::
factors

:::
αs

::
are

::::
less

:::::::
spatially

:::::::::
correlated,

:::::::
thereby

:::::::
enabling

:::::::
emission

:::::::::::
optimization

::
at

:
a
::::
finer

::::::
spatial

::::
scale.

:::::::::
However,

::::
this

:::
also

::::::::::
necessitates

::
a
:::::
larger

:::::::
number

::
of

:
ensemble runs to

:::::::::
adequately represent the

model realization from emission to simulation. An empirical parameterl
::::::::
parameter

:
l
:
= 300 km which

is used in Jin et al. (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix Bα, the NMVOC emission background covariance B is
obtained via a Schur Product:

B = Bα ◦C (12)

In the observation term, y is the observation vector, representing satellite observations,M is
::
the

:
GEOS-

Chem model driven by emissions f ,H is the observation operator that transfer the three dimensional

:::::::
transfers

:::
the

:::::::::::::::
three-dimensional concentration into the observational space, and O is the observation

covariance matrix.
::
In

:::
this

::::::
study,

:::
the

::::::::::
assimilated

::::::::::
observations

:::::::
include

:::
the

::::::
OMPS

::::
total

::::::::
columns

:::
and

:::::::::
TROPOMI

:::::::::::
tropospheric

::::::::
columns.

::
A
:::::::
distinct

::::::::::
observation

:::::::
operator

:::
H

::
is

:::::::::
configured

::
to

::::::
enable

::
a

:::
fair

:::::::::
comparison

:::
of

::
the

:::::::::::::::::::::::::
observation-minus-simulation

:::::::::
mismatch. The satellite formaldehyde observations

are assumed to be independent, therefore O is a diagonal matrix. The diagonal value here is calculated
as:

σtotal =
√
σ2

instrument + σ2
represent (13)
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In the Equation 34, σtotal is defined as the total uncertainty, which is the square root of the sum
of the squares of the instrument uncertainty σinstrument from the formaldehyde observations and the
representative uncertainty σrepresent introduced when processing the data into monthly averages. The
representative uncertainty σrepresent is represented by the standard deviation of the data.

With the assimilation-based emission inversion system above, we conducted three sets of experiments
to explore the benefits to emission optimization. These experiments involved assimilating OMPS
data and validating the assimilation results using TROPOMI, assimilating TROPOMI data, and finally
assimilating the combined OMPS and TROPOMI data by averaging them. In the subsequent results,
we primarily analyze the results of the first set of experiments, while the detailed inventories of the
latter two experiments are archived in

:::
The

::::::
spatial

::::::::::
distribution

::
of

:
the

::::
total

:::::::::
uncertainty

::
is
::::::::
provided

::
in

:::::
Figure

::
4

::
in

:::
the

::::::::::
Supplement.

:

:::
The

::::::::::
assimilation

:::::::::::
methodology

::::
used

::
in

:::
this

:::::
paper

::
is

:::
the

::::::::::::::
four-dimensional

::::::::
ensemble

:::::::::
variational

:::::::::
(4DEnVar).

:::::::
Different

:::::
from

:::
the

::::::
classic

::::::
4DVar

::::
that

:::::::
requires

::::::
adjoint

::
in
::::

the
::::
cost

:::::::
function

::::::::::::
minimization,

::::::::
4DEnVar

:::::::
emulates

:::
the

:::::::::::
GEOS-Chem

:::::::::::
formaldehyde

:::::::::
simulating

::::::
model

::::
using

:::
an

:::::::::::::
ensemble-based

:::::
linear

::::::::::::
approximation

:::
and

:::::
hence

::
is

::::::::::
adjoint-free.

::::
The

::::::
method

::
is

:::
first

::::::::
proposed

::
by

::::::::::::::
Liu et al. (2008)

:::
and

::::::::::
successfully

:::::::::::
implemented

::
in

:::
our

:::::
recent

::::
dust

::::::
aerosol

::::::::::::::
(Jin et al., 2021)

:::
and

:::::::
ammonia

::::::::
emission

::::::::
inversion

::::::::::::::::::::::::::
(Jin et al., 2023; Xia et al., 2025)

:
.
::::
The

:::::::
detailed

::::::::::
procedures

:::
for

::::::::::
minimizing

:::
the

::::
cost

:::::::
function

::::::::
Equation

:::
29

:::
are

:::::::::
illustrated

:::
in

::::::
section

::::::::::::
’Minimization

::
of

:::
the

::::
Cost

:::::::
Function

:::
in

::::::::
4DEnVar’

::
in

:
supplementary material.

Supplement

:
2
::::::::::::
Minimization

::
of

:::
the

:::::
Cost

::::::::
Function

::
in

:::::::::
4DEnVar

:::
The

::::::::::::
minimization

::
of

:::
the

::::
cost

::::::::
function

::::::
follows

:::
the

:::::::::
4DEnVar

:::::::::
processes.

:::
An

:::::::::
ensemble

::
of

::::::::
emission

::::::::
inventory

::
is

::::::::
generated

::::::::
randomly

:::::
using

::::
the

::::
prior

::::::::
emission

::::::
vector

:
f
::::

and
:::
the

::::::::
assumed

::::::::
emission

::::
error

:::::::::
covariance

::
B:

:

[f1, . . . , fN ]
:::::::::

(14)

::
An

:::::::::
ensemble

::
of

::::::::::::
GEOS-Chem

:::::
model

::::::::::
simulations

:::
is

::::
then

:::::::
forward

:::
run

:::::
with

:::
the

::::::::
ensemble

::::::::
emission

:::::::::
inventories

::
in

:::::::
parallel:

:

[M(f1), . . . ,M(fN )]
:::::::::::::::::

(15)

::::::
Denote

:::
the

:::::::
emission

::::::::
ensemble

:::::::::::
perturbation

:::::
matrix

:::
by:

F ′ =
1√
N − 1

[f1 − f̄ , . . . , fN − f̄ ]

:::::::::::::::::::::::::::::

(16)

15



:::
and

:::
the

:::::
mean

::
of

::::::::
ensemble

:::::::::
simulation

:::
by:

M(f̄) =
1

N

N∑
i=1

M(fi)

:::::::::::::::::::

(17)

:::::
where

::
f̄
::
is
:::
the

:::::
mean

:::
of

:::
the

::::::::
ensemble

:::::::
emission

::::::::::
inventories.

:::
In

:::
the

::::::::
4DEnVar

::::::::::
assimilation

:::::::::
algorithm,

::
the

:::::::
optimal

::::::::
emission

::
f

::
is

:::::::
defined

::
as

:
a
::::::::

weighted
::::

sum
:::

of
:::
the

:::::::
columns

:::
of

:::
the

::::::::::
perturbation

::::::
matrix

:::
F ′

::::
using

:::::::
weights

::::
from

::
a
::::::
control

:::::::
variable

:::::
vector

:::
w:

:

f = f̄ + F ′w
:::::::::::

(18)

:::
The

::::
cost

:::::::
function

:::::
could

::::
then

::
be

:::::::::::
reformulated

:::
as:

J (w) =
1

2
wTw +

1

2

{
HM′w +HM(f̄)− y

}T
O−1

{
HM′w +HM(f̄)− y

}
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(19)

:::::
where

:::
M

::
is

:::
the

:::::::::::
linearization

::
of

:::
the

:::::::::::
GEOS-Chem

::::::::::::
formaldehyde

:::::::::
simulating

::::::
model

:::::::
required

:::
for

::::
cost

:::::::
function

:::::::::::
minimization,

::::
and

::
is

:::::::::::
approximated

:::
by:

M′F ′ ≈ 1√
N

[
M(f1)−M(f̄), . . . ,M(fN )−M(f̄)

]
:::::::::::::::::::::::::::::::::::::::::::::

(20)

::::
With

:::
the

::::::::::
uncertainty

::
in

::::::::
emission

::::::::::
transferred

:::
into

::::
the

::::::::::
observation

::::::
space,

:::
the

::::::::
minimum

:::
of

:::
the

::::
cost

:::::::
function

::
in

::::::::
Equation

::
40

:::::
could

::::
then

:::
be

::::::
directly

:::::::::
calculated,

::::
and

:::
the

::::::::
posterior

:::::::
emission

::
f
:::::::::::
subsequently

:::::::
updated.

mz =
Mm
z −Bz

Mm −B
::::::::::::::

(21)

::::
Here

::::
Mm
z :::::::::

represents
:::
the

:::::::
modeled

::::::::::::
concentration

::
of

::::::::::::
formaldehyde

::
at

::::::
altitude

::
z,

:::
Bz::

is
:::
the

::::::::::
background

:::::::::::
concentration

::
of

::::::::::::
formaldehyde

::
at

:::
the

:::::
same

:::::::
altitude,

::::
Mm

:::::::::
represents

:::
the

::::
total

::::::::
modeled

:::::::::::
concentration
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::
of

:::::::::::
formaldehyde

::
in

:::
the

::::::::::
atmosphere,

::::
and

::
B

::
is

:::
the

::::
total

::::::::::
background

::::::::::::
concentration.

Aaz =
1

N

X̂a −B
X̂ l −B

::::::::::::::

(22)

::::
Here

::::
Xa
z ::::::::

represents
:::
the

:
a
:::::
priori

:::
(or

::::::::
assumed)

::::::::::::
concentration

::
of

:::::::::::
formaldehyde

::
at

:::::::
altitude

::
z,

::
Bz::

is
:::::
again

::
the

::::::::::
background

::::::::::::
concentration

::
at

:::
the

:::::
same

:::::::
altitude,

:::
X̂a

::
is

:::
the

::::
total

::
a
:::::
priori

::::::::::::
concentration,

:::
and

:::
N

::
is

:
a

:::::::::::
normalization

:::::
factor

::::::::
ensuring

:::
the

:::::
matrix

:::
Aaz:::::

sums
:::::::
correctly

:::
to

::::::
account

:::
for

:::
all

:::::::
altitudes.

RC: 5) Incomplete Statistical Evaluation of Results (Major) The validation of the inversion results relies solely
on RMSE. A more complete suite of statistical metrics is needed, including correlation coefficient, bias,
normalized mean bias (NMB), and potentially others. This will allow for a more comprehensive under-
standing of model performance and assimilation impact.

AR: Thank you for this helpful comment. We agree that RMSE alone is insufficient for a comprehensive evaluation.
In the revised manuscript, we have added additional statistical metrics, including correlation coefficient (R),
coefficient of determination (R2), mean absolute error (MAE), regression slope, and intercept, in addition to
RMSE. As shown in Figure 6, these metrics consistently demonstrate improved agreement of the posterior
simulations with TROPOMI across China and in key regions (NCP, YRD, PRD, SCB). This provides a more
complete and robust assessment of the assimilation impact.

Text in manuscript

3.3 Formaldehyde total columns evaluation

...

:::
The

::::
prior

::::
and

:::::::::::
OMPS-driven

::::::::
posterior

:::::::::
simulations

::
of

::::::::::::
formaldehyde

::::::::::
tropospheric

:::::::
columns

:::::
were

::::::::
compared

::::
with

:::
the

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
tropospheric

::::::::
columns

::
to

:::::::
evaluate

:::
the

:
changes in Inner Mongolia,

Tibet, and the northwest were minimal. This is because the assigned background uncertainty, which
is proportional to

::::::::::::
formaldehyde.

:::::::
Scatter

::::
plots

::::::::
together

::::
with

::::::::
statistical

:::::::
metrics

::::
(R2,

:::
R,

:::::
MAE,

::::
and

::::::
RMSE)

:::
for the prior emission intensity in these regions, was particularly low, leaving limited flexibility

for adjustments in the assimilation. This can be best seen in Figure 2, these areas are depicted
in gray on the map, with annual total emissions below 5 ×10−4kg/m2, and the actual values for
some grid points in these regions are even less than

:::::
whole

::::::
country

::::
and

::::
four

:::::::::
subregions

::
in

:::::
2020

:::
are

::::::::
presented

::
in

::::::
Figure

::
6.

::::
The

:::::
prior

:::::::::
simulation

:::::::
already

:::::
shows

::::::::::
reasonably

::::
good

:::::::::::
performance

::::::::
(a.1-e.1),

::::
with

::::
most

:::::
points

::::::::::
distributed

::::
close

::
to

:::
the

:
1×10−4kg/m2. Though assimilating OMPS observations

:
:1

:::
line

:::
and

:::::::::
exhibiting

:::::
strong

::::::::::
correlations

::::
with

:::::::::::
observations.

::::::::::::
Nevertheless,

::::::
further

::::::::::::
improvements

:::
are

:::
still

:::::::
possible.

:::::
After

:::::::::::
assimilating

::::::
OMPS

::::
data, the posterior simulation in these regionsstill remains low,

resulting in little change. As illustrated in Figure 7 (a.2, a.3)
:::::
results

:::::::::
compared

::::
with

:::::::::
TROPOMI

:::::
show

:::::
higher

:::
R2

::::::
values

::::::
across

::
all

:::::::
regions, the minimal changes in these areas also affected the national

observation-minus-simulation discrepancies (root mean square error , RMSE), which decreased from
0.49 ×1016 molec/cm2

::::::::
indicating

:::::::::::
strengthened

:::::::::::
correlations.

:::
For

::::::
China

:::
and

:::::
NCP,

:::
the

::::::::::::
improvements

::
are

:::::::::::
comparable,

::::
with

:::
R2

::::::::
increasing

:::
by

:::::
about

:::::
0.027

:::::
(from

:::::
0.870

:
to 0.46 ×1016 molec/cm2. However,
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as shown in Figure 7 (b.2) -(b.3) , when focused on the NCP region, the RMSE decreased from 0.53
×1016 molec/cm2

:::::
0.897

::
for

::::::
China,

::::
and

::::
from

:::::
0.774 to 0.37 ×1016 molec/cm2effectively.

Figure 6.
::::::
Scatter

::::::
density

:::::
plots

:::::::::
comparing

:::::::::::
GEOS-Chem

::::::::
simulated

::::::::::::
formaldehyde

:::::::
columns

:::::
with

:::::::::
TROPOMI

::::::::::
observations

:::
in

:::::
2020.

:::::::
Panels

::::::::
(a.1-e.1)

:::::
show

:::::::::::
comparisons

::::::::
between

:::::
prior

::::::::::
simulations

::::
and

::::::::::
TROPOMI,

::::
while

::::::
panels

:::::::
(a.2-e.2)

:::::
show

:::::::::::
comparisons

:::::::
between

::::::::
posterior

:::::::::
simulations

::::::::::
constrained

:::
by

::::::::::
assimilating

::::::
OMPS

::::::::::
observations

::::
and

:::::::::
TROPOMI.

::::
The

:::::::
regions

:::::::::
considered

:::
are

:::::
China

:::
(a),

:::
the

::::::
North

:::::
China

:::::
Plain

:::
(b),

:::
the

:::::::
Yangtze

::::
River

:::::
Delta

::::
(c),

:::
the

:::::
Pearl

:::::
River

:::::
Delta

:::
(d),

::::
and

:::
the

:::::::
Sichuan

:::::
Basin

::::
(e).

::::
The

:::::::::
probability

:::::::
density

::
of

:::
the

::::
data

:::::
points

::
is

::::::::
indicated

:::
by

:::
the

:::::
color

:::::
scale.

:::::
The

:::::::::
correlation

:::::::::
coefficient

::::
(R),

:::::::::
coefficient

:::
of

:::::::::::
determination

:::::
(R2),

::::
mean

:::::::
absolute

:::::
error

:::::::
(MAE),

:::
root

:::::
mean

::::::
square

::::
error

::::::::
(RMSE),

:::::::::
regression

:::::
slope,

:::
and

::::::::
intercept

:::
are

:::::::
reported

::
in

::::
each

:::::
panel.

:

RC: 6) Insufficient Discussion of Scientific Implications (Major) The target year, 2020, was heavily influenced
by COVID-19-related emission reductions. This critical context is not introduced in the manuscript and
must be incorporated into both the introduction and discussion sections. Specifically:

• Why was 2020 chosen for the inversion?

• How do inversion results indicating underestimation in prior emissions reconcile with pandemic-
related expectations of reduced emissions?

• What implications do the findings have for air quality modeling or emission policy evaluation?

AR: We sincerely thank the reviewer for highlighting the importance of contextualizing our study with respect
to COVID-19-related emission reductions. Although 2020 was indeed influenced by COVID-19, this was
not the primary reason for selecting it as the study year. To avoid potential biases arising from a single
anomalous year, we additionally conducted assimilation experiments for 2019 as a comparison. The results
show that formaldehyde concentrations in 2019 were generally higher than in 2020, but in both years the
prior consistently underestimated the observations to some extent. Assimilation substantially improved the
simulation of both formaldehyde and ozone across multiple regions and seasons. For example, notable
consistency enhancements and RMSE reductions were observed over the North China Plain in June, the
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Yangtze River Delta in February and October, the Pearl River Delta in January, February, June, and July, and
the Sichuan Basin in January, February, June, July, and September-December (Figure 8). These findings
indicate that the prior underestimation cannot be fully attributed to pandemic-related emission changes, but
rather reflects intrinsic uncertainties in the bottom-up emission inventories.

Text in manuscript

Figure 7.
::::::
Spatial

:::::::::::
distributions

:::
of

::::::::::::
formaldehyde

::::::::
columns

:::::
from

::::::::::::
GEOS-Chem

::::::::::::::
model-simulated

:::::
prior

::::::::::
tropospheric

:::::::
columns

:::
(a)

:::
and

::::::::
posterior

::::::::::
tropospheric

:::::::
columns

::::::::::
constrained

::
by

::::::
OMPS

::::::::::
assimilation

:::
(b),

:::::::
satellite

::::::::::
observations

::
of

::::::
OMPS

::::
total

::::::::
columns

:::
(c),

:::
and

:::::::
satellite

:::::::::::
observations

::
of

:::::::::
TROPOMI

:::::::::::
tropospheric

:::::::
columns

:::
(d)

::
in

:::::::
February

::::::::
(a.1-d.1),

::::
May

::::::::
(a.2-d.2),

::::::
August

::::::::
(a.3-d.3),

::::
and

:::::::::
November

:::::::
(a.4-d.4)

::
of

:::::
2019.

:

1 Introduction

...

::
In

:::
this

:::::
study,

:::
we

:::::
focus

::
on

:::
the

::::
year

::::
2020

:::
for

:::
the

::::
main

::::::::
analysis,

:::::
while

:::::
results

:::
for

::::
2019

:::
are

::::
also

::::::::
presented
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Figure 8.
:::::::
Monthly

::::::::::
increments

::
in

::::
total

::::::::
NMVOC

:::::::::
emissions

::::::::
between

:::
the

::::::::
posterior

:::
and

:::::
prior

::::::::::
simulations

::::::
derived

::::
from

:::
the

::::::::::
assimilation

:::
of

:::::
OMPS

::::
and

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
observations

::::
over

::::
four

::::
key

::::::
regions

::
of

:::::
China:

:::
the

::::::
North

:::::
China

:::::
Plain,

:::::::
Yangtze

:::::
River

:::::
Delta,

:::::
Pearl

:::::
River

:::::
Delta,

::::
and

:::::::
Sichuan

:::::
Basin

::
in

:::::
2019.

:::::::
Positive

:::::
values

:::::::
indicate

:::
an

:::::::
increase

:::
in

:::::::
posterior

:::::::::
emissions

:::::::
relative

::
to

:::
the

::::::
prior,

:::::
while

:::::::
negative

::::::
values

:::::::
indicate

::
a

:::::::
decrease.

:
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Figure 9.
:::::::
Monthly

::::::::::
increments

::
in

:::
(a)

::::::::::::
formaldehyde

:::::::
column

::::::::::::
concentrations

::::::::
between

::::::::
posterior

:::
and

:::::
prior

:::::::::
simulations

::::
and

:::
(b)

:::
the

::::::
relative

::::::::
changes

::
in

::::::
MDA8

:::::
ozone

:::::::
RMSE

:::::::::
(∆RMSE)

::::
after

::::::::::
assimilating

::::::
OMPS

::::
and

:::::::::
TROPOMI

:::::::::::
observations

::
in

:::::
2019.

::::::
Results

:::
are

::::::
shown

:::
for

:::
the

:::::
North

::::::
China

:::::
Plain,

:::::::
Yangtze

:::::
River

:::::
Delta,

:::::
Pearl

::::
River

::::::
Delta,

::::
and

:::::::
Sichuan

:::::
Basin.

::::::::
Positive

::::::
values

:::::::
indicate

::
an

::::::::
increase

::::::
relative

::
to

:::
the

:::::
prior,

::::::
while

:::::::
negative

:::::
values

:::::::
indicate

:
a
::::::::
decrease.

:

21



::
in

:::
the

:::::::::::::
Supplementary

::::::::::
Information

::
to

:::::::
provide

::::::::
additional

:::::::
context

:::
and

:::::::
support.

...

NMVOC emissions

...

::
In

:::::
2020,

::::::::::::
anthropogenic

:::::::::
emissions

::
in

::::::
China

::::
were

::::::::::
influenced

::
by

::::
the

:::::::::
COVID-19

:::::::::
pandemic,

:::::::
leading

::
to

:::::::::
observable

:::::::
changes.

:::
To

:::::
better

:::::::
evaluate

:::
the

:::::::
general

::::::::::
applicability

:::
of

:::
the

::::::::
proposed

:::::::
method,

:
it
::
is
::::
also

::::::::
necessary

::
to

::::::
conduct

::
a
::::::::::
comparative

:::::::
analysis

:::
for

::
the

::::::::::::
pre-pandemic

::::
year

::
of

:::::
2019. Figure 6 (a ). In spring,

autumn and winter, anthropogenic emissions are generally higher than biogenic emissions while in
summer biogenic sources are dominant. In January , April, and October,

::
S5

::
in

:::
the

::::::::::
Supplement

:::::::
presents

::
the

:::::
total

:::::::
NMVOC

::::::::
emission

:::::::::
increments

:::
for

:::
the

::::
four

:::::
major

::::::
regions

::
in
:::::
2019,

::::::
based

::
on

::::
data

::::::::::
assimilation

::
of

::::::
OMPS

::::
and

:::::::::
TROPOMI

::::::::::::
observations.

:::
In

:::
the

:::::
NCP

::::::
region,

::::::
strong

::::::::::
consistency

::
is

:::::
again

::::::::
observed

::
in

::::
June,

:::::
with

::::::::
posterior

::::::::
emissions

:::::::::
increasing

:::
by

:::::::
57.71%

::::
and

:::::::
30.09%

::::
from

:::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::
assimilation,

:::::::::::
respectively,

::::::
further

::::::::::
confirming

:::
the

:::::::::::::
underestimation

:::
of

:::::
prior

::::::::
emissions

::
in
::::

this
::::::
period.

::
In the posterior estimates indicate that changesin total NMVOC emissions, constrained primarily by
anthropogenic sources, are most prominent. Notably, in April and October, the southeastern coastal
areas and Yunnan Province exhibit significantly elevated emission levels due to higher vegetation
cover, with emissions in these regions approximately 10 to 20 ×10−4kg/m2 higher in January. In
contrast to the other three seasons, summer features high temperatures, intense radiation, and vigorous
vegetation growth, which greatly increases biogenic emissions of isoprene and terpenes. Therefore,
as shown in Figure 6 (c.3, d.3), biogenic NMVOC emissions in China peak in July(Wu et al., 2020)
, with a significant expansion in the area covered by high values compared to other months. The
total NMVOC emissions in eastern China in

::::
YRD,

::::::::
February,

::::::::
October,

:::
and

:::::::::
November

:::
are

::::::::
identified

::
as

::::::::
consistent

:::::::
months,

:::::::
aligning

::::
with

:::
the

:::::::::
consistent

::::::
periods

::
in

:::::
2020,

:::::::::
suggesting

::
a

:::::
likely

::::::::::::
overestimation

::
in

::
the

:::::
prior

::::::::
inventory

:::::
during

:::::
these

:::::::
months.

::
In

:::
the

::::
PRD

::::::
region,

::::::::::
consistency

::
is

:::::
found

::
in

:::::::
January,

::::::::
February,

::::
June,

:
Julyincrease from approximately 5 ×10−4 - 20 ×10−4kg/m2 in the prior estimates to about

20 ×10−4 - 80 ×10−4kg/m2 in the posterior estimates
:
,
:::::::::
November,

::::
and

:::::::::
December,

:::::
while

::
in

:::
the

::::
SCB

::::::
region,

:
it
::::::

occurs
:::

in
::::::
January

::::
and

:::::
from

:::::
April

::
to

:::::::::
December.

::::::
These

:::::::::
consistent

::::::
months

::::::
largely

:::::::
overlap

::::
with

::::
those

::
in
::::::

2020,
::::::
though

::::
some

::::::::::
differences

:::
are

:::::::
evident.

:::
For

::::::::
example,

::::
June

::::
and

::::
July

::::::
emerge

::
as

::::
new

::::::::
consistent

::::::
months

::
in

:::::
PRD,

:::::
while

:::::::
October

:::
and

:::::::::
November

::::::
remain

::::::::
consistent

:::
but

::::::
exhibit

:::::::
notably

::::::
smaller

:::::::
emission

::::::::
decreases

:::::::::
compared

::
to

:::::
2020.

::
In

:::::
SCB,

::::
April

::::
and

::::
May

:::::
appear

:::
as

::::::::
additional

::::::::
consistent

:::::::
months,

::::
while

:::
the

:::::::::
remaining

::::::::
consistent

:::::::
periods

:::::::
continue

::
to

::::::
exhibit

::::::::
decreases

::
in

:::::::::
emissions.

::::::::
Notably,

::::
from

::::
June

::
to

:::::::::
November,

:::
the

::::
two

:::::::
posterior

:::::::
datasets

:::::
show

:::
an

::::::
average

::::::::
decrease

::
of

:::::::
42.26%

::::::::
compared

:::
to

:::
the

::::
prior

::::::::
emissions,

:::::::::
indicating

:
a
::::
high

::::::::::
probability

::
of

::::::::::::
overestimation

::
in

:::
the

::::
prior

:::::::::
inventory

::
for

::::
this

:::::
region

::::::
during

:::
that

::::::
period.

...

3.4 Impact of Formaldehyde Assimilation on O3 Surface Concentration

...

::
To

:::::
more

:::::::
robustly

::::::::::
substantiate

:::
this

::::::::::
conclusion,

:
it
::
is
:::::::::
necessary

::
to

:::::::
examine

:::::::
whether

::::::
similar

:::::::
features

:::
can

:::
also

:::
be

::::::::
identified

::
in

:::::
2019.

::
In

::::
that

::::
year,

::::::
OMPS

:::
and

::::::::::
TROPOMI

:::::::
satellite

::::::::::
observations

:::::
were

:::::::::
assimilated

:::::::::::
independently

::
to
::::::::
constrain

::::::::
NMVOC

:::::::::
emissions.

::::
The

::::::::::::
posterior-prior

::::::::::
increments

::::
from

:::
the

:::::::
OMPS-

:::
and

:::::::::::::::
TROPOMI-driven

:::::::::::
assimilations,

:::::::
together

::::
with

:::
the

:::::::
changes

::
in

::::::
MDA8

:::::
ozone

::::::::
∆RMSE,

:::
are

::::::::
presented

::
in
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:::::
Figure

::
8

::
of

:::
the

::::::::::
Supplement.

::
In

:::::
NCP,

::::::
March,

:::::
May,

:::
and

::::
June

:::
are

::::::::
identified

::
as

:::::::::
consistent

::::::
months,

::::::
during

:::::
which

:::
the

:::::
ozone

::::::
RMSE

::::::
values

::::::::
decrease,

::::
with

:::
the

:::::
most

::::::::::
pronounced

:::::::::::
improvement

::::::::
occurring

:::
in

::::
June.

::
In

:::::
YRD,

:::
the

::::::::
consistent

:::::::
months

:::
are

::::::::
February,

:::::::
October,

:::
and

::::::::::
November,

:::::
where

:::
the

:::::
ozone

::::::::::::
improvements

::
are

:::::::::
relatively

::::::
limited

:::
but

:::::::::::
nevertheless

:::::
show

:::::
better

::::::::::
agreement

::::
with

::::::::::::
ground-based

:::::::::::
observations.

:::
In

::::
PRD,

::::
the

::::::::
consistent

:::::::
months

::::::
include

::::::::
January,

::::::::
February,

::::
and

::::::::::::::
June-December;

::::
with

:::
the

:::::::::
exception

::
of

::::::
August,

::::::::::
September,

::::
and

:::::::::
November,

::::
the

:::::
ozone

::::::
RMSE

:::::::::
decreases

::
in

:::
the

:::::
other

:::::::
months,

::::
with

:::::::
notable

:::::::::::
improvements

:::
in

::::
June

::::
and

:::::
July.

:::
In

:::::
SCB,

:::
the

::::
two

::::::::
posterior

:::::::
datasets

:::::::
exhibit

:::
the

:::::::
highest

:::::
level

::
of

:::::::::
consistency

::
in

:::::
2019,

::::
with

:::::::::::
synchronous

:::::::
increases

::::
and

::::::::
decreases

:::::::::
throughout

:::
the

::::
year.

::::::
Ozone

:::::::::
simulations

::
in

:::
this

::::::
region

::::
show

::::::
better

::::::::::
performance

::
in

:::
all

::::::
months

::::::
except

::::::
March

:::
and

::::::
April,

::::
with

::::::::::
particularly

::::
large

:::::::::::
improvements

:::
in

::::
June,

:::::
July,

:::
and

:::::::::::::::::::
September-November,

:::::
when

:::
the

::::::
RMSE

::::::::
decreases

:::
by

::
an

:::::::
average

::
of

:::::::
25.74%.

::::::
Across

:::
the

::::
four

::::::
regions,

:::
27

:::::::
months

:::
are

::::::::
classified

::
as

::::::::
consistent

:::
in

:::::
2019.

:::
Of

:::::
these,

::
22

:::::::
months

::::::
exhibit

::::::::
improved

:::::
ozone

::::::::::
simulations,

:::::
which

::::::::::
corresponds

::
to

:::::::
81.48%

::
of

::
all

::::::::
consistent

:::::::
months,

::::
with

::::
both

:::::::::::
assimilations

::::::::
producing

::::::
MDA8

::::::
ozone

::::::
values

:::::
closer

:::
to

:::::::::::
ground-based

:::::::::::
observations.

:::::
This

::::::::::
proportion

:::::
differs

:::::
from

:::
that

::
of

:::::
2020

:::
by

::::
only

:::::::
0.23%,

::::::::
providing

:::::::
further

:::::::
evidence

::::
that

::::::
ozone

::::::::::::
improvements

:::
are

::::::::::
particularly

::::::::
significant

::
in
:::
the

:::::::
months

::::::
defined

::
as

:::::::::
consistent

:::::
across

:::
the

::::
four

:::::::
regions.

:

...

4 Summary and conclusion

...

::
To

::::::
further

::::
test

:::
the

:::::::::
robustness

:::
of

:::
our

:::::::::
approach,

::::::
OMPS

::::
and

::::::::::
TROPOMI

:::::::
satellite

::::::::::
observations

:::::
were

:::::::::::
independently

::::::::::
assimilated

::
to

:::::::
constrain

::::::::
NMVOC

::::::::
emissions

:::
for

::::
2019

:::::::
(Figure

::
7).

::::
The

::::::
spatial

:::::::::
distribution

::
of

:::::::::::
formaldehyde

::::::::
hotspots

::
is

::::::
similar

::
to

:::::
2020

:::
but

::::
with

::::::
overall

::::::
higher

:::::::::::::
concentrations.

:::
At

:::
the

:::::::
regional

::::
scale,

:::::
most

:::::::::
consistent

::::::
months

::::::::
between

::::::
OMPS-

::::
and

:::::::::::::::::::
TROPOMI-constrained

::::::
results

:::::::
indicate

::::
that

:::
the

::::
prior

::::::::
inventory

:::::::::::::
underestimates

::::::::
emissions

:::
in

::::
NCP

::::
and

:::::::::::
overestimates

:::::
them

::
in
::::::

YRD,
:::::
PRD,

:::
and

:::::
SCB.

::::::::::
Importantly,

:::
22

::
of

:::
the

:::
27

::::::::
consistent

:::::::
months

::::::::
(81.48%)

:::::
show

:::::::
reduced

:::::
ozone

:::::::
RMSE,

::::
with

:::
the

::::::
largest

:::::::::::
improvements

:::
in

::::
SCB,

::::::::::
confirming

:::
that

:::::::::
consistent

:::::
cases

:::
are

:::::::
strongly

::::::::
associated

:::::
with

::::::::
enhanced

:::::
ozone

::::::::
simulation

::::::::::::
performance.

::::::
These

::::::::
findings

::::
also

::::
lend

:::::::
greater

:::::::::
confidence

:::
to

:::
the

:::::::::
optimized

::::::::
NMVOC

::::::::
emissions

::::::
during

:::
the

::::::::
consistent

::::::
months

:::
in

::::
these

:::::::
regions.

:

RC: 7) (Minor) Clarify whether the assimilation used OMPS only or both OMPS and TROPOMI. Identify
which dataset(s) are considered "independent" validation.

AR: Thank you for pointing this out. We have clarified the description of the assimilation datasets in the revised
manuscript. Specifically, the monthly NMVOC emissions over China in 2020 are optimized by independently
assimilating formaldehyde retrievals either from OMPS or from TROPOMI using our assimilation system.
This means that two separate assimilation experiments are performed (OMPS-only and TROPOMI-only),
rather than a combined assimilation. In Section 3.3, we use the TROPOMI measurements as independent data
to validate the OMPS-based posterior, while in Section 3.4, we use ground-based surface ozone concentration
measurements as independent data to validate both the TROPOMI- and OMPS-based posteriors. Additional
remarks have been added in the revised manuscript to explicitly explain these validation strategies and avoid
possible misunderstandings.

Text in manuscript
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Figure 10.
:::::::
Monthly

:::::::::
increments

:::
in

::::
total

::::::::
NMVOC

::::::::
emissions

::::::::
between

:::
the

::::::::
posterior

:::
and

:::::
prior

::::::::::
simulations

::::::
derived

::::
from

:::
the

::::::::::
assimilation

:::
of

:::::
OMPS

::::
and

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
observations

::::
over

::::
four

::::
key

::::::
regions

::
of

:::::
China:

:::
the

::::::
North

:::::
China

:::::
Plain,

:::::::
Yangtze

:::::
River

:::::
Delta,

:::::
Pearl

:::::
River

:::::
Delta,

::::
and

:::::::
Sichuan

:::::
Basin

::
in

:::::
2020.

:::::::
Positive

:::::
values

:::::::
indicate

:::
an

:::::::
increase

:::
in

:::::::
posterior

:::::::::
emissions

:::::::
relative

::
to

:::
the

::::::
prior,

:::::
while

:::::::
negative

::::::
values

:::::::
indicate

::
a

:::::::
decrease.
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Figure 11.
:::::::
Monthly

::::::::::
increments

::
in

:::
(a)

::::::::::::
formaldehyde

::::::::
columns

:::::::
between

::::::::
posterior

::::
and

:::::
prior

::::::::::
simulations

:::
and

:::
(b)

:::
the

:::::::
relative

:::::::
changes

::
in

::::::
MDA8

::::::
ozone

::::::
RMSE

:::::::::
(∆RMSE)

::::
after

:::::::::::
assimilating

::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::
observations

::
in

:::::
2020.

:::::::
Results

:::
are

::::::
shown

::
for

:::
the

::::::
North

:::::
China

:::::
Plain,

:::::::
Yangtze

:::::
River

:::::
Delta,

:::::
Pearl

:::::
River

:::::
Delta,

:::
and

:::::::
Sichuan

:::::
Basin.

:::::::
Positive

::::::
values

:::::::
indicate

::
an

:::::::
increase

::::::
relative

:::
to

::
the

:::::
prior,

:::::
while

:::::::
negative

::::::
values

:::::::
indicate

:
a

:::::::
decrease.

:
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Figure 12.
:::::
Spatial

:::::::::::
distributions

:::
of

:::::::
surface

::::::
ozone

:::::::::::::
concentrations

:::
in

:::::::::
February,

:::::
May,

::::::::
August,

::::
and

::::::::
November

:::::
2020.

::::::
Panels

::::::::
(a.1-a.4)

::::
show

::::::::::::
ground-based

:::::::::::
observations,

:::::
panels

::::::::
(b.1-b.4)

:::::
show

::::
prior

::::::::::
simulations,

:::::
panels

:::::::
(c.1-c.4)

:::::
show

::::::::
posterior

::::::::::
simulations

::::::::::
constrained

::
by

::::::::::
assimilating

::::::
OMPS

::::::::::::
formaldehyde

:::::::::::
observations,

:::
and

::::::
panels

::::::::
(d.1-d.4)

:::::
show

::::::::
posterior

::::::::::
simulations

::::::::::
constrained

:::
by

:::::::::::
assimilating

::::::::::
TROPOMI

::::::::::::
formaldehyde

:::::::::::
observations.
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3.3 Formaldehyde columns evaluation

...

:::
The

::::
prior

::::
and

:::::::::::
OMPS-driven

::::::::
posterior

:::::::::
simulations

::
of

::::::::::::
formaldehyde

::::::::::
tropospheric

:::::::
columns

:::::
were

::::::::
compared

::::
with

:::
the

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
tropospheric

::::::::
columns

::
to

:::::::
evaluate

:::
the

:
changes in Inner Mongolia,

Tibet, and the northwest were minimal. This is because the assigned background uncertainty, which
is proportional to

::::::::::::
formaldehyde.

:::::::
Scatter

::::
plots

::::::::
together

::::
with

::::::::
statistical

:::::::
metrics

::::
(R2,

:::
R,

:::::
MAE,

::::
and

::::::
RMSE)

:::
for the prior emission intensity in these regions, was particularly low, leaving limited flexibility

for adjustments in the assimilation. This can be best seen in Figure 2, these areas are depicted
in gray on the map, with annual total emissions below 5 ×10−4kg/m2, and the actual values for
some grid points in these regions are even less than

:::::
whole

::::::
country

::::
and

::::
four

:::::::::
subregions

::
in

:::::
2020

:::
are

::::::::
presented

::
in

::::::
Figure

::
6.

::::
The

:::::
prior

:::::::::
simulation

:::::::
already

:::::
shows

::::::::::
reasonably

::::
good

:::::::::::
performance

::::::::
(a.1-e.1),

::::
with

::::
most

:::::
points

::::::::::
distributed

::::
close

::
to

:::
the

:
1×10−4kg/m2. Though assimilating OMPS observations

:
:1

:::
line

:::
and

:::::::::
exhibiting

:::::
strong

::::::::::
correlations

::::
with

:::::::::::
observations.

::::::::::::
Nevertheless,

::::::
further

::::::::::::
improvements

:::
are

:::
still

:::::::
possible.

:::::
After

:::::::::::
assimilating

::::::
OMPS

::::
data, the posterior simulation in these regionsstill remains low,

resulting in little change. As illustrated in Figure 7 (a.2, a.3)
:::::
results

:::::::::
compared

::::
with

:::::::::
TROPOMI

:::::
show

:::::
higher

:::
R2

::::::
values

::::::
across

::
all

:::::::
regions, the minimal changes in these areas also affected the national

observation-minus-simulation discrepancies (root mean square error , RMSE), which decreased from
0.49 ×1016 molec/cm2

::::::::
indicating

:::::::::::
strengthened

:::::::::::
correlations.

:::
For

::::::
China

:::
and

:::::
NCP,

:::
the

::::::::::::
improvements

::
are

:::::::::::
comparable,

::::
with

:::
R2

::::::::
increasing

:::
by

:::::
about

:::::
0.027

:::::
(from

:::::
0.870

:
to 0.46 ×1016 molec/cm2. However,

as shown in Figure 7 (b.2) -(b.3) , when focused on the NCP region, the RMSE decreased from 0.53
×1016 molec/cm2

::::
0.897

:::
for

::::::
China,

:::
and

:::::
from

:::::
0.774 to 0.37×1016 molec/cm2effectively. As indicated

in the time series plot in Figure 7 (a.1), due to the minimal changes in formaldehyde columns in
Inner Mongolia, Tibet,

::::
0.812

:::
for

::::::
NCP).

::
In

:::
the

::::::
YRD,

:::
the

:::::::::::
improvement

::
is

:::::
more

::::::::::
pronounced,

::::
with

:::
R2

:::::
rising

::::
from

:::::
0.882

::
to

:::::
0.918,

::::
and

:::
the

:::::
scatter

::::::
around

:::
the

:::::::::
regression

:::
line

:::::::::::
substantially

:::::::
reduced,

::::
with

:::::
many

::::::
outliers

:::::::::
corrected.

::::
The

::::
most

:::::::::
significant

::::::::::::
improvements

:::::
occur

:::
in

::::
PRD

::::
and

:::::
SCB,

:::::
where

:::
R2

::::::::
increases

::
by

::::::::::::
approximately

:::::
0.05.

:::
In

:::::
these

:::::::
regions,

::::
the

:::::::::::::
overestimations

:::::::
present

::
in

:::
the

:::::
prior

::::::::::
simulations

:::
are

::::::::
effectively

:::::::::
mitigated,

::::::::::
particularly

::::
for

:::::::::
high-value

::::::
cases.

:::
In

:::::
terms

:::
of

::::::
RMSE

::::
and

::::::
MAE,

::::::::
decreases

::
are

::::::::
observed

:::
in

:::
all

::::::
regions

::::::
except

:::::
NCP.

:::
A

::::::::::
comparison

:::::::
between

:::::::
Figures

:::::
(b.1)

::::
and

::::
(b.2)

::::::::
indicates

:::::::::::
improvements

::
in

:::
the

::::
low-

:
and the northwest, the nationwide monthly average formaldehyde concentrations

in the posterior results are still not high enough compared to TROPOMI data. However, when
we plot the time series for the NCP region alone, the results are better. The

::::::::
mid-value

::::::
ranges,

:::::::
whereas

:::::::::
substantial

:::::::::::::
overestimations

::::::
appear

:::
in

:::
the

:::::::::
high-value

::::::
range.

:::::
This

::::
issue

::
is
::::::

likely
::::::
related

::
to

::
the

:::::::::::
instrumental

:::::
errors

::
of

::::::
OMPS

:::::::::::
observations,

::
as

::::::::
discussed

::
in

:::::::
Sections

:::::
2.3.1

:::
and

::::
3.2,

:::::
which

::::::::
introduce

::::::::::
considerable

:::::::::::
uncertainties.

:

...

3.4 Impact of formaldehyde assimilation on ozone surface concentration

The spatial distribution prior and posterior MDA8 surface O3 concentration simulation, as well as the
corresponding observations, are plotted in Figure 8. When comparing the prior MDA8 O3 surface
concentration results with data from 1602 stations nationwide, the prior results generally capture the
main hot spots of

:::
The

::::::
spatial

::::::::::
distributions

::
of

::::::::
observed

:
MDA8 O3 surface concentrations, especially

in July, where they closely match the ground observations. However, in the other three months shown
here, the performance is not as accurate as in July.

Figure 9 illustrates the evaluation of O3 simulation in terms of different metrics, including probability
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density (a), scatter plots (b), and correlation coefficients (c)
:::::
ozone

::
at

::::::
ground

::::::
stations

::::::::
(a.1-a.4),

:::::::
together

::::
with

::
the

:::::
prior

:::::::
(b.1-b.4)

:::
and

::::::::
posterior

:::::::::
simulations

:::::
based

:::
on

::::::
OMPS

:::
and

:::::::::
TROPOMI

::::::::::
assimilation

:::::::
(c.1-c.4,

:::::::
d.1-d.4),

:::
are

::::::
shown

::
in

::::::
Figure

:::
12. As shown in Figure 9 (a), the frequency distribution histogram

clearly demonstrates
:::::
panels

::::::::
(b.1-b.4),

::::::::::
pronounced

::::::
ozone

:::::::
hotspots

:::
are

::::::::
observed

:::
in

::::
NCP

:::::::::
(February,

::::
May,

:::
and

::::::::
August),

:::::
YRD

::::
(May

::::
and

:::::::
August),

:::::
PRD

:::::
(May,

:::::::
August,

:::
and

::::::::::
November),

::::
and

::::
SCB

:::::
(May

:::
and

:::::::
August).

::::
This

::
is

::::
very

::::::
similar

::
to
:::
the

:::::::::::
observations

::::::
shown

::
in

:::::
panels

::::::::
(a.1-a.4).

::
It
::::::::
indicates that the prior

ground-level O3 simulations systematically underestimate the observed values, whereas the posterior
results effectively reduce this bias. This indicates that both the overall and regional simulations of
surface O3 concentrations have been significantly improved, especially in

::::::::
simulation

::::::::
captures

:::
the

::::::
general

:::::::
patterns

::
of

::::::
ozone

:::::::
hotspots

:::::::::
reasonably

:::::
well,

:::
but

:::::::
notable

:::::
biases

:::::::
remain.

::::
For

::::::::
example,

:::::
ozone

:
is
:::::::

clearly
:::::::::::
overestimated

:::
in

::::
PRD

::::::
during

:::::::::
February,

::::
May,

::::
and

:::::::
August,

:::::
while

:::::::::::::
underestimated

:::
in

::::
SCB

:::::
during

:::::
May

:::
and

:::::::
August.

:::::
After

::::::::::
assimilation

:::::
with

::::::
OMPS

::
or

::::::::::
TROPOMI,

:
the NCP region. As can be

seen in Figure 9
:::::::
posterior

:::::::
MDA8

:::::
ozone

::::::::::
simulations

:::::
retain

:::
the

:::::::
overall

::::::
hotspot

:::::::::::
distribution,

:::
but

:::
the

:::::::
direction

::::
and

:::::::::
magnitude

::
of

:::::::
changes

::::
vary

:::
by

::::::
region.

::::
For

::::::::
instance,

::
in

:::::::
August,

::::::
ozone

::::::::::::
concentrations

:::::::
increase

::
in

::::
NCP

::::
and

:::::
PRD

::::
with

::::::
OMPS

::::::::::
assimilation

::::
but

:::::::
decrease

:::::
with

:::::::::
TROPOMI

:::::::::::
assimilation.

:::
In

::::::::
February,

::::
both

::::::::::
assimilation

:::::
results

::::::::
decrease

::
in

:::::
YRD,

::::::::
although

::
the

::::::::
decrease

::
is

::::
more

::::::::::
pronounced

::
in

:::
the

::::::::::::::
TROPOMI-based

::::::
results.

:::::::::
Moreover,

:::::
many

:::::::
regional

:::::::
changes

:::
are

:::::::
difficult

::
to
:::::::
discern

:::::::
visually

::::
from

:::
the

:::::
spatial

:::::
maps

:::::
alone,

::::::::::
highlighting

:::
the

::::::::
necessity

::
of

:::::
using

::::::::
statistical

::::::
metrics

::
to

::::::::::::
quantitatively

:::::
assess

:::::
ozone

::::::::
variations.

:

:::
The

::::::
RMSE

:::::
values

:::::::
between

:::
the

::::::::
simulated

::::::
MDA8

::::::
ozone

:::
and

:::
the

:::::::::::
ground-based

::::::::::
observations

:::
are

:::::::::
calculated.

::
To

:::::
better

::::::::
visualize

:::
the

::::::::::
assimilation

:::::::
benefits,

:::
the

::::::
RMSE

:::::::
variation

:::::
either

:::::::::::
assimilating

:::
the

:::::::::
TROPOMI

::
or

::::::::::
assimilating

:::
the

::::::
OMPS

::
in

:::
the

::::
four

:::
key

:::::::
regions

:::
are

::::
also

:::::
shown

:::
in

:::::
Figure

:::
11

:
(b).

:::::::
Larger

::::::::
decreases

::
in

:::::
RMSE

:::::::
(darker

:::::
blue)

:::::::
indicate

::::
more

:::::::::
significant

:::::::::::::
improvements,

::::
with

:::
the

::::::::
posterior

::::::
ozone

:::::
being

:::::
closer

::
to

:::::::::::
ground-based

:::::::::::
observations;

::::::::::
conversely,

:::::
larger

::::::::
increases

:::
in

::::::
RMSE

::::::
(darker

::::
red)

:::::::
indicate

::::::::
degraded

:::::::::::
performance,

::::
with

:::
the

:::::::
posterior

::::::
ozone

::::::::
diverging

::::::
further

::::
from

:::
the

::::::::::::
observations.

::
In

:::::
those

::::::::::
inconsistent

::::
cases

::::::
where

::
the

::::::
OMPS

::::
and

:::::::::
TROPOMI

::::::::
posterior

:::::::::
increments

::::::
exhibit

:::::::
opposite

:::::
signs

::::
(i.e.,

:::
one

::::::::
increases

::::
while

::::
the

::::
other

::::::::::
decreases),

:::::
ozone

:::::::::
simulation

::::::::::::
improvement

::
is

:::
not

::::::::::
guaranteed.

::::
For

:::::::
instance,

::
in
:::::

NCP

:::::
during

::::::::::::
January-April

:::
and

:::::
July,

::
in

:::::
YRD

::::::
during

::::
June

::::
and

:::::::::
September,

::::
and

::
in

::::
PRD

::::::
during

::::::
April,

::::
May,

::::::
August,

::::
and

:::::::::
September,

:::
one

:::::::::::
assimilation

::::
leads

::
to

:::::::::::
improvement

:::::
while

:::
the

:::::
other

:::::::
indicates

:::::::::::
deterioration.

::::::::
Moreover,

::
in
:::::::
several

::::::::
additional

:::::::
months

::::
both

::::::::
posteriors

:::::
even

::::
show

:::::::::::
degradation,

::::::
making

::
it
:::::::
difficult

::
to

::::::::
effectively

::::::::
evaluate

:::
the

:::::::::::
improvement

::
in

::::::::
posterior

:::::
ozone

:::::::::::
simulations.

:::
By

::::::::
contrast,

:::::
ozone

:::::::::
simulation

:::::::::::
improvements

:::
are

::::::
clearly

::::::::
observed

::
in

:::::::::
consistent

::::
cases

::::::
where

:::
the

::::::
OMPS-

::::
and

:::::::::::::::::::
TROPOMI-constrained

::::::::
posteriors

::::::
exhibit

:::
the

:::::
same

::::
sign

::::
(i.e.,

:::::
both

:::::::::
reductions

::
in

:::::::::
∆RMSE).

::
In

:::::
NCP, the RMSE (root mean

square error) between the observed and simulated values decreasesfrom 24.44 µg/m3 to 22.79 µg/m3

for China and from 28.0 µg
:::::::::
substantial

::::::::::::
improvements

:::
are

::::::::
observed

::
in

::::
May

:::
and

:::::
June,

::::
with

:::
the

::::::
largest

:::::
RMSE

::::::::
decrease

::
in

:::::
June,

::
in

:::::::::
agreement

::::
with

:::
the

::::::::::::::
high-consistency

:::::::
pattern

:::::
shown

:::
in

:::::
Figure

:::
11

:::
(a).

:::
In

::::
YRD

::::
and

:::::
PRD,

::::::
RMSE

::::::::
decreases

:::
by

::::
more

::::
than

:::::
30%

::
in

:::::::::
December,

:::::::::::
representing

:::
the

::::
most

:::::::::
significant

:::::::::::
improvement;

:::
in

::::::::
addition,

:::::
PRD

::::
also

:::::
shows

:::::
clear

:::::::::::::
improvements

::
in

:::::::
January

::::
and

::::::::
October.

::::::
These

:::::::::::
improvement

::::::
months

:::
all

:::::::::
correspond

:::
to

::::::
periods

::
of

:::::
high

::::::::::
consistency.

:::
In

:::::
SCB,

::::::
RMSE

::::
also

::::::::
decreases

::::::::
markedly

:::::
during

::::::::::::::
high-consistency

:::::::
months,

::::::::
including

:::::::
January,

:::::
June,

::::
July,

::::
and

::::::::::::::::::
September-December.

::
To

::::::
further

:::::::
quantify

:::::
ozone

:::::::::
simulation

::::::::::::
improvements

::
in

::::::::
consistent

:::::::
regions,

:::::::
statistics

:::::
were

::::::::
performed

:::
for

::
the

:::::::
months

::::::::
classified

::
as

:::::::::
consistent.

::::::::::
Considering

:::
the

::::::::
similarity

::
in

:::::::
monthly

::::::::
behavior

:::::::
between

:::::
YRD

:::
and

::::
PRD,

:::
the

::::
two

::::::
regions

:::::
were

::::::::
combined

::
in
:::
the

::::::::
analysis.

::::
The

::::::
results

::::::
indicate

::::
that

:::
the

:::::::::
consistent

::::::
regions

::::::
include

::::
NCP

::
in
:::::::::
May-June,

:::::
YRD/m3 to 20.22 µg

::::
PRD

::
in

:::::::::::::
January-March

:::
and

:::::::::::::::::
October-December,

:::
and

::::
SCB

::
in

:::::::
January

::::
and

::::::::::::::
June-December.

:::::::
Within

:::::
these

:::::::
regions,

::::::
except

::::
for

::::::
March

:::
and

::::::::::
November

::
in
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::::
YRD/m3 for the NCP region. As shown in Figure 9 (c), the correlation coefficients calculated based
on the monthly average time series in the NCP region show a slight improvement, while the increase
is more noticeable in the southern and northeastern regions. Spatial distributions of the MDA8 surface
O3 concentrations from GEOS-Chem model-simulated prior (a) and posterior (b) results, and from
ground O3 monitoring sites (c) in January (a.1)-(c.1), April (a.2)-(c.2), July (a.3)-(c.3), October 2020
(a.4)-(c.4). Frequency histogram of the difference between the ground monitoring observed and
simulated O3 surface concentrations over China and North China Plain in 2020 (a.1, a.2) and scatter
plot of the observed vs. simulated O3 surface concentrations using either prior data (b.1, b.3) or
posterior data (b.2, b.4). The correlation coefficients calculated based on prior monthly averaged time
series in 2020 (c.1), and the difference between posterior and prior correlation coefficients (c.2).

::::
PRD

:::
and

::::::
August

::
in

:::::
SCB,

:::
all

::::
other

:::::::
months

::::
show

:::::
ozone

:::::::::
simulation

:::::::::::::
improvements.

:::::::
Overall,

::
13

:::
out

:::
of

:::
the

::
16

::::::::
consistent

::::::
months

::::::
exhibit

:::::::::::::
improvements,

:::::::::
accounting

:::
for

:::::::
81.25%,

::::
with

::
an

:::::::
average

::::::
RMSE

::::::::
reduction

::
of

::::::
24.7%.

::::
This

:::::
result

:::::::
suggests

::::
that

::::::::::
constraining

::::::::
NMVOC

::::::::
emissions

:::::::
through

::::::::::::
formaldehyde

::::::::::
assimilation

:::
not

::::
only

::::::::::
substantially

::::::::
improves

::::::::::::
formaldehyde

::::::::::
simulations,

:::
but

::::
also

:::::
exerts

:
a
:::::::

positive
::::::
impact

:::
on

:::::
ozone

::::::::::
simulations,

::::
with

::::::::::
particularly

:::::::::
significant

::::::::::::
improvements

::
in

::::::
regions

::::
and

::::::
months

:::::::::::
characterized

:::
by

::::
high

::::::::::
consistency.

RC: 8) (Minor) Define acronyms such as "NCP" (North China Plain) and explicitly mention the study year
(2020).

AR: We thank the reviewer for this comment. In the revised Abstract, we have explicitly stated the study year
(2020) and defined the four focus regions at first mention: the North China Plain (NCP), the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB). These acronyms are then used
consistently throughout the manuscript.

Text in manuscript

Abstract

...

:::::::
4DEnVar

:::::::::::
assimilation

::::::::
emission

::::::::
inversion

::::::
system.

:::::
The

:::::::
OMPS-

:::
and

::::::::::::::::
TROPOMI-driven

::::::::::
assimilation

:::::
yields

::::::::
consistent

::::::::
seasonal

:::
and

:::::::
regional

::::::::::
increments

::
in

::::::::
NMVOC

::::::::
emissions

::
in

:::::::
general,

:::
but

::::::::::
distinctions

::
are

::::
also

:::::::
notable.

:::
A

::::::::::
consistency

:::::::
analysis

::
is

:::::::::
introduced

::
to

:::::
assess

:::
the

:::::::::
reliability

::
of

:::::
these

:::
two

::::::::
posterior

::::::::
emissions.

::::::::
Highly

::::::::
consistent

::::::::::
increments

:::
are

::::::::
obtained

:::
in

:::
the

:::::
North

::::::
China

:::::
Plain

:::::::::::
(May-June),

:::
the

::::::
Yangtze

::::::
River

:::::
Delta

::::
and

::::
Pearl

::::::
River

:::::
Delta

:::::::::::::
(January-March, with the RMSE dropping from 0.52

to 0.37 ×1016 molec
:::::::::::::::::
October-December),

:::
and

:::
the

::::::::
Sichuan

:::::
Basin

::::::::
(January,

::::::::::::::
June-December).

::::::
These

::::::::::
adjustments

::::::::::
significantly

:::::::
improve

::::::
surface

:::::
ozone

::::::::::
simulations,

::::
with

:::::::
81.25%

::
of

::::::::
consistent

:::::
cases

::::::::::::
demonstrating

::::::
reduced

::::::
biases

:::
and

:::
an

::::::
average

::::::
RMSE

::::::::
reduction

:::
of

::::::
24.7%.

:::::
These

:::::::
findings

::::::::
highlight

:::
the

:::::::::::
effectiveness

::
of

::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
assimilation,

:::::::
coupled

::::
with

::::::::::
consistency

::::::::
analysis,

::
in

:::::::
refining

:::::::
NMVOC

::::::::
emission

::::::::
estimates

:::
and

:::::::::
enhancing

:::::
ozone

:::::::::
simulation

::::::::
accuracy.

:::::::
Similar

::::::::
promising

::::::
results

:::
are

:::::::
achieved

::
in

:::
the

::::::
OMPS/cm2. Validation using surface ozone observations also yielded favorable results,

especially in NCP.
::::::::::::::
TROPOMI-based

::::::::
NMVOC

:::::::
emission

::::::::
inversion

::
in

:::::
2019.

:

RC: 9) (Minor) The statement "validated through comparisons against the independent satellite measure-
ments and the surface ozone measurements" should specify which satellite and ozone datasets were used
and what "validated" means quantitatively.

AR: We thank the reviewer for raising this point. In the revised Abstract, we removed the ambiguous phrase
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"validated through comparisons against the independent satellite measurements and the surface ozone
measurements" and replaced it with a clearer and quantitative description. Specifically, the validation is
now based on posterior ozone simulations obtained from the OMPS-only and TROPOMI-only assimilation
experiments, compared against surface ozone observations. Both assimilation cases yield reduced RMSE
relative to the prior, with 81.25% of consistent cases showing bias reduction and an average RMSE decrease
of 24.7%. This provides a more explicit and robust demonstration of validation through ozone metrics.

Text in manuscript

Abstract

...

:::::::
4DEnVar

:::::::::::
assimilation

::::::::
emission

::::::::
inversion

::::::
system.

:::::
The

:::::::
OMPS-

:::
and

::::::::::::::::
TROPOMI-driven

::::::::::
assimilation

:::::
yields

::::::::
consistent

::::::::
seasonal

:::
and

:::::::
regional

::::::::::
increments

::
in

::::::::
NMVOC

::::::::
emissions

::
in

:::::::
general,

:::
but

::::::::::
distinctions

::
are

::::
also

:::::::
notable.

:::
A

::::::::::
consistency

:::::::
analysis

::
is

:::::::::
introduced

::
to

:::::
assess

:::
the

:::::::::
reliability

::
of

:::::
these

:::
two

::::::::
posterior

::::::::
emissions.

::::::::
Highly

::::::::
consistent

::::::::::
increments

:::
are

::::::::
obtained

:::
in

:::
the

:::::
North

::::::
China

:::::
Plain

:::::::::::
(May-June),

:::
the

::::::
Yangtze

::::::
River

:::::
Delta

::::
and

::::
Pearl

::::::
River

:::::
Delta

:::::::::::::
(January-March, with the RMSE dropping from 0.52

to 0.37 ×1016 molec
:::::::::::::::::
October-December),

:::
and

:::
the

::::::::
Sichuan

:::::
Basin

::::::::
(January,

::::::::::::::
June-December).

::::::
These

::::::::::
adjustments

::::::::::
significantly

:::::::
improve

::::::
surface

:::::
ozone

::::::::::
simulations,

::::
with

:::::::
81.25%

::
of

::::::::
consistent

:::::
cases

::::::::::::
demonstrating

::::::
reduced

::::::
biases

:::
and

:::
an

::::::
average

::::::
RMSE

::::::::
reduction

:::
of

::::::
24.7%.

:::::
These

:::::::
findings

::::::::
highlight

:::
the

:::::::::::
effectiveness

::
of

::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
assimilation,

:::::::
coupled

::::
with

::::::::::
consistency

::::::::
analysis,

::
in

:::::::
refining

:::::::
NMVOC

::::::::
emission

::::::::
estimates

:::
and

:::::::::
enhancing

:::::
ozone

:::::::::
simulation

::::::::
accuracy.

:::::::
Similar

::::::::
promising

::::::
results

:::
are

:::::::
achieved

::
in

:::
the

::::::
OMPS/cm2. Validation using surface ozone observations also yielded favorable results,

especially in NCP.
::::::::::::::
TROPOMI-based

::::::::
NMVOC

:::::::
emission

::::::::
inversion

::
in

:::::
2019.

:

...

3.3 Formaldehyde total columns evaluation

...

:::
The

::::
prior

::::
and

:::::::::::
OMPS-driven

::::::::
posterior

:::::::::
simulations

::
of

::::::::::::
formaldehyde

::::::::::
tropospheric

:::::::
columns

:::::
were

::::::::
compared

::::
with

:::
the

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::::::::
tropospheric

::::::::
columns

::
to

:::::::
evaluate

:::
the

:
changes in Inner Mongolia,

Tibet, and the northwest were minimal. This is because the assigned background uncertainty, which
is proportional to

::::::::::::
formaldehyde.

:::::::
Scatter

::::
plots

::::::::
together

::::
with

::::::::
statistical

:::::::
metrics

::::
(R2,

:::
R,

:::::
MAE,

::::
and

::::::
RMSE)

:::
for the prior emission intensity in these regions, was particularly low, leaving limited flexibility

for adjustments in the assimilation. This can be best seen in Figure 2, these areas are depicted
in gray on the map, with annual total emissions below 5 ×10−4kg/m2, and the actual values for
some grid points in these regions are even less than

:::::
whole

::::::
country

::::
and

::::
four

:::::::::
subregions

::
in

:::::
2020

:::
are

::::::::
presented

::
in

::::::
Figure

::
6.

::::
The

:::::
prior

:::::::::
simulation

:::::::
already

:::::
shows

::::::::::
reasonably

::::
good

:::::::::::
performance

::::::::
(a.1-e.1),

::::
with

::::
most

:::::
points

::::::::::
distributed

::::
close

::
to

:::
the

:
1×10−4kg/m2. Though assimilating OMPS observations

:
:1

:::
line

:::
and

:::::::::
exhibiting

:::::
strong

::::::::::
correlations

::::
with

:::::::::::
observations.

::::::::::::
Nevertheless,

::::::
further

::::::::::::
improvements

:::
are

:::
still

:::::::
possible.

:::::
After

:::::::::::
assimilating

::::::
OMPS

::::
data, the posterior simulation in these regionsstill remains low,

resulting in little change. As illustrated in Figure 7 (a.2, a.3)
:::::
results

:::::::::
compared

::::
with

:::::::::
TROPOMI

:::::
show

:::::
higher

:::
R2

::::::
values

::::::
across

::
all

:::::::
regions, the minimal changes in these areas also affected the national

observation-minus-simulation discrepancies (root mean square error , RMSE), which decreased from
0.49 ×1016 molec/cm2

::::::::
indicating

:::::::::::
strengthened

:::::::::::
correlations.

:::
For

::::::
China

:::
and

:::::
NCP,

:::
the

::::::::::::
improvements

::
are

:::::::::::
comparable,

::::
with

:::
R2

::::::::
increasing

:::
by

:::::
about

:::::
0.027

:::::
(from

:::::
0.870

:
to 0.46 ×1016 molec/cm2. However,

as shown in Figure 7 (b.2) -(b.3) , when focused on the NCP region, the RMSE decreased from 0.53
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×1016 molec/cm2
:::::
0.897

::
for

::::::
China,

::::
and

::::
from

:::::
0.774 to 0.37 ×1016 molec/cm2effectively.

As indicated in the time series plot in Figure 7 (a.1), due to the minimal changes in formaldehyde
columns in Inner Mongolia, Tibet,

::::
0.812

:::
for

:::::
NCP).

:::
In

::
the

::::::
YRD,

:::
the

:::::::::::
improvement

:
is
:::::
more

::::::::::
pronounced,

::::
with

::
R2

::::::
rising

::::
from

:::::
0.882

::
to
::::::

0.918,
::::
and

:::
the

:::::
scatter

:::::::
around

:::
the

::::::::
regression

::::
line

:::::::::::
substantially

:::::::
reduced,

::::
with

:::::
many

::::::
outliers

:::::::::
corrected.

::::
The

::::
most

:::::::::
significant

::::::::::::
improvements

:::::
occur

::
in

:::::
PRD

:::
and

:::::
SCB,

:::::
where

:::
R2

:::::::
increases

:::
by

::::::::::::
approximately

::::
0.05.

:::
In

::::
these

:::::::
regions,

:::
the

:::::::::::::
overestimations

::::::
present

::
in

:::
the

::::
prior

::::::::::
simulations

::
are

:::::::::
effectively

:::::::::
mitigated,

::::::::::
particularly

:::
for

:::::::::
high-value

::::::
cases.

::
In

:::::
terms

:::
of

::::::
RMSE

:::
and

::::::
MAE,

::::::::
decreases

::
are

::::::::
observed

:::
in

:::
all

::::::
regions

::::::
except

:::::
NCP.

:::
A

::::::::::
comparison

:::::::
between

:::::::
Figures

:::::
(b.1)

::::
and

::::
(b.2)

::::::::
indicates

:::::::::::
improvements

::
in

:::
the

::::
low-

:
and the northwest, the nationwide monthly average formaldehyde concentrations

in the posterior results are still not high enough compared to TROPOMI data. However, when
we plot the time series for the NCP region alone, the results are better. The

::::::::
mid-value

::::::
ranges,

:::::::
whereas

:::::::::
substantial

:::::::::::::
overestimations

::::::
appear

:::
in

:::
the

:::::::::
high-value

::::::
range.

:::::
This

::::
issue

::
is
::::::

likely
::::::
related

::
to

::
the

:::::::::::
instrumental

:::::
errors

::
of

::::::
OMPS

:::::::::::
observations,

::
as

::::::::
discussed

::
in

:::::::
Sections

:::::
2.3.1

:::
and

::::
3.2,

:::::
which

::::::::
introduce

::::::::::
considerable

:::::::::::
uncertainties.

:

...

3.4 Impact of formaldehyde assimilation on ozone surface concentration

...

::::::
Overall,

:::
13

:::
out

:::
of

:::
the

::
16

:::::::::
consistent

:::::::
months

::::::
exhibit

::::::::::::
improvements,

::::::::::
accounting

:::
for

:::::::
81.25%,

::::
with

:::
an

::::::
average

::::::
RMSE

::::::::
reduction

::
of

::::::
24.7%.

::::
This

:::::
result

:::::::
suggests

::::
that

::::::::::
constraining

::::::::
NMVOC

::::::::
emissions

:::::::
through

:::::::::::
formaldehyde

::::::::::
assimilation

:::
not

::::
only

:::::::::::
substantially

::::::::
improves

::::::::::::
formaldehyde

::::::::::
simulations,

:::
but

::::
also

:::::
exerts

:
a
:::::::
positive

::::::
impact

:::
on

:::::
ozone

:::::::::::
simulations,

::::
with

::::::::::
particularly

:::::::::
significant

::::::::::::
improvements

:::
in

::::::
regions

::::
and

::::::
months

:::::::::::
characterized

:::
by

::::
high

::::::::::
consistency.

...

::
To

:::::
more

:::::::
robustly

::::::::::
substantiate

:::
this

::::::::::
conclusion,

:
it
::
is
:::::::::
necessary

::
to

:::::::
examine

:::::::
whether

::::::
similar

:::::::
features

:::
can

:::
also

:::
be

::::::::
identified

::
in

:::::
2019.

::
In

::::
that

::::
year,

::::::
OMPS

:::
and

::::::::::
TROPOMI

:::::::
satellite

::::::::::
observations

:::::
were

:::::::::
assimilated

:::::::::::
independently

:::
to

::::::::
constrain

::::::::
NMVOC

:::::::::
emissions.

:::
...

:::::::
Ozone

::::::::::
simulations

::
in

::::
this

::::::
region

:::::
show

:::::
better

::::::::::
performance

::
in
:::

all
:::::::
months

::::::
except

::::::
March

:::
and

::::::
April,

::::
with

::::::::::
particularly

:::::
large

::::::::::::
improvements

::
in
:::::

June,

::::
July,

:::
and

:::::::::::::::::::
September-November,

::::
when

:::
the

::::::
RMSE

::::::::
decreases

:::
by

::
an

:::::::
average

::
of

:::::::
25.74%.

:

::::::
Across

:::
the

::::
four

::::::
regions,

:::
27

:::::::
months

:::
are

::::::::
classified

::
as

::::::::
consistent

:::
in

:::::
2019.

:::
Of

:::::
these,

::
22

:::::::
months

::::::
exhibit

::::::::
improved

:::::
ozone

::::::::::
simulations,

:::::
which

::::::::::
corresponds

::
to

:::::::
81.48%

::
of

::
all

::::::::
consistent

:::::::
months,

::::
with

::::
both

:::::::::::
assimilations

::::::::
producing

::::::
MDA8

::::::
ozone

::::::
values

:::::
closer

:::
to

:::::::::::
ground-based

:::::::::::
observations.

:::::
This

::::::::::
proportion

:::::
differs

:::::
from

:::
that

::
of

:::::
2020

:::
by

::::
only

:::::::
0.23%,

::::::::
providing

:::::::
further

:::::::
evidence

::::
that

::::::
ozone

::::::::::::
improvements

:::
are

::::::::::
particularly

::::::::
significant

::
in
:::
the

:::::::
months

::::::
defined

::
as

:::::::::
consistent

:::::
across

:::
the

::::
four

:::::::
regions.

:

RC: 10) (Major) Provide more detail on bottom-up NMVOC emission uncertainties by sector (anthropogenic,
biogenic, biomass burning).

AR: We thank the reviewer for this important comment. In the revised manuscript, we have added detailed
descriptions of sector-specific bottom-up NMVOC emission uncertainties. Following Souri et al. (2020),
we assigned prior uncertainties of 150% for anthropogenic VOCs, 200% for biogenic VOCs, and 300% for
biomass burning VOCs. These values reflect the larger variability typically associated with natural and fire
emissions compared to anthropogenic sources. To incorporate these sectoral uncertainties into our inversion
framework, they were combined using a weighted quadratic formulation, which yielded an overall uncertainty
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of about 120%. Accordingly, the standard deviation of the multiplicative factor was set to 0.4. This treatment
is now explicitly described in the manuscript with supporting references.

Text in manuscript

2.5 Assimilation algorithm

...

The uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission
inventories, and can be compensated using a spatially varying tuning factor α:

f (i) = fb (i) · α (i) (23)

in here fb (i) denotes the NMVOC emission rate in the given grid cell i. The α values are defined
to be random variables with a mean of 1.0

:
,
:
a
:::::::::
minimum

::
of

:::
0.1

:
and a standard deviation σα = 0.2

::
of

:::
0.4,

::::::::::::
corresponding

::
to

:
a
:::::::
uniform

::::::
120%

:::::::::
uncertainty

:::::::
applied

::
to

:::
the

::::
total

:::::::
NMVOC

:::::::::
emissions

:::::
rather

::::
than

::::::::::::
sector-specific

::::::
settings

::
as

:::::::
adopted

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::
(Choi et al., 2022; Jung et al., 2022; Souri et al., 2020)

:
.
:::
The

::::::::
rationale

::
for

::::
this

:::::
choice

::
is

::::::::
provided

:
in
:::
the

::::::::::
Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance Bα

is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Bα (i, j) = σα ·C (i, j) (24)

where C (i, j) represents a distance-based spatial correlation between two αs
:
in the grid cell i and j,

and is defined as:

C (i, j) = e−(di,j/l)
2/2 (25)

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length
scale which controls the spatially variability freedom of the α

:
s. A small

::::
value

:::
of l means more errors

in fine scale could be resolved using the assimilation, while however requires more
::::::::
indicates

:::
that

:::
the

:::::
tuning

::::::
factors

:::
αs

::
are

::::
less

:::::::
spatially

:::::::::
correlated,

:::::::
thereby

:::::::
enabling

:::::::
emission

:::::::::::
optimization

::
at

:
a
::::
finer

::::::
spatial

::::
scale.

:::::::::
However,

::::
this

:::
also

::::::::::
necessitates

::
a
:::::
larger

:::::::
number

::
of

:
ensemble runs to

:::::::::
adequately represent the

model realization from emission to simulation. An empirical parameterl
::::::::
parameter

:
l
:
= 300 km which

is used in Jin et al. (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix Bα, the NMVOC emission background covariance B is
obtained via a Schur Product:

B = Bα ◦C (26)
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...

Supplement

:
1
::::::::
Emission

:::::::::::
Uncertainty

::::::::
Following

::::::::
previous

::::::
studies

::::::::::::::::
(Souri et al., 2020),

::::::::::::
sector-specific

:::::
prior

:::::::::::
uncertainties

:::
for

::::::::::::
anthropogenic,

:::::::
biogenic,

::::
and

:::::::
biomass

:::::::
burning

::::::::
emissions

::::
can

::
be

:::::::::
combined

:::
into

::
a
::::
total

::::::::::
uncertainty

:::::
using

:
a
::::::::
weighted

::::::::
approach.

σ2
total = f2anthro · σ2

anthro + f2biogenic · σ2
biogenic + f2bioburn · σ2

bioburn
::::::::::::::::::::::::::::::::::::::::::::::::

(27)

::::::::
Applying

::::
this

:::::::
method

::
to

:::
the

::::::::::
uncertainty

:::::
values

::::::::
reported

::
in

::::::
earlier

:::::
work,

:::
we

::::::::
obtained

:
a
::::
total

:::::
prior

:::::::::
uncertainty

::
of

:::::::::
120.22%.

:::::::::::
Accordingly,

:::
we

:::
set

::::
the

:::::::
standard

::::::::
deviation

:::
of

:::
the

:::::::::::
multiplicative

::::::
factor

::
to

:::
0.4

::
in

:::
this

:::::
study.

:::
To

::::::
assess

:::
the

::::::
validity

::
of
::::

this
::::::::::::
simplification,

:::
we

::::::::
compared

:::
the

::::::::::::::
sector-weighted

::::
prior

::::::::
emissions

::::::
(Figure

::
5
:::
(a))

:::::
with

:::
the

::::
prior

::::::::
emissions

:::::::::
uniformly

::::::
scaled

::
by

:::::
120%

:::::::
(Figure

:
5
:::::

(b)).
:::
The

::::
two

:::::
results

:::
are

::::::::
generally

:::::::::
consistent,

:::::::::
supporting

:::
the

:::::::::::::
reasonableness

::
of

:::::::
adopting

::
a

:::::::
uniform

::::
total

:::::::::
uncertainty

::
in

:::
this

:::::
study.

:::::::::::::
Sector-specific

:::::::
inversion

::::
will

::
be

::::::::::
considered

::
in

:::::
future

:::::
work.

RC: 11) (Major) Expand the literature review of top-down VOC inversions. Important studies using various
methods (e.g., Martin et al., 2003; Wells et al., 2020, 2022; Choi et al., 2022; Cao et al., 2018; Müller et
al., 2024) are missing.

AR: We thank the reviewer for this helpful suggestion. In the revised manuscript, we have expanded the literature
review of top-down VOC inversions by incorporating the recommended studies and additional references.
This provides a more comprehensive background and highlights both the methodological advances and the
need for high-resolution emission optimization over China.

Text in manuscript

1 Introduction

...

Studies focusing on top-down NMVOC emission optimization over China remain relatively limited
in recent years. Shim et al. (2005) assimilated formaldehyde observations from the GOME using a
global Bayesian inversion to constrain isoprene emissions. Although China was included within their
East Asia region, the analysis lacked region-specific focus and did not provide detailed characterization
of emission patterns over China. Furthermore,

:
,
:::
and

:
the coarse spatial resolution (4° x

:
×

:
5°) in that

study
::::::
further limited the ability to resolve subregional emission features. Stavrakou et al. (2016)

conducted a regional inversion in Eastern China using multi-year satellite formaldehyde data from
GOME and OMI to constrain VOC emissions during the post-harvest burning period. Their ,

::::
and

:::
they

:
indicated that the crop burning fluxes of VOCs in June exceed

::::::::
exceeded by a factor of 2

:::
two

:
the

combined emissions from other anthropogenic activities in
:::
the NCP region from 2005 to 2012. Cao

et al. (2018) conducted a relatively systematic satellite-based emission inversion study over China.
They used ,

:::::
using

:
a 4DVar method and assimilated

:::::::::
assimilating

:
OMI and GOME-2A formaldehyde

products to estimate monthly NMVOC emissions over China in 2007, with a coarse spatial resolution
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of
::::::
though

:::
the

:::::
spatial

:::::::::
resolution

:
(4° x

::
× 5°. Considering the increasingly stringent air pollution control

policies and significant interannual variability in NMVOC emissionsin recent years, e.g.
:
)
::::
was

:::
still

:::
too

::::::
coarse.

:::::::::::::::
Choi et al. (2022)

::::::
applied

::
a

:::::
4DVar

:::::::
system

::
to

:::::::::
assimilate

:::::::::
TROPOMI

::::::::::::
formaldehyde

::::
over

::::
East

::::
Asia,

::::::::::::
demonstrating

:::
the

:::::::::
capability

::
of

:::::::::::::
high-resolution

:::::::
satellite

::::
data

::
to

:::::::
capture

:::::::
regional

::::
and

:::::::
seasonal

::::::::
variability

::
in

:::::
VOC

::::::::
emissions, the biomass buring emission is now reduced to a relatively low level

::
but

::
the

::::::::
analysis

:::
was

:::::::::
conducted

::::
only

:::
for

:::::::::
May-June.

::::::::
Beyond

::::::
China,

:
a
:::::::
number

::
of

:::::::::
important

::::::
studies

::::
have

::::::::
advanced

::::::::
top-down

::::
VOC

::::::::
inversion

:::::::::::::
methodologies:

:::::::::::::::::
Palmer et al. (2003)

::::::::
pioneered

:::
the

:::
use

:::
of

::::::
GOME

:::::::::::
formaldehyde

:::::::::::
observations

::
in

::
a

::::::::
Bayesian

:::::::::
framework

::
to

::::::::
constrain

::::::
global

:::::::
isoprene

:::::::::
emissions,

::::::
laying

::
the

::::::::::
foundation

::
for

::::::::::
subsequent

::::::::::::
satellite-based

::::
VOC

:::::::
studies;

:::::::::::::::::::::
Wells et al. (2020, 2022)

:::::
further

::::::::
advanced

:::
this

::::
field

:::
by

::::::::
retrieving

::::::::
isoprene

:::::::::
emissions

::::
from

:::::
CrIS

::::::::::::
measurements

::::
and

::::::::
providing

:::::::::::::
high-resolution

:::::::::
constraints

::
on

:::::
VOC

::::::::
oxidation

:::::::::
chemistry

::
at

:::
the

:::::
global

:::::
scale;

::::
and

:::::::::::::::::
Oomen et al. (2024)

::::::
derived

::::::
weekly

::::::::
top-down

::::
VOC

::::::
fluxes

::::
over

:::::::
Europe

::::
from

::::::::::
TROPOMI

::::::::::::
formaldehyde

::::
data

:::::
using

:::
the

::::::::::::::
MAGRITTEv1.1

::::::
model,

:::::::::
providing

::::::::
improved

:::::::::
constraints

::
on

::::::::
isoprene,

:::::::
biomass

:::::::
burning,

:::
and

::::::::::::
anthropogenic

::::
VOC

:::::::::
emissions.

::::::::::
Considering

:::
the

::::::::::
increasingly

::::::::
stringent

::
air

::::::::
pollution

::::::
control

::
in
::::::

China
::::::::::::::
(Wu et al., 2024), there is an ur-

gent need for high-resolution top-down emission optimization over China
::::::::
NMVOC

:::::::
emission

:::::::::::
optimization.

RC: 12) (Minor) p2, l2: Add a supporting reference for "became the major source region globally."

AR: We thank the reviewer for pointing this out. We could not find a direct reference supporting the original
phrasing "became the major source region globally." To avoid overstatement, we have revised the sentence to:
"China has seen a rapid anthropogenic NMVOC emissions increase over the last three decades, gradually
becoming one of the important contributors to global NMVOC emissions Li et al. (2019)." This modification
provides a more accurate and properly referenced statement.

Text in manuscript

1 Introduction

...

Moreover, NMVOCs such as benzene, trichloroethylene, and chloroform are recognized for their
toxicity (Billionnet et al., 2011; Lerner et al., 2012), and prolonged exposure to elevated concentrations
can pose significant health risks (He et al., 2015). China has seen a rapid anthropogenic NMVOC
emissions increase over the last three decades(Li et al., 2019), became the major source region globally,

::::::::
gradually

::::::::
becoming

::::
one

::
of

:::
the

::::::::
important

:::::::::::
contributors

::
to

:::::
global

::::::::
NMVOC

:::::::::
emissions

:::::::::::::
(Li et al., 2019).

Investigating NMVOC dynamics and their emission distributions is critical for addressing air pollution
challenges in China (Yuan et al., 2013; Hao and Xie, 2018).

RC: 13) (Minor) p2, l9: Include reference to biomass burning inventories.

AR: Accepted. In the revised Introduction, we have added references to biomass burning emission inventories.

Text in manuscript

1 Introduction

...

NMVOCs are primarily released through anthropogenic activities, biogenic emissions,
:
and biomass

burning processes. Huge efforts have been devoted to constructing inventories recording these emissions
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in a bottom-up way, such as the global Community Emission Data System (CEDS) (Hao and Xie, 2018),
the regional Multi-resolution Emission Inventory for China (MEIC) (Li et al., 2019)

:
, and the Model of

Emissions of Gases and Aerosols from Nature v2.1 (MEGAN) (Guenther et al., 2012). These NMVOC
emission inventories coupled

:::
For

:::::::
biomass

::::::::
burning,

::::::
widely

::::
used

:::::::::
inventories

:::::::
include

:::
the

::::::
Global

::::
Fire

::::::::
Emissions

::::::::
Database

:::::::
(GFED)

::::
and

:::
the

::::
Fire

::::::::
INventory

:::::
from

::::::
NCAR

:::::::
(FINN)

:::::::::::::::::::::
(Wiedinmyer et al., 2011).

:::::::
Coupled with chemical transport models like GEOS-Chem (Ito et al., 2007) and WRF-Chem (Azmi
et al., 2022), are capable of reproducing the complex processes including

::::
these

:::::::::
inventories

:::
are

::::::
widely

::::
used

::
to

:::::::
simulate

:
transport, deposition, and chemical reactions. This not only helps to better quantify

the environmental impact
::::::::::::
transformations

:
of NMVOCs, but also provides essential tools for predicting

future trends and making emission reduction
:::::::::
supporting

:::
air

::::::
quality

::::::::::
assessments

:::
and

::::::::
emission

::::::
control

strategies.

RC: 14) (Minor) p2, l13: Mention both emission factors and activity data.

AR: We thank the reviewer for the suggestion. In the revised Introduction, we have modified the text to mention
both emission factors and activity data as key sources of uncertainty in bottom-up inventories.

Text in manuscript

1 Introduction

...

However, the NMVOC emission factors required in the bottom-up method have large temporal and
spatial variations, and this information is usually not widely available (Bo et al., 2008; Sharma et al., 2015)
. Additionally, due to the implementation of ever-stricter control measures targeting major industries,
residential life

:::::::
estimates

::::::
remain

::::::
highly

::::::::
uncertain

:::::::
because

::::
both

:::::::
emission

::::::
factors

::::
and

::::::
activity

::::
data

::::
vary

::::::
greatly

::
in

:::::
space

:::
and

::::
time

::::
and

:::
are

::::
often

::::::
poorly

::::::::::
constrained

::::::::::::::::::::::::::::::
(Bo et al., 2008; Sharma et al., 2015)

:
.
:::
For

:::::::::::
anthropogenic

::::::::
sources,

::::::::::
nationwide

:::::::::::
uncertainties

::
of

:::::::::
±68-78%

:::::
have

::::
been

::::::::
reported

:::
due

:::
to

:::::::
variable

::::::
activity

::::
data

:::
and

::::::::
emission

::::::
factors

:::::
under

::::
rapid

::::::::
structural

:::::::::
transitions

::
in
::::::::
industry,

::::::
solvent

:::
use, and trans-

portation sectors
:::::::::::::::::
(Li et al., 2017, 2019)

:
.
:::::::
Biogenic

:::::::::
emissions

:::
are

::::
even

:::::
more

::::::::
uncertain,

::::::
highly

:::::::
sensitive

::
to

:::::::::
land-cover,

:::::::::::
meteorology,

:::
and

::::::::::::::::
parameterizations,

::::
with

:::::::
Chinese

::::::
BVOC

::::::::
estimates

::::::
varying

::::
from

:::
10

::
to

::::
58.9

::
Tg

::
C

::::
yr−1

:::::::::::::::::::::::::::::::::::::::::
(Li et al., 2020; Wang et al., 2021; Pei et al., 2025)

:
.

RC: 15) (Minor) Include references for VOC measurement techniques.

AR: Thank you for the suggestion. References for VOC measurement techniques, including gas chromatography,
mass spectrometry, Fourier transform infrared spectroscopy, and non-dispersive infrared analysis, have now
been added in the revised manuscript.

Text in manuscript

1 Introduction

...

There are numerous well-established techniques for measuring the concentrations of various volatile
organic compounds in the atmosphere. These include gas chromatography, mass spectrometry, Fourier
transform infrared spectroscopy, and non-dispersive infrared analysis. While these methods are highly
effective for meeting the requirements of experimental studies and real-time monitoring, their complex-
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ity and the associated high labor costs pose significant challenges for long-term measurements or assess-
ments across large spatial scales

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sakdapipanich and Insom, 2006; Cheng et al., 2017; Xing et al., 2022)

:
.

RC: 16) (Minor) p2, l30-p3, l2: The discussion of glyoxal is unnecessary as it is not used in the study-suggest
removing.

AR: We thank the reviewer for this comment. While glyoxal is not directly used in this study, we have intentionally
kept a brief discussion in the Introduction. This is to provide context that, among the numerous NMVOCs,
only very few species can be retrieved from satellites on a long-term and large-scale basis. Formaldehyde and
glyoxal are such species, but since formaldehyde products are more mature and of higher quality, we focus on
formaldehyde in this study. We believe this comparison is important for justifying the choice of constraint
species.

RC: 17) (Minor) p4, l10: Remove the word "sources".

AR: We thank the reviewer for carefully pointing out this wording error. We have revised the text accordingly in
the manuscript.

Text in manuscript

2 Data and methods

This chapter

::::
This

::::::
section

:
begins by introducing

:::
the GEOS-Chem model utilized for simulations in Section 2.1.

Section 2.2 presents an overview of the input emission sources for the model
::::::::
emissions

:::::
used

::
as

:::
the

::::
prior

::::::::
NMVOC

:::::::::
inventories, including anthropogenicsources, biogenicsources,

::::::::
biogenic, and biomass

burning inventories. Section 2.3 introduces the three satellite observations employed in the analysis in
this study. In Section 2.4, the ground observations used for O3 :::::

ozone validation are presented. Section
2.5 outlines a semi-variogram algorithm for a preliminary assessment of satellite observations quality,
while Section 2.6 introduces the 4D-Var

::::::::
introduces

:::
the

::::::::
4DEnVar algorithm used for data assimilation.

RC: 18) (Minor) p6, l4: Clarify what is meant by biogenic emissions being the main source-this may not apply
to NCP.

AR: We thank the reviewer for raising this point. To avoid potential misinterpretation, we have removed the
statement about biogenic emissions being the main source in the revised manuscript.

Text in manuscript

2 Data and methods

...

For chemical species used in GEOS-Chem but not included in MEIC and anthropogenic NMVOC
emissions outside China, we use the

::::
2019 CEDS global inventory as a supplement. The variations in

NMVOC emissions mainly originate from biogenic sources.The prior estimates of biogenic NMVOC
emissions in this study are obtained from the MEGAN 2.1 model (Guenther et al., 2012).

RC: 19) (Minor) p6, l10: The claim about biogenic dominance is inconsistent with the previous sentence.
Please reconcile.
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AR: We thank the reviewer for pointing this out. In the revised manuscript, we have corrected the wording to
ensure consistency: both statements now indicate that anthropogenic sources dominate NMVOC emissions
over China. The inconsistency in the earlier version has been removed.

Text in manuscript

2 Data and methods

...

Figure 13 (a) presents the prior NMVOC emission inventories for 2020, which primarily relies on
the anthropogenic emission inventory from MEIC, supplemented by the CEDS inventory for species
not included in MEIC. Additionally, the biogenic emission inventory from

:::::::
biogenic

:::::::::
emissions

:::
are

:::::::
provided

:::
by MEGAN (offline calculation) and the biomass burning inventory

::
for

:::
the

::::
year

:::::
2020

::::
with

::
an

::::::
hourly

::::::::
temporal

:::::::::
resolution,

:::::::
directly

:::::::
through

:::
the

::::::::
HEMCO

:::::::
emission

::::::::::
component

::
of

::::::::::::
GEOS-Chem;

::
in

:::
this

::::::
study,

:::
we

:::
did

:::
not

:::
run

::::
the

::::::::
MEGAN

:::::
model

:::::::::
separately.

::::::::
Biomass

:::::::
burning

:::::::::
emissions

:::
are

:::::
taken

from GFED4are incorporated. The optimization of NMVOC emissions through the assimilation
of formaldehyde observations will be conducted using these combined prior inventories. .

:::::
The

::::::::::
combination

::
of

:::::
these

:::::
three

:::::::
sources

::
is

::::::
treated

::
as

:::
the

:::::
prior

::::::::
emission

::::::::
inventory

::::
used

::
in
::::

the
::::::::
following

:::::::
NMVOC

::::::::
emission

:::::::::::
optimization.

:

RC: 20) (Major) Section 2.3: Filtering criteria for OMPS and TROPOMI should be clearly described. Why
are negative values removed only for TROPOMI? What thresholds are used for high outliers? What is
the sensitivity to these choices?

AR: We appreciate the referee for pointing out the improper filtering method used in the previous submission.
In the original manuscript, our treatment of satellite data filtering was incorrect or improper, especially the
practice of removing negative values directly, which could introduce a serious positive bias. In the revised
version, we have substantially rewritten Section 2.3 to clearly describe and rigorously implement standardized
quality control for OMPS, TROPOMI, and OMI data. For OMPS, we applied the recommended product
screening, excluded outliers above 2 × 1017 molecules cm−2, applied thresholds for solar zenith angle, cloud
fraction, air mass factors, and removed negative or unphysical values. For TROPOMI, we adopted the official
QA value (>0.5) together with constraints on SZA, cloud radiance fraction, albedo, and snow/ice flags, and
for OMI we followed established filtering practices considering row anomalies, cloud thresholds, and RMS
fitting criteria. After filtering, all datasets were regridded to 0.5° × 0.625° monthly means consistent with
GEOS-Chem. To ensure robust sampling, we tested two schemes in which grid cells with fewer than 10 or
fewer than 50 valid pixels were excluded; the differences are minor, particularly across the study regions,
and are provided in the main text and Supplement. However, for OMI, the coverage becomes sparse after
applying these thresholds, indicating that it does not support high-resolution assimilation studies.

Text in manuscript

2.3.1 NOAA-20 OMPS

...

In this study, the quality control scheme recommended in OMPS product documentation was ap-
pliedwhen using OMPS data. Data points with formaldehyde column densities exceeding 2e17
molecules/cm2 were excluded to minimize the impact of outliers.

::::
After

::::::::
removing

:::::::
outliers,

:::
we

::::::
further

:::::::
excluded

::::
data

::::::
points

:::::
where

:::
the

::::
sum

:::
of

:::::::::::
formaldehyde

:::::::
column

:::
and

:::::
twice

::::
the

:::::::::
observation

::::::::::
uncertainty
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Figure 13. Spatial distributions of the total NMVOC emissions from the prior (a) and posterior (b) results in
January

:::::::
February (a.1, b.1), April

::::
May

:
(a.2, b.2), July

:::::
August

:
(a.3, b.3), October

:::::::::
November (a.4, b.4)

::::
2020.

:::::
Panels

::::::::
(d.1-d.4)

:::
and

::::::::
(e.1-e.4)

::::
show

:::
the

::::::::::::
corresponding

::::::::
emission

::::::::::
increments

::::::::
(posterior

:::::
minus

:::::
prior)

:::::::
derived

::::
from

::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::
assimilation.
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:::
was

::::
less

::::
than

::::
zero.

:
Furthermore, the geometric air mass factors

::::::::
(AMFG) were defined as follows:

AMFG = sec(SZA) + sec(V ZA) (28)

Here, SZA represents the solar zenith angle and V ZA denotes the viewing zenith angle. After
removing outliers, we further filtered out data points where the product of formaldehyde columns and
three times the observation uncertainty was less than zero. Subsequently, data points were excluded
if

::::::::
Additional

::::
data

::::::::
screening

::::
was

::::::
applied

:::
by

::::::::
excluding

:::::::::::
observations

::::
with

:
SZA exceeded

:::::
greater

::::
than

70°, the
::
an

:
air mass factor was less than 0.1, the

:
a
:
geometric air mass factor exceeded 5, or the

cloud fraction surpassed
::::::
greater

:::
than

::
4,
::
a
:::::
cloud

:::::::
fraction

::::::::
exceeding

:
0.4. Snapshots of filtered

:
,
::
or

::::
with

::::::
positive

:::::
snow

::::
and

::
ice

:::::::::
fractions.

:::
All

::::::::
screened

::::
data

::::
were

::::
then

::::::::
averaged

::
to

::
a

:::::
spatial

:::::::::
resolution

::
of

::::
0.5°

::::::
latitude

::
×

::::::
0.625°

::::::::
longitude

::
on

::
a

:::::::
monthly

:::::
basis,

::::::::
consistent

::::
with

:::
the

:::::::::::
GEOS-Chem

::::::
model

:::::::::::
configuration.

::
To

:::::
make

:
a
::::
fair

:::::::::
comparison

::::::::
between

::
the

::::::::
observed

::::
and

:::::::::
simulation

:::::::::::
formaldehyde

:::::::
column

:::::::::::
concentration

::
in

:::
the

:::::::::::
assimilation,

:::
we

::::::
further

:::::::
imposed

:::::::::
constraints

:::
on

:::
the

:::::::
number

::
of

:::::::::::
observations

::::::
within

::::
each

::::
grid

:::
cell.

:::::::::::
Specifically,

::::
two

:::::::
filtering

:::::::
schemes

::::
were

::::::
tested,

::
in

::::::
which

::::
grid

::::
cells

::::
with

:::::
fewer

::::
than

:::
10

::
or

:::::
fewer

:::
than

:::
50

:::::::
original

::::::::::
observations

:::::
were

::::::::
excluded.

::::
The OMPS formaldehyde columns is

::::
after

:::::::
applying

:::
the

:::::::
threshold

:::
of

::
50

:::
are shown in Figure 1(c

:
1
:::
(c),

:::::
while

:::
the

::::::
results

::::
with

:::
the

::::::::
threshold

::
of

:::
10

::
are

::::::::
provided

::
in

::
the

:::::::::::
Supplement.

::::
The

:::::::::
differences

:::::::
between

:::
the

::::
two

:::::::
filtering

:::::::
schemes

:::
are

::::::
minor,

::::::::::
particularly

:::::
across

:::
the

:::
four

:::::
study

:::::::
regions

:::::::::
considered

::
in

:::
this

:::::
work.

:

...

2.3.2 Sentinel-5P TROPOMI

...

When using Level 2 TROPOMI formaldehyde data for the validation in this paper, we excluded only
negative values and excessively large outliers to ensure data coverage. Examples of filtered TROPOMI
formaldehyde columns are shown in Figure 1(d)

:::::
study,

:::
we

::::::
applied

:::
the

::::::::::::
recommended

::::::
quality

::::::::
assurance

::::::
filtering

:::
by

:::::::
retaining

:::::
only

:::::
pixels

::::
with

:
a
:::
qa

::::
value

::::::
greater

::::
than

::::
0.5.

::::
This

:::::::
criterion

:::::::
ensures

:::
the

::::::::
exclusion

::
of

::::
error

::::
flags

:::
and

:::::::
requires

::::
that

:::
the

::::
cloud

::::::::
radiance

::::::
fraction

::
at

:::
340

:::
nm

::
is
:::::
below

::::
0.5,

:::
the

::::
solar

:::::
zenith

:::::
angle

:::::
(SZA)

::::
does

::::
not

::::::
exceed

::::
70°,

:::
the

::::::
surface

::::::
albedo

::
is

:::::
below

::::
0.2,

:::
no

::::
snow

:::
or

:::
ice

:::::::
warning

::
is

:::::::
present,

:::
and

::
the

:::
air

:::::
mass

:::::
factor

::::::
(AMF)

::
is

:::::
larger

::::
than

:::
0.1.

::::
The

:::::::::
TROPOMI

:::::::
product

:::::::
provides

:::::::
vertical

::::::::::
information

::
on

::
34

::::::
layers,

:::
but

:::
the

:::::::
retrieval

::
is

::::::::
primarily

:::::::
sensitive

::
to

:::
the

::::::::::
troposphere

::::
and

:::
thus

::::::
reports

:::
the

::::::::::::
formaldehyde

::::::::::
tropospheric

:::::::
column.

:::::
After

:::::::
filtering,

:::
the

::::::::::
TROPOMI

::::::::::
observations

:::::
were

:::::::::
aggregated

::
to

:::::::
monthly

::::::
means

::
on

:
a
::::
0.5°

::
×

::::::
0.625°

::::
grid,

:::::::
ensuring

::::::::::
consistency

::::
with

:::
the

::::::::
resolution

::::
used

::
in

:::
the

:::::::::::
GEOS-Chem

::::::::::
simulations.

::
In

:::::::
addition,

:::
we

::::::
further

::::::::::
constrained

:::
the

:::::::
number

::
of

:::::::::::
observations

:::
per

::::
grid

::::
cell:

::::::
Figure

::
1

::
(d)

::::::
shows

:::
the

:::::
results

::::
after

:::::::::
excluding

:::
grid

:::::
cells

::::
with

:::::
fewer

:::
than

:::
50

:::::::::::
observations,

:::::
while

:::
the

::::::
results

::::
with

:
a
::::::::
threshold

::
of

::
10

:::
are

::::
also

:::::::
provided

::
in

:::
the

:::::::::::
Supplement.

::::
The

:::::::::
differences

:::::::
between

:::
the

::::
two

::::::
filtering

::::::::
schemes

:::
are

:::::
minor,

:::::::::
particularly

::::
over

:::
the

:::::
study

:::::::
regions.

...

2.3.3 Aura OMI

...

::
In

:::
this

::::::
study,

:::
we

:::
use

:::
the

:
OMI/Aura formaldehyde Total Column Daily L2 Global Version 3 prod-
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uct (Chance, 2014)is also used for the observation sources in this paper. The retrieval algorithm
for this product is based on a nonlinear least-squares fitting technique, which calculates the slant
column density (SCD) . The SCD is then converted to vertical column density (VCD) using air
mass factors (AMF ). Since atmospheric formaldehyde is primarily concentrated in the troposphere,
the total VCD can be regarded as the tropospheric VCD of formaldehyde (Duncan et al., 2010). In
practical applications, data with a cloud fraction greater than or equal to .

:::
In

:::::
order

::
to

::::::::
minimize

:::
the

:::::::
influence

:::
of

::::::::::
poor-quality

:::::
data,

:::
we

::::::
applied

:::::
strict

::::::
quality

:::::::
filtering.

:::::
Only

::::::
pixels

::::
with

:::::
cloud

:::::::
fraction

::
6

0.3are further excluded
:
,
::::
solar

::::::
zenith

:::::
angle

::
6

::::
70°,

::::
and

::
a

::::
main

::::
data

:::::::
quality

:::
flag

::
=
::

0
:::::
were

:::::::
retained.

::
To

:::::
avoid

::::::::::
poor-quality

::::::::::::
measurements

::
at
:::::

large
:::::
pixel

:::::
sizes,

:::
the

:::
five

::::::::
marginal

:::::
pixels

:::
on

::::
each

::::
side

::
of

:::
the

:::::
swath

::::
were

:::::::::
discarded,

:::
and

::::
only

:::::
pixels

::::::
within

::::
rows

::::
6-55

:::::
were

::::
used

::::::::::::::::::::::::::::
(Zhu et al., 2017; Xue et al., 2020)

:
.
:::::::
Because

::::
OMI

:::
has

:::::::::::
experienced

:
a
::::
row

:::::::
anomaly

:::::
since

:::::
2007,

:::::
pixels

::::
with

::::::
Xtrack

::::::
quality

::::
flags

::
=
::
0

::::
were

:::::
further

::::::::
selected

::
to

::::::::
eliminate

::
its

:::::::
impact.

:::::::::::
Additionally,

::::::
given

:::
the

::::
large

:::::::::::
uncertainties

::
in

::::::::::::
formaldehyde

::::::::
retrievals,

:::::
pixels

::::
with

:
a
::::::
fitting

:::
root

:::::
mean

::::::
square

::::::
(RMS)

::
6

:::::
0.003

::::
were

:::::::
retained

::
to

::::::
remove

:::::
most

::::::
outliers

:::::::::::::::
(Souri et al., 2017)

:
.

:::
The

::::
OMI

:::::::::::
observations

:::
are

::::
then

:::::::::
aggregated

::
to

:::::::
monthly

::::::
means

::
on

::
a
:::
0.5°

:::
×

:::::
0.625°

:::::
grid,

::::::::
consistent

::::
with

::
the

::::::::::::
GEOS-Chem

:::::
model

:::::::::
resolution.

:::
To

::::::
ensure

::::::::
sufficient

::::::::
sampling

:::
per

::::
grid

::::
cell,

:::
we

::::
also

::::::
applied

::::
two

::::::
filtering

::::::::
schemes

:::::
based

:::
on

:::
the

:::::::
number

::
of

:::::::::::
observations,

:::::::::
excluding

::::
grid

::::
cells

:::::
with

:::::
fewer

::::
than

:::
10

::
or

:::::
fewer

::::
than

::
50

:::::
valid

::::::
pixels.

::::::
Unlike

::::::
OMPS

::::
and

::::::::::
TROPOMI,

::::::::
however,

::::
OMI

::::::
shows

:
a
::::::
strong

::::::::
reduction

::
in

:::
data

::::::::
coverage

:::::
under

:::::
these

:::::::::
constraints,

::::
and

:::
the

::::::
product

::::::::
becomes

:::::
sparse

:::::
after

:::::::
applying

:::
the

::::::::
threshold

::
of

::
50

:::::::::::
observations.

:::::
This

::::::::
indicates

:::
that

:::::
OMI

::::::
suffers

:::::
from

:::::::::
insufficient

::::::::
sampling

:::::::
density

::
in

:::::
China

:::
for

::::::::::::
high-resolution

:::::::::::
assimilation.

:::::
The

::::::
vertical

::::::
profile

:::::::::
correction

:::
of

::::
OMI

::::::::::::
formaldehyde

::::
was

:::::::::
conducted

::::
using

:::
the

:::::
same

::::::::
approach

::
as

:::::::
applied

::
to

:::::::
OMPS,

::
by

:::::::::::
recalculating

:::::
AMF

::::
with

::::::::::::::
model-simulated

:::::::
vertical

::::::
profiles.

RC: 21) (Major) Section 2.6: Provide full details on the inversion algorithm, adjoint model (if used), regular-
ization, convergence, and assimilation setup for multiple satellite datasets.

AR: We thank the reviewer for this important comment. As explained in detail in our response to RC 4, we
have clarified the inversion framework as a 4DEnVar system, which is adjoint-free and based on ensemble
linearization of the GEOS-Chem formaldehyde simulation. Additional details concerning the algorithm,
regularization, convergence, and assimilation setup have been added in the revised manuscript and the
Supplement.

Text in manuscript

2.5 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehyde observations to constrain NMVOC emissions

:::::::
optimize

:::::::
NMVOC

:::::::::
emissions

::::
with

::::::
satellite

:::::::::::
formaldehyde

:::::::::::
observations. The goal of this

:::
the assimilation is to find the most likely estimate of

the state vector, which is the monthly NMVOC emission inventories f over the entire model do-
main.

::::
Note

:::
that

::
f

:::::::::
represents

:::
the

::::::
vector

::
of

::::
total

::::::::
NMVOC

:::::::::
emissions,

:::::
rather

:::::
than

::::::::
separately

:::::::
gridded

::::::::::::
anthropogenic,

::::::::
biogenic,

::
or

:::::::
biomass

:::::::
burning

::::
VOC

:::::::::
emissions.

:::
To

:::::::
optimize

:::::::::
emissions

::::
from

:::::
these

::::
three

::::::
sectors,

:::::::::
additional

::::::::::
observations

::
or

::
a
::::::::::
well-defined

::::::
spatial

:::::::::
correlation

::::::::
structure

:::
are

::::::::
required,

:::::
which

:::
are

:::
not

:::::::
available

:::
in

:::
this

:::::
study.

::
The prior estimate f b is from the inventories described in Section 2.2,

and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,
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assimilation is performed via minimizing the cost function J as follows:

J (f) =
1

2
(f − f b)

TB−1(f − f b) +
1

2
{y −HM (f)}T O−

1 {y −HM (f)} (29)

The cost function J is
:::
the sum of two part

::::
parts: background and observation penal term. The

background term quantifies the difference between the optimal ~f and the prior emission inventories ~fb,
while the observation term calculates the difference between the simulation driven by ~f and the satellite
observations ~y. In addition to the f b that represents the prior NMVOC emission vector calculated
from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The
uncertainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories,
and can be compensated using a spatially varying tuning factor α:

f (i) = fb (i) · α (i) (30)

in here fb (i) denotes the NMVOC emission rate in the given grid cell i. The α values are defined
to be random variables with a mean of 1.0

:
,
:
a
:::::::::
minimum

::
of

:::
0.1

:
and a standard deviation σα = 0.2

::
of

:::
0.4,

::::::::::::
corresponding

::
to

:
a
:::::::
uniform

::::::
120%

:::::::::
uncertainty

:::::::
applied

::
to

:::
the

::::
total

:::::::
NMVOC

:::::::::
emissions

:::::
rather

::::
than

::::::::::::
sector-specific

::::::
settings

::
as

:::::::
adopted

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::
(Choi et al., 2022; Jung et al., 2022; Souri et al., 2020)

:
.
:::
The

::::::::
rationale

::
for

::::
this

:::::
choice

::
is

::::::::
provided

:
in
:::
the

::::::::::
Supplement. This empirical value was found to provide

sufficient spaces for resolving the observation-minus-simulation errors. A background covariance Bα

is formulated as a product of the constant standard deviation and a spatial correlation matrix C:

Bα (i, j) = σα ·C (i, j) (31)

where C (i, j) represents a distance-based spatial correlation between two αs
:
in the grid cell i and j,

and is defined as:

C (i, j) = e−(di,j/l)
2/2 (32)

where di,j represents the distance between two grid cells i and j. l here denotes the correlation length
scale which controls the spatially variability freedom of the α

:
s. A small

::::
value

:::
of l means more errors

in fine scale could be resolved using the assimilation, while however requires more
::::::::
indicates

:::
that

:::
the

:::::
tuning

::::::
factors

:::
αs

::
are

::::
less

:::::::
spatially

:::::::::
correlated,

:::::::
thereby

:::::::
enabling

:::::::
emission

:::::::::::
optimization

::
at

:
a
::::
finer

::::::
spatial

::::
scale.

:::::::::
However,

::::
this

:::
also

::::::::::
necessitates

::
a
:::::
larger

:::::::
number

::
of

:
ensemble runs to

:::::::::
adequately represent the

model realization from emission to simulation. An empirical parameterl
::::::::
parameter

:
l
:
= 300 km which

is used in Jin et al. (2023) to nudge the ammonia emission that has a rapid spatially variability is also
taken in this study. With the covariance matrix Bα, the NMVOC emission background covariance B is
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obtained via a Schur Product:

B = Bα ◦C (33)

In the observation term, y is the observation vector, representing satellite observations,M is
::
the

:
GEOS-

Chem model driven by emissions f ,H is the observation operator that transfer the three dimensional

:::::::
transfers

:::
the

:::::::::::::::
three-dimensional concentration into the observational space, and O is the observation

covariance matrix.
::
In

:::
this

::::::
study,

:::
the

::::::::::
assimilated

::::::::::
observations

:::::::
include

:::
the

::::::
OMPS

::::
total

::::::::
columns

:::
and

:::::::::
TROPOMI

:::::::::::
tropospheric

::::::::
columns.

::
A
:::::::
distinct

::::::::::
observation

:::::::
operator

:::
H

::
is

:::::::::
configured

::
to

::::::
enable

::
a

:::
fair

:::::::::
comparison

:::
of

::
the

:::::::::::::::::::::::::
observation-minus-simulation

:::::::::
mismatch. The satellite formaldehyde observations

are assumed to be independent, therefore O is a diagonal matrix. The diagonal value here is calculated
as:

σtotal =
√
σ2

instrument + σ2
represent (34)

In the Equation 34, σtotal is defined as the total uncertainty, which is the square root of the sum
of the squares of the instrument uncertainty σinstrument from the formaldehyde observations and the
representative uncertainty σrepresent introduced when processing the data into monthly averages. The
representative uncertainty σrepresent is represented by the standard deviation of the data.

With the assimilation-based emission inversion system above, we conducted three sets of experiments
to explore the benefits to emission optimization. These experiments involved assimilating OMPS
data and validating the assimilation results using TROPOMI, assimilating TROPOMI data, and finally
assimilating the combined OMPS and TROPOMI data by averaging them. In the subsequent results,
we primarily analyze the results of the first set of experiments, while the detailed inventories of the
latter two experiments are archived in

:::
The

::::::
spatial

::::::::::
distribution

::
of

:
the

::::
total

:::::::::
uncertainty

::
is
::::::::
provided

::
in

:::::
Figure

:::
??

::
in

:::
the

::::::::::
Supplement.

:

:::
The

::::::::::
assimilation

:::::::::::
methodology

::::
used

::
in

:::
this

:::::
paper

::
is

:::
the

::::::::::::::
four-dimensional

::::::::
ensemble

:::::::::
variational

:::::::::
(4DEnVar).

:::::::
Different

:::::
from

:::
the

::::::
classic

::::::
4DVar

::::
that

:::::::
requires

::::::
adjoint

::
in
::::

the
::::
cost

:::::::
function

::::::::::::
minimization,

::::::::
4DEnVar

:::::::
emulates

:::
the

:::::::::::
GEOS-Chem

:::::::::::
formaldehyde

:::::::::
simulating

::::::
model

::::
using

:::
an

:::::::::::::
ensemble-based

:::::
linear

::::::::::::
approximation

:::
and

:::::
hence

::
is

::::::::::
adjoint-free.

::::
The

::::::
method

::
is

:::
first

::::::::
proposed

::
by

::::::::::::::
Liu et al. (2008)

:::
and

::::::::::
successfully

:::::::::::
implemented

::
in

:::
our

:::::
recent

::::
dust

::::::
aerosol

::::::::::::::
(Jin et al., 2021)

:::
and

:::::::
ammonia

::::::::
emission

::::::::
inversion

::::::::::::::::::::::::::
(Jin et al., 2023; Xia et al., 2025)

:
.
::::
The

:::::::
detailed

::::::::::
procedures

:::
for

::::::::::
minimizing

:::
the

::::
cost

:::::::
function

::::::::
Equation

:::
29

:::
are

:::::::::
illustrated

:::
in

::::::
section

::::::::::::
’Minimization

::
of

:::
the

::::
Cost

:::::::
Function

:::
in

::::::::
4DEnVar’

::
in

:
supplementary material.

Supplement

:
2
::::::::::::
Minimization

::
of

:::
the

:::::
Cost

::::::::
Function

::
in

:::::::::
4DEnVar

:::
The

::::::::::::
minimization

::
of

:::
the

::::
cost

::::::::
function

::::::
follows

:::
the

:::::::::
4DEnVar

:::::::::
processes.

:::
An

:::::::::
ensemble

::
of

::::::::
emission

::::::::
inventory

::
is

::::::::
generated

::::::::
randomly

:::::
using

::::
the

::::
prior

::::::::
emission

::::::
vector

:
f
::::

and
:::
the

::::::::
assumed

::::::::
emission

::::
error
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:::::::::
covariance

::
B:

:

[f1, . . . , fN ]
:::::::::

(35)

::
An

:::::::::
ensemble

::
of

::::::::::::
GEOS-Chem

:::::
model

::::::::::
simulations

:::
is

::::
then

:::::::
forward

:::
run

:::::
with

:::
the

::::::::
ensemble

::::::::
emission

:::::::::
inventories

::
in

:::::::
parallel:

:

[M(f1), . . . ,M(fN )]
:::::::::::::::::

(36)

::::::
Denote

:::
the

:::::::
emission

::::::::
ensemble

:::::::::::
perturbation

:::::
matrix

:::
by:

F ′ =
1√
N − 1

[f1 − f̄ , . . . , fN − f̄ ]

:::::::::::::::::::::::::::::

(37)

:::
and

:::
the

:::::
mean

::
of

::::::::
ensemble

:::::::::
simulation

:::
by:

M(f̄) =
1

N

N∑
i=1

M(fi)

:::::::::::::::::::

(38)

:::::
where

::
f̄
::
is
:::
the

:::::
mean

:::
of

:::
the

::::::::
ensemble

:::::::
emission

::::::::::
inventories.

:::
In

:::
the

::::::::
4DEnVar

::::::::::
assimilation

:::::::::
algorithm,

::
the

:::::::
optimal

::::::::
emission

::
f

::
is

:::::::
defined

::
as

:
a
::::::::

weighted
::::

sum
:::

of
:::
the

:::::::
columns

:::
of

:::
the

::::::::::
perturbation

::::::
matrix

:::
F ′

::::
using

:::::::
weights

::::
from

::
a
::::::
control

:::::::
variable

:::::
vector

:::
w:

:

f = f̄ + F ′w
:::::::::::

(39)

:::
The

::::
cost

:::::::
function

:::::
could

::::
then

::
be

:::::::::::
reformulated

:::
as:

J (w) =
1

2
wTw +

1

2

{
HM′w +HM(f̄)− y

}T
O−1

{
HM′w +HM(f̄)− y

}
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(40)
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:::::
where

:::
M

::
is

:::
the

:::::::::::
linearization

::
of

:::
the

:::::::::::
GEOS-Chem

::::::::::::
formaldehyde

:::::::::
simulating

::::::
model

:::::::
required

:::
for

::::
cost

:::::::
function

:::::::::::
minimization,

::::
and

::
is

:::::::::::
approximated

:::
by:

M′F ′ ≈ 1√
N

[
M(f1)−M(f̄), . . . ,M(fN )−M(f̄)

]
:::::::::::::::::::::::::::::::::::::::::::::

(41)

::::
With

:::
the

::::::::::
uncertainty

::
in

::::::::
emission

::::::::::
transferred

:::
into

::::
the

::::::::::
observation

::::::
space,

:::
the

::::::::
minimum

:::
of

:::
the

::::
cost

:::::::
function

::
in

::::::::
Equation

::
40

:::::
could

::::
then

:::
be

::::::
directly

:::::::::
calculated,

::::
and

:::
the

::::::::
posterior

:::::::
emission

::
f
:::::::::::
subsequently

:::::::
updated.

mz =
Mm
z −Bz

Mm −B
::::::::::::::

(42)

::::
Here

::::
Mm
z :::::::::

represents
:::
the

:::::::
modeled

::::::::::::
concentration

::
of

::::::::::::
formaldehyde

::
at

::::::
altitude

::
z,

:::
Bz::

is
:::
the

::::::::::
background

:::::::::::
concentration

::
of

::::::::::::
formaldehyde

::
at

:::
the

:::::
same

:::::::
altitude,

::::
Mm

:::::::::
represents

:::
the

::::
total

::::::::
modeled

:::::::::::
concentration

::
of

:::::::::::
formaldehyde

::
in

:::
the

::::::::::
atmosphere,

::::
and

::
B

::
is

:::
the

::::
total

::::::::::
background

::::::::::::
concentration.

Aaz =
1

N

X̂a −B
X̂ l −B

::::::::::::::

(43)

::::
Here

::::
Xa
z ::::::::

represents
:::
the

:
a
:::::
priori

:::
(or

::::::::
assumed)

::::::::::::
concentration

::
of

:::::::::::
formaldehyde

::
at

:::::::
altitude

::
z,

::
Bz::

is
:::::
again

::
the

::::::::::
background

::::::::::::
concentration

::
at

:::
the

:::::
same

:::::::
altitude,

:::
X̂a

::
is

:::
the

::::
total

::
a
:::::
priori

::::::::::::
concentration,

:::
and

:::
N

::
is

:
a

:::::::::::
normalization

:::::
factor

::::::::
ensuring

:::
the

:::::
matrix

:::
Aaz:::::

sums
:::::::
correctly

:::
to

::::::
account

:::
for

:::
all

:::::::
altitudes.

RC: 22) (Minor) p9, l2-5: Add references for each cited method.

AR: We thank the reviewer for this comment. The section referring to semi-variogram analysis (p9, l2-5) has been
removed in the revised manuscript following Reviewer #2’s suggestion.

RC: 23) (Minor) p9, l14: Add publication year for Souri et al.

AR: The section referring to semi-variogram analysis, where the citation of Souri et al. appeared, has been
removed in the revised manuscript following Reviewer #2’s suggestion. Nevertheless, we have carefully
checked the remaining references to ensure that all citations include publication years, so this issue will not
occur elsewhere.

RC: 24) (Minor) p9, l15: Replace "superiority" with a specific performance attribute (e.g., lower noise, finer
resolution).

AR: We thank the reviewer for this comment. The section on semi-variogram analysis, where the term "superiority"
appeared, has been removed in the revised manuscript following Reviewer #2’s suggestion.

RC: 25) (Major) Begin the discussion by comparing OMPS and TROPOMI retrievals pre-assimilation. Quan-
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tify differences and their potential impact.

AR: We thank the reviewer for this important suggestion. As detailed in our response to RC 2, we have added
a pre-assimilation comparison between OMPS and TROPOMI retrievals, quantified their differences, and
discussed the potential impacts on the assimilation results in the revised manuscript.

Text in manuscript

3.1 Semi-variogram analysis
:::::::::::::::::::::::
3.1 Satellite data evaluation

...

:::::::::
Uncertainty

::
is
::
a

:::
key

:::::::::
component

::
in

:::
the

::::::::::
assimilation

:::::::
process

:::
and

:::::
serves

::
as
::
a
::::::
crucial

:::::::
indicator

::
of

:::::::
satellite

:::
data

:::::::
quality.

:::::::
Figure

:
3
:::::::::

illustrates
:::
the

:::::::
vertical

::::::::::
distribution

::
of

:::::::
retrieval

::::::::::::
uncertainties.

:::
In

:::
the

:::::
mid-

::
to

:::::
upper

::::::::::
troposphere

:::::::
(200-600

:::::
hPa),

::::::
OMPS

::::
and

::::
OMI

:::::
show

::::::::::
comparable

:::::
levels

::
of

::::::::::
uncertainty.

::::::::
However,

:::::
below

:::
600

:::::
hPa,

::::::
OMPS

:::::::::::
uncertainties

::::::
become

:::::::::::
substantially

::::::
larger,

:::::
likely

::::
due

::
to

:::::
cloud

::::::::::::
contamination

:::
and

:::::::
retrieval

::::::::
algorithm

:::::::::::::
approximations

:::::::::::::::::::::::::::::::::::::::::
(González Abad et al., 2016; Nowlan et al., 2023).

:
As shown

in the four interpolated results in Figure 3, the spatial distribution of high formaldehyde values is
consistently captured across different horizontal resolutions, either by the satellite observations in
Figure 3

::::::::::::
Supplementary

::::::
Figure

:::
??,

:::
the

::::::
overall

::::::::::
uncertainty

::
of

::::::
OMPS

::
is

:::::::::::
significantly

:::::
higher

::::
than

::::
that

::
of

:::
the

::::
other

::::
two

:::::::
satellite

:::::::
datasets.

:::
At

::::
first

::::::
glance,

::::
OMI

::::
data

::::
may

::::::
appear

::::::::
superior,

:::
but

:::
this

:::::::::
advantage

::::::
largely

::::::
results

::::
from

:::::
strict

::::::::
filtering,

:::::
which

::::::::
excludes

::
a

:::::::::
substantial

:::::::
fraction

::
of

:::::::::::
problematic

::::
data.

::::
As

::::::::
illustrated

::
in

:::::::::::::
Supplementary

::::::
Figure

::
4
:
(a, b, c)or by GEOS-Chem simulation in panel (d). These

hot spots are particularly prominent in the North China Plain (NCP) and Jiangsu-Zhejiang-Shanghai
regions. However, at the higher resolution of 0.5° x 0.5°, OMI formaldehyde data exhibits noticeable
noise all over China and lacks the spatial continuity observed in TROPOMI, OMPS, and GEOS-Chem
datasets. The significant spatial variability in the NMVOC emission field might account for the
discontinuity observed in OMI formaldehyde data . However, this discontinuity contradicts the model
simulation and the other two satellite products obtained from the more advanced instruments. Moreover,
such discontinuities are not observedin OMI formaldehyde retrievals over the United States, where
(Kaiser et al., 2018) demonstrated continuous and high-quality data. Therefore, the discrepancies
observed in China may be attributed to uncertain input parameters, such as aerosols and surface
albedo. OMI formaldehyde retrievals with larger spatial grid intervals (2°× 2°

:
),
::::::::
applying

:
a
::::::::
threshold

::
of

::
50

:::::::::::
observations

:::
per

::::
grid

::::
cell

:::::::::
drastically

:::::::
reduces

::::::
spatial

::::::::
coverage,

:::::::::
rendering

::::
OMI

:::::::::
unsuitable

:::
for

:::::::::::
national-scale

:::::::::::
assimilation.

:::::::
Previous

::::::
studies

::::
that

:::::::::
assimilated

::::
OMI

::::
over

:::::
China

::::
have

::::::::
typically

::::::::::
interpolated

::
the

::::
data

::
to

::::::
coarser

:::::::::
resolutions

::
to

::::::
ensure

::::::::::
applicability

:::::::::::::::::::::::::::::::::
(Cao et al., 2018; Miyazaki et al., 2020).

:::::::::
Therefore,

::::
only

::::::
OMPS and 4° x 4°) exhibit increased continuity and smoothness, as shown in Figure 3(a). This

improvement is attributed to spatial averaging, which effectively filters out white noise (Lee, 1980).

...

3.3 Formaldehyde total columns evaluation

:::
The

::::::
spatial

::::::::::
distributions

::
of

::::::::::::
formaldehyde

:::::::
columns

::
in

::::::::
February,

:::::
May,

::::::
August,

::::
and

:::::::::
November

::::
2020

:::
are

shown in Figure 1 (a) and (b), GEOS-Chem simulated the prior and posterior estimates of formaldehyde
for four months of the year 2020 over China. In Figure 1 (a) , the prior results exhibit a spatial
distribution similar to satellite observations . When compared to OMPS and

::
1.

:::::::
Panels

:::::::
(a.1-a.4)

::::::
display

:::
the

:::::
prior

::::::::::
simulations

::
of

:::::::::::
tropospheric

::::::::
columns,

::::::::
(b.1-b.4)

:::::::
present

:::
the

::::::::
posterior

::::::::::
simulations

::
of

::::::::::
tropospheric

::::::::
columns

::::::::::
assimilated

::
by

:::::::
OMPS,

::::::::
(c.1-c.4)

:::::
show

:::
the

::::::
OMPS

:::::::
satellite

:::::::::::
observations

::
of

::::
total

:::::::
columns,

::::
and

::::::::
(d.1-d.4)

:::::::
illustrate

:::
the

:
TROPOMI satellite observations

::
of

:::::::::::
tropospheric

:::::::
columns.
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::
In

:::::::
addition, the prior results accurately reproduce high-value features in most regions, including

Yunnan-Guizhou, Guangxi-Guangdong, NCP, the southeastern coast, and the northeast. However,
the previous simulation did not accurately represent the actual formaldehyde levels. Specifically, it
underestimated formaldehyde concentrations to varying degrees across different regions. By assimilating
OMPS formaldehyde columns, improvement was obtained steadily in the posterior simulations. Nationwide,
the posterior formaldehyde columns were raised by approximately 50%. Comparing to TROPOMI
data used as independent measurements, the

:::
and

::::::::
posterior

::::::::::
simulations

::
of

::::
total

::::::::
columns

:::
for

:::::
2020

::
are

::::
also

::::::::
provided

:::
in

:::
the

:::::::::::::
Supplementary

::::::
Figure

::
2.

::::
As

::::::::
indicated

:::
by

:::
the

:::::::
vertical

:::::::
profiles

::
in

::::::
Figure

::
3, formaldehyde levels

::
is

::::::
mainly

:::::::::
distributed

::::::
below

:::
the

::::::::::
tropopause.

:::::::::::
Comparisons

:::::::
between

::::
the

::::
prior

:::
and

::::::::
posterior

:::::
results

:::::
show

::::
that

:::
the

:::::::::
differences

:::::::
between

:::::
total

:::
and

:::::::::::
tropospheric

:::::::
columns

:::
are

::::::::
relatively

:::::
small.

::::::::::
Regarding

:::
the

::::::
spatial

::::::::
patterns,

::::
high

::::::::::::
formaldehyde

::::::
values

::
in

::::::::
February

::::
are

:::::::::::
concentrated in

the NCPregion were raised from less than 1.2 ×1016 molec/cm2 to around 2.4 ×1016 molec/cm2

in January, closer to the observed values either from OMPS and TROPOMI. The
:
,
:::::
YRD,

:::
and

:::::
PRD

::::::
regions,

::::
with

:::
the

::::::::
posterior

:::::
results

:::::::
showing

:::
an

::::::::
expanded high-value features in Yunnan-Guizhou became

more prominent in April, and significant improvements were also observed in the southeastern coast,
NCP, and the northeast in July and October. However,

:::
area

:::
in

:::
the

::::
NCP

:::
but

:
a
:::::::
reduced

::::::::
coverage

::
in

:::
the

:::::
YRD.

::
In

::::
May,

::::::
overall

::::::::::::
concentrations

::::::::
increase

:::::::::
nationwide,

::::
with

::::::::::
particularly

::::::::::
pronounced

::::::
growth

::
in

:::
the

::::
NCP

:::
and

:::::
PRD.

:::
In

::::::
August,

:::::::::::::
concentrations

:::::::
increase

::
in

:::
the

:::::
NCP,

:::::
YRD,

::::
and

:::::
PRD,

:::::
while

::::
they

:::::::
decrease

::
in

::
the

:::::
SCB.

::
In

::::::::::
November,

:::
the

:::::::
changes

::
are

:::::::
modest,

:::
but

:::
all

::::
four

::::::
regions

::::::
exhibit

:::::::
reduced

::::::::::::
concentrations.

RC: 26) (Major) Clarify whether the system constrains species and sectors independently. If so, discuss impli-
cations for chemical speciation and whether the results are physically plausible.

AR: We thank the reviewer for this suggestion. Our study focuses on optimizing the total NMVOC emissions
rather than sector-specific sources. This has now been clarified in the manuscript.

Text in manuscript

2.5 Assimilation algorithm

...

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate
formaldehyde observations to constrain NMVOC emissions

:::::::
optimize

:::::::
NMVOC

:::::::::
emissions

::::
with

::::::
satellite

:::::::::::
formaldehyde

:::::::::::
observations. The goal of this

:::
the assimilation is to find the most likely estimate of

the state vector, which is the monthly NMVOC emission inventories f over the entire model do-
main.

::::
Note

:::
that

::
f

:::::::::
represents

:::
the

::::::
vector

::
of

::::
total

::::::::
NMVOC

:::::::::
emissions,

:::::
rather

:::::
than

::::::::
separately

:::::::
gridded

::::::::::::
anthropogenic,

::::::::
biogenic,

::
or

:::::::
biomass

:::::::
burning

::::
VOC

:::::::::
emissions.

:::
To

:::::::
optimize

:::::::::
emissions

::::
from

:::::
these

::::
three

::::::
sectors,

:::::::::
additional

::::::::::
observations

::
or

::
a
::::::::::
well-defined

::::::
spatial

:::::::::
correlation

::::::::
structure

:::
are

::::::::
required,

:::::
which

:::
are

:::
not

:::::::
available

::
in

::::
this

:::::
study.

RC: 27) (Major) Discuss the impact of COVID-19 on emissions in 2020 and how it relates to your findings.

AR: We thank the reviewer for this important comment. As explained in RC 6, we have addressed the impact
of COVID-19 by comparing 2020 with 2019, and clarified how this relates to our findings in the revised
manuscript.

Text in manuscript
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1 Introduction

...

::
In

:::
this

:::::
study,

:::
we

:::::
focus

::
on

:::
the

::::
year

::::
2020

:::
for

:::
the

::::
main

::::::::
analysis,

:::::
while

:::::
results

:::
for

::::
2019

:::
are

::::
also

::::::::
presented

::
in

:::
the

:::::::::::::
Supplementary

::::::::::
Information

::
to

:::::::
provide

::::::::
additional

:::::::
context

:::
and

:::::::
support.

...

NMVOC emissions

...

::
In

:::::
2020,

::::::::::::
anthropogenic

:::::::::
emissions

::
in

::::::
China

::::
were

::::::::::
influenced

::
by

::::
the

:::::::::
COVID-19

:::::::::
pandemic,

:::::::
leading

::
to

:::::::::
observable

:::::::
changes.

:::
To

:::::
better

:::::::
evaluate

:::
the

:::::::
general

::::::::::
applicability

:::
of

:::
the

::::::::
proposed

:::::::
method,

:
it
::
is
::::
also

::::::::
necessary

::
to

::::::
conduct

::
a
::::::::::
comparative

:::::::
analysis

:::
for

::
the

::::::::::::
pre-pandemic

::::
year

::
of

:::::
2019. Figure 6 (a ). In spring,

autumn and winter, anthropogenic emissions are generally higher than biogenic emissions while in
summer biogenic sources are dominant. In January , April, and October,

::
S5

::
in

:::
the

::::::::::
Supplement

:::::::
presents

::
the

:::::
total

:::::::
NMVOC

::::::::
emission

:::::::::
increments

:::
for

:::
the

::::
four

:::::
major

::::::
regions

::
in
:::::
2019,

::::::
based

::
on

::::
data

::::::::::
assimilation

::
of

::::::
OMPS

::::
and

:::::::::
TROPOMI

::::::::::::
observations.

:::
In

:::
the

:::::
NCP

::::::
region,

::::::
strong

::::::::::
consistency

::
is

:::::
again

::::::::
observed

::
in

::::
June,

:::::
with

::::::::
posterior

::::::::
emissions

:::::::::
increasing

:::
by

:::::::
57.71%

::::
and

:::::::
30.09%

::::
from

:::::::
OMPS

:::
and

::::::::::
TROPOMI

::::::::::
assimilation,

:::::::::::
respectively,

::::::
further

::::::::::
confirming

:::
the

:::::::::::::
underestimation

:::
of

:::::
prior

::::::::
emissions

::
in
::::

this
::::::
period.

::
In the posterior estimates indicate that changesin total NMVOC emissions, constrained primarily by
anthropogenic sources, are most prominent. Notably, in April and October, the southeastern coastal
areas and Yunnan Province exhibit significantly elevated emission levels due to higher vegetation
cover, with emissions in these regions approximately 10 to 20 ×10−4kg/m2 higher in January. In
contrast to the other three seasons, summer features high temperatures, intense radiation, and vigorous
vegetation growth, which greatly increases biogenic emissions of isoprene and terpenes. Therefore,
as shown in Figure 6 (c.3, d.3), biogenic NMVOC emissions in China peak in July(Wu et al., 2020)
, with a significant expansion in the area covered by high values compared to other months. The
total NMVOC emissions in eastern China in

::::
YRD,

::::::::
February,

::::::::
October,

:::
and

:::::::::
November

:::
are

::::::::
identified

::
as

::::::::
consistent

:::::::
months,

:::::::
aligning

::::
with

:::
the

:::::::::
consistent

::::::
periods

::
in

:::::
2020,

:::::::::
suggesting

::
a

:::::
likely

::::::::::::
overestimation

::
in

::
the

:::::
prior

::::::::
inventory

:::::
during

:::::
these

:::::::
months.

::
In

:::
the

::::
PRD

::::::
region,

::::::::::
consistency

::
is

:::::
found

::
in

:::::::
January,

::::::::
February,

::::
June,

:
Julyincrease from approximately 5 ×10−4 - 20 ×10−4kg/m2 in the prior estimates to about

20 ×10−4 - 80 ×10−4kg/m2 in the posterior estimates
:
,
:::::::::
November,

::::
and

:::::::::
December,

:::::
while

::
in

:::
the

::::
SCB

::::::
region,

:
it
::::::

occurs
:::

in
::::::
January

::::
and

:::::
from

:::::
April

::
to

:::::::::
December.

::::::
These

:::::::::
consistent

::::::
months

::::::
largely

:::::::
overlap

::::
with

::::
those

::
in
::::::

2020,
::::::
though

::::
some

::::::::::
differences

:::
are

:::::::
evident.

:::
For

::::::::
example,

::::
June

::::
and

::::
July

::::::
emerge

::
as

::::
new

::::::::
consistent

::::::
months

::
in

:::::
PRD,

:::::
while

:::::::
October

:::
and

:::::::::
November

::::::
remain

::::::::
consistent

:::
but

::::::
exhibit

:::::::
notably

::::::
smaller

:::::::
emission

::::::::
decreases

:::::::::
compared

::
to

:::::
2020.

::
In

:::::
SCB,

::::
April

::::
and

::::
May

:::::
appear

:::
as

::::::::
additional

::::::::
consistent

:::::::
months,

::::
while

:::
the

:::::::::
remaining

::::::::
consistent

:::::::
periods

:::::::
continue

::
to

::::::
exhibit

::::::::
decreases

::
in

:::::::::
emissions.

::::::::
Notably,

::::
from

::::
June

::
to

:::::::::
November,

:::
the

::::
two

:::::::
posterior

:::::::
datasets

:::::
show

:::
an

::::::
average

::::::::
decrease

::
of

:::::::
42.26%

::::::::
compared

:::
to

:::
the

::::
prior

::::::::
emissions,

:::::::::
indicating

:
a
::::
high

::::::::::
probability

::
of

::::::::::::
overestimation

::
in

:::
the

::::
prior

:::::::::
inventory

::
for

::::
this

:::::
region

::::::
during

:::
that

::::::
period.

...

3.4 Impact of Formaldehyde Assimilation on O3 Surface Concentration

...
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::
To

:::::
more

:::::::
robustly

::::::::::
substantiate

:::
this

::::::::::
conclusion,

:
it
::
is
:::::::::
necessary

::
to

:::::::
examine

:::::::
whether

::::::
similar

:::::::
features

:::
can

:::
also

:::
be

::::::::
identified

::
in

:::::
2019.

::
In

::::
that

::::
year,

::::::
OMPS

:::
and

::::::::::
TROPOMI

:::::::
satellite

::::::::::
observations

:::::
were

:::::::::
assimilated

:::::::::::
independently

::
to
::::::::
constrain

::::::::
NMVOC

:::::::::
emissions.

::::
The

::::::::::::
posterior-prior

::::::::::
increments

::::
from

:::
the

:::::::
OMPS-

:::
and

:::::::::::::::
TROPOMI-driven

:::::::::::
assimilations,

:::::::
together

::::
with

:::
the

:::::::
changes

::
in

::::::
MDA8

:::::
ozone

::::::::
∆RMSE,

:::
are

::::::::
presented

::
in

:::::
Figure

::
9

::
of

:::
the

::::::::::
Supplement.

::
In

:::::
NCP,

::::::
March,

:::::
May,

:::
and

::::
June

:::
are

::::::::
identified

::
as

:::::::::
consistent

::::::
months,

::::::
during

:::::
which

:::
the

:::::
ozone

::::::
RMSE

::::::
values

::::::::
decrease,

::::
with

:::
the

:::::
most

::::::::::
pronounced

:::::::::::
improvement

::::::::
occurring

:::
in

::::
June.

::
In

:::::
YRD,

:::
the

::::::::
consistent

:::::::
months

:::
are

::::::::
February,

:::::::
October,

:::
and

::::::::::
November,

:::::
where

:::
the

:::::
ozone

::::::::::::
improvements

::
are

:::::::::
relatively

::::::
limited

:::
but

:::::::::::
nevertheless

:::::
show

:::::
better

::::::::::
agreement

::::
with

::::::::::::
ground-based

:::::::::::
observations.

:::
In

::::
PRD,

::::
the

::::::::
consistent

:::::::
months

::::::
include

::::::::
January,

::::::::
February,

::::
and

::::::::::::::
June-December;

::::
with

:::
the

:::::::::
exception

::
of

::::::
August,

::::::::::
September,

::::
and

:::::::::
November,

::::
the

:::::
ozone

::::::
RMSE

:::::::::
decreases

::
in

:::
the

:::::
other

:::::::
months,

::::
with

:::::::
notable

:::::::::::
improvements

:::
in

::::
June

::::
and

:::::
July.

:::
In

:::::
SCB,

:::
the

::::
two

::::::::
posterior

:::::::
datasets

:::::::
exhibit

:::
the

:::::::
highest

:::::
level

::
of

:::::::::
consistency

::
in

:::::
2019,

::::
with

:::::::::::
synchronous

:::::::
increases

::::
and

::::::::
decreases

:::::::::
throughout

:::
the

::::
year.

::::::
Ozone

:::::::::
simulations

::
in

:::
this

::::::
region

::::
show

::::::
better

::::::::::
performance

::
in

:::
all

::::::
months

::::::
except

::::::
March

:::
and

::::::
April,

::::
with

::::::::::
particularly

::::
large

:::::::::::
improvements

:::
in

::::
June,

:::::
July,

:::
and

:::::::::::::::::::
September-November,

:::::
when

:::
the

::::::
RMSE

::::::::
decreases

:::
by

::
an

:::::::
average

::
of

:::::::
25.74%.

::::::
Across

:::
the

::::
four

::::::
regions,

:::
27

:::::::
months

:::
are

::::::::
classified

::
as

::::::::
consistent

:::
in

:::::
2019.

:::
Of

:::::
these,

::
22

:::::::
months

::::::
exhibit

::::::::
improved

:::::
ozone

::::::::::
simulations,

:::::
which

::::::::::
corresponds

::
to

:::::::
81.48%

::
of

::
all

::::::::
consistent

:::::::
months,

::::
with

::::
both

:::::::::::
assimilations

::::::::
producing

::::::
MDA8

::::::
ozone

::::::
values

:::::
closer

:::
to

:::::::::::
ground-based

:::::::::::
observations.

:::::
This

::::::::::
proportion

:::::
differs

:::::
from

:::
that

::
of

:::::
2020

:::
by

::::
only

:::::::
0.23%,

::::::::
providing

:::::::
further

:::::::
evidence

::::
that

::::::
ozone

::::::::::::
improvements

:::
are

::::::::::
particularly

::::::::
significant

::
in
:::
the

:::::::
months

::::::
defined

::
as

:::::::::
consistent

:::::
across

:::
the

::::
four

:::::::
regions.

:

...

4 Summary and conclusion

...

::
To

::::::
further

::::
test

:::
the

:::::::::
robustness

:::
of

:::
our

:::::::::
approach,

::::::
OMPS

::::
and

::::::::::
TROPOMI

:::::::
satellite

::::::::::
observations

:::::
were

:::::::::::
independently

::::::::::
assimilated

::
to

:::::::
constrain

::::::::
NMVOC

::::::::
emissions

:::
for

::::
2019

:::::::
(Figure

::
7).

::::
The

::::::
spatial

:::::::::
distribution

::
of

:::::::::::
formaldehyde

::::::::
hotspots

::
is

::::::
similar

::
to

:::::
2020

:::
but

::::
with

::::::
overall

::::::
higher

:::::::::::::
concentrations.

:::
At

:::
the

:::::::
regional

::::
scale,

:::::
most

:::::::::
consistent

::::::
months

::::::::
between

::::::
OMPS-

::::
and

:::::::::::::::::::
TROPOMI-constrained

::::::
results

:::::::
indicate

::::
that

:::
the

::::
prior

::::::::
inventory

:::::::::::::
underestimates

::::::::
emissions

:::
in

::::
NCP

::::
and

:::::::::::
overestimates

:::::
them

::
in
::::::

YRD,
:::::
PRD,

:::
and

:::::
SCB.

::::::::::
Importantly,

:::
22

::
of

:::
the

:::
27

::::::::
consistent

:::::::
months

::::::::
(81.48%)

:::::
show

:::::::
reduced

:::::
ozone

:::::::
RMSE,

::::
with

:::
the

::::::
largest

:::::::::::
improvements

:::
in

::::
SCB,

::::::::::
confirming

:::
that

:::::::::
consistent

:::::
cases

:::
are

:::::::
strongly

::::::::
associated

:::::
with

::::::::
enhanced

:::::
ozone

::::::::
simulation

::::::::::::
performance.

::::::
These

::::::::
findings

::::
also

::::
lend

:::::::
greater

:::::::::
confidence

:::
to

:::
the

:::::::::
optimized

::::::::
NMVOC

::::::::
emissions

::::::
during

:::
the

::::::::
consistent

::::::
months

:::
in

::::
these

:::::::
regions.

:

RC: 28) Define all acronyms at first use (e.g., NCP, MEIC, CEDS).

AR: We thank the reviewer for this helpful comment. In the revised manuscript, we have ensured that all acronyms
are defined at first use. The four study regions (e.g., North China Plain) and inventories such as CEDS and
GFED are introduced with their full names at first mention. For MEIC, we used the acronym in the Abstract
only as an example, since the full name is too long for that context, but the complete form Multi-resolution
Emission Inventory for China (MEIC) is provided at its first appearance in the main text.
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Abstract

...

::
As

::::
one

::
of

:::
the

:::::::
world’s

::::::
largest

::::::::
NMVOC

::::::::
emitters,

:::::::
accurate

::::::::
emission

:::::::::
inventories

:::
are

::::::::
essential

:
for un-

derstanding and controlling atmospheric pollution . Mainstream inventories are constructed using

::::::::
mitigating

:::
air

::::::::
pollution

::
in
:::::::

China.
::::::::::::::

Commonly-used
::::::::::

inventories
:::::
(e.g.,

::::::
MEIC)

::::
are

::::::
largely

:::::
based

:::
on

bottom-up approaches, which cannot accurately reflect the spatiotemporal characteristics of NMVOCs
:::::::
methods,

:::::
which

:::::
often

:::
fail

::
to
:::::::

capture
:::
the

:::::::::::::
spatiotemporal

:::::::::
variability

::
of

::::::::
NMVOC

:::::::::
emissions, resulting in poor

model outcomes
::::::::
significant

::::::::::::::::
model-observation

::::::::::
mismatches.

...

::::::
Highly

:::::::::
consistent

:::::::::
increments

:::
are

::::::::
obtained

::
in

:::
the

:::::
North

::::::
China

::::
Plain

:::::::::::
(May-June),

:::
the

:::::::
Yangtze

:::::
River

::::
Delta

::::
and

:::::
Pearl

:::::
River

:::::
Delta

::::::::::::::
(January-March, with the RMSE dropping from 0.52 to 0.37 ×1016

molec
::::::::::::::::
October-December),

::::
and

:::
the

:::::::
Sichuan

:::::
Basin

:::::::
(January,

:::::::::::::::
June-December).

...

1 Introduction

...

NMVOCs are primarily released through anthropogenic activities, biogenic emissions,
:
and biomass

burning processes. Huge efforts have been devoted to constructing inventories recording these emissions
in a bottom-up way, such as the global Community Emission Data System (CEDS) (Hao and Xie, 2018),
the regional Multi-resolution Emission Inventory for China (MEIC) (Li et al., 2019)

:
, and the Model of

Emissions of Gases and Aerosols from Nature v2.1 (MEGAN) (Guenther et al., 2012). These NMVOC
emission inventories coupled

:::
For

:::::::
biomass

::::::::
burning,

::::::
widely

::::
used

:::::::::
inventories

:::::::
include

:::
the

::::::
Global

::::
Fire

::::::::
Emissions

::::::::
Database

:::::::
(GFED)

::::
and

:::
the

::::
Fire

::::::::
INventory

:::::
from

::::::
NCAR

:::::::
(FINN)

:::::::::::::::::::::
(Wiedinmyer et al., 2011).

:::::::
Coupled with chemical transport models like GEOS-Chem (Ito et al., 2007) and WRF-Chem (Azmi
et al., 2022), are capable of reproducing the complex processes including

::::
these

:::::::::
inventories

:::
are

::::::
widely

::::
used

::
to

:::::::
simulate

:
transport, deposition, and chemical reactions. This not only helps to better quantify

the environmental impact
::::::::::::
transformations

:
of NMVOCs, but also provides essential tools for predicting

future trends and making emission reduction
:::::::::
supporting

:::
air

::::::
quality

::::::::::
assessments

:::
and

::::::::
emission

::::::
control

strategies.

RC: 29) Ensure units, abbreviations, and mathematical notations are consistently applied.

AR: We thank the reviewer for this comment. Units, abbreviations, and mathematical notations have been carefully
reviewed and revised, and we have sought to apply them as consistently as possible throughout the manuscript.

RC: 30) Review manuscript for grammar, sentence clarity, and fluency.

AR: We thank the reviewer for this comment. We have carefully read through the manuscript to improve grammar,
sentence clarity, and fluency, and have revised the text where needed to enhance readability.
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