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Abstract. Recently, a collapse of the Atlantic Meridional Overturning Circulation (AMOC) was found in the Community Earth

System Model (CESM) under constant pre-industrial greenhouse gas forcing conditions. To determine the stability changes of

the AMOC with changing (freshwater) parameters in models, it is important to determine the origin of the collapse behavior.

In this paper, we argue that the classical picture of a saddle-node bifurcation holds for the AMOC collapse in the CESM. We

provide specific supporting arguments by showing results of additional pre-industrial CESM simulations. The CESM results5

are compared with those of a five-box AMOC model, which is known to have saddle-node bifurcations, and with which many

sensitivity experiments can be performed. Theoretical arguments are also provided showing that the essential dynamics of

the CESM can be reduced to a low-dimensional model in which a saddle-node bifurcation causes the AMOC collapse. The

underlying physical reason is that the AMOC behaviour in CESM is controlled by a small set of dominant feedback processes.

This has important consequences for the value of conceptual AMOC models, for assessing the effect of model biases on the10

AMOC stability, and for the interpretation of AMOC behaviour under climate change scenarios.

1 Introduction

A hot issue in current climate research is the Atlantic Meridional Overturning Circulation (AMOC) response under future

climate change. Climate models participating in the Coupled Model Inter-comparison Project Phase 6 (CMIP6, Eyring et al.

(2016)) indicate a substantial AMOC weakening during the 21st century (Weijer et al., 2020). Beyond 2100 there is much15

more uncertainty as the AMOC may (partially) recover or fully collapse (Liu et al., 2017; Bonan et al., 2022; Drijfhout et al.,

2025). Transient temperature responses are effective in causing the 21st century AMOC weakening but salinity responses are

crucial in further destabilizing the AMOC (Gérard and Crucifix, 2024; van Westen et al., 2025). The dominant destabilizing

AMOC tipping mechanism is the salt-advection feedback, where an AMOC weakening leads to a smaller northward salinity

transport amplifying the initial AMOC weakening (e.g., Marotzke (2000)). The existence of the salt-advection feedback is why20

the AMOC is labelled as a tipping point in the climate system (Lenton et al., 2008; Armstrong McKay et al., 2022).

Stommel (1961) was the first to identify the salt-advection feedback in a simple two-box model and demonstrated that

this feedback induces transitions between two stable AMOC steady states. The multi-stable AMOC regime is bounded by two

saddle-node bifurcations in this model. Since then, studies using more detailed conceptual (box) models (Cessi, 1994; Cimatoribus et al., 2014)

:::::::::::::::::::::::::::::::::::::::::::::::
(Cessi, 1994; Cimatoribus et al., 2014; Wood et al., 2019) and numerically fully-implicit ocean-climate models (De Niet et al.,25
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2007; Toom et al., 2012; Mulder et al., 2021) have shown that saddle-node bifurcations bound the multi-stable regime of the

AMOC in these models. Rahmstorf (1996) showed that the saddle-node bifurcation associated with the AMOC collapse is

linked to a critical value of the freshwater transport carried by the AMOC at 34◦S, represented by the quantity FovS. When

including the stabilizing gyre responses (Sijp, 2012), a FovS minimum is found close to this saddle-node bifurcation (Dijkstra,

2007).30

In numerically explicit ocean-climate models it is much harder (or not feasible) to determine the steady states versus (fresh-

water forcing) parameters and the boundaries of the AMOC multi-stable regime. An impression of the multi-stable regime can

be obtained by performing quasi-equilibrium simulations, where a freshwater flux forcing is changed very slowly back-and-

forth such that the model state stays close to the (slowly changing) statistical equilibrium. Such quasi-equilibrium simulations

have been performed with many ocean-only models (Rahmstorf, 1995; Lohmann et al., 2024), Earth System Models of In-35

termediate Complexity (EMICs) (Rahmstorf et al., 2005; Cini et al., 2024), the FAMOUS model (Hawkins et al., 2011), the

Community Climate System Model (CCSM3) (Hu et al., 2012), and recently in the Community Earth System Model (CESM)

(van Westen and Dijkstra, 2023; van Westen et al., 2024a).

When the salt-advection feedback is the dominant feedback, as is the case for the Stommel (1961) model, it can be shown

that the stable ‘AMOC on’ state has a square-root (or quadratic) solution against varying freshwater flux forcing (see Ap-40

pendix A) with the normal (most simple) form of dx/dt= r−x2 with r > 0 (see Appendix B). This square-root relation in the

Stommel model can be understood from the fact that the AMOC strength is proportional to the salinity gradient, whereas the

salinity gradient is also proportional to the AMOC strength. In more complex (climate) models that resolve more processes and

climate feedbacks, a near square-root dependency is also found for the AMOC strength against forcing (Dijkstra, 2007; van

Westen et al., 2024b; Vanderborght et al., 2025). Finding indications of a square-root relation in quasi-equilibrium simulations45

is challenging as it requires very slow rates to follow the steady states of the system (Rahmstorf, 1996). Even if the rate is

sufficiently slow, this relation can be masked by relatively large (stochastic) noise (Berglund and Gentz, 2006). An alternative

approach is by obtaining statistical equilibria for fixed forcing values, but this is computationally too costly for CESM. Nev-

ertheless, as long as the salt-advection feedback remains dominant amid other AMOC-related feedbacks (Vanderborght et al.,

2025), a square-root dependency can be expected when the system is relatively close to its saddle-node bifurcation and hence50

to tipping.

Here, we focus on the CESM results and address the issue whether its AMOC tipping behavior is also caused by the presence

of a saddle-node bifurcation, similar to that in the fully-implicit ocean-climate models (Dijkstra, 2007). This is certainly a

non-trivial issue as the CESM is an extremely high-dimensional dynamical system and the atmospheric fluxes create a high

frequency forcing on the ocean component of the model. In addition, in the quasi-equilibrium CESM simulation (van Westen55

et al., 2024a) the forcing rate is rather large compared to the equilibration time scale of the AMOC (van Westen et al., 2024b)

and hence the (non-autonomous) dynamical system is not a fast-slow system (Kuehn, 2011). The existence of a saddle-node

bifurcation in the CESM is important for assessing the role of model biases on the stability of the AMOC and for understanding

the response of the model to transient climate change forcing (Ritchie et al., 2021).
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The aim of this paper is to provide a convincing case that a saddle-node bifurcation is causing the AMOC collapse in the60

CESM, as presented in van Westen et al. (2024a). Thereto, we have performed several additional CESM simulations which

were branched from the quasi-equilibrium CESM simulation, we will compare the CESM behavior with that of a five-box

AMOC model for which a saddle-node bifurcation is known to exist (van Westen et al., 2024b). The advantage of this five-

box model is that we can easily conduct multiple sensitivity experiments to better understand the CESM behaviour. Section 2

describes the model set-up and simulations for the CESM and five-box modeland is followed
:
.
::::
Next,

:
in Section 3by ,

:::
the

:
results65

on the (statistical) steady states and quasi-equilibrium results of both models
:::
the

::::::
CESM

::::
and

:::::::
five-box

::::::
model

:::
are

::::::::
presented.

Section 4 provides detailed theoretical arguments for the existence of a saddle-node bifurcation in the CESMand in ,
::::::::
followed

::
by

:
Section 5,

:::::
where

:
the importance of this result for the behavior of the AMOC under climate change is shown. Finally, in

Section 6, the results are summarized and discussed.

2 Models and Methods70

2.1 CESM simulations

The CESM (version 1.0.5) is a fully-coupled climate model and the simulations here have a 1◦ horizontal resolution for the

ocean/sea-ice components and a 2◦ horizontal resolution for the atmosphere/land components. For more details on the precise

CESM set-up, we refer to van Westen and Dijkstra (2023) and van Westen et al. (2024a). In those studies, the pre-industrial

forcing is used and in addition a freshwater flux forcing (FH ) is applied between 20◦N and 50◦N in the Atlantic Ocean and is75

compensated elsewhere (at the ocean surface) to conserve salinity. This is the same hosing region as in Hu et al. (2012) and

Rahmstorf (1996), which has the advantage that the North Atlantic deep convection sites are not directly impacted under the

hosing. The sensitivity of the hosing location will be thoroughly analysed below for the five-box AMOC model.

The quasi-equilibrium AMOC hysteresis simulation (van Westen and Dijkstra, 2023) is obtained by slowly increasing FH

from 0 Sv to 0.66 Sv and back to 0 Sv, at a rate of 3×10−4 Sv yr−1, resulting in a 4400-year long simulation. This simulation80

remains close to the statistical equilibria, but the deviations become larger near the AMOC collapse and recovery (van Westen

et al., 2024b). To determine statistical equilibria (i.e., steady states), two 500-year long CESM simulations were performed (van

Westen et al., 2024b) at constant FH , the steady states are indicated as FH . This was already done for FH = 0.18 Sv (starting

at model year 600 of the quasi-equilibrium simulation) and at FH = 0.45 Sv forcing (starting at model year 1500). The last

100 years of these steady states show hardly any model drift, meaning that the AMOC and global climate are dominated by85

natural climate variability (van Westen and Baatsen, 2025). Below, we will show results of new CESM simulations performed

under constant FH forcing or with a slower rate of FH , and closer to the values where the AMOC collapse occurs in the

quasi-equilibrium simulation (around FH = 0.525 Sv, van Westen et al. (2024a)).

We will (in Section 5) also use results from two climate change simulations that were initialized from the end of the steady

state with FH = 0.18 Sv and FH = 0.45 Sv (van Westen et al., 2025). These climate change simulations were first forced under90

the historical forcing (1850 – 2005) and followed by either RCP4.5 or RCP8.5 scenario forcing (2006 – 2100, Representative
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Concentration Pathway). Subsequently, they were further integrated for 400 years under their 2100 radiative forcing conditions

to study the equilibrium behaviour.

An overview of all the different CESM simulations are presented below in Table 1. In total, we present 11,670 model years

of model output. Ideally, one would determine even more steady states or lower the varying FH rate in the quasi-equilibrium95

simulation, but this is computationally not feasible. These additional simulations, however, can be done with the five-box

AMOC model.

Table 1. Overview of the different simulations conducted with the CESM, which includes: simulation name, freshwater flux forcing (varying

or fixed), radiative forcing, branched from simulation, duration, and the AMOC status at the end of simulation (on, transient or off). Note

that the forward QE was branched from the 2800-year long pre-industrial control simulation from Baatsen et al. (2020). The simulations are

sorted in order of appearance. Abbreviations: QE, quasi-equilibrium; PI, pre-industrial; RCP, Representative Concentration Pathway; E-RCP,

Extended Representative Concentration Pathway.

Simulation name Freshwater flux forcing Radiative forcing Branched from simulation Duration AMOC status at

Varying (∂tFH ) or fixed (FH ) (years) end of simulation

Forward QE ∂tFH =+3× 10−4 Sv yr−1 PI at 1850 levels 2800 year PI control 2,200 Off

Backward QE ∂tFH =−3× 10−4 Sv yr−1 PI at 1850 levels Forward QE, FH = 0.66 Sv 2,200 On

Steady state #1 FH = 0.18 Sv PI at 1850 levels Forward QE, FH = 0.18 Sv 500 On

Steady state #2 FH = 0.45 Sv PI at 1850 levels Forward QE, FH = 0.45 Sv 500 On

Steady state #3 FH = 0.465 Sv PI at 1850 levels Forward QE, FH = 0.465 Sv 500 On

Steady state #4 FH = 0.48 Sv PI at 1850 levels Forward QE, FH = 0.48 Sv 500 Off

Steady state #5 FH = 0.48 Sv PI at 1850 levels End of steady state #3 500 On

Steady state #6 FH = 0.495 Sv PI at 1850 levels Forward QE, FH = 0.495 Sv 231 Transient

Steady state #7 FH = 0.495 Sv PI at 1850 levels End of steady state #5 500 On

Steady state #8 FH = 0.51 Sv PI at 1850 levels Forward QE, FH = 0.51 Sv 197 Transient

Steady state #9 FH = 0.51 Sv PI at 1850 levels End of steady state #7 500 Off

Half QE ∂tFH =+1.5× 10−4 Sv yr−1 PI at 1850 levels End of steady state #2 1,050 Off

Historical #1 FH = 0.18 Sv Historical (1850 – 2005) End of steady state #1 156 On

RCP4.5 #1 FH = 0.18 Sv RCP4.5 (2006 – 2100) End of historical #1 95 Transient

E-RCP4.5 #1 FH = 0.18 Sv RCP4.5 at 2100 levels End of RCP4.5 #1 400 On

RCP8.5 #1 FH = 0.18 Sv RCP8.5 (2006 – 2100) End of historical #1 95 Transient

E-RCP8.5 #1 FH = 0.18 Sv RCP8.5 at 2100 levels End of RCP8.5 #1 400 Off

Historical #2 FH = 0.45 Sv Historical (1850 – 2005) End of steady state #2 156 On

RCP4.5 #2 FH = 0.45 Sv RCP4.5 (2006 – 2100) End of historical #2 95 Transient

E-RCP4.5 #2 FH = 0.45 Sv RCP4.5 at 2100 levels End of RCP4.5 #2 400 Off

RCP8.5 #2 FH = 0.45 Sv RCP8.5 (2006 – 2100) End of historical #2 95 Transient

E-RCP8.5 #2 FH = 0.45 Sv RCP8.5 at 2100 levels End of RCP8.5 #2 400 Off
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2.2 The five-box AMOC model

The five-box AMOC model (Figure 1) was developed by Cimatoribus et al. (2014), extended by Castellana et al. (2019),

and was recently further extended (hereafter the E-CCM, the Extended Cimatoribus-Castellana Model) by including oceanic100

temperatures (van Westen et al., 2024b). The E-CCM has four surface boxes, where the Atlantic Ocean is represented by boxes t

and n, the Southern Ocean channel by box s, and the Southern Ocean Atlantic sector by box ts. There is one deep ocean box d,

hence this model does not include the Indo-Pacific Ocean nor Arctic Ocean. The Atlantic Ocean pycnocline depth, indicated

by the D, may vary in the E-CCM. The temperature and salinity are volume averaged over each box and heat and salinity are

exchanged between the boxes, and also heat between the surface boxes and overhead atmosphere. Salinity is conserved in the105

E-CCM.
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Figure 1. Schematic representation of the five-box AMOC model (the E-CCM), adapted from van Westen et al. (2024b). The red arrows

represent volume transports, whereas the dashed and dotted arrows indicate the AMOC on and AMOC off states, respectively. The cyan and

blue arrows represent the gyre transport and freshwater fluxes, respectively. The freshwater from box s is distributed linearly over box n and

box t using a parameter ξ, where ξEA is added to box t and (1−ξ)EA to box n. The original E-CCM configuration van Westen et al. (2024b)

is obtained when ξ = 0. The brown arrows are the heat fluxes with the overhead atmosphere for each surface box (i.e., box s, ts, t and n).

The AMOC strength in the northern box (qN ) in the E-CCM is given by:

qN = ηh
ρn− ρts
ρ0

D2, (1)
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where ηh is a hydraulic constant, ρn− ρts is the meridional density difference between box n and box ts, ρ0 is a reference

density, andD the pycnocline depth. The densities are determined from a linear equation of state. For full details and sensitivity110

experiments conducted with the E-CCM, we refer to van Westen et al. (2024b), where there is also a link to the publicly-

available E-CCM code. We will show results for the version where sea-ice insulation effects are omitted and use the standard

values of the parameters given in van Westen et al. (2024b), unless otherwise mentioned.

The E-CCM is forced through the asymmetric freshwater flux forcing (EA) from box s to box n. Under varying EA, the

E-CCM has an ‘AMOC on’ state (clockwise circulation, red solid and dashed arrows) and an ‘AMOC off’ state (anti-clockwise115

circulation, red solid and dotted arrows). There is a multi-stable AMOC regime and this regime is bounded by two saddle-node

bifurcations (van Westen et al., 2024b). To determine the sensitivity of the AMOC behavior to the hosing location (Rahmstorf,

1996; Ma et al., 2024), we make a modification to the E-CCM by distributing the freshwater flux forcing linearly over box n

and box t using a parameter ξ ∈ [0,1]. When ξ = 0, the freshwater flux forcing is only applied to box n and this is the original

E-CCM configuration. The freshwater flux forcing is only over box t when ξ = 1.120

The steady states of the E-CCM against varying parameters (i.e., bifurcation diagram), such as freshwater flux forcing, are

determined using the continuation software AUTO-07p (Doedel et al., 2007, 2021). This code solves steady states using a

pseudo-arclength continuation combined with a Newton-Raphson method (Wubs and Dijkstra, 2023). It is also able to detect

Hopf bifurcations and saddle-node bifurcations. We used a value of 10−6 for the absolute and relative accuracy of each steady-

state solution, and for the accuracy for locating special points, similar to van Westen et al. (2024b).125

3 Results

3.1 Statistical equilibria in the CESM

The AMOC strength (at 1,000 m and 26◦N) and the freshwater transport carried by the AMOC at 34◦S (FovS) of the quasi-

equilibrium CESM simulation (van Westen et al., 2024a) are shown in Figures 2a,b. The branched simulations from the quasi-

equilibrium simulation at a constant forcing FH = 0.18 Sv (Figures 2c,i), FH = 0.45 Sv (Figures 2d,j) and FH = 0.465 Sv130

(Figures 2e,k) equilibrate after about 300 years. The branched simulation at FH = 0.48 Sv (Figures 2f,l) collapses and sug-

gests that the upper bound of the multi-stable regime is around this FH value. The branches initiated from FH = 0.495 Sv

(Figures 2g,m) and FH = 0.51 Sv (Figures 2h,n) also collapse; these simulations were terminated before the 500-year mark

because of computational costs. However, when the equilibrated FH = 0.465 Sv simulation is subjected to an instantaneous

increase in freshwater flux to FH = 0.48 Sv (∆FH = 0.015 Sv), we still find a statistical equilibrium in the northward over-135

turning regime (red curves in Figures 2f,l). We iteratively repeated the same procedure for FH = 0.495 Sv and FH = 0.51 Sv.

The AMOC eventually collapses under a constant freshwater flux forcing of FH = 0.51 Sv. This means that the upper bound

of the multi-stable regime is found for 0.495 Sv ≤ FH < 0.51 Sv. To obtain an even higher precision for this upper bound, we

would need to increase FH with even smaller increments, but is not done here because of computational limitations.

The AMOC in the quasi-equilibrium simulation starts to tip around FH = 0.525 Sv (0.522 to 0.533 Sv, 10th and 90th140

percentiles, van Westen et al. (2024a)) and is at larger FH values than the upper bound found from the statistical equilibria
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Figure 2. (a): The AMOC strength at 1,000 m and 26◦N and (b): the freshwater transport by the AMOC at 34◦S, FovS, for varying freshwater

flux forcing FH (i.e., the quasi-equilibrium simulation). Inset: The hosing experiment where fresh water is added to the ocean surface between

20◦N – 50◦N in the Atlantic Ocean (+FH ) and is compensated over the remaining ocean surface (−FH ). The statistical equilibria for various

constant values of FH (i.e., FH , steady states) in the northward overturning regime are also shown, where the marker indicates the mean

and the error bars show the minimum and maximum over the last 50 years of the 500-year long branched simulations. The black sections

indicate the 26◦N and 34◦S latitudes over which the AMOC strength and FovS are determined, respectively. The yellow shading in the two

panels indicates observed ranges for the presented quantity (Smeed et al., 2018; Arumí-Planas et al., 2024). (c – n): Similar to panels a,b, but

now the entire branched simulations for different FH values. The branches are initiated from the quasi-equilibrium simulation (blue curves)

or from the end of the previous statistical equilibria (red curves).
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simulation (0.495 Sv ≤ FH < 0.51 Sv). To determine the overshoot of the quasi-equilibrium simulation, we use a reference

value of FH = 0.5 Sv, but any other FH value within the interval FH ∈ [0.495,0.51] can be used as a reference (giving slightly

different numerical results). Using this reference, the quasi-equilibrium AMOC overshoots by ∆FH = 0.025 Sv (≈ 80 years).

Do note that the AMOC collapses for the simulations branched from the quasi-equilibrium simulation for FH ≥ 0.48 Sv (blue145

curves in Figure 2c – n). In other words, the branched simulations for FH ≥ 0.48 Sv already surpassed a critical forcing value

upon branching, which means that the standard quasi-equilibrium also surpassed its critical value and actually undershoots the

upper bound of the multi-stable regime. This critical value for the quasi-equilibrium is located for 0.465 Sv < FH ≤ 0.48 Sv.

The apparent overshoot with the reference value of FH = 0.5 Sv is then the result of inertia and the growth rate of AMOC

feedbacks, in particular the destabilising salt-advection feedback. Indeed, these feedbacks develop on centennial timescales150

(Vanderborght et al., 2025), which we will make more explicit below. The undershooting AMOC can already be seen when

comparing the quasi-equilibrium with five different statistical equilibria (last 50 model years are used). The quasi-equilibrium

simulation is about 1 Sv weaker than the statistical equilibria, but still reasonably agree. For FovS, on the other hand, the

quasi-equilibrium is larger and (mostly) outside the ranges of the different statistical equilibria (Figure 2b).

When we lower the freshwater flux forcing rate, we expect that the system stays closer to the statistical equilibria (Hawkins155

et al., 2011). To test this, we branched off a quasi-equilibrium simulation with only half the hosing rate (i.e., 1.5×10−4 Sv yr−1)

from the end of the statistical equilibrium at FH = 0.45 Sv. This simulation was integrated for 1,050 model years, where FH

varied from 0.45 Sv to 0.608 Sv (red curves in Figures 3a,b). In the ideal case, the half-forcing quasi-equilibrium simulation

should have been initiated from the same initial conditions as the standard quasi-equilibrium simulation for direct comparison
:
,

:::::
which

:::::
would

::::
also

:::::
allow

::
to

:::::::
address

:::
the

:::::::::
sensitivity

::
in

:::
the

::::::::::::::::::
overshoot/undershoot

::::
with

:::
the

::::::::
reference

::::
value

:::
of

::::::::
FH = 0.5

:::
Sv. Nev-160

ertheless, this half-forcing simulation can be used to check whether the AMOC collapse happens faster in FH spaceand we

expect a smaller overshoot/undershoot (with the reference value of FH = 0.5 Sv) compared to the standard quasi-equilibrium

simulation. The faster transition (in FH ) is a characteristic of a saddle-node bifurcation (see Appendix B), but this is also the

case for other bifurcation types (e.g., Hopf) (Berglund and Gentz, 2006).

The half-rate simulation remains (very) close to the different statistical equilibria for both AMOC strength and FovS. Fol-165

lowing van Westen et al. (2024a), we used a break regression analysis (Mudelsee et al., 2014) to find the AMOC tipping event

at FH = 0.534 Sv, with the 10th and 90th percentiles at FH = 0.533 Sv and FH = 0.536 Sv, respectively. There is an overshoot

of ∆FH = 0.034 Sv (227 years) compared to our reference value of FH = 0.5 Sv, but keep in mind that AMOC feedbacks take

a considerable time to develop. These feedbacks can be quantified by following the procedure outlined in Vanderborght et al.

(2025), see also Section 4 below. We decompose the different AMOC feedbacks for the FH = 0.51 Sv simulation (branched170

from the previous statistical equilibrium of FH = 0.495 Sv) and the half-rate forcing simulation, where the most important

feedbacks are shown in Figure 4; the standard quasi-equilibrium simulation decomposition is presented in Vanderborght et al.

(2025).

First theFH = 0.51 Sv simulation (Figure 4a), in which the AMOC weakens by about 1.5 Sv during the first 100 model years.

This weakening is attributed to the slightly larger freshwater forcing (+0.015 Sv) compared to the starting equilibrium solution175

at FH = 0.495 Sv. The destabilizing salt-advection feedback (linked to FovS) and surface (mainly sea-ice melt) feedback slowly
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Figure 3. (a & b): The AMOC strength and FovS of the quasi-equilibrium simulations, one similar to Figures 2a,b, and including the

simulation with varying 1.5×10−4 Sv yr−1 hosing rate (red curves). This quasi-equilibrium hosing with 1.5×10−4 Sv yr−1 was branched

from the end of the statistical equilibria at FH = 0.45 Sv. (c & d): The variance in AMOC strength and FovS, using a sliding window of

50 years. For each 50-year window, a linear trend was removed and then the variance was determined.
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b) AMOC response decomposition, tFH = 1.5 × 10 4 Sv yr 1
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Figure 4. (a & b): Decomposition of the AMOC feedbacks (Vanderborght et al., 2025) for the (a): FH = 0.51 Sv simulation (i.e., red curve

in panel 2h) and the (a): half-rate forcing simulation (1.5× 10−4 Sv yr−1). The inset shows the two surface components of Arctic sea-ice

melt and precipitation minus evaporation (P-E). The time series are presented as 10-year averages (to reduce the variance). Note the different

horizontal ranges between the two panels.

grow over the following 250 years. Over the same period (model years 100 – 350), the gyres and overturning component at

65◦N partly stabilize the AMOC. The combined effect results in an AMOC weakening of only 1.5 Sv over these 250 years

and after model year 350 the AMOC fully collapses. The salt-advection feedback eventually becomes dominant and this

destabilising feedback fully develops over centennial timescales (under constant freshwater flux forcing).180

Next the half-rate forcing simulation (Figure 4b), where we find a similar centennial timescale for the destabilizing AMOC

feedbacks. The AMOC feedbacks remain relatively small up to model year 350 (FH = 0.503 Sv), then slowly increase in

the following 200 years (model years 350 – 550) and thereafter the AMOC fully collapses. This gradual increase of the

destabilizing feedbacks between model year 350 to 500, suggests that the AMOC will eventually tip and hence branching

simulations with fixed FH for FH ≥ 0.503 Sv will also result in an AMOC collapse, similarly as the standard quasi-equilibrium185

simulation. However, additional simulations are needed to find this critical value, which were not done here.

In other words, there is a certain critical value of forcing and, once crossed, the AMOC will eventually tip over centennial

timescales (≈ 200 model years). This critical value is dependent on the initial condition and rate of forcing, which we will

make more explicit with the E-CCM below. As argued above, for the half-forcing quasi-equilibrium simulation this critical

value is likely around FH = 0.503 Sv, which is well within the interval 0.495 Sv ≤ FH < 0.51 Sv. The AMOC collapse starts190

at FH = 0.525 Sv in the standard quasi-equilibrium simulation, meaning that the destabilizing feedbacks were growing during

the 200 model years (∆FH = 0.06 Sv) prior to the collapse (Vanderborght et al., 2025). This suggests that FH = 0.525−0.06 =

0.465 Sv is the latest statistical equilibrium which can be found when directly branching from the quasi-equilibrium simulation,

which is indeed the case here (Figures 2e,k). This confirms again that the standard quasi-equilibrium simulation undershoots
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the upper bound of the multi-stable regime. The implication is that an overshooting (or undershooting) AMOC cannot be195

assessed by only analysing the onset of the AMOC tipping event. In fact, the onset of the AMOC tipping event only indicates

where the destabilising feedbacks become dominant and it is much more useful to analyse the changes in AMOC feedback

strengths.

What is important here, is that the half-rate forcing’s transition to the collapsed state is twice as fast (in FH space), which

is a typical characteristic of transitions near a saddle-node bifurcation (Berglund and Gentz, 2006) (see also Appendix B).200

The duration of AMOC transitions in both quasi-equilibria and in the statistical equilibrium simulations (Figure 2) is about

100 years and the full equilibration to the collapsed AMOC state requires more than 500 years (van Westen et al., 2024a).

Another characteristic of a saddle-node bifurcation is the loss of resilience (i.e., critical slow down) near the tipping point (van

Westen et al., 2024b). This can be quantified by determining the variance and (lag-1) autocorrelation of specific observables.

For the AMOC strength, we find no indications of critical slow down (not shown) which is consistent with the results in205

van Westen et al. (2024a). There is also no increase in the variance for the AMOC strength for both the quasi-equilibria and

the statistical equilibria (Figure 3c). However, for the physics-based quantity FovS we find indications of critical slowdown

(van Westen et al., 2024a; Smolders et al., 2025). Indeed, the FovS variance increases for larger FH up to the tipping event

(Figure 3d). This increase in variability indicates that the AMOC loses resilience and makes it more prone to transitions.

3.2 Equilibria in the E-CCM210

The AMOC behaviour in the CESM can be reproduced with the E-CCM , for which
:::::
under

::::::
varying

::::::::::
freshwater

:::
flux

:::::::
forcing

::::
(now

:::::
EA).

:::
For

:::
the

:::::::
E-CCM,

:
the steady states are known and obtained from

:::::::
obtained

:::::
using continuation techniques (cf. section

2b)
:::
are

::::::::
presented

::
in

:::::::
Figures

::::
5a,b

::
for

:::
the

:::::::
AMOC

:::::::
strength

:::
and

:::::
FovS,

:::::::::::
respectively. The continuation indicates two saddle-node

bifurcations at E1
A = 0.4861 Sv (AMOC on) and at E2

A = 0.1857 Sv (AMOC off). The AMOC on and unstable steady states

clearly show the square-root behaviour between AMOC strength and EA, which arises from the dominant salt-advection215

feedback close to E1
A. The probabilities under (stochastic) noise for the transition from an AMOC on to an AMOC off state

approach 1 when moving closer to E1
A (van Westen et al., 2024b), indicative of the loss of resilience. Here, we performed

deterministic quasi-equilibrium and equilibrium simulations with the E-CCM, which are shown in Figure 5. Note that we used

slightly different freshwater flux forcing (EA) values in the E-CCM than in the CESM.

The quasi-equilibrium hysteresis simulation in the E-CCM is (qualitatively) comparable to that of the CESM (compare220

Figures 2 and 5); the large overshoot (> 35 Sv) in the E-CCM upon AMOC recovery is a model artefact (van Westen et al.,

2024b). In the forward quasi-equilibrium simulation the AMOC strength is lower compared to the value at the steady states,

while the FovS values are higher. The branches from the quasi-equilibrium eventually collapse for EA = 0.477 Sv and EA =

0.486 Sv, meaning that a critical EA value was surpassed, which is then also the case for the quasi-equilibrium simulation.

In contrast to the CESM, it is computationally feasible to quantify this critical value in the E-CCM. Here, we define the225

critical branch as the branch from the quasi-equilibrium that collapses at the lowest possible EA value. We use an accu-

racy of ∆EA = 0.001 Sv (but can be even higher when needed). Ultimately, the AMOC collapses when branching from the

quasi-equilibrium simulation for EA ≥ 0.474 Sv (Figure 6a). As was argued in the previous section, this critical value is also
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Figure 5. Similar to Figure 2, but now for the E-CCM. Note that in panels a and b the steady and unstable states (from the continuation) are

also shown.
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dependent on the initial condition and rate of forcing. For example, when we use the steady state at EA = 0.45 Sv as initial

condition, we can increase EA up to 0.479 Sv (with 3× 10−4 Sv yr−1) and then keeping the freshwater flux forcing constant.230

In this case, the AMOC eventually equilibrates to the AMOC on state (not shown), meaning that the critical value is found for

EA ≥ 0.480 Sv. When we initiate from EA = 0 Sv while using a ten times smaller forcing rate (3×10−5 Sv yr−1), the AMOC

also equilibrates to the AMOC on state when increasing EA up to 0.483 Sv and then keeping the freshwater flux forcing con-

stant (not shown). The critical value for this other case is for EA ≥ 0.484 Sv. Depending on the initialisation and forcing rate,

the saddle-node bifurcation can only be reached with a limited accuracy.235

Since the AMOC collapses at critical values lower than (i.e., undershooting) the saddle-node bifurcation (blue curve in Fig-

ure 6a), the system must cross the basin boundary of attraction between the AMOC on and AMOC off states. The continuation

allows us to explore which variable (temperature, salinity, and pycnocline depth), or which specific combination of variables

(e.g., AMOC strength, see (1)), crosses this boundary of attraction. Notably, the critical branch at EA = 0.474 Sv does not

cross the basin boundary with respect to AMOC strength and one expects AMOC recovery to the AMOC on state, and yet the240

AMOC collapses (left inset in Figure 6a). This means that the AMOC strength is no good predictor for the future evolution of

the system for the critical branch. When we analyse a different quantity, such as the salinity of box n (right inset in Figure 6a),

it does cross the basin boundary. The salinity in box n is important here as it (partly) sets the AMOC strength (relation 1) and is

influenced under the destabilizing salt-advection feedback, which gives rise to the quadratic relation between AMOC strength

and freshwater flux forcing.245

When we equally distribute the hosing over box n and box t (ξ = 0.5, Figure 6b), the saddle-node bifurcations shift to higher

values of EA. The quasi-equilibrium for this case has weaker AMOC strengths than the stable AMOC on state and close to

the saddle-node bifurcation it has stronger strengths than the AMOC on state (left inset in Figure 6b). The critical branch (at

EA = 0.609 Sv) has a stronger AMOC strength than the steady AMOC on state upon branching, but it still collapses. The

salinity in box n does cross the basin boundary (right inset in Figure 6b), demonstrating again that AMOC strength is no good250

indicator for predicting the future AMOC trajectory. Only when the hosing is applied over box t (ξ = 1.0, Figure 6c), the

AMOC collapses when increasing the freshwater flux forcing beyond the saddle-node bifurcation of E1
A = 0.83495 Sv. When

we branch from the quasi-equilibrium for lower EA than the saddle-node bifurcation (e.g., EA = 0.8348 Sv, not shown), the

solution equilibrates to the stable AMOC on state.

The AMOC dynamics and the under- and overshooting behaviour can be understood from these three different cases. When255

a hosing perturbation is (partly) applied over box n, the AMOC strength directly reduces as the meridional salinity difference

between box n and box ts increases. The largest part of the freshwater perturbation is carried away by the AMOC to box d,

but a small part of the perturbation remains in box n (due to a weaker AMOC) and causes freshwater accumulation over

box n. This freshwater accumulation results in a slightly weaker AMOC strengths compared to the steady states. Once the

system has a sufficient amount of time to adjust to the imposed freshwater perturbation, the entire freshwater perturbation is260

redistributed over the boxes and the AMOC strength eventually increases (e.g., blue curves in Figures 5c,d,e,f). In other words,

the advective (‘flushing’) timescale is slower than the hosing timescale, resulting in an enhanced AMOC strength decline.

This makes the AMOC more prone to freshwater perturbations and explains why there is hardly any overshoot in the quasi-
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d) Saddle-node bifurcations and difference to FovS minimum
E1

A (AMOC on)
E2

A (AMOC off)
E1

A (AMOC on)
E2

A (AMOC off)

0

1

2

3

4

5

Fr
es

hw
at

er
 fl

ux
 fo

rc
in

g 
di

ffe
re

nc
e 

(×
10

2  S
v)

E1
A E2

A (×10)
E1

A EA at FovS min.

Figure 6. (a): The steady states for the AMOC strength and a quasi-equilibrium simulation (rate 3× 10−4 Sv yr−1) for the hosing over

box n (ξ = 0). A simulation was branched from the quasi-equilibrium simulation for EA = 0.474 Sv (blue star), which was integrated into

equilibrium. The two insets show zoomed-in versions of the AMOC strength and salinity of box n near the saddle-node bifurcation. (b & c):

Similar to panel a, but now for b) ξ = 0.5 and c) ξ = 1, where the branched simulations were initiated atEA = 0.609 Sv andEA = 0.835 Sv,

respectively. (d): The position of the saddle-node bifurcations of the AMOC on (E1
A) and AMOC off (E2

A) states (solid curves). The distance

(expressed in ∆EA) between E1
A and E2

A and between the E1
A and the FovS minimum.
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equilibrium simulation with the saddle-node bifurcation (for ξ = 0). This is qualitatively different than the quasi-equilibrium

CESM, meaning that ξ = 0 is not very likely for the CESM.265

The direct AMOC weakening effect is smaller when adding (part of) the hosing over box t and there are two effects con-

tributing to this different behaviour. First, the hosing is now distributed over the (much) larger box t than box n and making

the salinity anomalies (averaged over box t) effectively smaller. Second, only a part of the salinity perturbations from box t is

carried by the AMOC into box n and most of it is directly carried to box d (see also Figure 1). This implies that the role of the

overturning contribution in redistributing salinity anomalies between box t and box n is getting smaller, while the (northern)270

gyre contribution is getting more important. These combined effects explain why the saddle-node bifurcations shift to larger

EA values for increasing ξ (Figure 6d). The larger gyre contribution is also reflected in a greater ∆EA between the E1
A and

FovS minimum, which also modifies the hysteresis width which is measured as the distance between the two saddle-node

bifurcations (Figure 6d).

In the standard quasi-equilibrium CESM simulation (rate 3×10−4 Sv yr−1), the AMOC strength is also smaller than that of275

the statistical equilibria. Thereafter, the AMOC appears to overshoot the upper bound of the multi-stable regime. The CESM

trajectory shares similar characteristics as the E-CCM in the ξ = 0.5 configuration, which is consistent with the applied hosing

region in the CESM (20◦N – 50◦N), though the CESM is much more complex than the E-CCM. Depending on the hosing

region, one can change the relative contributions of important AMOC feedbacks and this results in differences in AMOC

sensitivity, the onset of the AMOC tipping event and width of the multi-stable regime. It is therefore important to use a280

fixed hosing region, as was done for our CESM simulations or in the outlined procedure of the North Atlantic Hosing Model

Intercomparison Project (NAHosMIP, Jackson et al. (2023)). Sensitivity experiments indicate that the northern portion of the

North Atlantic (e.g., the Irminger basin) is most sensitive under hosing (Rahmstorf, 1996; Ma et al., 2024). Nevertheless, the

destabilising salt-advection feedback becomes more dominant under increasing hosing strengths and causes the square-root

dependency near the saddle-node bifurcation.285

4 Feedback analysis in the CESM

The results from Section 3.2 demonstrate that as long as the salt-advection feedback dominates, one may expect a square

root dependence in the AMOC on state under increasing freshwater flux forcing, similar as in
::
to

:
the Stommel model (see

Appendix A). Although the AMOC is (highly) idealised in the E-CCM, it is qualitatively able to reproduce almost all AMOC

characteristics of that in a much more complex and fully-coupled climate model (i.e., the CESM). This makes the existence290

of a saddle-node bifurcation in the CESM plausible, but this can not easily be demonstrated using only a limited number of

equilibrium simulations. However, it turns out that from performing a feedback analysis as in Vanderborght et al. (2025), we

can (under reasonable assumptions) derive a reduced model explicitly showing the dependence of AMOC strength on FH .

15



4.1 Reduced model derivation

We start from the total Atlantic (34◦S to 65◦N) freshwater budget as governed by (Vanderborght et al., 2025):295

dW

dt
= FazS −FazN +FovS −FovN +Fsurf +Fres, (2)

where W is the total freshwater content. The Atlantic freshwater content can be modified through azonal (gyre) contributions

(i.e., FazS and FazN), overturning contributions (i.e., FovS and FovN), surface contribution (i.e., Fsurf ) and residual contribution

(i.e., Fres). The quantities FazS and FovS are evaluated at 34◦S, hence indicated with subscript ‘S’, and we follow a similar

notation for the northern boundary (65◦N) by using a subscript ‘N’.300

Upon a freshwater perturbation, the evolution of the different contributions depends on the background state and the AMOC

strength (Vanderborght et al., 2025). The AMOC strength is fairly homogeneous over the Atlantic basin (van Westen et al.,

2024a) and we assume a northward volume transport in the upper AMOC limb which we indicate here as Ψ; the lower AMOC

limb then carries Ψ southward. The velocity-weighted average salinity over the upper AMOC limb is indicated with S→, and

similarly for the lower AMOC limb we use S←. The vertical salinity difference between the upper AMOC limb and lower305

AMOC limb is then indicated by S⇄ = S→−S←. Under this idealization it directly follows that:

FovS =−S⇄

S0
Ψ, (3)

where S0 = 35 g kg−1. Because the salinity transport in the lower AMOC limb is approximately adiabatic, the vertical salinity

contrast at 34◦S is closely related to a meridional salinity contrast between 34◦S and the North Atlantic sinking region. This

meridional salinity contrast is related to the AMOC strength via thermal wind balance (Butler et al., 2016). Therefore, the310

vertical salinity contrast scales with the AMOC strength as (Vanderborght et al., 2025):

Ψ=Ψ0 + c2 (1− c1)(S⇄(0)−S⇄) , (4)

where c1 represents the stabilizing thermal-advective feedback and c2 is a scaling factor. Both c1 and c2 are positive constants

and, for the CESM, their values are about 0.52 and 20 Sv kg g−1 (Vanderborght et al., 2025). The terms Ψ0 and S⇄(0) are the

AMOC strength and vertical salinity difference for FH = 0 Sv (no hosing), respectively.315

Under the applied hosing (indicated by δFH in the CESM) the value of Fsurf increases and is primarily (i.e., to first order)

balanced by a declining FovS (van Westen et al., 2024a). On the other hand, the gyres flush freshwater anomalies out of

the Atlantic Ocean and stabilize the AMOC (Vanderborght et al., 2025). Sijp (2012) argued that S⇄ linearly scales with the

integrated Atlantic freshwater content. This integrated freshwater content in turn scales with the anomalous freshwater transport

by the gyres (Huisman et al., 2010), i.e.:320

Fgyre = FazS −FazN =−g1S⇄ + g2. (5)

This linear relation is also applicable for the CESM, where g1 = 0.032 Sv kg g−1 and g2 = 0.49 Sv (Figure 7a). The last

contribution which we consider is the overturning component at the northern boundary, FovN. The AMOC strength almost
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vanishes at the northern boundary and the expression for FovN is different than that of the Fovs (relation 3). The FovN scales

linearly with S⇄ and can be approximated by:325

FovN = n1S⇄ +n2 (6)

with n1 = 0.025 Sv kg g−1 and n2 =−0.021 Sv for the CESM as shown in Figure 7b. The contributions by the gyres and FovN

scale linearly with increasing S⇄ (or decreasing Ψ), whereas the FovS has a non-linear contribution. To be more precies
:::::
precise,

the FovS is determined by the product of the vertical salinity difference and the AMOC strength, where the latter scales linearly

with the vertical salinity difference (i.e., relation 4). The FovS scales quadratically with AMOC strength, and conversely AMOC330

strength scales with the square root dependence on FovS. As the imposed freshwater flux forcing is primarily balance by FovS

in the CESM (van Westen et al., 2024a), one expects a square root dependence in AMOC strength under increasing freshwater

flux forcing.
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Figure 7. (a): The relation between Fgyre and S⇄, where the linear fit is determined over the 20-year averages up to model year 1,700

(FH = 0.51 Sv) of the standard quasi-equilibrium simulation. (b): Similar to panel a, but now for the FovN and S⇄.

A perturbation in the Atlantic freshwater content (cf. (2)) around an equilibrium state then gives:

−δFovS + δFovN − δFgyre = δFsurf , (7)335

and using the expressions for FovS, Fgyre and FovN, this yields:

ΨδS⇄ +S⇄δΨ+n1S0δS⇄ + g1S0δS⇄ = S0δFH (8)

Using the relation between Ψ and S⇄ (from 4) we find:

− Ψ

c2 (1− c1)
δΨ+

(
− Ψ

c2 (1− c1)
+

Ψ0

c2 (1− c1)
+S⇄(0)− (n1 + g1)S0

c2 (1− c1)

)
δΨ= S0δFH , (9)
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which can be rewritten as:340

(−2Ψ+Ψ0 + c2 (1− c1)S⇄(0)− (n1 + g1)S0)δΨ= c2 (1− c1)S0δFH , (10)

and integrating both sides gives:

Ψ2 − (Ψ0 + c2 (1− c1)S⇄(0)− (n1 + g1)S0)Ψ+ c2 (1− c1)S0FH +C = 0, (11)

with integration constant C. The solution with Ψ(FH = 0) = Ψ0 is:

Ψ(FH) =
Ψ0

2
+
c2 (1− c1)S⇄(0)

2
− (n1 + g1)S0

2
±
√(

Ψ0 − c2 (1− c1)S⇄(0)+ (n1 + g1)S0

2

)2

− c2 (1− c1)S0FH (12)345

Rather using S⇄(0), we express it as the initial FovS using (3), i.e., S⇄(0) =−S0FovS(0)
Ψ0

. The final expression becomes:

Ψ(FH) =
Ψ0

2
−c2 (1− c1)S0FovS(0)

2Ψ0
− (n1 + g1)S0

2
±
√(

Ψ2
0 + c2 (1− c1)S0FovS(0)+ (n1 + g1)S0Ψ0

2Ψ0

)2

− c2 (1− c1)S0FH

(13)

Do note that several assumptions are required to arrive at this final expression. For example, various residual (Fres) and

climate feedbacks were not considered, such as ocean-sea ice interactions (destabilizing), ocean-atmosphere fluxes (destabiliz-

ing), pycnocline deepening (stabilising), open Bering strait (stabilizing) and the effect of ocean eddies (stabilizing) (Vander-350

borght et al., 2025). The linear relation in Fgyre and FovN with S⇄ is less accurate and c1 is less constant close to the tipping

point. Freshwater anomalies may be stored in the Atlantic Ocean and hence we assumed that changes in the freshwater content

are much smaller than changes in the freshwater balance terms (i.e., dW
dt ≪∆(FazS −FazN +FovS −FovN +Fsurf +Fres)).

These additional feedbacks and processes modify the idealized AMOC response and make it more difficult to derive an analyt-

ical solution for the northward overturning regime, as these processes (ideally) need to be expressed as a function of S⇄ (if it355

exists). We stress that this idealized AMOC response under hosing should be interpreted with care and one needs to consider the

appropriate feedback contributions for each (climate) model set-up. The key point is that the AMOC strength exhibits a square-

root dependence on the freshwater flux forcing, leading to a saddle-node bifurcation when the dominant balance is between

the applied freshwater flux forcing and the overturning component. As long as other contributions remain sufficiently small,

their effect will not change the structure (and therefore the type) of the bifurcation diagram.
::::::
Indeed,

:::
the

:::::
Fgyre :::

and
:::::
FovN ::::::

remain360

::::
fairly

:::::
linear

:::
up

::
to

::::::::::
FH = 0.51

:::
Sv

::::::
(Figure

::
7)

::::
and

:::
this

::
is
:::::::
beyond

:::
the

::::::
critical

:::::::
forcing

:::::
(0.465

::::::::::
Sv < FH ≤

::::
0.48

::::
Sv,

:::::
Figure

:::
2)

:::
for

:::::
which

:::
the

::::::::::::
salt-advection

:::::::
feedback

::::::::
becomes

:::::::::
dominant.

::::
Once

:::
the

:::::::
AMOC

:::::
starts

::
to

::::::::
collapse,

:::
the

:::::::
different

:::::::
AMOC

:::::::::::
contributions

::::::
become

:::::
much

:::::
larger

:::::
(e.g.,

::::::
Figure

::
4)

:::
and

::::
their

:::::::::
responses

:::
are

::::::::
attributed

::
to

:::::::::
large-scale

::::::::::
adjustments

:::::
under

:
a
:::::::::
collapsing

:::::::
AMOC.

:

For the Stommel 2-box model, we can demonstrate that a similar AMOC response holds (see Appendix A). Under no fresh-

water flux forcing (η = 0) in this model, the salinity difference between the two boxes is zero. This constraint gives the initial365

AMOC strength of Ψ0 = kα∆T a and FovS(η = 0) = 0, where k is a hydraulic pumping coefficient, α the (dimensionless)

thermal expansion coefficient, and ∆T a the (dimensionless) atmospheric temperature difference. The northern boundary is
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closed (n1 = 0) and gyres are not represented (g1 = 0) in the Stommel model. The oceanic temperatures in the Stommel model

are fixed (under steady state assumption), and in this case c1 = 0. Relation (13) for the Stommel model reduces to:

Ψ(FH) =
kα∆T a

2
±
√(

kα∆T a

2

)2

− c2S0FH (14)370

and is similar to relation A9, apart from some scaling coefficients.

4.2 Application of the reduced model

Using the reduced model, the critical value of FH for an AMOC collapse in the CESM can be estimated by assuming that the

freshwater flux forcing is (in its first order) balanced by the overturning and azonal (gyre) components, which is the case for

the CESM (van Westen et al., 2024a). The critical freshwater flux forcing is obtained by setting the terms under the square root375

in equation (13) equal to zero. Solving this yields:

F c
H =

1

c2 (1− c1)S0

(
Ψ2

0 + c2 (1− c1)S0FovS(0)+ (n1 + g1)S0Ψ0

2Ψ0

)2

. (15)

The F c
H is dependent on the initial AMOC strength and initial FovS value. In the CESM, the Atlantic Ocean surface area

outside 20◦N – 50◦N receives a negative freshwater flux as part of the global compensation (see inset Figure 2a). This makes

the applied hosing 86% effective when considering the total Atlantic Ocean surface area (34◦S – 65◦N) and F c
H needs to be380

adjusted by a factor 1
0.86 . The time-means (first 50 model years) in the CESM quasi-equilibrium simulation are Ψ0 = 16 Sv

and FovS(0) = 0.22 Sv, which give: F c
H = 1

0.860.38 = 0.44 Sv (Figures 8a,b). When using the maximum and minimum values

(over the first 50 model years) for AMOC strength and FovS, we find F c
H = 1

0.860.44 = 0.52 Sv and F c
H = 1

0.860.33 = 0.38 Sv,

respectively (Figures 8a,b).

The F c
H determined from the reduced model is somewhat smaller (0.06 Sv for the mean) than our reference of FH = 0.5 Sv.385

By increasing the gyre (or northern overturning) responses, we can reduce this difference (Figure 8d). The gyre contributions

also control the distance between F c
H and value of FH at the FovS minimum (Dijkstra, 2007; Huisman et al., 2010; Dijkstra

and van Westen, 2024). For the reduced model and with standard values of the parameters n1 and g1, this difference is about

∆FH = 0.34× 10−2 Sv (Figure 8d), and decreasing with smaller g1 (or n1).

The actual FovS minimum in CESM is found for the statistical equilibrium of FH = 0.48 Sv (Figure 9a), whereas the FovS390

minimum in the quasi-equilibrium was found around FH = 0.52 Sv (van Westen et al., 2024a). There is , however, substantial

overlap in the statistical properties of the four statistical equilibria closest to the tipping point. Following van Westen et al. (2024a)

, we use cubic splines that interpolate cubic polynomials ,
::::::

which
::::::::::
complicates

:::
the

:::::
FovS ::::::::

minimum
::::::::::
assessment.

::::::::::::
Alternatively,

:::::::::::::::::::::
van Westen et al. (2024a)

:::
used

::::::
cubic

::::::
splines

::
to

:::::::::
determine

:::
the

:::::
FovS :::::::::

minimum,
::
in

::::::
which

:::::
cubic

::::::::::
polynomials

:::
are

:::::::::::
interpolated

between so-called knots, for these knotswe use
:
.
:::
For

:::::
these

:::::
knots,

:
the FovS values from these

::
the

:
four statistical equilibria .395

For each of the
:::
can

::
be

:::::
used,

:::
but

:::
this

::::::
results

::
in

::::::::
spurious

:::
fits

::::
(thin

::::::
curves

::
in

::::::
Figure

:::
9a)

:::
due

::
to
:::

the
:::::::

limited
::::::
number

:::
of

:::::
knots.

:::
To

:::::
obtain

::
an

::::::::
unbiased

:::::::
estimate

:::
of

:::
the

::::
FovS:::::::::

minimum,
:::
all

::::
FovS:::::::::::

combinations
:::

of
:::
the four statistical equilibria (i.e., the knots),we

draw one random FovS value (50 years in total) and these are used to generate the cubic splines with two different boundary
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Figure 8. (a&b): The AMOC and FovS responses of the reduced model under the freshwater flux forcing (cf. equations (13) and (3),

respectively), where the solid curves indicate the steady AMOC on state and dotted curves the unstable branch. The initial values for both

the AMOC strength and FovS were obtained from the first 50 model years of the quasi-equilibrium. The AMOC strength values are 16.0 Sv

(mean), 17.8 Sv (maximum) and 14.3 Sv (minimum), and FovS values are 0.22 Sv (mean), 0.24 Sv (maximum) and 0.20 Sv (minimum).

For
::
the

::::::::
‘Observed

:::::::
model’,

::
we

:::
use

:::
the

:::::::
reduced

:::::
model

::
in

::::::::::
combination

:::
with

:
observed values we used

::
of 17 Sv (Smeed et al., 2018) and

−0.15 Sv (Arumí-Planas et al., 2024) for the AMOC strength and FovS, respectively. (c): The critical freshwater flux forcing (F c
H ) for

varying initial AMOC strength and initial FovS. The ranges for the CESM (first 50 model years of quasi-equilibrium) are indicated. The

critical freshwater flux forcing was not determined for relatively weak AMOC strengths (< 5 Sv). (d): Values of F c
H (solid curves) and

difference to FovS minimum (dashed curves) for varying gyre sensitivity (g1) and two cases for the northern overturning sensitivity (n1),

using the time-mean (first 50 model years) AMOC strength and FovS. The standard CESM values are g1 = 0.032 Sv kg g−1 (blue dotted

line) and n1 = 0.025 Sv kg g−1 (black curves). For all CESM results, we consider the hosing over 20◦N – 50◦N (with global surface

compensation), making the applied hosing 86% effective (see main text).
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conditions (i. e., not-a-knot and natural). Ten random cubic splines aredisplayed in Figure 9a (thin curves)and the mean over

100,
:::::
6,250,000 random cubic splines (thick curve)goes through the time means of the statistical equilibria. The

::::::::::::
combinations)400

::
are

::::::::::
considered,

::::
from

::::::
which

::
the

:::::::::
frequency

::
of

:::
the FovS::::::::

minimum
:::
per

::::::::
statistical

::::::::::
equilibrium

::
is

::::::::::
determined.

:::::
These

:::::::::
frequencies

::::
are:

::::
1.1%

::::::::::
(FH = 0.45

::::
Sv),

::::::
21.7%

:::::::::::
(FH = 0.465

:::
Sv),

::::::
43.2%

::::::::::
(FH = 0.48

:::
Sv)

::::
and

::::::
34.0%

:::::::::::
(FH = 0.495

:::
Sv),

::::
with

:::
the

::::::::
weighted

:::::
FovS

::::::::
minimum

::
at

::::::::::
FH = 0.482

:::
Sv.

::::
This

::::::
indeed

:::::::
confirms

::::
that

:::
the

::::
FovS minimum is found for FH ≤ 0.487 Svin

::::
most

:::::
likely

:::::
found

:::
for

:::::::::
FH = 0.48

:::
Sv,

:::::
where

:
66% of the cases (bars

:::::::::::
combinations

:::
has

:::
the

::::::::
minimum

:::
for

::::::::::
FH ≤ 0.48

:::
Sv.

:::
The

:::::::
former

:
is
::::

also
::::::::
reflected

::
in

:::
the

:::::::::
cumulative

::::::::::
distribution

::::::::
function

::
of

:::::
FovS :::

for
:::
the

::::
four

::::::::
statistical

:::::::::
equilibria

:::::
(upper

::::::
panel in Figure 9b), with the FovS405

minimum at a mean value of FH = 0.481
:::::
where

:::::::::
FH = 0.48 Sv (from the 100,000 realisations) . The

:::::
black

:::::
curve)

:::
has

:::
the

::::::
largest

:::::::::
cumulative

::::::::
frequency

:::
for

:::::
most FovS minimum estimated from the cubic splines is frequently found at FH = 0.495 Sv (curves

::::::
values.

::::
This

:::::
result

:
is
::::::
robust

:::::
when

:::::
using

:
a
:::::::
different

:::::::
50-year

:::::::
window

::
or

:::
the

:::
last

::::
150

::::
years

:::
of

::
the

::::::::::
equilibrium

::::::::::
simulations

::::::
(lower

::::
panel

:
in Figure 9b), which is attributed to the random sampling such that the knot at .

::::
For

:::
the

::::
latter

:::::
case,

:::
the

::::
FovS:::::::::

minimum

:::::::::
frequencies

::::
are:

:::::
1.2%

::::::::::
(FH = 0.45

::::
Sv),

:::::
21.4%

::::::::::::
(FH = 0.465

:::
Sv),

::::::
42.6%

::::::::::
(FH = 0.48

::::
Sv)

:::
and

::::::
34.8%

:
(FH = 0.495 Svhas the410

lowest )
::::
over

:::
all

:::
the

:::::::::::
combinations

::::
(i.e.,

::::::::::::
506,250,000),

::::
with

:::
the

::::::::
weighted

:
FovS value of the four knots. The cubic spline mean

::::::::
minimum

::::
also

::
at

::::::::::
FH = 0.482

:::
Sv.

:::::
What

::
is

::::::::
important

:::::
here,

::
is

:::
that

:::
the

:
FovS minimum is found ∆FH = 0.014 to 0.029

:::::
0.013

::
to

:::::
0.028 Sv before the upper bound of the multi-stable regime. A similar freshwater flux forcing difference is found in a fully-

implicit global ocean model (Dijkstra and van Westen, 2024), where it was shown that the FovS minimum is connected to a

saddle-node bifurcation.415

The overlap in the statistical properties of the four statistical equilibria closest to the tipping point also complicates the shape

(i.e., square-root) estimate between AMOC strength and FH . These four equilibria are clearly insufficient and one needs more

equilibria to obtain a better estimate of the shape. This is computationally expensive for the CESM, but can easily be done for

the E-CCM and also under stochastic noise. Even if more equilibria were available for the CESM, there is a possibility that the

structure of multiple equilibria is much more complicated (Lohmann et al., 2024). The latter may explain the relatively strong420

AMOC strength for FH = 0.48 Sv, but this can not be verified from the results presented here. It is therefore more relevant

to analyse the different AMOC feedback strengths over large FH intervals, which clearly indicate a square root dependence

between AMOC strength and FH (Vanderborght et al., 2025) and this is also supported by the reduced model here.

Using the reduced model
::::
(with

:::
the

:::
c1,

:::
c2,

::
g1::::

and
::
n1:::::

from
:::
the

::::::::
CESM),

:
one can make a rough estimate of the critical

freshwater flux forcing needed to collapse the present-day AMOC. For observed valuesfor AMOC strength and FovS, we used425

17 Sv (Smeed et al., 2018) and −0.15 Sv (Arumí-Planas et al., 2024)
:::
for

::::::
AMOC

:::::::
strength

::::
and

::::
FovS, respectively. We assume

that all the Greenland Ice Sheet melt is added to the Atlantic Ocean surface, making the hosing 100% effective, and we find

F c
H = 0.19 Sv (Figure 8). Although this critical freshwater flux forcing is substantially smaller than the CESM, it still boils

down to 25 times the present-day melt rate of the Greenland Ice Sheet (Sasgen et al., 2020). Nevertheless, what is most relevant

here is that the present-day AMOC is more sensitive (i.e., relatively large ∂AMOC
∂FH

) compared to CESM and typical CMIP6430

models, as most climate models are positively biased in their FovS (Van Westen and Dijkstra, 2024; van Westen et al., 2025).

In other words, the AMOC is overly stable when having positive FovS biases and underestimate the risk of AMOC tipping (Liu
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Figure 9. (a): Cubic splines fits (thin curves) using random FovS values from the four statistical equilibria. The mean over 100,000 random

cubic splines are shown by the thick curves. We use the not-a-knot boundary condition (upper panel) and the natural boundary condition

(lower panel). (b): The probability
::::::::
cumulative distribution function (PDF) of the FovS minimum using cubic splines and

::
for

:
the expected

PDF from the
:::
four statistical equilibriaare indicated by

:
,
:::::::
showing the bars (grouped by 0.015

::
last

:::
50 Sv

::::
model

:::::
years

:::::
(upper

::::
panel) . For the

cubic splines we also determined the PDFs with a finer resolution of 0.001
:::
and

:::
last

:::
150 Sv

::::
model

:::::
years (curves

::::
lower

:::::
panel). For each PDF,

we generated 100,000 independent sets of FovS values from the four statistical equilibria.

et al., 2017). As was argued in Vanderborght et al. (2025), the reduced model only holds under (quasi-)equilibrium conditions,

making this analysis less useful under transient climate change (van Westen et al., 2025).

5 Transient AMOC behavior under climate change435

The existence of a saddle-node bifurcation in the E-CCM helps to understand how AMOC stability in CESM is influenced

under climate change. Changes in the background climate conditions can be interpreted as a shift in the position of the saddle-

node bifurcation. This can already be demonstrated in the Stommel model where the saddle-node bifurcation shifts to lower

freshwater flux forcing values under a smaller atmospheric temperature gradient (Figure A2).

We first analyse the CESM simulations under the Hist/RCP4.5 and Hist/RCP8.5 scenarios. The AMOC collapses in three out440

of the four CESM simulation under climate change (Figures 10a,b). The simulation under the higher freshwater flux forcing of

FH = 0.45 Sv are closer to the tipping point (under PI conditions) and hence are more prone to undergo transitions, which is

indeed the case. For FH = 0.18 Sv, only the Hist/RCP8.5 scenario shows an AMOC collapse while in the Hist/RCP4.5 scenario

the AMOC eventually recovers. In the latter scenario, the AMOC shows distinct centennial variability and this is associated

with the typical overturning time scale (Winton and Sarachik, 1993).445
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Figure 10. (a&b): The AMOC strength at 1,000 m and 26◦N under the different climate change scenarios, the yellow shading indicates

observed ranges (Smeed et al., 2018). (c&d): The zonally-averaged (2-meter) surface temperature trend (model year 2000 – 2100) under the

different climate change scenarios. The globally-averaged temperature trend is indicated by the dashed lines.
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The imposed transient climate change forcing induces above-averaged
::::
above

:::::::
average

:
surface temperature trends (compared

to the global mean) at the higher latitudes (i.e., polar amplification, Figures 10c,d). This temperature response reduces the

meridional (equator-to-pole) temperature gradient and may influence the multi-stable AMOC regime, as is the case for the

Stommel model (Figure A2). We can test this in the E-CCM by reducing the atmospheric meridional temperature gradient by

imposing a (positive) atmospheric temperature anomaly (∆T an ) over box n (and also over atmospheric box s as they are coupled450

(van Westen et al., 2024b)). We keep the atmospheric temperatures the same for boxes t and ts to limit the degrees of freedom.

The steady states (with ξ = 0) for the reference case (∆T an = 0◦C) and climate change case (∆T an = 5◦C) are shown in

Figure 11a. Both saddle-node bifurcations shift to lowerEA values and the hysteresis width decreases from 0.30 Sv (reference)

to 0.22 Sv (climate change). This shift can be understood from the smaller meridional density difference between box n and

box ts (equation (1)) due to higher temperatures and this requires a smaller freshwater flux forcing to reach the critical AMOC455

strength corresponding to the tipping point. The reduced meridional temperature gradient also weakens the AMOC on strength

by a few Sv when comparing the two cases. The shift of the upper saddle-node bifurcation to lower EA values indicates that

the AMOC on state loses stability under climate change.

To study the transient climate change forcing in the E-CCM, we linearly increase T an by 1◦C per century up to model

year 500 and then keep the temperature anomaly constant at ∆T an = 5◦C. The AMOC strength (black curve in Figure 11b)460

under climate change is shown for constant EA = 0.335 Sv, a similar set-up as in the CESM. For each temperature anomaly

∆T an we determined the steady states (with an accuracy of 0.1◦C) and the values for the AMOC on, unstable branch and AMOC

off states for EA = 0.335 Sv are also shown in Figure 11b. These steady states represent the ‘frozen’ bifurcation diagrams for

a given temperature anomaly (insets in Figure 11b). The transient AMOC is clearly deviating from the AMOC on state. Up

to model year 500, the AMOC gradually weakens and after a few oscillations eventually collapses in model year 900. These465

oscillations are related to a (sub-critical) Hopf bifurcation close to the saddle-node bifurcation. When lowering the T an trend to

0.726◦C per century and then keeping ∆T an = 5◦C fixed, the AMOC strength also displays substantial oscillatory behaviour

but does recover (not shown). This means that rate-induced effects are present and the AMOC collapses for T an trends larger

than 0.726◦C per century for EA = 0.335 Sv.

When using a trend of 1◦C per century for T an (up to ∆T an = 5◦C) and varying EA (Figure 11c), we always find an AMOC470

collapse for EA > 0.342 Sv as there are no stable AMOC on states at larger EA values (Figure 11a). The AMOC always

recovers for EA ≤ 0.33 Sv, again demonstrating that rate-induced effects are present for EA = 0.335 Sv and EA = 0.34 Sv.

Rate-induced effects are also present for EA ≤ 0.33 Sv, however, the AMOC is much more stable compared to the previous

presented case of EA = 0.335 Sv. This is also demonstrated in Figure 11d, where we vary the T an temperature trend and

then keeping ∆T an = 5◦C fixed for EA = 0.33 Sv. Oscillatory behaviour becomes more pronounced when increasing the T an475

temperature trend and the greatest AMOC weakening is found for relatively large temperature trends. For a temperature trend of

11.85 ◦C per century (inset in Figure 11d), the AMOC strength (and other quantities) crosses the basin boundary between model

years 43 and 87 and the AMOC displays oscillatory behavior. These oscillations decrease in amplitude after model year 800

and then the AMOC recovers. For larger temperature trends than 11.85 ◦C per century the AMOC eventually collapses, which

is a factor of 16 larger than the critical temperature trend of 0.726◦C per century for EA = 0.335 Sv. This demonstrates that480
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Figure 11. (a): The steady states for the AMOC strength for the standard set-up (solid curves) and under climate change (dashed curves).

(b): The AMOC strength under transient climate change and EA = 0.335 Sv, where ∆T a
n linearly increases up to 5◦C up to model year 500

(trend of 1◦C per century) and then remains constant. The steady states atEA = 0.335 Sv for each climate change anomaly (with an accuracy

of 0.1◦C) are also displayed. The insets show the steady states and the transient AMOC state (black dot) at ∆T a
n = 2◦C (model year 200)

and ∆T a
n = 4◦C (model year 400). (c): Similar to panel b, but now for different values of EA with ∆EA = 0.005 Sv. (d): The transient

AMOC strength under climate change and EA = 0.33 Sv, but now for varying temperature trends in ∆T a
n . The inset shows the transient

AMOC strength for a temperature trend of 11.85◦C per century.
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slightly lowerEA values can make the AMOC substantially more stable. It is possible to collapse the AMOC forEA < 0.33 Sv

and this requires even larger climate change anomalies (∆T an > 5◦C).

6 Summary and Discussion

The Community Earth System Model (CESM) as used here (version 1.0.5) is an extremely high-dimensional dynamical system,

representing the interaction of the ocean, atmosphere, land and sea-ice processes. In a pre-industrial configuration, the AMOC485

collapses under a quasi-equilibrium input of freshwater in the 20◦N – 50◦N region, with surface freshwater compensation over

the rest of the global domain (van Westen et al., 2024a).

In this paper, we have provided arguments for the case that, as in ocean-climate models lower in the model hierarchy (box

models (Cessi, 1994) and fully-implicit ocean models (Dijkstra, 2007)), the AMOC collapse behavior in CESM is caused by

the presence of a saddle-node bifurcation in the high-dimensional dynamical system. While one indeed would expect such490

a bifurcation in a deterministic dynamical system when varying a single parameter (where the saddle-node and the Hopf

bifurcation are the only two generic codimension-1 bifurcations), this is far from trivial in the CESM. The ocean component

of the CESM is much more complicated with several interacting positive and negative feedbacks (Vanderborght et al., 2025)

and which is forced by a rapidly varying atmosphere. So attractors of the CESM are expected to have a quite complicated

geometrical structure and transitions between those (such as between the AMOC on state and AMOC off state) could in495

principle be much more complicated than the traditional saddle-node bifurcation picture as suggested by conceptual models

(Dijkstra, 2024).

For a saddle-node bifurcation, one would have to demonstrate a square root dependence of the AMOC strength on the

freshwater forcing near the collapse point, which arises from the destabilising salt-advection feedback (Vanderborght et al.,

2025). This is not feasible for the CESM due to its strong internal variability and hence our case is built using three more500

indirect arguments. The first argument is that in the CESM, there is a strict critical boundary of existence of the statistical

steady ‘AMOC on’ state. We showed this by subsequent near-equilibrium computations near the collapse point in the quasi-

equilibrium simulation, similar to the approach in Hawkins et al. (2011). Such a strict boundary is characteristic of a saddle-

node bifurcation as shown for the E-CCM. The full AMOC hysteresis experiment (van Westen and Dijkstra, 2023) shows that

the AMOC recovers at a much lower freshwater flux forcing (FH ≈ 0.09 Sv) compared to the collapse point (0.495≤ FH <505

0.51 Sv), demonstrating non-linear behaviour that is also essential to saddle-node bifurcations. Second
::::
The

::::::
second argument

is based on the CESM results with a slower freshwater forcing rate. Here, we show that the AMOC collapse precisely follows

the behaviour (Ritchie et al., 2021) one would expect near a saddle-node bifurcation, i.e., with a steeper transition (in FH

space) than for the standard forcing rate. Do note that this characteristics is also found for other bifurcation types (Berglund

and Gentz, 2006). The third, and probably strongest, argument relies on the assumption that overturning freshwater transport510

predominately compensates any freshwater flux forcing, which holds approximately for the CESM (van Westen et al., 2024a).

In this case, one can show that the AMOC strength has a square-root dependence with the freshwater forcing using a reduced

model (cf. section 4).
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To these arguments, we can add the support from early warning indicators as found for the CESM (van Westen et al., 2024a).

A characteristic property of saddle-node bifurcations is the loss of resilience (i.e., critical slowdown) near the tipping point,515

measured by the increase in variance and autocorrelation (van Westen et al., 2024b). Although these early warning indicators

based on the AMOC strength were not giving any critical slowdown, optimal regions for early warning signal detection were

found near 34◦S (Smolders et al., 2025). The results presented here (cf. Figure 3) show an increase in the FovS variance close to

the tipping point. This increase in variability indicates that the AMOC loses resilienceand
:
, making it more prone to transitions,

characteristic of approaching a saddle-node bifurcation (van Westen et al., 2024b).520

The implications of this result are substantial. First of all, it shows that, for the AMOC tipping problem, conceptual models

that capture only the dominant feedbacks are useful (Dijkstra, 2024). For example, in the E-CCM only the salt-advection feed-

back and gyre feedback are captured which are also dominant in CESM and hence it is relatively easy to tune the behavior of the

E-CCM to the CESM. Similarly, Wood et al. (2019) tuned a box model (only representing the salt-advection feedback) to the

FAMOUS (Hawkins et al., 2011) where likely due to its low resolution the gyre feedback is relatively weak. Sensitivity studies525

in the conceptual model can then be used to design useful simulations in the complex model and also physical explanations

can be sought in the reduced model. Second, if the multi-stable regime of the AMOC is bounded by saddle-node bifurcations,

then the effect of model biases can be studied in terms of shifts of the saddle-node bifurcations. In fully-implicit ocean models,

it was recently shown that a bias in Indian Ocean precipitation leads to a right shift (i.e., to higher Atlantic freshwater flux

forcing strengths) of the bifurcation diagram (Dijkstra and van Westen, 2024; Boot and Dijkstra, 2025). Our reduced model530

(cf. Section 4.2) also shows that positive freshwater transport biases at 34◦S make the AMOC more stable under hosing. If

indeed a saddle-node bifurcation is present in all global climate models (GCMs), this would indicate that GCMs having such a

bias would be too stable (Van Westen and Dijkstra, 2024; van Westen et al., 2025).

So far, the saddle-node bifurcation was discussed only in the case of an AMOC collapse when changing the freshwater flux

forcing. However, under climate change mainly the heat flux forcing will change and not in a quasi-equilibrium way. Also535

in this case, we have shown that the existence of the saddle-node bifurcation is an important aspect to explain the transient

behavior of the CESM. Climate change modifies the atmospheric meridional temperature gradient and shifts the saddle-node

bifurcation to lower freshwater flux forcings, making the ‘AMOC on’ state less resilient. This was shown in greater detail

by the idealized results of the E-CCM, the collapse behavior can be viewed as crossing a moving saddle-node bifurcation

in time (Ritchie et al., 2021). Rate-induced effects are also highly relevant under climate change (Hankel, 2025), with the540

strongest evidence for rate-induced tipping when comparing the RCP4.5 (AMOC recovery) and RCP8.5 (AMOC collapse)

and FH = 0.18 Sv. Although the AMOC collapses for both the RCP4.5 and RCP8.5 under FH = 0.45 Sv, which suggests a

moving saddle-node bifurcation under climate change, rate-induced effects cannot be dismissed and to test this we need to

conduct more climate change forcing experiments, this is out of the scope of this paper. Note that the E-CCM is limited in

representing other (non-linear) climate change feedbacks, such as enhanced evaporation (due to higher temperatures) which545

could partly stabilize the AMOC (van Westen et al., 2025).

Finally, as the phase space of the CESM is so high-dimensional, why would a saddle-node bifurcation appear in such a

model (as there are many instabilities)? This result can be possibly explained by looking at the Lorenz84-Stommel1961 model
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or the PlaSim sea-ice model (Tantet et al., 2018), which both display chaotic behavior, but also show a large-scale transition

under variation of one parameter. Here, the chaotic behavior is only in the atmosphere component and the large-scale transition550

dynamics is governed only by the slow component, which is then noise-forced. While in the total phase space, this may be

a crisis bifurcation, in the reduced phase space of the slow component, this would appear then as a saddle-node bifurcation.

However, more work is needed to make this more precise.

Code and data availability. All processed model output and Python scripts to generate the results are available at:

https://doi.org/10.5281/zenodo.17123475555

Appendix A: The Analytical Solutions of the Stommel Box Model

The Stommel 2-box model (Stommel, 1961) consists of two well-mixed boxes (equal volume) and the boxes exchange water

mass properties over time (Figure A1). The circulation strength, ψ, is set by the density difference between the high-latitude

(T1, S1) and equatorial box (T2, S2):

ψ = k(ρ1 − ρ2) (A1)560

where k is a hydraulic pumping constant. A linear equation of state (ρ= ρ0 −α(T −T0)+β(S−S0)) yields:

ψ = k(α∆T −β∆S) (A2)

where ∆T = T2−T1 and ∆S = S2−S1. The governing (dimensionless) differential equation for the Stommel model are then

given by:

dT1
dt

= |ψ|∆T +λT (T
a
1 −T1) (A3)565

dT2
dt

= −|ψ|∆T +λT (T
a
2 −T2) (A4)

dS1

dt
= |ψ|∆S− η (A5)

dS2

dt
= −|ψ|∆S+ η (A6)

In these relations λT is the thermal exchange coefficient with the overhead atmosphere, the atmospheric temperatures are

fixed.570

Under the assumption that the thermal exchange with the atmosphere is much faster than the thermal exchange between the

boxes (ψ∆T ≪ λT (T
a
i −Ti), with i= 1,2), the steady state for the temperatures has T1 = T a1 and T2 = T a2 . Using this steady

state assumption, the time-evolution equation of the circulation strength (from A2 and A3 – A6) reduces to:

dψ

dt
=−kβ d∆S

dt
=−kβ

(
dS2

dt
− dS1

dt

)
= 2kβ (|ψ|∆S− η) (A7)
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Figure A1. Schematic representation of the Stommel 2-box model in its northward overturning state with AMOC strength ψ. The blue and

brown arrows are freshwater and heat fluxes, respectively. The hosing is directed from the equatorial box (with T2, S2) to the high-latitude

box (with T1, S1).

where the temperature contribution vanishes as the atmospheric temperatures are constant (d∆Tdt = d∆Ta

dt = 0). The final step575

is to substitute ∆S = kα∆Ta−ψ
kβ from (A2) to obtain:

dψ

dt
=−2|ψ|ψ+2kα∆T a|ψ| − 2kβη (A8)

The steady states (dψdt = 0) with northward overturning (ψ > 0) are given by:

ψ1,2 =
kα∆T a

2
±
√(

kα∆T a

2

)2

− kβη (A9)

For the reversed circulation (ψ < 0), these are:580

ψ3,4 =
kα∆T a

2
±
√(

kα∆T a

2

)2

+ kβη (A10)

but note that ψ3 has to be rejected since ψ3 ≮ 0. The stable AMOC on state is given by ψ1, the stable AMOC off state by ψ4,

and the unstable state by ψ2. The (dimensionless) solutions for two different atmospheric temperature differences are shown in

Figure A2.
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Figure A2. Bifurcation diagram for the Stommel 2-box model, where the black dots indicate saddle-node bifurcations. The atmospheric

temperature differences are (a): ∆T a = 5 and (b): ∆T a = 3. For the other dimensionless coefficients, we used: α= 2×10−4, β = 8×10−4

and k = 2× 103.

Appendix B: The Normal Form of the Saddle Node Bifurcation585

For the Stommel model, the dynamics of the AMOC strength in the AMOC on state is given by:

dψ

dt
=−2ψ2 +2kα∆T aψ− 2kβη, (B1)

which can be generalised for the saddle-node bifurcation to:

dψ

dt
=Aψ2 +Bψ+C −Dt. (B2)

where A, B, C and D are constants, and the freshwater flux forcing is now varied linearly with time (i.e., η(t) =Dt). This590

generalised form also holds for the reduced model (Section 4.1).

Following the procedure outlined in Faure Ragani and Dijkstra (2025), we rewrite
:::::::
Relation (B2)

::
is

:::::::
rewritten

:
as:

dψ

dt
=A

(
ψ+

B

2A

)2

+

(
C − B2

4A

)
−Dt. (B3)

When
:::
and

:::
we

::::::
follow

:::
the

::::::::
procedure

:::::::
outlined

:::
in

:::::::::::::::::::::::::::
Faure Ragani and Dijkstra (2025)

:
,
:::::
where

:
time t is considered as a parameter ,

:::
and the saddle-node bifurcation can be found by setting the last two terms on the right hand side of (B3) to zeroand solving

:
.595

::::::
Solving

:
for t yields:

tSN =
C

D
− B2

4AD
. (B4)

To obtain the normal form, we apply a rescaling of the variables:

x=−AtSN
(
ψ+

B

2A

)
and τ =

t

tSN
(B5)
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and the dynamics of the AMOC in the rescaled variables are:600

dx

dτ
=

dx

dt

dt

dτ
=−AtSN dψ

dt
tSN =−A(tSN)2

(
A

(
ψ+

B

2A

)2

+

(
C − B2

4A

)
−Dt

)
. (B6)

Now using (B4) and (B5) to find the normal form of:

dx

dτ
=−A(tSN)2

(
A

x2

(−AtSN)2 +DtSN −DtSNτ

)
= r−x2 (B7)

where r =−AD(tSN)3 (1− τ). Note that r > 0 for τ < 1 as A< 0 and D > 0.

The non-autonomous system (B7) can be solved analytically (Li et al., 2019) and it was shown that the collapse time605

t∗ = 1+2.333α−1/3, where α=−AD(tSN)3 > 0. If the forcing value at which the collapse occurs for a rate D is indicated

by γf =Dt∗, then for the collapse forcing (γs) at half rate D/2, we find that αs = 4αf and hence γs =D(1+2.333α
−1/3
s ) =

D(1+0.177α
−1/3
f )< γf . Hence, the transition occurs at lower forcing strength (and faster) when the rate is lower (see also

Figure 3b and Figure 4 in Li et al. (2019)).
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