10

15

20

25
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Abstract. Recently, a collapse of the Atlantic Meridional Overturning Circulation (AMOC) was found in the Community Earth
System Model (CESM) under constant pre-industrial greenhouse gas forcing conditions. To determine the stability changes of
the AMOC with changing (freshwater) parameters in models, it is important to determine the origin of the collapse behavior.
In this paper, we argue that the classical picture of a saddle-node bifurcation holds for the AMOC collapse in the CESM. We
provide specific supporting arguments by showing results of additional pre-industrial CESM simulations. The CESM results
are compared with those of a five-box AMOC model, which is known to have saddle-node bifurcations, and with which many
sensitivity experiments can be performed. Theoretical arguments are also provided showing that the essential dynamics of
the CESM can be reduced to a low-dimensional model in which a saddle-node bifurcation causes the AMOC collapse. The
underlying physical reason is that the AMOC behaviour in CESM is controlled by a small set of dominant feedback processes.
This has important consequences for the value of conceptual AMOC models, for assessing the effect of model biases on the

AMOC stability, and for the interpretation of AMOC behaviour under climate change scenarios.

1 Introduction

A hot issue in current climate research is the Atlantic Meridional Overturning Circulation (AMOC) response under future
climate change. Climate models participating in the Coupled Model Inter-comparison Project Phase 6 (CMIP6, Eyring et al.
(2016)) indicate a substantial AMOC weakening during the 215¢ century (Weijer et al., 2020). Beyond 2100 there is much
more uncertainty as the AMOC may (partially) recover or fully collapse (Liu et al., 2017; Bonan et al., 2022; Drijthout et al.,
2025). Transient temperature responses are effective in causing the 215 century AMOC weakening but salinity responses are
crucial in further destabilizing the AMOC (Gérard and Crucifix, 2024; van Westen et al., 2025). The dominant destabilizing
AMOC tipping mechanism is the salt-advection feedback, where an AMOC weakening leads to a smaller northward salinity
transport amplifying the initial AMOC weakening (e.g., Marotzke (2000)). The existence of the salt-advection feedback is why
the AMOC is labelled as a tipping point in the climate system (Lenton et al., 2008; Armstrong McKay et al., 2022).

Stommel (1961) was the first to identify the salt-advection feedback in a simple two-box model and demonstrated that
this feedback induces transitions between two stable AMOC steady states. The multi-stable AMOC regime is bounded by two

saddle-node bifurcations in this model. Since then, studies using more detailed conceptual (box) models

Cessi, 1994; Cimatoribus et al., 2014; Wood et al., 2019) and numerically fully-implicit ocean-climate models (De Niet et al.,
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2007; Toom et al., 2012; Mulder et al., 2021) have shown that saddle-node bifurcations bound the multi-stable regime of the
AMOC in these models. Rahmstorf (1996) showed that the saddle-node bifurcation associated with the AMOC collapse is
linked to a critical value of the freshwater transport carried by the AMOC at 34°S, represented by the quantity Fi,s. When
including the stabilizing gyre responses (Sijp, 2012), a F,,,s minimum is found close to this saddle-node bifurcation (Dijkstra,
2007).

In numerically explicit ocean-climate models it is much harder (or not feasible) to determine the steady states versus (fresh-
water forcing) parameters and the boundaries of the AMOC multi-stable regime. An impression of the multi-stable regime can
be obtained by performing quasi-equilibrium simulations, where a freshwater flux forcing is changed very slowly back-and-
forth such that the model state stays close to the (slowly changing) statistical equilibrium. Such quasi-equilibrium simulations
have been performed with many ocean-only models (Rahmstorf, 1995; Lohmann et al., 2024), Earth System Models of In-
termediate Complexity (EMICs) (Rahmstorf et al., 2005; Cini et al., 2024), the FAMOUS model (Hawkins et al., 2011), the
Community Climate System Model (CCSM3) (Hu et al., 2012), and recently in the Community Earth System Model (CESM)
(van Westen and Dijkstra, 2023; van Westen et al., 2024a).

When the salt-advection feedback is the dominant feedback, as is the case for the Stommel (1961) model, it can be shown
that the stable ‘AMOC on’ state has a square-root (or quadratic) solution against varying freshwater flux forcing (see Ap-
pendix A) with the normal (most simple) form of dz/dt = r — 22 with 7 > 0 (see Appendix B). This square-root relation in the
Stommel model can be understood from the fact that the AMOC strength is proportional to the salinity gradient, whereas the
salinity gradient is also proportional to the AMOC strength. In more complex (climate) models that resolve more processes and
climate feedbacks, a near square-root dependency is also found for the AMOC strength against forcing (Dijkstra, 2007; van
Westen et al., 2024b; Vanderborght et al., 2025). Finding indications of a square-root relation in quasi-equilibrium simulations
is challenging as it requires very slow rates to follow the steady states of the system (Rahmstorf, 1996). Even if the rate is
sufficiently slow, this relation can be masked by relatively large (stochastic) noise (Berglund and Gentz, 2006). An alternative
approach is by obtaining statistical equilibria for fixed forcing values, but this is computationally too costly for CESM. Nev-
ertheless, as long as the salt-advection feedback remains dominant amid other AMOC-related feedbacks (Vanderborght et al.,
2025), a square-root dependency can be expected when the system is relatively close to its saddle-node bifurcation and hence
to tipping.

Here, we focus on the CESM results and address the issue whether its AMOC tipping behavior is also caused by the presence
of a saddle-node bifurcation, similar to that in the fully-implicit ocean-climate models (Dijkstra, 2007). This is certainly a
non-trivial issue as the CESM is an extremely high-dimensional dynamical system and the atmospheric fluxes create a high
frequency forcing on the ocean component of the model. In addition, in the quasi-equilibrium CESM simulation (van Westen
et al., 2024a) the forcing rate is rather large compared to the equilibration time scale of the AMOC (van Westen et al., 2024b)
and hence the (non-autonomous) dynamical system is not a fast-slow system (Kuehn, 2011). The existence of a saddle-node
bifurcation in the CESM is important for assessing the role of model biases on the stability of the AMOC and for understanding

the response of the model to transient climate change forcing (Ritchie et al., 2021).
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The aim of this paper is to provide a convincing case that a saddle-node bifurcation is causing the AMOC collapse in the
CESM, as presented in van Westen et al. (2024a). Thereto, we have performed several additional CESM simulations which
were branched from the quasi-equilibrium CESM simulation, we will compare the CESM behavior with that of a five-box
AMOC model for which a saddle-node bifurcation is known to exist (van Westen et al., 2024b). The advantage of this five-
box model is that we can easily conduct multiple sensitivity experiments to better understand the CESM behaviour. Section 2
describes the model set-up and simulations for the CESM and five-box modeland-is-folowed-, Next, in Section 3by-, the results
on the (statistical) steady states and quasi-equilibrium results of both medetsthe CESM and five-box model are presented.
Section 4 provides detailed theoretical-arguments for the existence of a saddle-node bifurcation in the CESMand-in-, followed
by Section 5, where the importance of this result for the behavior of the AMOC under climate change is shown. Finally, in

Section 6, the results are summarized and discussed.

2 Models and Methods
2.1 CESM simulations

The CESM (version 1.0.5) is a fully-coupled climate model and the simulations here have a 1° horizontal resolution for the
ocean/sea-ice components and a 2° horizontal resolution for the atmosphere/land components. For more details on the precise
CESM set-up, we refer to van Westen and Dijkstra (2023) and van Westen et al. (2024a). In those studies, the pre-industrial
forcing is used and in addition a freshwater flux forcing (') is applied between 20°N and 50°N in the Atlantic Ocean and is
compensated elsewhere (at the ocean surface) to conserve salinity. This is the same hosing region as in Hu et al. (2012) and
Rahmstorf (1996), which has the advantage that the North Atlantic deep convection sites are not directly impacted under the
hosing. The sensitivity of the hosing location will be thoroughly analysed below for the five-box AMOC model.

The quasi-equilibrium AMOC hysteresis simulation (van Westen and Dijkstra, 2023) is obtained by slowly increasing Fiy
from 0 Sv to 0.66 Sv and back to O Sv, at a rate of 3 x 10~ Sv yr‘l, resulting in a 4400-year long simulation. This simulation
remains close to the statistical equilibria, but the deviations become larger near the AMOC collapse and recovery (van Westen
et al., 2024b). To determine statistical equilibria (i.e., steady states), two 500-year long CESM simulations were performed (van
Westen et al., 2024b) at constant F, the steady states are indicated as Fyr. This was already done for Fr = 0.18 Sv (starting
at model year 600 of the quasi-equilibrium simulation) and at Fy = 0.45 Sv forcing (starting at model year 1500). The last
100 years of these steady states show hardly any model drift, meaning that the AMOC and global climate are dominated by
natural climate variability (van Westen and Baatsen, 2025). Below, we will show results of new CESM simulations performed
under constant Fy; forcing or with a slower rate of 7, and closer to the values where the AMOC collapse occurs in the
quasi-equilibrium simulation (around Fiz = 0.525 Sv, van Westen et al. (2024a)).

We will (in Section 5) also use results from two climate change simulations that were initialized from the end of the steady
state with Fiy = 0.18 Sv and Fj; = 0.45 Sv (van Westen et al., 2025). These climate change simulations were first forced under
the historical forcing (1850 — 2005) and followed by either RCP4.5 or RCP8.5 scenario forcing (2006 — 2100, Representative
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Concentration Pathway). Subsequently, they were further integrated for 400 years under their 2100 radiative forcing conditions

to study the equilibrium behaviour.

An overview of all the different CESM simulations are presented below in Table 1. In total, we present 11,670 model years

of model output. Ideally, one would determine even more steady states or lower the varying F'i rate in the quasi-equilibrium

simulation, but this is computationally not feasible. These additional simulations, however, can be done with the five-box

AMOC model.

Table 1. Overview of the different simulations conducted with the CESM, which includes: simulation name, freshwater flux forcing (varying

or fixed), radiative forcing, branched from simulation, duration, and the AMOC status at the end of simulation (on, transient or off). Note

that the forward QE was branched from the 2800-year long pre-industrial control simulation from Baatsen et al. (2020). The simulations are

sorted in order of appearance. Abbreviations: QE, quasi-equilibrium; PI, pre-industrial; RCP, Representative Concentration Pathway; E-RCP,

Extended Representative Concentration Pathway.

Simulation name

Freshwater flux forcing

Varying (8; Fr) or fixed (Frr)

Radiative forcing

Branched from simulation

Duration

(years)

AMOC status at

end of simulation

Forward QE 0:Fg =+3x10"*Syyr? PI at 1850 levels 2800 year PI control 2,200 Off
Backward QE 0 Fg=—-3x10"*Syyr* PI at 1850 levels Forward QE, Fp = 0.66 Sv 2,200 On
Steady state #1 Fr =0.18 Sv PI at 1850 levels Forward QE, Fly = 0.18 Sv 500 On
Steady state #2 Fr =0.458Sv PI at 1850 levels Forward QE, F'y = 0.45 Sv 500 On
Steady state #3 Fyg =0.465 Sv PI at 1850 levels Forward QE, Figz = 0.465 Sv 500 On
Steady state #4 Fy =0.48 Sv PI at 1850 levels Forward QE, Fly = 0.48 Sv 500 Off
Steady state #5 Fr =0.48 Sv PI at 1850 levels End of steady state #3 500 On
Steady state #6 Fg =0.495 Sv PI at 1850 levels Forward QE, F'g = 0.495 Sv 231 Transient
Steady state #7 Fg =0.495 Sy PI at 1850 levels End of steady state #5 500 On
Steady state #8 Fr =0.51Sv PI at 1850 levels Forward QE, Fiy = 0.51 Sv 197 Transient
Steady state #9 Frg =0.518v PI at 1850 levels End of steady state #7 500 Off

Half QE O Fy =+15x10"*Sv yr_1 PI at 1850 levels End of steady state #2 1,050 Off

Historical #1 Fy =0.18 Sv Historical (1850 —2005) End of steady state #1 156 On

RCP4.5 #1 Frr =0.18 Sv RCP4.5 (2006 — 2100) End of historical #1 95 Transient
E-RCP4.5 #1 Fp=0.18Sv RCP4.5 at 2100 levels End of RCP4.5 #1 400 On

RCP8.5 #1 Fy=0.18Sv RCP8.5 (2006 — 2100) End of historical #1 95 Transient
E-RCPS8.5 #1 Fy =0.18Sv RCP8.5 at 2100 levels End of RCP8.5 #1 400 Off

Historical #2 Fr =0.45Sv Historical (1850 —2005) End of steady state #2 156 On

RCP4.5 #2 Fr =0.45Sv RCP4.5 (2006 — 2100) End of historical #2 95 Transient
E-RCP4.5 #2 Fg =0.45Sv RCP4.5 at 2100 levels End of RCP4.5 #2 400 Off

RCP8.5 #2 Fr =0.45Sv RCP8.5 (2006 — 2100) End of historical #2 95 Transient
E-RCP8.5 #2 Fg =0.45Sv RCP8.5 at 2100 levels End of RCP8.5 #2 400 Off
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2.2 The five-box AMOC model

The five-box AMOC model (Figure 1) was developed by Cimatoribus et al. (2014), extended by Castellana et al. (2019),
and was recently further extended (hereafter the E-CCM, the Extended Cimatoribus-Castellana Model) by including oceanic
temperatures (van Westen et al., 2024b). The E-CCM has four surface boxes, where the Atlantic Ocean is represented by boxes t
and n, the Southern Ocean channel by box s, and the Southern Ocean Atlantic sector by box ts. There is one deep ocean box d,
hence this model does not include the Indo-Pacific Ocean nor Arctic Ocean. The Atlantic Ocean pycnocline depth, indicated
by the D, may vary in the E-CCM. The temperature and salinity are volume averaged over each box and heat and salinity are
exchanged between the boxes, and also heat between the surface boxes and overhead atmosphere. Salinity is conserved in the
E-CCM.

a a a a
Ts ts Tt Tn
AN AN AN AN

—— Volume transport
---> AMOC on
w0 AMOC off

| qN «——— Gyre transport

: —— Freshwater flux

«— Heat flux

30°S

Figure 1. Schematic representation of the five-box AMOC model (the E-CCM), adapted from van Westen et al. (2024b). The red arrows
represent volume transports, whereas the dashed and dotted arrows indicate the AMOC on and AMOC off states, respectively. The cyan and
blue arrows represent the gyre transport and freshwater fluxes, respectively. The freshwater from box s is distributed linearly over box n and
box t using a parameter £, where £ £ 4 is added to box ¢t and (1 —&) E 4 to box n. The original E-CCM configuration van Westen et al. (2024b)

is obtained when & = 0. The brown arrows are the heat fluxes with the overhead atmosphere for each surface box (i.e., box s, ts, t and n).

The AMOC strength in the northern box (g ) in the E-CCM is given by:

N = nh%m (1)
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where 7, is a hydraulic constant, p,, — p;s is the meridional density difference between box n and box ts, pg is a reference
density, and D the pycnocline depth. The densities are determined from a linear equation of state. For full details and sensitivity
experiments conducted with the E-CCM, we refer to van Westen et al. (2024b), where there is also a link to the publicly-
available E-CCM code. We will show results for the version where sea-ice insulation effects are omitted and use the standard
values of the parameters given in van Westen et al. (2024b), unless otherwise mentioned.

The E-CCM is forced through the asymmetric freshwater flux forcing (¥ 4) from box s to box n. Under varying F 4, the
E-CCM has an ‘AMOC on’ state (clockwise circulation, red solid and dashed arrows) and an ‘AMOC off” state (anti-clockwise
circulation, red solid and dotted arrows). There is a multi-stable AMOC regime and this regime is bounded by two saddle-node
bifurcations (van Westen et al., 2024b). To determine the sensitivity of the AMOC behavior to the hosing location (Rahmstorf,
1996; Ma et al., 2024), we make a modification to the E-CCM by distributing the freshwater flux forcing linearly over box n
and box t using a parameter £ € [0,1]. When £ = 0, the freshwater flux forcing is only applied to box n and this is the original
E-CCM configuration. The freshwater flux forcing is only over box t when ¢ = 1.

The steady states of the E-CCM against varying parameters (i.e., bifurcation diagram), such as freshwater flux forcing, are
determined using the continuation software AUTO-07p (Doedel et al., 2007, 2021). This code solves steady states using a
pseudo-arclength continuation combined with a Newton-Raphson method (Wubs and Dijkstra, 2023). It is also able to detect
Hopf bifurcations and saddle-node bifurcations. We used a value of 10~ for the absolute and relative accuracy of each steady-

state solution, and for the accuracy for locating special points, similar to van Westen et al. (2024b).

3 Results
3.1 Statistical equilibria in the CESM

The AMOC strength (at 1,000 m and 26°N) and the freshwater transport carried by the AMOC at 34°S (Fyys) of the quasi-
equilibrium CESM simulation (van Westen et al., 2024a) are shown in Figures 2a,b. The branched simulations from the quasi-
equilibrium simulation at a constant forcing Fy = 0.18 Sv (Figures 2c¢,i), Fgr = 0.45 Sv (Figures 2d,j) and Fg = 0.465 Sv
(Figures 2e.k) equilibrate after about 300 years. The branched simulation at Fy; = 0.48 Sv (Figures 2f,1) collapses and sug-
gests that the upper bound of the multi-stable regime is around this Fy value. The branches initiated from Fr = 0.495 Sv
(Figures 2g,m) and Fz = 0.51 Sv (Figures 2h,n) also collapse; these simulations were terminated before the 500-year mark
because of computational costs. However, when the equilibrated Iy = 0.465 Sv simulation is subjected to an instantaneous
increase in freshwater flux to Fy = 0.48 Sv (AFy = 0.015 Sv), we still find a statistical equilibrium in the northward over-
turning regime (red curves in Figures 2f,]). We iteratively repeated the same procedure for F; = 0.495 Sv and Fy = 0.51 Sv.
The AMOC eventually collapses under a constant freshwater flux forcing of Fz = 0.51 Sv. This means that the upper bound
of the multi-stable regime is found for 0.495 Sv < Fjz < 0.51 Sv. To obtain an even higher precision for this upper bound, we
would need to increase Fyy with even smaller increments, but is not done here because of computational limitations.

The AMOC in the quasi-equilibrium simulation starts to tip around Fg = 0.525 Sv (0.522 to 0.533 Sv, 10" and 90"

percentiles, van Westen et al. (2024a)) and is at larger F'y values than the upper bound found from the statistical equilibria
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Figure 2. (a): The AMOC strength at 1,000 m and 26°N and (b): the freshwater transport by the AMOC at 34°S, Fi.s, for varying freshwater

flux forcing F'y (i.e., the quasi-equilibrium simulation). Inset: The hosing experiment where fresh water is added to the ocean surface between

20°N —50°N in the Atlantic Ocean (+F) and is compensated over the remaining ocean surface (— Fg). The statistical equilibria for various

constant values of Fiy (i.e., F, steady states) in the northward overturning regime are also shown, where the marker indicates the mean

and the error bars show the minimum and maximum over the last 50 years of the 500-year long branched simulations. The black sections

indicate the 26°N and 34°S latitudes over which the AMOC strength and Fiys are determined, respectively. The yellow shading in the two

panels indicates observed ranges for the presented quantity (Smeed et al., 2018; Arumi-Planas et al., 2024). (c — n): Similar to panels a,b, but

now the entire branched simulations for different Fr values. The branches are initiated from the quasi-equilibrium simulation (blue curves)

or from the end of the previous statistical equilibria (red curves).
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simulation (0.495 Sv < Fy; < 0.51 Sv). To determine the overshoot of the quasi-equilibrium simulation, we use a reference
value of Fr = 0.5 Sv, but any other Fj; value within the interval Ff; € [0.495,0.51] can be used as a reference (giving slightly
different numerical results). Using this reference, the quasi-equilibrium AMOC overshoots by AFy = 0.025 Sv (= 80 years).
Do note that the AMOC collapses for the simulations branched from the quasi-equilibrium simulation for Fz; > 0.48 Sv (blue
curves in Figure 2¢ — n). In other words, the branched simulations for Fr > 0.48 Sv already surpassed a critical forcing value
upon branching, which means that the standard quasi-equilibrium also surpassed its critical value and actually undershoots the
upper bound of the multi-stable regime. This critical value for the quasi-equilibrium is located for 0.465 Sv < Fyy < 0.48 Sv.
The apparent overshoot with the reference value of Fz = 0.5 Sv is then the result of inertia and the growth rate of AMOC
feedbacks, in particular the destabilising salt-advection feedback. Indeed, these feedbacks develop on centennial timescales
(Vanderborght et al., 2025), which we will make more explicit below. The undershooting AMOC can already be seen when
comparing the quasi-equilibrium with five different statistical equilibria (last 50 model years are used). The quasi-equilibrium
simulation is about 1 Sv weaker than the statistical equilibria, but still reasonably agree. For F,s, on the other hand, the
quasi-equilibrium is larger and (mostly) outside the ranges of the different statistical equilibria (Figure 2b).

When we lower the freshwater flux forcing rate, we expect that the system stays closer to the statistical equilibria (Hawkins
etal., 2011). To test this, we branched off a quasi-equilibrium simulation with only half the hosing rate (i.e., 1.5x 10~% Sv yr—1)
from the end of the statistical equilibrium at F'z = 0.45 Sv. This simulation was integrated for 1,050 model years, where Ff

varied from 0.45 Sv to 0.608 Sv (red curves in Figures 3a,b). In the ideal case, the half-forcing quasi-equilibrium simulation

should have been initiated from the same initial conditions as the standard quasi-equilibrium simulation for direct comparison,

which would also allow to address the sensitivity in the overshoot/undershoot with the reference value of Iy = 0.5 Sv. Nev-
ertheless, this half-forcing simulation can be used to check whether the AMOC collapse happens faster in Fy spaceand-we

stmutation. The faster transition (in Fpy) is a characteristic of a saddle-node bifurcation (see Appendix B), but this is also the
case for other bifurcation types (e.g., Hopf) (Berglund and Gentz, 2006).

The half-rate simulation remains (very) close to the different statistical equilibria for both AMOC strength and Fis. Fol-
lowing van Westen et al. (2024a), we used a break regression analysis (Mudelsee et al., 2014) to find the AMOC tipping event
at Fiy = 0.534 Sv, with the 10*® and 90t® percentiles at Fiy = 0.533 Sv and F'y = 0.536 Sv, respectively. There is an overshoot
of AFy = 0.034 Sv (227 years) compared to our reference value of Fiz = 0.5 Sv, but keep in mind that AMOC feedbacks take
a considerable time to develop. These feedbacks can be quantified by following the procedure outlined in Vanderborght et al.
(2025), see also Section 4 below. We decompose the different AMOC feedbacks for the Fiy = 0.51 Sv simulation (branched
from the previous statistical equilibrium of Fz = 0.495 Sv) and the half-rate forcing simulation, where the most important
feedbacks are shown in Figure 4; the standard quasi-equilibrium simulation decomposition is presented in Vanderborght et al.
(2025).

First the Fiy = 0.51 Sv simulation (Figure 4a), in which the AMOC weakens by about 1.5 Sv during the first 100 model years.
This weakening is attributed to the slightly larger freshwater forcing (+0.015 Sv) compared to the starting equilibrium solution

at F; = 0.495 Sv. The destabilizing salt-advection feedback (linked to F,,,s) and surface (mainly sea-ice melt) feedback slowly
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Figure 3. (a & b): The AMOC strength and Fo.s of the quasi-equilibrium simulations, one similar to Figures 2a,b, and including the
simulation with varying 1.5 x 10™* Sv yr™! hosing rate (red curves). This quasi-equilibrium hosing with 1.5 x 10™* Sv yr~! was branched
from the end of the statistical equilibria at Fr = 0.45 Sv. (¢ & d): The variance in AMOC strength and F,.s, using a sliding window of

50 years. For each 50-year window, a linear trend was removed and then the variance was determined.
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Figure 4. (a & b): Decomposition of the AMOC feedbacks (Vanderborght et al., 2025) for the (a): Iz = 0.51 Sv simulation (i.e., red curve
in panel 2h) and the (a): half-rate forcing simulation (1.5 x 1074 Sv yr’l). The inset shows the two surface components of Arctic sea-ice
melt and precipitation minus evaporation (P-E). The time series are presented as 10-year averages (to reduce the variance). Note the different

horizontal ranges between the two panels.

grow over the following 250 years. Over the same period (model years 100 — 350), the gyres and overturning component at
65°N partly stabilize the AMOC. The combined effect results in an AMOC weakening of only 1.5 Sv over these 250 years
and after model year 350 the AMOC fully collapses. The salt-advection feedback eventually becomes dominant and this
destabilising feedback fully develops over centennial timescales (under constant freshwater flux forcing).

Next the half-rate forcing simulation (Figure 4b), where we find a similar centennial timescale for the destabilizing AMOC
feedbacks. The AMOC feedbacks remain relatively small up to model year 350 (Fyz = 0.503 Sv), then slowly increase in
the following 200 years (model years 350 — 550) and thereafter the AMOC fully collapses. This gradual increase of the
destabilizing feedbacks between model year 350 to 500, suggests that the AMOC will eventually tip and hence branching
simulations with fixed Fiy for Fiy > 0.503 Sv will also result in an AMOC collapse, similarly as the standard quasi-equilibrium
simulation. However, additional simulations are needed to find this critical value, which were not done here.

In other words, there is a certain critical value of forcing and, once crossed, the AMOC will eventually tip over centennial
timescales (= 200 model years). This critical value is dependent on the initial condition and rate of forcing, which we will
make more explicit with the E-CCM below. As argued above, for the half-forcing quasi-equilibrium simulation this critical
value is likely around Fi7 = 0.503 Sv, which is well within the interval 0.495 Sv < Fy < 0.51 Sv. The AMOC collapse starts
at Fiyp = 0.525 Sv in the standard quasi-equilibrium simulation, meaning that the destabilizing feedbacks were growing during
the 200 model years (AFy = 0.06 Sv) prior to the collapse (Vanderborght et al., 2025). This suggests that Fyy = 0.525—0.06 =
0.465 Sv is the latest statistical equilibrium which can be found when directly branching from the quasi-equilibrium simulation,

which is indeed the case here (Figures 2e,k). This confirms again that the standard quasi-equilibrium simulation undershoots
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the upper bound of the multi-stable regime. The implication is that an overshooting (or undershooting) AMOC cannot be
assessed by only analysing the onset of the AMOC tipping event. In fact, the onset of the AMOC tipping event only indicates
where the destabilising feedbacks become dominant and it is much more useful to analyse the changes in AMOC feedback
strengths.

What is important here, is that the half-rate forcing’s transition to the collapsed state is twice as fast (in i space), which
is a typical characteristic of transitions near a saddle-node bifurcation (Berglund and Gentz, 2006) (see also Appendix B).
The duration of AMOC transitions in both quasi-equilibria and in the statistical equilibrium simulations (Figure 2) is about
100 years and the full equilibration to the collapsed AMOC state requires more than 500 years (van Westen et al., 2024a).
Another characteristic of a saddle-node bifurcation is the loss of resilience (i.e., critical slow down) near the tipping point (van
Westen et al., 2024b). This can be quantified by determining the variance and (lag-1) autocorrelation of specific observables.
For the AMOC strength, we find no indications of critical slow down (not shown) which is consistent with the results in
van Westen et al. (2024a). There is also no increase in the variance for the AMOC strength for both the quasi-equilibria and
the statistical equilibria (Figure 3c). However, for the physics-based quantity F,,s we find indications of critical slowdown
(van Westen et al., 2024a; Smolders et al., 2025). Indeed, the F,,g variance increases for larger Fi; up to the tipping event

(Figure 3d). This increase in variability indicates that the AMOC loses resilience and makes it more prone to transitions.
3.2 Equilibria in the E-CCM

The AMOC behaviour in the CESM can be reproduced with the E-CCM ;-for-whieh-under varying freshwater flux forcing
(now E 4). For the E-CCM, the steady states are-known-and-obtained-from-obtained using continuation techniques (cf. section
2b) are presented in Figures 5a,b for the AMOC strength and F, g, respectively. The continuation indicates two saddle-node
bifurcations at E}4 =0.4861 Sv (AMOC on) and at Ei =0.1857 Sv (AMOC off). The AMOC on and unstable steady states
clearly show the square-root behaviour between AMOC strength and F 4, which arises from the dominant salt-advection
feedback close to E,14- The probabilities under (stochastic) noise for the transition from an AMOC on to an AMOC off state
approach 1 when moving closer to E; (van Westen et al., 2024b), indicative of the loss of resilience. Here, we performed
deterministic quasi-equilibrium and equilibrium simulations with the E-CCM, which are shown in Figure 5. Note that we used
slightly different freshwater flux forcing (£ 4) values in the E-CCM than in the CESM.

The quasi-equilibrium hysteresis simulation in the E-CCM is (qualitatively) comparable to that of the CESM (compare
Figures 2 and 5); the large overshoot (> 35 Sv) in the E-CCM upon AMOC recovery is a model artefact (van Westen et al.,
2024b). In the forward quasi-equilibrium simulation the AMOC strength is lower compared to the value at the steady states,
while the F,,,g values are higher. The branches from the quasi-equilibrium eventually collapse for E4 = 0.477 Svand E4 =
0.486 Sv, meaning that a critical 4 value was surpassed, which is then also the case for the quasi-equilibrium simulation.

In contrast to the CESM, it is computationally feasible to quantify this critical value in the E-CCM. Here, we define the
critical branch as the branch from the quasi-equilibrium that collapses at the lowest possible £, value. We use an accu-
racy of AE4 = 0.001 Sv (but can be even higher when needed). Ultimately, the AMOC collapses when branching from the

quasi-equilibrium simulation for E4 > 0.474 Sv (Figure 6a). As was argued in the previous section, this critical value is also
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also shown.
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dependent on the initial condition and rate of forcing. For example, when we use the steady state at £ 4 = 0.45 Sv as initial
condition, we can increase E4 up to 0.479 Sv (with 3 x 10~4 Sv yr~!) and then keeping the freshwater flux forcing constant.
In this case, the AMOC eventually equilibrates to the AMOC on state (not shown), meaning that the critical value is found for
E4 > 0.480 Sv. When we initiate from £ 4 = 0 Sv while using a ten times smaller forcing rate (3 x 10~° Sv yr—!), the AMOC
also equilibrates to the AMOC on state when increasing E' 4 up to 0.483 Sv and then keeping the freshwater flux forcing con-
stant (not shown). The critical value for this other case is for E4 > 0.484 Sv. Depending on the initialisation and forcing rate,
the saddle-node bifurcation can only be reached with a limited accuracy.

Since the AMOC collapses at critical values lower than (i.e., undershooting) the saddle-node bifurcation (blue curve in Fig-
ure 6a), the system must cross the basin boundary of attraction between the AMOC on and AMOC off states. The continuation
allows us to explore which variable (temperature, salinity, and pycnocline depth), or which specific combination of variables
(e.g., AMOC strength, see (1)), crosses this boundary of attraction. Notably, the critical branch at E4 =0.474 Sv does not
cross the basin boundary with respect to AMOC strength and one expects AMOC recovery to the AMOC on state, and yet the
AMOC collapses (left inset in Figure 6a). This means that the AMOC strength is no good predictor for the future evolution of
the system for the critical branch. When we analyse a different quantity, such as the salinity of box n (right inset in Figure 6a),
it does cross the basin boundary. The salinity in box n is important here as it (partly) sets the AMOC strength (relation 1) and is
influenced under the destabilizing salt-advection feedback, which gives rise to the quadratic relation between AMOC strength
and freshwater flux forcing.

When we equally distribute the hosing over box n and box t (£ = 0.5, Figure 6b), the saddle-node bifurcations shift to higher
values of I/4. The quasi-equilibrium for this case has weaker AMOC strengths than the stable AMOC on state and close to
the saddle-node bifurcation it has stronger strengths than the AMOC on state (left inset in Figure 6b). The critical branch (at
E 4 =0.609 Sv) has a stronger AMOC strength than the steady AMOC on state upon branching, but it still collapses. The
salinity in box n does cross the basin boundary (right inset in Figure 6b), demonstrating again that AMOC strength is no good
indicator for predicting the future AMOC trajectory. Only when the hosing is applied over box t (£ = 1.0, Figure 6c), the
AMOC collapses when increasing the freshwater flux forcing beyond the saddle-node bifurcation of E; = 0.83495 Sv. When
we branch from the quasi-equilibrium for lower E 4 than the saddle-node bifurcation (e.g., F4 = 0.8348 Sv, not shown), the
solution equilibrates to the stable AMOC on state.

The AMOC dynamics and the under- and overshooting behaviour can be understood from these three different cases. When
a hosing perturbation is (partly) applied over box n, the AMOC strength directly reduces as the meridional salinity difference
between box n and box ts increases. The largest part of the freshwater perturbation is carried away by the AMOC to box d,
but a small part of the perturbation remains in box n (due to a weaker AMOC) and causes freshwater accumulation over
box n. This freshwater accumulation results in a slightly weaker AMOC strengths compared to the steady states. Once the
system has a sufficient amount of time to adjust to the imposed freshwater perturbation, the entire freshwater perturbation is
redistributed over the boxes and the AMOC strength eventually increases (e.g., blue curves in Figures 5c,d,e,f). In other words,
the advective (‘flushing’) timescale is slower than the hosing timescale, resulting in an enhanced AMOC strength decline.

This makes the AMOC more prone to freshwater perturbations and explains why there is hardly any overshoot in the quasi-
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Figure 6. (a): The steady states for the AMOC strength and a quasi-equilibrium simulation (rate 3 x 10™* Sv yr™') for the hosing over
box n (£ = 0). A simulation was branched from the quasi-equilibrium simulation for 4 = 0.474 Sv (blue star), which was integrated into
equilibrium. The two insets show zoomed-in versions of the AMOC strength and salinity of box n near the saddle-node bifurcation. (b & c):
Similar to panel a, but now for b) ¢ = 0.5 and c) £ = 1, where the branched simulations were initiated at F4 = 0.609 Sv and E 4 = 0.835 Syv,
respectively. (d): The position of the saddle-node bifurcations of the AMOC on (E%) and AMOC off (E2) states (solid curves). The distance

(expressed in AE ) between E and E% and between the E} and the F,,s minimum.
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equilibrium simulation with the saddle-node bifurcation (for £ = 0). This is qualitatively different than the quasi-equilibrium
CESM, meaning that & = 0 is not very likely for the CESM.

The direct AMOC weakening effect is smaller when adding (part of) the hosing over box t and there are two effects con-
tributing to this different behaviour. First, the hosing is now distributed over the (much) larger box t than box n and making
the salinity anomalies (averaged over box t) effectively smaller. Second, only a part of the salinity perturbations from box t is
carried by the AMOC into box n and most of it is directly carried to box d (see also Figure 1). This implies that the role of the
overturning contribution in redistributing salinity anomalies between box t and box n is getting smaller, while the (northern)
gyre contribution is getting more important. These combined effects explain why the saddle-node bifurcations shift to larger
E 4 values for increasing ¢ (Figure 6d). The larger gyre contribution is also reflected in a greater AE4 between the E and
F,,s minimum, which also modifies the hysteresis width which is measured as the distance between the two saddle-node
bifurcations (Figure 6d).

In the standard quasi-equilibrium CESM simulation (rate 3 x 10~* Sv yr—1), the AMOC strength is also smaller than that of
the statistical equilibria. Thereafter, the AMOC appears to overshoot the upper bound of the multi-stable regime. The CESM
trajectory shares similar characteristics as the E-CCM in the £ = 0.5 configuration, which is consistent with the applied hosing
region in the CESM (20°N — 50°N), though the CESM is much more complex than the E-CCM. Depending on the hosing
region, one can change the relative contributions of important AMOC feedbacks and this results in differences in AMOC
sensitivity, the onset of the AMOC tipping event and width of the multi-stable regime. It is therefore important to use a
fixed hosing region, as was done for our CESM simulations or in the outlined procedure of the North Atlantic Hosing Model
Intercomparison Project (NAHosMIP, Jackson et al. (2023)). Sensitivity experiments indicate that the northern portion of the
North Atlantic (e.g., the Irminger basin) is most sensitive under hosing (Rahmstorf, 1996; Ma et al., 2024). Nevertheless, the
destabilising salt-advection feedback becomes more dominant under increasing hosing strengths and causes the square-root

dependency near the saddle-node bifurcation.

4 Feedback analysis in the CESM

The results from Section 3.2 demonstrate that as long as the salt-advection feedback dominates, one may expect a square
root dependence in the AMOC on state under increasing freshwater flux forcing, similar as—n—to the Stommel model (see
Appendix A). Although the AMOC is (highly) idealised in the E-CCM, it is qualitatively able to reproduce almost all AMOC
characteristics of that in a much more complex and fully-coupled climate model (i.e., the CESM). This makes the existence
of a saddle-node bifurcation in the CESM plausible, but this can not easily be demonstrated using only a limited number of
equilibrium simulations. However, it turns out that from performing a feedback analysis as in Vanderborght et al. (2025), we

can (under reasonable assumptions) derive a reduced model explicitly showing the dependence of AMOC strength on F;.
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4.1 Reduced model derivation

We start from the total Atlantic (34°S to 65°N) freshwater budget as governed by (Vanderborght et al., 2025):

dw
W: azS_FazN+FOVS_FOVN+F‘surf+Fres> (2)

where W is the total freshwater content. The Atlantic freshwater content can be modified through azonal (gyre) contributions
(i.e., Fa,s and F,,N), overturning contributions (i.e., Fi,g and Fi,N), surface contribution (i.e., Fy,¢) and residual contribution
(i.e., Fies). The quantities F),,5 and F,,,g are evaluated at 34°S, hence indicated with subscript ‘S’, and we follow a similar
notation for the northern boundary (65°N) by using a subscript ‘N’.

Upon a freshwater perturbation, the evolution of the different contributions depends on the background state and the AMOC
strength (Vanderborght et al., 2025). The AMOC strength is fairly homogeneous over the Atlantic basin (van Westen et al.,
2024a) and we assume a northward volume transport in the upper AMOC limb which we indicate here as ¥; the lower AMOC
limb then carries ¥ southward. The velocity-weighted average salinity over the upper AMOC limb is indicated with S_,, and
similarly for the lower AMOC limb we use S, . The vertical salinity difference between the upper AMOC limb and lower
AMOOC limb is then indicated by S= = S_, — 5. Under this idealization it directly follows that:

S—)
Fous = — 220, 3
3 5 3

where Sy = 35 g kg~ 1. Because the salinity transport in the lower AMOC limb is approximately adiabatic, the vertical salinity
contrast at 34°S is closely related to a meridional salinity contrast between 34°S and the North Atlantic sinking region. This
meridional salinity contrast is related to the AMOC strength via thermal wind balance (Butler et al., 2016). Therefore, the
vertical salinity contrast scales with the AMOC strength as (Vanderborght et al., 2025):

\I’:\I’0+Cg (1761)(»92(0)*53), (4)

where c; represents the stabilizing thermal-advective feedback and ¢, is a scaling factor. Both ¢; and ¢y are positive constants
and, for the CESM, their values are about 0.52 and 20 Sv kg g’1 (Vanderborght et al., 2025). The terms ¥ and S (0) are the
AMOC strength and vertical salinity difference for Fy = 0 Sv (no hosing), respectively.

Under the applied hosing (indicated by 6 Fiy in the CESM) the value of Fi,,¢ increases and is primarily (i.e., to first order)
balanced by a declining Fi,g (van Westen et al., 2024a). On the other hand, the gyres flush freshwater anomalies out of
the Atlantic Ocean and stabilize the AMOC (Vanderborght et al., 2025). Sijp (2012) argued that S= linearly scales with the
integrated Atlantic freshwater content. This integrated freshwater content in turn scales with the anomalous freshwater transport

by the gyres (Huisman et al., 2010), i.e.:
ngre =Fos —Fan = _glsf—’ + g2. &)

This linear relation is also applicable for the CESM, where g; = 0.032 Sv kg g~ ! and g, = 0.49 Sv (Figure 7a). The last

contribution which we consider is the overturning component at the northern boundary, Fi,,~x. The AMOC strength almost
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vanishes at the northern boundary and the expression for F, is different than that of the F (relation 3). The Fi,n scales

linearly with S= and can be approximated by:
Foun =n15= +na (6)

with ny = 0.025 Svkg g~ ! and ny = —0.021 Sv for the CESM as shown in Figure 7b. The contributions by the gyres and Fy,,N
scale linearly with increasing S— (or decreasing W), whereas the F,g has a non-linear contribution. To be more preeiesprecise,
the Fiyg is determined by the product of the vertical salinity difference and the AMOC strength, where the latter scales linearly
with the vertical salinity difference (i.e., relation 4). The Fg scales quadratically with AMOC strength, and conversely AMOC
strength scales with the square root dependence on Fi,g. As the imposed freshwater flux forcing is primarily balance by Fig

in the CESM (van Westen et al., 2024a), one expects a square root dependence in AMOC strength under increasing freshwater

flux forcing.
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Figure 7. (a): The relation between Fgy.e and S—, where the linear fit is determined over the 20-year averages up to model year 1,700

(Fg = 0.51 Sv) of the standard quasi-equilibrium simulation. (b): Similar to panel a, but now for the Fioyn and S=.
A perturbation in the Atlantic freshwater content (cf. (2)) around an equilibrium state then gives:
—0Foys + 0FouN — 0 Fgyre = 0 Fyuur, @)
and using the expressions for Fi,,g5, Fyyre and F, this yields:
VoS +S=20V +n1Sp6S= + g1.500S= = Sod F 8)

Using the relation between ¥ and S= (from 4) we find:

v v U (711 +g1)50>
-0+ | — + +5=2(0) - ————— | 0¥ = Sp0 Fy, 9
62(1—61) < 62(1—61) 62(1—61) ( ) C2 (1—61) 0 H ( )
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which can be rewritten as:

(=20 4+ Tg+co(1—¢1)S=(0) = (n1 4+ ¢1)S0) 0¥ =3 (1 —¢1) Sod Fh, (10)
and integrating both sides gives:

% — (Wo+ ¢z (1—¢1) S=(0) = (n1+91)S0) ¥+ 2 (1 — 1) SoF + C =0, (1D

with integration constant C. The solution with ¥(Fy = 0) = ¥ is:

2 - 2

2
¥(Fw) ‘I;0+62(1—621)S:(0) (n1+291)50i\/(\110—62(1—61)5;»(0)+(n1+91)So> e SuEn (12

_ SoFovs(0)
)

Rather using S=(0), we express it as the initial F,ys using (3), i.e., S=(0) = . The final expression becomes:

o ca(l—c1)SoFovs(0)  (n1+91)5 i\/(‘l’% +ea(1—c1)SoFous(0) + (n1+91)So %o

2
- —ey(1—¢1) SoF
2 20, 2 20, ) e2(1=c1) SoFu

(13)

Do note that several assumptions are required to arrive at this final expression. For example, various residual (F}.s) and
climate feedbacks were not considered, such as ocean-sea ice interactions (destabilizing), ocean-atmosphere fluxes (destabiliz-
ing), pycnocline deepening (stabilising), open Bering strait (stabilizing) and the effect of ocean eddies (stabilizing) (Vander-
borght et al., 2025). The linear relation in Fjy,. and Fi,n with S= is less accurate and c; is less constant close to the tipping
point. Freshwater anomalies may be stored in the Atlantic Ocean and hence we assumed that changes in the freshwater content
are much smaller than changes in the freshwater balance terms (i.e., dd—vf K A (Fazs — Faun + Fous — Foun + Faurt + Fres))
These additional feedbacks and processes modify the idealized AMOC response and make it more difficult to derive an analyt-
ical solution for the northward overturning regime, as these processes (ideally) need to be expressed as a function of S= (if it
exists). We stress that this idealized AMOC response under hosing should be interpreted with care and one needs to consider the
appropriate feedback contributions for each (climate) model set-up. The key point is that the AMOC strength exhibits a square-
root dependence on the freshwater flux forcing, leading to a saddle-node bifurcation when the dominant balance is between
the applied freshwater flux forcing and the overturning component. As long as other contributions remain sufficiently small,
their effect will not change the structure (and therefore the type) of the bifurcation diagram. Indeed, the Fyy. and Fi,yy remain

fairly linear up to Fz = 0.51 Sv (Figure 7) and this is beyond the critical forcing (0.465 Sv < Fy < 0.48 Sv, Figure 2) for

which the salt-advection feedback becomes dominant. Once the AMOC starts to collapse, the different AMOC contributions
become much larger (e.g., Figure 4) and their responses are attributed to large-scale adjustments under a collapsing AMOC.

For the Stommel 2-box model, we can demonstrate that a similar AMOC response holds (see Appendix A). Under no fresh-

water flux forcing () = 0) in this model, the salinity difference between the two boxes is zero. This constraint gives the initial
AMOC strength of Uy = kaAT* and F,ys(n = 0) =0, where k is a hydraulic pumping coefficient, o the (dimensionless)

thermal expansion coefficient, and AT* the (dimensionless) atmospheric temperature difference. The northern boundary is
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closed (n; = 0) and gyres are not represented (g; = 0) in the Stommel model. The oceanic temperatures in the Stommel model

are fixed (under steady state assumption), and in this case c; = 0. Relation (13) for the Stommel model reduces to:

kaAT® kaATa\ >
370 U(Fy)= a2 i\/( a2 ) —2S0Fy (14)

and is similar to relation A9, apart from some scaling coefficients.

4.2 Application of the reduced model

Using the reduced model, the critical value of Fr for an AMOC collapse in the CESM can be estimated by assuming that the
freshwater flux forcing is (in its first order) balanced by the overturning and azonal (gyre) components, which is the case for
375 the CESM (van Westen et al., 2024a). The critical freshwater flux forcing is obtained by setting the terms under the square root

in equation (13) equal to zero. Solving this yields:

15)

P — 1 (‘1’34-02(1—Cl)SoFovs(O)-i-(nl +g1)50‘1’0>2'
ca(1—c1)So 20,
The Fy, is dependent on the initial AMOC strength and initial F,,,g value. In the CESM, the Atlantic Ocean surface area
outside 20°N — 50°N receives a negative freshwater flux as part of the global compensation (see inset Figure 2a). This makes
380 the applied hosing 86% effective when considering the total Atlantic Ocean surface area (34°S — 65°N) and F'f; needs to be
1

adjusted by a factor 5gz. The time-means (first 50 model years) in the CESM quasi-equilibrium simulation are ¥y =16 Sv

and Fi,s(0) = 0.22 Sv, which give: Ff, = ﬁOﬁS = 0.44 Sv (Figures 8a,b). When using the maximum and minimum values

(over the first 50 model years) for AMOC strength and Fi,s, we find F§; = ﬁ0.44 =0.52Svand Ff; = 0.71860'33 =0.38 Sv,
respectively (Figures 8a,b).

385 The F'f; determined from the reduced model is somewhat smaller (0.06 Sv for the mean) than our reference of Fi =0.58v.
By increasing the gyre (or northern overturning) responses, we can reduce this difference (Figure 8d). The gyre contributions
also control the distance between I, and value of Fiy at the Fi,,s minimum (Dijkstra, 2007; Huisman et al., 2010; Dijkstra
and van Westen, 2024). For the reduced model and with standard values of the parameters n; and g1, this difference is about
AFpg =0.34 x 1072 Sv (Figure 8d), and decreasing with smaller g; (or n,).

390 The actual Fy,s minimum in CESM is found for the statistical equilibrium of Frr =0.48 Sv (Figure 9a), whereas the Fig

minimum in the quasi-equilibrium was found around Fir = 0.52 Sv (van Westen et al., 2024a). There is ;hewever;-substantial

overlap in the statistical properties of the four statistical equilibria closest to the tipping point-—FeHewingvan-Westenet-al(2024a)
—we-tse-cubie-splines-thatinterpolate-eubie-polynomials—, which complicates the F,,,s minimum assessment. Alternativel

van Westen et al. (2024a) used cubic splines to determine the F,,s minimum, in which cubic polynomials are interpolated
395 between so-called knots;—fer-these-knotswe-use-. For these knots, the Fi,g values from these-the four statistical equilibria -

For-each-of the-can be used, but this results in spurious fits (thin curves in Figure 9a) due to the limited number of knots. To

3

obtain an unbiased estimate of the Fi,g minimum, all /s combinations of the four statistical equilibria (i.e., the-knots);we

draw-onerandom—+Fors—valae(50-yea n-totab-and-these-are-used-to-generate-the—cub phnes-with-two-ditterent-boundary
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Figure 8. (a&b): The AMOC and F,.s responses of the reduced model under the freshwater flux forcing (cf. equations (13) and (3),
respectively), where the solid curves indicate the steady AMOC on state and dotted curves the unstable branch. The initial values for both
the AMOC strength and F,,s were obtained from the first 50 model years of the quasi-equilibrium. The AMOC strength values are 16.0 Sv
(mean), 17.8 Sv (maximum) and 14.3 Sv (minimum), and F,,s values are 0.22 Sv (mean), 0.24 Sv (maximum) and 0.20 Sv (minimum).
For the ‘Observed model’, we use the reduced model in combination with observed values swe-tised-of 17 Sv (Smeed et al., 2018) and
—0.15 Sv (Arumi-Planas et al., 2024) for the AMOC strength and Foys, respectively. (c): The critical freshwater flux forcing (Fg) for
varying initial AMOC strength and initial F,,s. The ranges for the CESM (first 50 model years of quasi-equilibrium) are indicated. The
critical freshwater flux forcing was not determined for relatively weak AMOC strengths (< 5 Sv). (d): Values of Ff (solid curves) and
difference to Fi,.s minimum (dashed curves) for varying gyre sensitivity (g1) and two cases for the northern overturning sensitivity (n1),
using the time-mean (first 50 model years) AMOC strength and Fi,s. The standard CESM values are g; = 0.032 Sv kg g~ (blue dotted
line) and n; = 0.025 Sv kg g~ ' (black curves). For all CESM results, we consider the hosing over 20°N — 50°N (with global surface

compensation), making the applied hosing 86% effective (see main text).
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he-combinations

are considered, from which the frequency of the Fi,,s minimum per statistical equilibrium is determined. These frequencies are:
1.1% (Fg = 0.45 Sv), 21.7% (Frz = 0.465 Sv), 43.2% (Fr = 0.48 Sv) and 34.0% (Fy = 0.495 Sv), with the weighted F,

minimum at Fi7 = 0.482 Sv. This indeed confirms that the F.,s minimum is feund-ferfr—<-0-487-Svin-most likely found for

m;a%% of the eases-bars-combinations has the minimum for 77 < 0.48 Sv. The former is also reflected
MWMMSV (ﬁeﬁ%&e&@@@@&fea}mﬂ&eﬂs%—?hewwlm\
cumulative frequency for most Fovg minimtii-estine Re e Rtry g =" v v

values. This result is robust when using a different 50-year window or the last 150 years of the equilibrium simulations (lower

panel in Figure 9b);-which-is-attributed-to-the random-sampling-such-that-the knot-at-. For the latter case, the I,,g minimum
(Fg = 0.45 Sv), 21.4% (Fg = 0.465 Sv), 42.6% (Frz = 0.48 Sv) and 34.8% (Fg = 0.495 Svhas-the
minimum also at Fr = 0.482 Sv. What is important here, is that the Fovs minimum is found AFyr = 6:644-0-6:6290.013 to

0.028 Sv before the upper bound of the multi-stable regime. A similar freshwater flux forcing difference is found in a fully-

frequencies are: 1.2%

implicit global ocean model (Dijkstra and van Westen, 2024), where it was shown that the F,,5 minimum is connected to a
saddle-node bifurcation.

The overlap in the statistical properties of the four statistical equilibria closest to the tipping point also complicates the shape
(i-e., square-root) estimate between AMOC strength and F'yy. These four equilibria are clearly insufficient and one needs more
equilibria to obtain a better estimate of the shape. This is computationally expensive for the CESM, but can easily be done for
the E-CCM and also under stochastic noise. Even if more equilibria were available for the CESM, there is a possibility that the
structure of multiple equilibria is much more complicated (Lohmann et al., 2024). The latter may explain the relatively strong
AMOC strength for Fr = 0.48 Sv, but this can not be verified from the results presented here. It is therefore more relevant
to analyse the different AMOC feedback strengths over large F'; intervals, which clearly indicate a square root dependence
between AMOC strength and F'iy (Vanderborght et al., 2025) and this is also supported by the reduced model here.

Using the reduced model (with the ¢, ¢a, g1 _and n; from the CESM), one can make a rough estimate of the critical
freshwater flux forcing needed to collapse the present-day AMOC. For observed valuesfer AMOC-strength-andFo5vs, we used
17 Sv (Smeed et al., 2018) and —0.15 Sv (Arumi-Planas et al., 2024) for AMOC strength and Fgg, respectively. We assume
that all the Greenland Ice Sheet melt is added to the Atlantic Ocean surface, making the hosing 100% effective, and we find
F§ = 0.19 Sv (Figure 8). Although this critical freshwater flux forcing is substantially smaller than the CESM, it still boils
down to 25 times the present-day melt rate of the Greenland Ice Sheet (Sasgen et al., 2020). Nevertheless, what is most relevant
here is that the present-day AMOC is more sensitive (i.e., relatively large BAMOC) compared to CESM and typical CMIP6
models, as most climate models are positively biased in their Fi,g (Van Westen and Dijkstra, 2024; van Westen et al., 2025).

In other words, the AMOC is overly stable when having positive Fy,g biases and underestimate the risk of AMOC tipping (Liu
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Figure 9. (a): Cubic splines fits (thin curves) using random Fiys values from the four statistical equilibria. The mean over 100,000 random
cubic splines are shown by the thick curves. We use the not-a-knot boundary condition (upper panel) and the natural boundary condition
(lower panel). (b): The probabitity-cumulative distribution function (PBF)-of the Foys minimum-tsingeubiesphines-and-for the expeeted
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etal., 2017). As was argued in Vanderborght et al. (2025), the reduced model only holds under (quasi-)equilibrium conditions,

making this analysis less useful under transient climate change (van Westen et al., 2025).

5 Transient AMOC behavior under climate change

The existence of a saddle-node bifurcation in the E-CCM helps to understand how AMOC stability in CESM is influenced
under climate change. Changes in the background climate conditions can be interpreted as a shift in the position of the saddle-
node bifurcation. This can already be demonstrated in the Stommel model where the saddle-node bifurcation shifts to lower
freshwater flux forcing values under a smaller atmospheric temperature gradient (Figure A2).

We first analyse the CESM simulations under the Hist/RCP4.5 and Hist/RCP8.5 scenarios. The AMOC collapses in three out
of the four CESM simulation under climate change (Figures 10a,b). The simulation under the higher freshwater flux forcing of
Fy = 0.45 Sv are closer to the tipping point (under PI conditions) and hence are more prone to undergo transitions, which is
indeed the case. For F; = 0.18 Sv, only the Hist/RCP8.5 scenario shows an AMOC collapse while in the Hist/RCP4.5 scenario
the AMOC eventually recovers. In the latter scenario, the AMOC shows distinct centennial variability and this is associated

with the typical overturning time scale (Winton and Sarachik, 1993).
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Figure 10. (a&b): The AMOC strength at 1,000 m and 26°N under the different climate change scenarios, the yellow shading indicates

observed ranges (Smeed et al., 2018). (c&d): The zonally-averaged (2-meter) surface temperature trend (model year 2000 — 2100) under the

different climate change scenarios. The globally-averaged temperature trend is indicated by the dashed lines.
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The imposed transient climate change forcing induces above-averaged-above average surface temperature trends (compared
to the global mean) at the higher latitudes (i.e., polar amplification, Figures 10c,d). This temperature response reduces the
meridional (equator-to-pole) temperature gradient and may influence the multi-stable AMOC regime, as is the case for the
Stommel model (Figure A2). We can test this in the E-CCM by reducing the atmospheric meridional temperature gradient by
imposing a (positive) atmospheric temperature anomaly (AT) over box n (and also over atmospheric box s as they are coupled
(van Westen et al., 2024b)). We keep the atmospheric temperatures the same for boxes t and ts to limit the degrees of freedom.

The steady states (with & = 0) for the reference case (AT¢ = 0°C) and climate change case (AT? = 5°C) are shown in
Figure 11a. Both saddle-node bifurcations shift to lower F 4 values and the hysteresis width decreases from 0.30 Sv (reference)
to 0.22 Sv (climate change). This shift can be understood from the smaller meridional density difference between box n and
box ts (equation (1)) due to higher temperatures and this requires a smaller freshwater flux forcing to reach the critical AMOC
strength corresponding to the tipping point. The reduced meridional temperature gradient also weakens the AMOC on strength
by a few Sv when comparing the two cases. The shift of the upper saddle-node bifurcation to lower E 4 values indicates that
the AMOC on state loses stability under climate change.

To study the transient climate change forcing in the E-CCM, we linearly increase T)¢ by 1°C per century up to model
year 500 and then keep the temperature anomaly constant at AT.¢ = 5°C. The AMOC strength (black curve in Figure 11b)
under climate change is shown for constant E4 = 0.335 Sv, a similar set-up as in the CESM. For each temperature anomaly
AT? we determined the steady states (with an accuracy of 0.1°C) and the values for the AMOC on, unstable branch and AMOC
off states for E 4 = 0.335 Sv are also shown in Figure 11b. These steady states represent the ‘frozen’ bifurcation diagrams for
a given temperature anomaly (insets in Figure 11b). The transient AMOC is clearly deviating from the AMOC on state. Up
to model year 500, the AMOC gradually weakens and after a few oscillations eventually collapses in model year 900. These
oscillations are related to a (sub-critical) Hopf bifurcation close to the saddle-node bifurcation. When lowering the 7} trend to
0.726°C per century and then keeping AT? = 5°C fixed, the AMOC strength also displays substantial oscillatory behaviour
but does recover (not shown). This means that rate-induced effects are present and the AMOC collapses for 7, trends larger
than 0.726°C per century for E4 = 0.335 Sv.

When using a trend of 1°C per century for 7.2 (up to AT® = 5°C) and varying E 4 (Figure 11c), we always find an AMOC
collapse for 4 > 0.342 Sv as there are no stable AMOC on states at larger £ 4 values (Figure 11a). The AMOC always
recovers for E4 < 0.33 Sv, again demonstrating that rate-induced effects are present for E4=0.335Svand E4 =0.34 Sv.
Rate-induced effects are also present for F 4 <0.33 Sv, however, the AMOC is much more stable compared to the previous
presented case of F4 = 0.335 Sv. This is also demonstrated in Figure 11d, where we vary the 7% temperature trend and
then keeping AT = 5°C fixed for E4 = 0.33 Sv. Oscillatory behaviour becomes more pronounced when increasing the 7¢
temperature trend and the greatest AMOC weakening is found for relatively large temperature trends. For a temperature trend of
11.85 °C per century (inset in Figure 11d), the AMOC strength (and other quantities) crosses the basin boundary between model
years 43 and 87 and the AMOC displays oscillatory behavior. These oscillations decrease in amplitude after model year 800
and then the AMOC recovers. For larger temperature trends than 11.85 °C per century the AMOC eventually collapses, which
is a factor of 16 larger than the critical temperature trend of 0.726°C per century for E4 = 0.335 Sv. This demonstrates that
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Figure 11. (a): The steady states for the AMOC strength for the standard set-up (solid curves) and under climate change (dashed curves).

(b): The AMOC strength under transient climate change and 4 = 0.335 Sv, where AT linearly increases up to 5°C up to model year 500

(trend of 1°C per century) and then remains constant. The steady states at /4 = 0.335 Sv for each climate change anomaly (with an accuracy

of 0.1°C) are also displayed. The insets show the steady states and the transient AMOC state (black dot) at AT,y = 2°C (model year 200)

and AT? = 4°C (model year 400). (c): Similar to panel b, but now for different values of £4 with AE4 = 0.005 Sv. (d): The transient

AMOC strength under climate change and E4 = 0.33 Sv, but now for varying temperature trends in A7,*. The inset shows the transient

AMOC strength for a temperature trend of 11.85°C per century.
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slightly lower E 4 values can make the AMOC substantially more stable. It is possible to collapse the AMOC for E 4 < 0.33 Sv

and this requires even larger climate change anomalies (AT? > 5°C).

6 Summary and Discussion

The Community Earth System Model (CESM) as used here (version 1.0.5) is an extremely high-dimensional dynamical system,
representing the interaction of the ocean, atmosphere, land and sea-ice processes. In a pre-industrial configuration, the AMOC
collapses under a quasi-equilibrium input of freshwater in the 20°N — 50°N region, with surface freshwater compensation over
the rest of the global domain (van Westen et al., 2024a).

In this paper, we have provided arguments for the case that, as in ocean-climate models lower in the model hierarchy (box
models (Cessi, 1994) and fully-implicit ocean models (Dijkstra, 2007)), the AMOC collapse behavior in CESM is caused by
the presence of a saddle-node bifurcation in the high-dimensional dynamical system. While one indeed would expect such
a bifurcation in a deterministic dynamical system when varying a single parameter (where the saddle-node and the Hopf
bifurcation are the only two generic codimension-1 bifurcations), this is far from trivial in the CESM. The ocean component
of the CESM is much more complicated with several interacting positive and negative feedbacks (Vanderborght et al., 2025)
and which is forced by a rapidly varying atmosphere. So attractors of the CESM are expected to have a quite complicated
geometrical structure and transitions between those (such as between the AMOC on state and AMOC off state) could in
principle be much more complicated than the traditional saddle-node bifurcation picture as suggested by conceptual models
(Dijkstra, 2024).

For a saddle-node bifurcation, one would have to demonstrate a square root dependence of the AMOC strength on the
freshwater forcing near the collapse point, which arises from the destabilising salt-advection feedback (Vanderborght et al.,
2025). This is not feasible for the CESM due to its strong internal variability and hence our case is built using three more
indirect arguments. The first argument is that in the CESM, there is a strict critical boundary of existence of the statistical
steady ‘AMOC on’ state. We showed this by subsequent near-equilibrium computations near the collapse point in the quasi-
equilibrium simulation, similar to the approach in Hawkins et al. (2011). Such a strict boundary is characteristic of a saddle-
node bifurcation as shown for the E-CCM. The full AMOC hysteresis experiment (van Westen and Dijkstra, 2023) shows that
the AMOC recovers at a much lower freshwater flux forcing (Fg =~ 0.09 Sv) compared to the collapse point (0.495 < Fg <
0.51 Sv), demonstrating non-linear behaviour that is also essential to saddle-node bifurcations. Seecond-The second argument
is based on the CESM results with a slower freshwater forcing rate. Here, we show that the AMOC collapse precisely follows
the behaviour (Ritchie et al., 2021) one would expect near a saddle-node bifurcation, i.e., with a steeper transition (in Fiy
space) than for the standard forcing rate. Do note that this characteristics is also found for other bifurcation types (Berglund
and Gentz, 2006). The third, and probably strongest, argument relies on the assumption that overturning freshwater transport
predominately compensates any freshwater flux forcing, which holds approximately for the CESM (van Westen et al., 2024a).
In this case, one can show that the AMOC strength has a square-root dependence with the freshwater forcing using a reduced

model (cf. section 4).
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To these arguments, we can add the support from early warning indicators as found for the CESM (van Westen et al., 2024a).
A characteristic property of saddle-node bifurcations is the loss of resilience (i.e., critical slowdown) near the tipping point,
measured by the increase in variance and autocorrelation (van Westen et al., 2024b). Although these early warning indicators
based on the AMOC strength were not giving any critical slowdown, optimal regions for early warning signal detection were
found near 34°S (Smolders et al., 2025). The results presented here (cf. Figure 3) show an increase in the Fi,,g variance close to
the tipping point. This increase in variability indicates that the AMOC loses resilienceand-, making it more prone to transitions,
characteristic of approaching a saddle-node bifurcation (van Westen et al., 2024b).

The implications of this result are substantial. First of all, it shows that, for the AMOC tipping problem, conceptual models
that capture only the dominant feedbacks are useful (Dijkstra, 2024). For example, in the E-CCM only the salt-advection feed-
back and gyre feedback are captured which are also dominant in CESM and hence it is relatively easy to tune the behavior of the
E-CCM to the CESM. Similarly, Wood et al. (2019) tuned a box model (only representing the salt-advection feedback) to the
FAMOUS (Hawkins et al., 2011) where likely due to its low resolution the gyre feedback is relatively weak. Sensitivity studies
in the conceptual model can then be used to design useful simulations in the complex model and also physical explanations
can be sought in the reduced model. Second, if the multi-stable regime of the AMOC is bounded by saddle-node bifurcations,
then the effect of model biases can be studied in terms of shifts of the saddle-node bifurcations. In fully-implicit ocean models,
it was recently shown that a bias in Indian Ocean precipitation leads to a right shift (i.e., to higher Atlantic freshwater flux
forcing strengths) of the bifurcation diagram (Dijkstra and van Westen, 2024; Boot and Dijkstra, 2025). Our reduced model
(cf. Section 4.2) also shows that positive freshwater transport biases at 34°S make the AMOC more stable under hosing. If
indeed a saddle-node bifurcation is present in all global climate models (GCMs), this would indicate that GCMs having such a
bias would be too stable (Van Westen and Dijkstra, 2024; van Westen et al., 2025).

So far, the saddle-node bifurcation was discussed only in the case of an AMOC collapse when changing the freshwater flux
forcing. However, under climate change mainly the heat flux forcing will change and not in a quasi-equilibrium way. Also
in this case, we have shown that the existence of the saddle-node bifurcation is an important aspect to explain the transient
behavior of the CESM. Climate change modifies the atmospheric meridional temperature gradient and shifts the saddle-node
bifurcation to lower freshwater flux forcings, making the ‘AMOC on’ state less resilient. This was shown in greater detail
by the idealized results of the E-CCM, the collapse behavior can be viewed as crossing a moving saddle-node bifurcation
in time (Ritchie et al., 2021). Rate-induced effects are also highly relevant under climate change (Hankel, 2025), with the
strongest evidence for rate-induced tipping when comparing the RCP4.5 (AMOC recovery) and RCP8.5 (AMOC collapse)
and Fy = 0.18 Sv. Although the AMOC collapses for both the RCP4.5 and RCP8.5 under F; = 0.45 Sv, which suggests a
moving saddle-node bifurcation under climate change, rate-induced effects cannot be dismissed and to test this we need to
conduct more climate change forcing experiments, this is out of the scope of this paper. Note that the E-CCM is limited in
representing other (non-linear) climate change feedbacks, such as enhanced evaporation (due to higher temperatures) which
could partly stabilize the AMOC (van Westen et al., 2025).

Finally, as the phase space of the CESM is so high-dimensional, why would a saddle-node bifurcation appear in such a

model (as there are many instabilities)? This result can be possibly explained by looking at the Lorenz84-Stommel1961 model

27



550

555

560

565

570

or the PlaSim sea-ice model (Tantet et al., 2018), which both display chaotic behavior, but also show a large-scale transition
under variation of one parameter. Here, the chaotic behavior is only in the atmosphere component and the large-scale transition
dynamics is governed only by the slow component, which is then noise-forced. While in the total phase space, this may be
a crisis bifurcation, in the reduced phase space of the slow component, this would appear then as a saddle-node bifurcation.

However, more work is needed to make this more precise.

Code and data availability. All processed model output and Python scripts to generate the results are available at:

https://doi.org/10.5281/zenodo.17123475

Appendix A: The Analytical Solutions of the Stommel Box Model

The Stommel 2-box model (Stommel, 1961) consists of two well-mixed boxes (equal volume) and the boxes exchange water
mass properties over time (Figure A1). The circulation strength, v, is set by the density difference between the high-latitude

(Ty, S7) and equatorial box (T5, Ss):

¥ =Fk(p1— p2) (A1)
where k is a hydraulic pumping constant. A linear equation of state (p = pg — (T — Tp) + B(S — Sp)) yields:

¥ =k(aAT — BAS) (A2)

where AT =T5 — T and AS = S5 — S;. The governing (dimensionless) differential equation for the Stommel model are then
given by:

a7y
dt
ATy
dt
sy
dt
S,
dt

= |Y|AT + \p (T —Th) (A3)
= —|Y|AT + A (T —T») (A4)
= [Y|AS—n (A5)
= —[Y[AS+n (A6)

In these relations A7 is the thermal exchange coefficient with the overhead atmosphere, the atmospheric temperatures are
fixed.

Under the assumption that the thermal exchange with the atmosphere is much faster than the thermal exchange between the
boxes (YAT < Ap(T# —T;), with ¢ = 1,2), the steady state for the temperatures has 77 = 77 and T = T%'. Using this steady

state assumption, the time-evolution equation of the circulation strength (from A2 and A3 — A6) reduces to:

dy dAS dS; dS;

Ez—kﬂwz—kﬁ (dt_dt> =2kB(|Y|AS —n) (A7)
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Figure A1. Schematic representation of the Stommel 2-box model in its northward overturning state with AMOC strength . The blue and
brown arrows are freshwater and heat fluxes, respectively. The hosing is directed from the equatorial box (with 75, S2) to the high-latitude

box (with 17, S1).

where the temperature contribution vanishes as the atmospheric temperatures are constant (ddA—tT = d%tTa = 0). The final step

is to substitute AS = % from (A2) to obtain:
dyp “
T = 2N+ 2ka AT ] - 2k8n (A8)

The steady states (@ = 0) with northward overturning (v > 0) are given by:
y dt g

kaAT® kaATe\*
P12 = 5 + \/( 5 ) —kpn (A9)
For the reversed circulation (¢) < 0), these are:

kaAT® kaAT®\ >
na= g — \/ ( 5 > + kB (A10)

but note that 13 has to be rejected since 13 £ 0. The stable AMOC on state is given by 1)1, the stable AMOC off state by 14,
and the unstable state by 1)2. The (dimensionless) solutions for two different atmospheric temperature differences are shown in
Figure A2.
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Figure A2. Bifurcation diagram for the Stommel 2-box model, where the black dots indicate saddle-node bifurcations. The atmospheric
temperature differences are (a): AT =5 and (b): AT = 3. For the other dimensionless coefficients, we used: o = 2 X 1074, 8=8x10"*
and k =2 x 10°.

Appendix B: The Normal Form of the Saddle Node Bifurcation

For the Stommel model, the dynamics of the AMOC strength in the AMOC on state is given by:
dy _

i —20p + 2k AT ) — 2k 3, (B1)
which can be generalised for the saddle-node bifurcation to:

d

dzf Ap? + By +C — Dt. (B2)

where A, B, C and D are constants, and the freshwater flux forcing is now varied linearly with time (i.e., n(¢t) = Dt). This

generalised form also holds for the reduced model (Section 4.1).

ite-Relation (B2) is rewritten as:

dy _ B\’ B2

C—- — Dt. B3
W= (v ax) (0T ®)
When-and we follow the procedure outlined in Faure Ragani and Dijkstra (2025), where time ¢ is considered as a parameter 5
and the saddle-node bifurcation can be found by setting the last two terms on the right hand side of (B3) to zeroand-solving-,

Solving for ¢ yields:

C B?
SN _ Y . B4
D 4AD (B4)
To obtain the normal form, we apply a rescaling of the variables:
B t
— SN —
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600 and the dynamics of the AMOC in the rescaled variables are:

dz  dz dt de B\? B2

7:77:7AtSN7tSN:7AtSN2 A = — ) —=Dt|. B
dr  dtdr at () vitoa) T\¢ 1 (B6)
Now using (B4) and (B5) to find the normal form of:

de _ —A(t5N)? A DI DN ) =y a2 B7)
dr (—AtSN)2

where 7 = —AD(t5N)3 (1 — 7). Note that r > 0 for 7 < 1 as A < 0 and D > 0.

605 The non-autonomous system (B7) can be solved analytically (Li et al., 2019) and it was shown that the collapse time
t* =1+2.33301/3, where a = —AD(t5N)? > 0. If the forcing value at which the collapse occurs for a rate D is indicated
by ¢ = Dt*, then for the collapse forcing (,) at half rate D/2, we find that a; = 4y and hence vs = D(1+ 2.333a;1/3) =
D1+ 0.17704;1/ 3) < 7. Hence, the transition occurs at lower forcing strength (and faster) when the rate is lower (see also
Figure 3b and Figure 4 in Li et al. (2019)).
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