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Abstract. Recently, a collapse of the Atlantic Meridional Overturning Circulation (AMOC) was found in the Community Earth
System Model (CESM) under constant pre-industrial greenhouse gas forcing conditions. To determine the stability changes of
the AMOC with changing (freshwater) parameters in models, it is important to determine the origin of the collapse behavior.
In this paper, we argue that the classical picture of a saddle-node bifurcation holds for the AMOC collapse in the CESM. We
provide specific supporting arguments by showing results of additional pre-industrial CESM simulationsand-by-comparison
with-a-eoneeptuat-modet, The CESM results are compared with those of a five-box AMOC model, which is known to have

saddle-node bifurcations, and with which many sensitivity experiments can be performed. Theoretical arguments are also
provided showing that the essential dynamics of the CESM can be reduced to a low-dimensional model in which a saddle-node

bifurcation causes the AMOC collapse. The underlying physical reason is that the AMOC behaviour in CESM is controlled by
a small set of dominant feedback processes. This has important consequences for the value of conceptual AMOC models, for
assessing the effect of model biases on the AMOC stability, and for the interpretation of the-AMOC behaviour under climate

change seenario’sscenarios.

1 Introduction

A hot issue in current climate research is the Atlantic Meridional Overturning Circulation (AMOC) response under future cli-
mate change. Climate models participating in the Coupled Model Inter-comparison Project Phase 6 (CMIP6, Eyring et al. (2016)
) indicate a substantial AMOC weakening during the 215* century (Weijer et al., 2020). Beyond 2100 there is much more uncer-

tainty as the AMOC may (partially) recover (Benan-et-al52022)-or fully collapse =i al; Liu et al., 2017; Bonan et al., 2022; Dri

. Transient temperature responses are effective in causing the 215 century AMOC weakening but salinity responses are crucial
in further destabilizing the AMOC

z

. The dominant destabilizing AMOC tipping mechanism is the salt-advection feedback, where an AMOC weakening leads to
a smaller northward salinity transport amplifying the initial AMOC weakening (Maretzke;2000)-(e.g., Marotzke (2000)). The
existence of the salt-advection feedback is the-reason-tolabel-the AMOC why the AMOC is labelled as a tipping element-point
in the climate system (Lenton et al., 2008; Armstrong McKay et al., 2022).

Stommel (1961) was the first to identify the salt-advection feedback in a simple two-box model and demonstrated that

this feedback induces transitions between two stable AMOC steady states. The multi-stable AMOC regime is bounded by

Gérard and Crucifix, 2024; van Westen et
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two saddle-node bifurcations in this model. Since then, studies using more detailed conceptual (box) models (Cessi, 1994;
Cimatoribus et al., 2014) and numerically fully-implicit ocean-climate models (De Niet et al., 2007; Toom et al., 2012; Mulder
et al., 2021) have shown that saddle-node bifurcations bound the multi-stable regime of the AMOC in these models. Rahmstorf
(1996) showed that the saddle-node bifurcation associated with the AMOC collapse is linked to a critical value of the freshwater
transport carried by the AMOC at 34°S, represented by the quantity Fi,,s. When including the stabilizing gyre responses (Sijp,
2012), a F,,s minimum is found close to this saddle-node bifurcation (Dijkstra, 2007).

In numerically explicit ocean-climate models it is much harder (or not feasible) to determine the steady states versus (fresh-
water forcing) parameters and the boundaries of the AMOC multi-stable regime. An impression of the multi-stable regime can
be obtained by performing quasi-equilibrium simulations, where a freshwater flux forcing is changed very slowly back-and-
forth such that the model state stays close to the (slowly changing) statistical equilibrium. Such quasi-equilibrium simulations
have been performed with many ocean-only models (Rahmstorf, 1995; Lohmann et al., 2024), Earth System Models of In-
termediate Complexity (EMICs) (Rahmstorf et al., 2005; Cini et al., 2024), the FAMOUS model (Hawkins et al., 2011), the
Community Climate System Model (CCSM3) (Hu et al., 2012), and recently in the Community Earth System Model (CESM)
(van Westen and Dijkstra, 2023; van Westen et al., 2024a).

We-focus-here-onthe-tatterresult-for-the-CESM-and-When the salt-advection feedback is the dominant feedback, as is the
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case for the Stommel (1961) model, it can be shown that the stable "AMOC on’ state has a square-root (or guadratic) solution
against varying freshwater flux forcing (see Appendix A) with the normal (most simple) form of dz/dt =7 — 22 withr >0
(see Appendix B). This square-root relation in the Stommel model can be understood from the fact that the AMOC strength is
proportional to the salinity gradient, whereas the salinity gradient is also proportional to the AMOC strength. In more complex
(climate) models that resolve more processes and climate feedbacks, a near square-root dependency is also found for the
AMOC strength against forcing (Dijkstra, 2007; van Westen et al., 2024b; Vanderborght et al., 2025). Finding indications of a
square-root relation in guasi-equilibrium simulations is challenging as it requires very slow rates to follow the steady states of
the system (Rahmstorf, 1996). Even if the rate is sufficiently slow, this relation can be masked by relatively large (stochastic)
noise (Berglund and Gentz, 2006). An alternative a
is computationally too costly for CESM. Nevertheless, as long as the salt-advection feedback remains dominant amid other
AMOC:related feedbacks (Vanderborght et al., 2025), a square-root dependency can be expected when the system is relatively

close to its saddle-node bifurcation and hence to tipping.
Here, we focus on the CESM results and address the issue whether alse-this-behavioris-its AMOC tipping behavior is also

roach is by obtaining statistical equilibria for fixed forcing values, but this

caused by the presence of a saddle-node bifurcation, similar to that in the fully-implicit ocean-climate models (Dijkstra, 2007).
This is certainly a non-trivial issue as the CESM is an extremely high-dimensional dynamical system and the atmospheric
fluxes create a high frequency forcing on the ocean component of the model. In addition, in the quasi-equilibrium CESM
simulation (van Westen et al., 2024a) the forcing rate is rather large compared to the equilibration time scale of the AMOC
(van Westen et al., 2024b) and hence the (non-autonomous) dynamical system is not a fast-slow system (Kuehn, 2011). The
existence of a saddle-node bifurcation in the CESM is important for assessing the role of model biases on the stability of the

AMOC and for understanding the response of the model to transient climate change forcing (Ritchie et al., 2021).
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The aim of this paper is to provide a convincing case that a saddle-node bifurcation is causing the AMOC collapse in the
CESM, as presented in van Westen et al. (2024a). Thereto, we have performed several additional CESM simulations which
were branched from the quasi-equilibrium CESM simulation, we will compare the CESM behavior with that of a five-box
AMOC model for which a saddle-node bifurcation is known to exist (van Westen et al., 2024b);-and-we-provide-additional
theoretical-analysis. The advantage of this five-box model is that we can easily conduct multiple sensitivity experiments to
better understand the CESM behaviour. Section 2 describes the model set-up and simulations for the CESM and five-box
model and is followed in Section 3 by results on the (statistical) steady states and quasi-equilibrium results of both models.
Section 4 provides detailed theoretical arguments for the existence of a saddle-node bifurcation in the CESM and in Section 5,
the importance of this result for the behavior of the AMOC under climate change is shown. Finally, in Section 6, the results

are summarized and discussed.

2 Models and Methods
2.1 CESM simulations

The CESM (version 1.0.5) is a fully-coupled climate model and the simulations here have a 1° horizontal resolution for the
ocean/sea-ice components and a 2° horizontal resolution for the atmosphere/land components. For more details on the precise
CESM set-up, we refer to van Westen and Dijkstra (2023) and van Westen et al. (2024a). In those studies, the pre-industrial

forcing is used and in addition a freshwater flux forcing (Frr) is applied between 20°N and 50°N in the Atlantic Ocean and

is compensated elsewhere (at the ocean surface) to conserve salinity. This is the same hosing region as in Hu et al. (2012) and
Rahmstorf (1996), which has the advantage that the North Atlantic deep convection sites are not directly impacted under the

hosing. The sensitivity of the hosing location will be thoroughly analysed below for the five-box AMOC model.
The quasi-equilibrium AMOC hysteresis simulation (van Westen and Dijkstra, 2023) is obtained by slowly increasing 'y

from 0 Sv to 0.66 Sv and back to 0 Sv, at a rate of 3 x 10~ Sv yr~!, resulting in a 4400-year long simulation.

This-quasi-equilibrivm-This simulation remains close to the statistical equilibria, but the deviations become larger near the
AMOC collapse and recovery (van Westen et al., 2024b). To determine statistical steady-statesequilibria (i.e., steady states), two
500-year long CESM simulations were performed (van Westen et al., 2024b) at constant F'y, the steady states are indicated
as Fg. This was already done for Fr = 0.18 Sv (starting at model year 600 of the quasi-equilibrium simulation) and at
Fy = 0.45 Sv forcing (starting at model year 1500). The last 100 years of these steady states show hardly any model drift,
meaning that the AMOC and global climate are dominated by natural climate variability (van Westen and Baatsen, 2025).
Below, we will show results of new CESM simulations performed under constant Fy forcing or with a slower rate of F, and
closer to the values where the AMOC collapse occurs in the quasi-equilibrium simulation (around Fir = 0.525 Sv, van Westen
et al. (2024a)).

We will (in Section 5) also use results from two climate change simulations with-the-CESM-that were initialized from the end
of the statistieal-steady state with eenstant-Fy = 0.18 Sv and Fy = 0.45 Sv (van Westen et al., 2025). These climate change
simulations were first forced under the historical forcing (1850 — 2005) and followed by either RCP4.5 or RCP8.5 scenario
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forcing (2006 — 2100, Representative Concentration Pathway). Subsequently, they were further integrated for 400 years under

their 2100 radiative forcing conditions to study the equilibrium behaviour. Mere-details—on—these—simulations—are—provided

2.2 The5-boxoeceanmodel

An overview of all the different CESM simulations are presented below in Table 1. In total, we present 11,670 model years
of model output. Ideally, one would determine even more steady states or lower the varying F'y rate in the quasi-equilibrium

simulation, but this is computationally not feasible. These additional simulations, however, can be done with the five-box

22 The five-hox AMOC model

The five-box eeean-AMOC model (Figure 1) was developed by Cimatoribus et al. (2014), extended by Castellana et al. (2019),
and was recently further extended (hereafter the E-CCM, the Extended Cimatoribus-Castellana Model) by including oceanic

temperatures (van Westen et al., 2024b). The E-CCM has four surface boxes, where the Atlantic Ocean is represented by boxes t
and n, the Southern Ocean channel by box s, and the Southern Ocean Atlantic sector by box ts. There is one deep ocean box d,
hence this model does not include the Indo-Pacific Ocean nor Arctic Ocean. The Atlantic Ocean pycnocline depth, indicated
by the D, may vary in the E-CCM. The temperature and salinity are volume averaged over each box and heat and salinity are

exchanged between the boxes, and also heat between the surface boxes and overhead atmosphere. Salinity is conserved in the
E-CCM.

The AMOC strength in the northern box (gx) in the E-CCM is given by:
an =m 2= D2, (1)
Po

where 7, is a hydraulic constant, p,, — p;s is the meridional density difference between box n and box ts, pg is a reference
density, and D the pycnocline depth. The densities are determined from a linear equation of state. For full details and sensitivity
experiments conducted with the E-CCM, we refer to van Westen et al. (2024b), where there is also a link to the publicly-

available E-CCM code. We will show results for the version where sea-ice insulation effects are omitted and use the standard

values of the parameters given in van Westen et al. (2024b), unless otherwise mentioned.

The E-CCM is forced through the asymmetric freshwater flux forcing (£ 4) from box s to box n. Under varying F 4, the

E-CCM has an ‘AMOC on’ state (clockwise circulation, red solid and dashed arrows) and an ‘AMOC oft’ state (anti-clockwise



Table 1. Overview of the different simulations conducted with the CESM, which includes: simulation name, freshwater flux forcin

or fixed), radiative forcing, branched from simulation, duration, and the AMOC status at the end of simulation (on, transient or off). Note
that the forward QE was branched from the 2800-year long pre-industrial control simulation from Baatsen et al. (2020). The simulations are

sorted in order of appearance. Abbreviations:

Extended Representative Concentration Pathway.

E, quasi-equilibrium; PI

re-industrial; RCP, Representative Concentration Pathway;

E-RCP,

Steady state #3 Fu = 0465 Sv_ Platl850levels | Forward QF. Fiy =0.465Sv | 500 On
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Figure 1. Schematic representation of the five-box AMOC model (the E-CCM), adapted from van Westen et al. (2024b). The red arrows

represent volume transports, whereas the dashed and dotted arrows indicate the AMOC on and AMOC off states, respectively. The cyan and

blue arrows represent the gyre transport and freshwater fluxes, respectively. The freshwater from box s is distributed linearly over box n and

box t using a parameter &, where £ F 4 is added to box ¢ and (1 — &) E'4 to box n. The original E-CCM configuration van Westen et al. (2024b)

is obtained when £ = 0. The brown arrows are the heat fluxes with the overhead atmosphere for each surface box (i.e., box s, ts, t and n).

circulation, red solid and dotted arrows). There is a multi-stable AMOC regime and this regime is bounded by two saddle-node
bifurcations (van Westen et al., 2024b). To determine the sensitivity of the AMOC behavior to the hosing location (Rahmstorf,
1996; Ma et al., 2024), we make a modification to the E-CCM by distributing the freshwater flux forcing linearly over box n
and box t using a parameter £ € [0,1]. When £ = 0, the freshwater flux forcing is only applied to box n and this is the original
E-CCM configuration. The freshwater flux forcing is only over box t when £ = 1.

The steady states of the E-CCM against varying parameters (i.e., bifurcation diagram), such as freshwater flux forcing, are
determined using the continuation software AUTO-07p (Doedel et al., 2007, 2021). This code solves steady states using a
pseudo-arclength continuation combined with a Newton-Raphson method (Wubs and Dijkstra, 2023). It is also able to detect
Hopf bifurcations and saddle-node bifurcations. We used a value of 10~ for the absolute and relative accuracy of each steady-

state solution, and for the accuracy for locating special points, similar to van Westen et al. (2024b).
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3 Results
3.1 Statistical equilibria in the CESM

The AMOC strength (at 1,000 m and 26°N) and the freshwater transport carried by the AMOC at 34°S (Fyyg) of the quasi-
equilibrium CESM simulation (van Westen et al., 2024a) are shown in Figures 2a,b. The branched simulations from the quasi-
equilibrium simulation at a constant forcing Fry = 0.18 Sv (Figures 2c,i), Fig = 0.45 Sv (Figures 2d.j) and Flg = 0.465 Sv
(Figures 2e,k) equilibrate after about 300 years. The branched simulation at Fy = 0.48 Sv (Figures 2f,1) collapses and sug-
gests that the upper bound of the multi-stable regime is around this Fj; value. The branches initiated from Fy = 0.495 Sv
(Figures 2g,m) and Fz = 0.51 Sv (Figures 2h,n) also collapse; these simulations were terminated before the 500-year mark
because of computational costs. However, when the equilibrated Fz = 0.465 Sv simulation is subjected to an instantaneous
increase in freshwater flux to Fy = 0.48 Sv (AFy = 0.015 Sv), we still find a statistical equilibrium in the northward over-
turning regime (red curves in Figures 2f,1). We iteratively repeated the same procedure for Fiy = 0.495 Sv and F; = 0.51 Sv.

The AMOC eventually collapses under a constant freshwater flux forcing of Fz = 0.51 Sv. This means that the upper bound

of the multi-stable regime is found for 0.495 Sv < F; < 0.51 Sv. To obtain an even higher precision for this upper bound, we
would need to increase F;; with even smaller increments, but is not done here because of computational limitations.
The AMOC in the quasi-equilibrium simulation starts to tip around Fg = 0.525 Sv {van-Westen-etal;2024a)-and-(0.522

to 0.533 Sv, 10" and 90'" percentiles, van Westen et al. (2024a)) and is at larger Fy values than the upper bound found

from the statistical equilibria simulation (0.495 Sv—<+#5<- < Fy < 0.51 Sv). To determine the overshoot of the quasi-
equilibrium simulationssimulation, we use a reference eritical-value of Fr =0.5Sv, but any other Fy value within the interval
Fpy €[0.495,0.51] can be used as a reference (giving slightly different numerical results). Using this reference, the quasi-
equilibrium AMOC overshoots by AFy = 0.025 Sv (= 80 years). This-evershoot-is—substantially-smaller-than-the-0-2-Sv
Fy =048 Sy (blue curves in Figure 2¢ — n). In other words, the branched simulations for Fy; > 0.48 Sy already surpassed
a critical forcing value upon branching, which means that the standard quasi-equilibrium also surpassed its critical value and
0.465 Sv < Fyy < 048 Sv. The apparent overshoot with the reference value of Fj; = 0.5 Sv is then the result of inertia and
Wmﬁm%

e-quasi-
equilibrium remains-etose-to-the-with five different statistical equilibria and-the-time-means—(last 50 years) AMOCstrengths
ef—%hese%&&&s&e&l—eqm}rbfm%model ears are used). The quasi-equilibrium simulation is about 1 Sv stronger-than—the

weaker than the statistical equilibria, but still reasonably agree. For
F,ys, on the other hand, the quasi-equilibrium is larger and (mostly) outside the ranges of the different statistical equilibria

(Figure 2b).
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Figure 2. (a): The AMOC strength at 1,000 m and 26°N and (b): the freshwater transport by the AMOC at 34°S, Fys, for varying freshwater
flux forcing F'y (i.e., the quasi-equilibrium simulation). Inset: The hosing experiment where fresh water is added to the ocean surface between
20°N —50°N in the Atlantic Ocean (+F) and is compensated over the remaining ocean surface (— Fgr). The statistical equilibria for various
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shading in the two panels indicates observed ranges for the presented quantity (Smeed et al., 2018; Arumi-Planas et al., 2024). (c — n):
Similar to panels a,b, but now the entire branched simulations for different Fr values. The branches are initiated from the quasi-equilibrium

simulation (blue curves) or from the end of the previous statistical equilibria (red curves).
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170 When we lower the freshwater flux forcing rate, we expect that the system stays closer to the statistical equilibria (Hawkins
etal., 2011). To test this, we branched off a quasi-equilibrium simulation with only half the hosing rate (i.e., 1.5x 1074 Svyr—1)
from the end of the statistical equilibrium at Fy = 0.45 Sv. This simulation was integrated for 1,050 model years, where Fy
varied from 0.45 Sv to 0.608 Sv (red curves in Figures 3a,b). In the ideal case, the half-forcing quasi-equilibrium simulation
should have been initiated from the same initial conditions as the standard quasi-equilibrium simulation for direct comparison.
expect a smaller overshoot/undershoot (with the reference value of Fj; = 0.5 Sy) compared to the standard quasi-equilibrium

simulation. The faster transition (in Fz) is a characteristic of a saddle-node bifurcation (see Appendix B), but this is also the

case for other bifurcation types (e.g., Hopf) (Berglund and Gentz, 2006).
The half-rate foreing-quasi-equilibrium-simulation remains (very) close to the different statistical equilibria for both AMOC
180 strength and I s. The- AMOCeventuatty-cotapses-aroundF—0-53-Svand-there-Following van Westen et al. (2024a), we
90" percentiles at Fyy = 0.533 Sv and Fiy = 0.536 Sv, respectively. There is an overshoot of A#—6-63AFy = 0.034 Sv
(R~200-227 years) compared to our reference eritical-value of Fiy = 0.5 Sv—Surprisingly,—the-overshoot-in-the half-rate

185 (AFr—="0:025, but keep in mind that AMOC feedbacks take a considerable time to develop. These feedbacks can be quantified

AMOC feedbacks for the Fi; = 0.51 Sv simulation (branched from the previous statistical equilibrium of F; = 0.495 Sv) —
To—understand—thelarger-overshootunder—a—and the half-rate forcing ;—we-decompose—the—different AMOCfeedbacks

following-the-proeedure-outlined-in—2—The-simulation, where the most important feedbacks are shown in Figure 4fer-the

190 half-rateforeingsimulation-and-foreconstant; the standard quasi-equilibrium simulation decomposition is presented in Vanderborght et al. (

MH =0.51 Sv simulation (b
{Figure 4b);-a), in which the AMOC weakens by about 1.5 Sv during the first 100 model years. This weakening is attributed
to the slightly larger freshwater forcing (+0.015 Sv) compared to the starting equilibrium solution at Fz = 0.495 Sv. The

195 destabilizing salt-advection feedback (linked to Fi,,s) and surface (mainly sea-ice melt) feedback slowly grow over the follow-
ing 250 years. Over the same period (model years 100 — 350), the gyres and overturning component at 65°N partly stabilize
the AMOC. The combined effect results in an AMOC weakening of only 1.5 Sv over these 250 years and thereafter-after
model year 350 the AMOC fully collapses{Figu i ilizi

200 over centennial timescales (under constant freshwater flux forcing).
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Figure 3. (a & b): The AMOC strength and Fo.s of the quasi-equilibrium simulations, one similar to Figures 2a,b, and including the
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Figure 4. (a & b): Decomposition of the AMOC feedbacks (Vanderborght et al., 2025) for the (a): Fz = 0.51 Sv simulation (i.e., red curve

in panel 2h) and the (a): half-rate forcing simulation (1.5 x 10~* Sv yr!). The inset shows the two surface components of Arctic sea-ice

melt and precipitation minus evaporation (P-E). The time series are presented as 10-year averages (to reduce the variance). Note the different

horizontal ranges between the two panels.

FerNext the half-rate forcing simulation (Figure 4a);-b), where we find a similar centennial time-seale-timescale for the desta-
bilizing AMOC feedbacks. The AMOC feedbacks remain relatively small up to model year 350 (Fiz = 0.503 Sv), then slowly
increase in the following 200 years (model years 350 — 550) and thereafter the AMOC fully collapses. This gradual increase

of the destabilizing feedbacks between model year 350 to 500, suggests that the eritical-value-of foreing-was-erossedAMOC
will eventually tip and hence branching simulations with fixed F'i for £y > 0.503 Sv will also result in an AMOC collapse
similarly as the standard quasi-equilibrium simulation. However, additional simulations are needed to find this critical value

which were not done here.

In other words, there is a certain critical value of forcing and, once crossed, the AMOC will eventually tip over centennial

timescales (= 200 model years). This critical value is dependent on the initial condition and rate of forcing, which we will

make more explicit with the E-CCM below. As argued above, for the half-forcing quasi-equilibrium simulation this critical
value is likely around Fyr = 0.503 Sv, which is well within the interval 0.495 Sv—<F—<- %0.51 Svfer—=+-50-medel

inFigures2e—n)-The AMOC-eoHapse-. The AMOC collapse starts at F'y = 0.525 Sv in the standard quasi-equilibrium simula-
tion, meaning that the destabilizing feedbacks were growing during the 200 model years (A Fy = 0.06 Sv) prior to the collapse

2)(Vanderborght et al., 2025). This suggests that Fy = 0.525 —0.06 = 0.465 Sv is the latest statistical equilibrium which can

be found when directly branching from the quasi-equilibrium simulation, which is indeed the case here (Figures 2e.k). Note;

11
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that-This confirms again that the standard quasi-equilibrium

approachsimulation undershoots the upper bound of the multi-stable regime. The implication is that an overshootin
undershooting) AMOC cannot be assessed by only analysing the onset of the AMOC tipping event. In fact, the onset of
the AMOC tipping event only indicates where the destabilising feedbacks become dominant and it is much more useful to

analyse the changes in AMOC feedback strengths.
What is important here, is that the half-rate forcing’s transition to the collapsed state is twice as fast (in 'y space), which

is a typical characteristic of transitions near a saddle-node bifurcation Kuehn; 204+ (Berglund and Gentz, 20006) (see also
Appendix B). The duration of AMOC transitions in both quasi-equilibria and in the statistical equilibrium simulations (Fig-

ure 2) is about 100 years and the full equilibration to the collapsed AMOC state requires more than 500 years (van Westen et al.,
2024a). Another characteristic of a saddle-node bifurcation is the loss of resilience (i.e., critical slow down) near the tipping
point (van Westen et al., 2024b). This can be quantified by determining the variance and (lag-1) autocorrelation of specific
observables. For the AMOC strength, we find no indications of critical slow down (not shown) which is consistent with the re-
sults in van Westen et al. (2024a). There is also no increase in the variance for the AMOC strength for both the quasi-equilibria
and the statistical equilibria (Figure 3c). However, for the physics-based quantity F,,g we find indications of critical slowdown
{van-Westen-et-al5-2024a)(van Westen et al., 2024a; Smolders et al., 2025). Indeed, the F,,,g variance increases for larger F'y
up to the tipping event (Figure 3d). This increase in variability indicates that the AMOC loses resilience and makes it more

prone to transitions.

3.2 Equilibria in the E-CCM

ions The AMOC behaviour in the CESM can be reproduced
with the E-CCM, and-these-are—presented—together—with-—for which the steady states from-the-continuation—technique-are
known and obtained from continuation technigues (cf. section 2b). The continuation indicates two saddle-node bifurcations
at B = 0.4861 Sv (AMOC on) and at £ = 0.1857 Sv (AMOC off). The AMOC on and unstable steady states clearly show
the square-root behaviour between AMOC strength and £ 4, which arises from the dominant salt-advection feedback close
to 17} The probabilities under (stochastic) noise for the transition from an AMOC on to an AMOC off state approach 1

when moving closer to 'L (van Westen et al., 2024b

uasi-equilibrium and equilibrium simulations with the E-CCM, which are shown in Figure 5. Note that we used slightly
different freshwater flux forcing (£ 4) values in the E-CCM than in the CESM. The-continnation-indicatestwo-saddle-node

indicative of the loss of resilience. Here, we performed deterministic

The quasi-equilibrium hysteresis simulation in the E-CCM are-is (qualitatively) comparable to that of the CESM (compare
Figures 2 and 5); the large overshoot (> 35 Sv) in the E-CCM upon AMOC recovery is a model artefact (van Westen et al., 2024b)

. In the forward quasi-equilibrium simulation the AMOC strength is lower compared to the value at the steady states, while the

F,,g values are higher. The branches from the quasi-equilibrium eventually collapse (for E4 = 0.477 Sv and E 4 = 0.486 Sv)

12
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ure 2, but now for the E-CCM. Note that in panels a and b the steady and unstable states (from the continuation) are
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lowest possible £4 value, We use an accuracy of AF, =0.001 Sy (but can be even higher when needed). Ultimately, the
AMOC collapses when branching from the quasi-equilibrium simulation for £ > 0.474 Sy (Figure 6a)-the AMOC strength
in-the-quasi-equilibrivm-€._As was argued in the previous section, this critical value is also dependent on the initial condition
and rate of forcing. For example, when we use the steady state at F/q = 0.45 Sv as initial condition, we can increase £ up

tng-and then keeping

er-constant. In this case, the

AMOC eventually equilibrates to the AMOC on state (not shown), meaning that the critical value is found for £ 4 > 0.480 Sv.

—1) the AMOC also equilibrates

t0 0.479 Sv (with 3 x 107% Sy yr~1)

the freshwater flux forcing ¥

When we initiate from £ 4 = 0 Sv while using a ten times smaller forcing rate (3 x 10~° Sv yr

not shown). The critical value for this other case is for /4 > 0.484 Sv. Depending on the initialisation and forcing rate, the
saddle-node bifurcation can only be reached with a limited accuracy.

Since the AMOC collapses at critical values lower than (i, undershooting) the saddle-node bifurcation of (blue curve
in Figure 6a), the system must cross the basin boundary of attraction between the AMOC on state—F = 0-4861-Sv)—Fhe

quasi-equiibrivm-simulation-doesn’tand AMOC off states. The continuation allows us to explore which variable (temperature
AMOC strength, see (1)

crosses this

salinit cnocline depth), or which specific combination of variables (e.g.

boundary of attraction. Notably, the critical branch at /4 = 0.474 Sv does not cross the basin boundary forthe AMOC strength

with respect to AMOC strength and one expects AMOC recovery to the AMOC on state, and yet the AMOC collapses (left
+. This means that the

inset in Figure 6a)an
AMOC strength is no good predictor for the future evolution of the system for the critical branch. When we analyse a different
quantity, such as the salinity of box n (right inset in Figure 6a), it does cross the basin boundary. The salinity in box n is
important here as it (partly) sets the AMOC strength (relation 1) and is influenced under the destabilizing salt-advection feed-
back—When i ihi i

14



a) AMOC strength, £=0

—— AMOC on
—— AMOC off
151 —=- Unstable
—— Quasi-equilibrium
—— Critical branch
>
% AMOC strength (Sv) Salinity box n, S, (g kg’l)
£ 10912
g " 7\
£ |10 / -
: \t\\’/ / 342 g7
2 51% =7 yia _\.*\ |
> 0.47 0.48 /ﬂ.49 0.47 0.48 0.49
///
e
/,/
0-
0.0 0.2 0.4 0.6 0.8 1.0
Freshwater flux forcing, E4 (Sv)
c) AMOC strength, £=1.0
—— AMOC on
—— AMOC off
—-=- Unstable
15 - i
AMOC strength (Sv) —— Quasi-equilibrium
—— Critical branch
—_ 10 1
S
o
£107 g
Q -
w -
[ = T
£ 0.830 0.835 0.840
o 1]
£ Salinity box n, S, (g kg1 ,/
S >7 348 7
> ’
//,
34.7 A g
i <
01 3156 !
0.830 0.835 0.840
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. (a): The steady states for the AMOC strength and a quasi-equilibrium simulation (rate 3 X 1074 Sv r~1) for the hosing over
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d) Saddle-node bifurcations and difference to Foys minimum
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T 0
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34.6

Freshwater flux forcing difference (x1072 Sv)

0.474 Sv (blue star), which was

integrated into

equilibrium. The two insets show zoomed-in versions of the AMOC strength and salinity of box n near the saddle-node bifurcation. (b & ¢):

= 1, where the branched simulations were initiated at £4 = 0.609 Sv and E4 = 0.835 Sv,

respectively. (d): The position of the saddle-node bifurcations of the AMOC on (E%) and AMOC off (E%) states (solid curves). The distance
expressed in AFE 4) between EL and E3 and between the EY and the Fovs minimum.
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When we equally distribute the hosing over box n and box t (£ = 0.5, Figure 6b), the saddle-node bifurcations shift to higher
values of E 4. This-The quasi-equilibrium alse-undershootsfor this case has weaker AMOC strengths than the stable AMOC
on state and close to the saddle-node bifurcation it starts-to-overshoot-has stronger strengths than the AMOC on state (left
inset in Figure 6b). Adthough-the-quasi-equitibrium-The critical branch (at E4 = 0.609 Sv) has a stronger AMOC strength
than the steady AMOC on state s-upon branching, but it still collapseswhen-keeping-the-freshwater-fluxforcingconstant-at
F=0-609-Sv. The salinity in box n eresses-does cross the basin boundary (right inset in Figure 6b), demonstrating again that
AMOC strength is no good indicator for predicting an-AMOE-coHapsethe future AMOC trajectory. Only when the hosing is
applied over box t (£ = 1.0, Figure 6¢), the AMOC collapses when increasing the freshwater flux forcing beyond the saddle-
node bifurcation of Fl; = 0.83495 Sv. When we WQMMMW r B4 up-to-0-8348-Svfor
the solution equilibrates to the stable AMOC on state(see-insets-in-Figure-6¢).

The undershootof-the- AMOCstrength- AMOC dynamics and the under- and overshooting behaviour can be understood from
these three different cases. When a hosing perturbation is (partly) applied over box n, the AMOC strength directly reduces as

the meridional salinity difference between box n and box ts increases. The largest part of the freshwater perturbation is carried
away by the AMOC to box d, but a small part of the perturbation remains in box n (due to a weaker AMOC) and causes
freshwater accumulation over box n. This freshwater accumulation results in a slightly weaker AMOC strengths compared
to the steady states. Once the system has a sufficient amount of time to adjust to the imposed freshwater perturbation, the
entire freshwater perturbation is redistributed over the boxes and the AMOC strength eventually increases (e.g., blue curves
in Figures 5c,d,e,f). In other words, the advective (‘flushing’) timescale is slower than the hosing timescale, resulting in an
enhanced AMOC strength decline.

“Fhis This makes the AMOC more prone to freshwater perturbations and explains why there is hardly any overshoot in the
uasi-equilibrium simulation with the saddle-node bifurcation (for

CESM, meaning that £ = 0 is not very likely for the CESM.

= 0). This is qualitatively different than the quasi-equilibrium

The direct AMOC weakening effect is smaller when adding (part of) the hosing over box t and there are two effects con-
tributing to this different behaviour. First, the hosing is now distributed over the (much) larger box t than box n and making the
freshwater-salinity anomalies (averaged over box t) effectively smaller. Second, only a part of the freshwater-salinity perturba-
tions from box t is carried by the AMOC into box n and most of it is directly carried to box d (see also Figure 1). This implies
that the role of the overturning contribution in redistributing freshwater-salinity anomalies between box t and box n is getting
smaller, while the (northern) gyre contribution is getting more important. These combined effects explain why the saddle-node
bifurcations shift to larger £ 4 values for increasing & (Figure 6d). The larger gyre contribution is also reflected in a greater
AFE 4 between the Ei, and Fy,s minimum, which also modifies the hysteresis width which is measured as the distance between

the two saddle-node bifurcations (Figure 6d).
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In the standard quasi-equilibrium CESM simulation (rate 3 x 10~* Sv yr—1), the AMOC strength is also smaller than that of
mwmmmm
E-CCM in the lied hosing region in the CESM (20°N — 50°N)and-we
expeet-ehanges-in-the, though the CESM is much more complex than the E-CCM. Depending on the hosing region, one can
the AMOC tipping event and width of the multi-stable regimewhen-varyi i i

ﬂﬁmmm&m%mﬁ&wmwmm
as was done for our CESM simulations or in the outlined procedure of the North Atlantic Hosing Model Intercomparison

Project (NAHosMIP, Jackson et al. (2023)). Sensitivity experiments indicate that the northern portion of the North Atlantic
Rahmstorf, 1996; Ma et al., 2024). Nevertheless, the destabilisin

the statistical equilibria.

= 0.5 configuration, which is consistent with the a

., the Irminger basin) is most sensitive under hosin

salt-advection feedback becomes more dominant under increasing hosing strengths and causes the square-root dependenc
near the saddle-node bifurcation.

4 Feedback analysis in the CESM

feedback dominates, one may expect a square root dependence of-the- AMOC-strength-(in the AMOC on state )-on-the-under
increasing freshwater flux forcingnear—a—saddle-nedebifureation,—, similar as in the StemmeH1961)-Stommel model (see

characteristics of that in a much more complex and fully-coupled climate model (i.e., the CESM). This makes the existence
of a saddle-node bifurcation in the CESM plausible, but this can not easily be demonstrated using only a limited number of

equilibrium simulations. However, it turns out that from performing a feedback analysis as in >Vanderborght et al. (2025), we

can (under reasonable assumptions) derive a reduced model explicitly showing the dependence of AMOC strength on F;.
4.1 Reduced model derivation

We start from the total Atlantic (34°S to 65°N) freshwater budget as governed by ¢2)}(Vanderborght et al., 2025):

dw

E: azS_FazN+FovS_FovN+Fsurf+Fres, (2)

where W is the total freshwater content. The Atlantic freshwater content can be modified through azonal (gyre) contributions
(i.e., Fazs and F,,N), overturning contributions (i.e., Fi,g and Fi,,N), surface contribution (i.e., Fy,) and residual contribution
(i.e., Fies). The quantities F,,5 and F,,g are evaluated at 34°S, hence indicated with subscript ‘S’, and we follow a similar
notation for the northern boundary (65°N) by using a subscript ‘N’.

Upon a freshwater perturbation, the evolution of the different contributions depends on the background state and the AMOC
strength (2)(Vanderborght et al., 2025). The AMOC strength is fairly homogeneous over the Atlantic basin (van Westen et al.,
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2024a) and we assume a northward volume transport in the upper AMOC limb which we indicate here as ¥; the lower AMOC

limb then carries ¥ southward. The average-salinity-eontent-velocity-weighted average salinity over the upper AMOC limb is

indicated with S_,, and for-the-salinity-content-over-the-similarly for the lower AMOC limb we use S._. The vertical salinity
difference between the upper AMOC limb and lower AMOC limb is then indicated by S= = S_, —S._. Under this idealization

it directly follows that:

S—
Fos = — 220, 3
s 5 3

where Sy = 35 g kg 1. Because the salinity transport in the lower AMOC limb is approximately adiabatic, the vertical salinity
contrast at 34°S is closely related to a meridional salinity contrast between 34°S and the North Atlantic sinking region. This

meridional salinity contrast is related to the AMOC strength via thermal wind balance (Butler et al., 2016). Therefore, the

vertical salinity contrast scales with the AMOC strength as ¢2)}(Vanderborght et al., 2025):
\I/:\I/0+Cg (1761)(;53(0)*53), (4)

where c; represents the stabilizing thermal-advective feedback and c; is a scaling factor. Both ¢; and ¢, are positive constants
and, for the CESM, their values are about 0.52 and 20 Sv kg g~! ¢2)(Vanderborght et al., 2025). The terms ¥ and S (0) are
the AMOC strength and vertical salinity difference for F'y = 0 Sv (no hosing), respectively.

Under the applied hosing (indicated by § F'y in the CESM) the value of Fj,, increases and is primarily (i.e., to first order)
balanced by a declining Fi,,s (van Westen et al., 2024a). On the other hand, the gyres flush freshwater anomalies out of
the Atlantic Ocean and stabilize the AMOC (2)(Vanderborght et al., 2025). Sijp (2012) argued that S linearly scales with
the integrated Atlantic freshwater content. This integrated freshwater content in turn scales with the anomalous freshwater

transport by the gyres (Huisman et al., 2010), i.e.:
ngre =Fos —Fan = _9154_—’ + g2- &)

This linear relation is also applicable for the CESM, where g; = 0.032 Sv kg g~! and g» = 0.49 Sv (Figure 7a). The last
contribution which we consider is the overturning component at the northern boundary, Fi,,x. The AMOC strength almost
vanishes at the northern boundary and the expression for F, is different than that of the F (relation 3). The Fi,n scales

linearly with S= and can be approximated by:
Foun =n15= +na (6)

with n; = 0.025 Sv kg g~! and ny = —0.021 Sv for the CESM as shown in Figure 7b. The contributions by the gyres

and F,yn scale linearly with increasing S= (or decreasing W), whereas the Fi,gs has a non-linear contribution. We—de

s—To be more precies, the F,,g 1s determined b
the product of the vertical salinity difference and the AMOC strength, where the latter scales linearly with the vertical salinit
difference (i.e., relation 4). The F\,s scales quadratically with AMOC strength, and conversely AMOC strength scales with
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the square root dependence on Fi,s. As the imposed freshwater flux forcing is primarily balance by F.,s in the CESM
van Westen et al., 2024a), one expects a square root dependence in AMOC strength under increasing freshwater flux forcing.
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Figure 7. (a): The relation between Fgy:. and S—=, where the linear fit is determined over the 20-year averages up to model year 1,700

(Fr = 0.51 Sv) of the standard quasi-equilibrium simulation. (b): Similar to panel a, but now for the Fo,n and S=.
A perturbation in the Atlantic freshwater content (cf. (2)) around an equilibrium state then gives:
—0Foys + 0FouN — 0 Fgyre = 0 Fguut, (7
and using the expressions for Iy, Fiyre and Foyy, this yields:
VUiSe + S=0W +n1500S= + g1.5005= = Spd Fy 8)

Using the relation between ¥ and S= (from 4) we find:

R <02 (1\1’_ S5t (f’f 5= m> 00 = SodFy, ©)
which can be rewritten as:

(=20 4+ Ty +ca(1—¢1)S=(0) — (n1 + ¢1)S0) 0¥ =3 (1 — 1) Sod Fr, (10)
and integrating both sides gives:

U2 — (Ug+cz(1—c1) S=(0) — (n1+g1)S0) ¥ +c2 (1 —c1) SoFg +C =0, (11)

with integration constant C. The solution with ¥(Fy = 0) = ¥y is:

2
9(F) = %+CQ(1—C21)52(0> C(m +2gl)5'0 i\/(‘110—02(1—01)52(0)—4-(711+g1)50> e SoEy (12
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Rather using S=(0), we express it as the initial F,g using (3), i.e., S=(0) = —

S’(’F\‘f,ivosw). The final expression becomes:

2
W(Fy) = Vo ca(1—c1)SoFovs(0) (na +91)50i\/(‘118 +c2(1—c1) SoFovs(0) + (m +91)50‘I’0) s (1= 1) SoFu

2 20, 2

13)

gyre d
Do note that several assumptions are required to arrive
Mwm&w&mmwmwm such as ocean-sea
ice interactions (destabilizing), ocean-atmosphere fluxes (destabilizing), pycnocline deepening (stabilising), open Bering strait
(stabilizing) and the effect of ocean eddies (stabilizing) (2)—These-additional-(Vanderborght et al., 2025). The linear relation
in Fgyre and Foun with So s less accurate and ¢y is less constant close to the tipping point. Freshwater anomalies may be

410 stored in the Atlantic Ocean and hence we assumed that changes in the freshwater content are much smaller than changes
in the freshwater balance terms (i.e., Y < A (F es)). These additional feedbacks and

405

processes modify the idealized AMOC response and make it more difficult to derive an analytical solution for the northward

overturning regime, as these processes (ideally) need to be expressed as a function of S— (if it exists). We stress that this

idealized AMOC response under hosing should be interpreted with care and one needs to consider the appropriate feedback

415 contributions for each (climate) model set-up. The key point is that the AMOC strength exhibits a square-root dependence on

the freshwater flux forcing, leading to a saddle-node bifurcation when the dominant balance is between the applied freshwater

flux forcing and the overturning component. As long as other contributions remain sufficiently small, their effect will not
change the structure (and therefore the type) of the bifurcation diagram.

For the Stommel 2-box model, we can demonstrate that a similar AMOC response holds (see Appendix A). Under no fresh-

420 water flux forcing (n = 0) in this model, the salinity difference between the two boxes is zero. This constraint gives the initial

AMOC strength of Uy = kaAT® and Fiys(n =0) =0, where k is a hydraulic pumping coefficient, o the (dimensionless)

thermal expansion coefficient, and AT the (dimensionless) atmospheric temperature difference. The northern boundary is

closed (n; = 0) and gyres are not represented (g; = 0) in the Stommel model. The oceanic temperatures in the Stommel model

are fixed (under steady state assumption), and in this case c¢; = 0. Relation (13) for the Stommel model reduces to:

a a 2
425 \I/(FH):kagT i\/<k“§T > — S0 Fyr (14)

and is similar to relation A9, apart from some scaling coefficients.
4.2 Application of the reduced model

Using the reduced model, the critical value of Fy for an AMOC collapse in the CESM can be estimated by assuming that the
freshwater flux forcing is (in its first order) balanced by the overturning and azonal (gyre) components, which is the case for

430 the CESM (van Westen et al., 2024a). The critical freshwater flux forcing is obtained by setting the terms under the square root
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in equation (13) equal to zero. Solving this yields:

e 1 (\1’(2)-1-02(1—01)50Fovs(0)+(n1 +g1)50\1’0)2. (15)

= (—c1) S, 20,
The F; is dependent on the initial AMOC strength and initial Fi,ys value. In the CESM, the Atlantic Ocean surface area
outside 20°N — 50°N receives a negative freshwater flux as part of the global compensation (see inset Figure 2a). This makes
the applied hosing 86% effective when considering the total Atlantic Ocean surface area (34°S — 65°N) and F7; needs to be
adjusted by a factor 545 86 The time-means (ﬁrst 50 model years) in the CESM quasi-equilibrium simulation are ¥y = 16 Sv

and Fi,s(0) = 0.22 Sv, which give: I'f; = 555 86
(over the first 50 model years) for AMOC strength and Fiys, we find Ff; = 5 EGO 44=0.52Svand F; = 5 }360 33 =0.38 Sy,

===0.38 = 0.44 Sv (Figures 8a,b). When using the maximum and minimum values

respectively (Figures 8a,b).
The FH determined from the reduced model is somewhat smaller (0.06 Sv for the mean) than thatestimated-by-the CESM

ur reference of F'y = 0.5 Sv). By increasing the gyre (or northern overturning) responses,
we can reduce this difference (Figure 8d). The gyre contributions also control the distance between Ff; and value of Fiy at
the F,,s minimum (Dijkstra, 2007; Huisman et al., 2010; Dijkstra and van Westen, 2024). For the reduced model and with
standard values of the parameters n; and g, this difference is about AFgr = 0.34 x 10~2 Sv (Figure 8d), and decreasing with
smaller g; (or ny).

The actual F,,s minimum in CESM is found for the statistical equilibrium of Fi; = 0.48 Sv (Figure 9a), whereas the F,g
minimum in the quasi-equilibrium was found around F'y = 0.52 Sv (van Westen et al., 2024a). There is, however, substantial
overlap in the statistical properties of the four statistical equilibria closest to the tipping point. Following van Westen et al.
(2024a), we use cubic splines that interpolate cubic polynomials between so-called knots, for these knots we use the Fi,g
values from these four statistical equilibria. For each of the four statistical equilibria (i.e., the knots), we draw one random F,g
value (50 years in total) and these are used to generate the cubic splines with two different boundary conditions (i.e., not-a-knot
and natural). Ten random cubic splines are displayed in Figure 9a (thin curves) and the mean over 100,000 random cubic splines
(thick curve) goes through the time means of the statistical equilibria. The F,,,g minimum is found for Fz < 0.487 Sv in 66%
of the cases (bars in Figure 9b), with the F,,,5 minimum at a mean value of F; = 0.481 Sv (from the 100,000 realisations).
The F,,s minimum estimated from the cubic splines is frequently found at Fz = 0.495 Sv (curves in Figure 9b), which is
attributed to the random sampling such that the knot at Frr = 0.495 Sv has the lowest F,g value of the four knots. The cubic
spline mean F,,s minimum is found AFy = 0.014 to 0.029 Sv before the upper bound of the multi-stable regime. A similar
freshwater flux forcing difference is found in a fully-implicit global ocean model (Dijkstra and van Westen, 2024), where it
was shown that the F|,,s minimum is connected to a saddle-node bifurcation.

The overlap in the statistical properties of the four statistical equilibria closest to the tipping point also complicates the shape
i.€., square-root) estimate between AMOC strength and F'y. These four equilibria are clearly insufficient and one needs more

equilibria to obtain a better estimate of the shape. This is computationally expensive for the CESM, but can easily be done for
the E-CCM and also under stochastic noise. Even if more equilibria were available for the CESM, there is a possibility that the
structure of multiple equilibria is much more complicated (Lohmann et al., 2024). The latter may explain the relatively stron
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Figure 8. (a&b): The AMOC and F,.s responses of the reduced model under the freshwater flux forcing (cf. equations (13) and (3),
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respectively), where the solid curves indicate the steady AMOC on state and dotted curves the unstable branch. The initial values for both

the AMOC strength and F,,s were obtained from the first 50 model years of the quasi-equilibrium. The AMOC strength values are 16.0 Sv
(mean), 17.8 Sv (maximum) and 14.3 Sv (minimum), and F,,s values are 0.22 Sv (mean), 0.24 Sv (maximum) and 0.20 Sv (minimum).
For estimates—from-observations—observed values we used 17 Sv (Smeed et al., 2018) and —0.15 Sv (Arumi-Planas et al., 2024) for the
AMOOC strength and Foys, respectively. (c): The critical freshwater flux forcing (F'g) for varying initial AMOC strength and initial Fyys.
The ranges for the CESM (first 50 model years of quasi-equilibrium) and-ebservations-are indicated. The critical freshwater flux forcing was

not determined for relatively weak AMOC strengths (< 5 Sv). (d): Values of F (solid curves) and difference to Foys minimum (dashed

curves) for varying gyre sensitivity (g1) and two cases for the northern overturning sensitivity (n1), using the time-mean (first 50 model
years) AMOC strength and Fys. The standard CESM values are g; = 0.032 Sv kg g~ ! (blue dotted line) and n; = 0.025 Sv kg g~ * (black
curves). For all panelsCESM results, we consider the hosing over 20°N — 50°N (with global surface compensation), making the applied

hosing 86% effective (see main text).
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Figure 9. (a): Cubic splines fits (thin curves) using random Foyg values from the four statistical equilibria. The mean over 100,000 random
cubic splines are shown by the thick curves. We use the not-a-knot boundary condition (upper panel) and the natural boundary condition
(lower panel). (b): The probability distribution function (PDF) of the Fi,,s minimum using cubic splines and the expected PDF from the
statistical equilibria are indicated by the bars (grouped by 0.015 Sv). For the cubic splines we also determined the PDFs with a finer

resolution of 0.001 Sv (curves). For each PDF, we generated 100,000 independent sets of F,s values from the four statistical equilibria.

AMOC strength for Fiz = 0.48 Sv, but this can not be verified from the results presented here, It is therefore more relevant

to analyse the different AMOC feedback strengths over large F'y intervals, which clearly indicate a square root dependence
between AMOC strength and F'y; (Vanderborght et al., 2025) and this is also supported by the reduced model here.
Using the reduced model, one can make a rough estimate of the critical freshwater flux forcing needed to collapse the

present-day AMOC

slobal-compensation)-mimic-global-climate-changeIn-this-caseusing-apresent-day AMOCstrength-of-, For observed values

for AMOC strength and Fi,.5, we used 17 Sv (Smeed et al., 2018) with-a-tsys-of-and —0.15 Sv (Arumi-Planas et al., 2024),
surface, making the hosing 100% effective, and we find Fiy = 0.19 Sv (Figure 8). As-the-CESM-slightly-underestimates
theF—from-the reduced-model-atteast-a-Although this critical freshwater flux forcing ef-abeut-025-Sv—would-beneeded;
boiling-dewn-to-30is_substantially smaller than the CESM, it still boils down to 25 times the present-day melt rate of the
Greenland Ice Sheet (Sasgen et al., 2020). The-AMOCresponses-under-varying+rNevertheless, what is most relevant here

is that the present-day AMOC is more sensitive (i.e., relatively large %) are-more sensitive-in-observations than-in

the-CESM;-because-the-present-day-AMOC-has-a-negative-compared to CESM and typical CMIP6 models, as most climate
models are positively biased in their Fig § i ilisi i i initi
Van Westen and Dijkstra, 2024; van Westen et al., 2025). In other words, the AMOC is overly stable when having positive

F 1—posive—in-the-pre-ind CESMN-— Note—th ha nracant d ANO 1 not-on orced-biyv_anhaneced canland a
ovS 15 PO v v aod a 0 O a P 0 aay < n O O y O OOy o 03 aric
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not-be-very-biases and underestimate the risk of AMOC tipping (Liu et al., 2017). As was argued in Vanderborght et al. (2025

the reduced model only holds under

change eonditions(van Westen et al., 2025).

5 atm Y 3 T Westen-and-B SHFA

uasi-)equilibrium conditions, making this analysis less useful under transient climate

5 Transient AMOC behavior under climate change

The existence of a saddle-node bifurcation in the E-CCM helps to understand how AMOC stability in CESM is influenced
under climate change. Changes in the background climate conditions can be interpreted as a shift in the position of the saddle-
node bifurcation. This can already be demonstrated in the Stommel model where the saddle-node bifurcation shifts to lower
freshwater flux forcing values under a smaller atmospheric temperature gradient (Figure A2).

We first analyse the CESM simulations under the Hist/RCP4.5 and Hist/RCP8.5 scenarios. The AMOC collapses in three out
of the four CESM simulation under climate change (Figures 10a,b). The simulation under the higher freshwater flux forcing of
Fpg = 0.45 Sv are closer to the tipping point (under PI conditions) and hence are more prone to undergo transitions, which is
indeed the case. For Fi; = 0.18 Sv, only the Hist/RCP8.5 scenario shows an AMOC collapse while in the Hist/RCP4.5 scenario
the AMOC eventually recovers. In the latter scenario, the AMOC shows distinct centennial variability and this is associated
with the typical overturning time scale (Winton and Sarachik, 1993).

The imposed transient climate change forcing induces above-averaged surface temperature trends (compared to the global
mean) at the higher latitudes (i.e., polar amplification, Figures 10c,d). This temperature response reduces the meridional
(equator-to-pole) temperature gradient and may influence the multi-stable AMOC regime, as is the case for the Stommel
model (Figure A2). We can test this in the E-CCM by reducing the atmospheric meridional temperature gradient by imposing
a (positive) atmospheric temperature anomaly (A7) over box n (and also over atmospheric box s as they are coupled (van
Westen et al., 2024b)). We keep the atmospheric temperatures the same for boxes t and ts to limit the degrees of freedom.

The steady states (with & = 0) for the reference case (AT¢ = 0°C) and climate change case (AT? = 5°C) are shown in
Figure 11a. Both saddle-node bifurcations shift to lower ' 4 values and the hysteresis width decreases from 0.30 Sv (reference)
to 0.22 Sv (climate change). This shift can be understood from the smaller meridional density difference between box n and
box ts (equation (1)) due to higher temperatures and this requires a smaller freshwater flux forcing to reach the critical AMOC
strength corresponding to the tipping point. The reduced meridional temperature gradient also weakens the AMOC on strength
by a few Sv when comparing the two cases. The shift of the upper saddle-node bifurcation to lower E/4 values indicates that
the AMOC on state loses stability under climate change.

To study the transient climate change forcing in the E-CCM, we linearly increase 7, by 1°C per century up to model
year 500 and then keep the temperature anomaly constant at AT = 5°C. The AMOC strength (black curve in Figure 11b)
under climate change is shown for constant £4 = 0.335 Sv, a similar set-up as in the CESM. For each temperature anomaly
AT¢ we determined the steady states (with an accuracy of 0.1°C) and the values for the AMOC on, unstable branch and AMOC

off states for £ 4 = 0.335 Sv are also shown in Figure 11b. These steady states represent the ‘frozen’ bifurcation diagrams for

24



a) AMOC strength at 26°N (F,; = 0.18 Sv)
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Figure 10. (a&b): The AMOC strength at 1,000 m and 26°N under the different climate change scenarios, the yellow shading indicates

observed ranges (Smeed et al., 2018). (c&d): The zonally-averaged (2-meter) surface temperature trend (model year 2000 — 2100) under the

different climate change scenarios. The globally-averaged temperature trend is indicated by the dashed lines.
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a) AMOC strength steady states
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Figure 11. (a): The steady states for the AMOC strength for the standard set-up (solid curves) and under climate change (dashed curves).

(b): The AMOC strength under transient climate change and 4 = 0.335 Sv, where AT linearly increases up to 5°C up to model year 500

(trend of 1°C per century) and then remains constant. The steady states at /4 = 0.335 Sv for each climate change anomaly (with an accuracy

of 0.1°C) are also displayed. The insets show the steady states and the transient AMOC state (black dot) at AT,y = 2°C (model year 200)

and AT = 4°C (model year 400). (c): Similar to panel b, but now for different values of E4 with AE4 = 0.005 Sv. (d): The transient

AMOC strength under climate change and E4 = 0.33 Sv, but now for varying temperature trends in A7,*. The inset shows the transient

AMOC strength for a temperature trend of 11.85°C per century.
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a given temperature anomaly (insets in Figure 11b). The transient AMOC is clearly deviating from the AMOC on state. Up
to model year 500, the AMOC gradually weakens and after a few oscillations eventually collapses in model year 900. These
oscillations are related to a (sub-critical) Hopf bifurcation close to the saddle-node bifurcation. There-is-no-AMOC-coltapsefor

Fr<0-335-S¥When lowering the T trend to 0.726°C per century and then keeping AT? = 5°C fixed, the AMOC strength
also displays substantial oscillatory behaviour but does recover (not shown). This means that rate-induced effects are present
and the AMOC collapses for T¢ trends larger than 0.726°C per century for £ 4 = 0.335 Sv.

When using a trend of 1°C per century for 7. (up to AT = 5°C) and varying F, (Figure 1 1c)but-there-is-always-, we
always find an AMOC collapse for E4 > 0.342 Sv and-ATL=5°C)as there are no stable AMOC on states at larger F4

values -
For-astightly lowerfreshwaterfluxforeing-of For—0-33(Figure 11a). The AMOC always recovers for E4 < 0.33 Sv, the
ANO B 1 hen—the 1raata hong OreIR-O—FAraiA on A A 3 o o A

year-500;-again demonstrating that rate-induced effects are present for F a4 =0.335Svand F4 = 0.34 Sv. Rate-induced effects
are also present for £ 4 < 0.33 Sv, however, the AMOC is much more stable compared to the previous presented case of

FE 4 =0.335 Sv. This is also demonstrated in Figure 11d, where we vary the AMOC—remains—stable-and-startsto—recover
o-its-modified-AMOC-on-state-under-climate-change—When-we-inerease-the-1,” temperature trend ;-this-eseillatory-behavior
inereases(Figare-Hd)-and then keeping AT® = 5°C fixed for £4 = 0.33 Sv. Oscillatory behaviour becomes more pronounced

when increasing the T temperature trend and the greatest AMOC weakening is found for relatively large temperature trends.
For a temperature trend of 11.85 °C per century (inset in Figure 11d), the AMOC strength (and other quantities) crosses the

basin boundary between model years 43 and 87 and the AMOC displays oscillatory behavior. These oscillations decrease
in amplitude after model year 800 and then the AMOC recovers. For larger temperature trends than 11.85 °C per century
the AMOC eventually collapses: < ‘ ati
lower E 4 values can make the AMOC substantially more stable. It is possible to collapse the AMOC for E4 < 0.33 Sv and
this requires even larger climate change anomalies (AT? > 5°C). Both-thetemperatare-anomaly-andrate-induced-effeets likely

6 Summary and Discussion

The Community Earth System Model (CESM) as used here (version 1.0.5) is an extremely high-dimensional dynamical system,
representing the interaction of the ocean, atmosphere, land and sea-ice processes. In a pre-industrial configuration, the AMOC
collapses under a quasi-equilibrium input of freshwater in the 20°N — 50°N region, with surface freshwater compensation over
the rest of the global domain (van Westen et al., 2024a).

In this paper, we have provided arguments for the case that, as in ocean-climate models lower in the model hierarchy (box
models (Cessi, 1994) and fully-implicit ocean models (Dijkstra, 2007)), the AMOC collapse behavior in CESM is caused by

the presence of a saddle-node bifurcation in the high-dimensional dynamical system. While one indeed would expect such
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a bifurcation in a deterministic dynamical system when varying a single parameter (where the saddle-node and the Hopf
bifurcation are the only two generic codimension-1 bifurcations), this is far from trivial in the CESM. The ocean component of
the CESM is much more complicated with several interacting positive and negative feedbacks {2)-(Vanderborght et al., 2025)
and which is forced by a rapidly varying atmosphere. So attractors of the CESM are expected to have a quite complicated
geometrical structure and transitions between those (such as between the AMOC on state and AMOC off state) could in
principle be much more complicated than the traditional saddle-node bifurcation picture as suggested by conceptual models
(Dijkstra, 2024).

For a saddle-node bifurcation, one would have to demonstrate a square root dependence of the AMOC strength on the fresh-
water forcing near the collapse point, which arises from the destabilising salt-advection feedback (Vanderborght et al., 2025)
. This is not feasible for the CESM due to its strong internal variability and hence our case is build-built using three more
indirect arguments. The first argument is that in the CESM, there is a strict critical boundary of existence of the statisti-
cal steady ‘AMOC on’ state. We showed this by subsequent near-equilibrium computations near the collapse point in the

quasi-equilibrium simulation, similar to the approach in Hawkins et al. (2011). Such a strict boundary is characteristic of
a saddle-node bifurcation as shown for the E-CCMmeodel,—with-parameters-somehow-tuned-to-the-CESM. The full AMOC

hysteresis experiment (van Westen and Dijkstra, 2023) shows that the AMOC recovers at a much lower freshwater flux forcin
Fy ~0.09 Sv) compared to the collapse point (0.495 < Fy < 0.51 Sv)

essential to saddle-node bifurcations. Second argument is based on the CESM results with a slower freshwater forcing rate.

, demonstrating non-linear behaviour that is also

Here, we show that the AMOC collapse precisely follows the behaviour (Ritchie et al., 2021) one would expect near a saddle-
node bifurcation, i.e., with a steeper transition (in Iy space) than for the standard forcing rate. Do note that this characteristics
is also found for other bifurcation types (Berglund and Gentz, 2006). The third, and probably strongest, argument relies on
the assumption that overturning freshwater transport predominately compensates any freshwater flux forcing, which holds ap-
proximately for the CESM (van Westen et al., 2024a). In this case, one can show that the AMOC strength has a square-root
dependence with the freshwater forcing using a reduced model (cf. section 4).

To these arguments, we can add the support from early warning indicators as found for the CESM (van Westen et al., 2024a).
A characteristic property of saddle-node bifurcations is the loss of resilience (i.e., critical slowdown) near the tipping point,
measured by the increase in variance and autocorrelation (van Westen et al., 2024b). Although these early warning indicators
based on the AMOC strength were not giving any critical slowdown, optimal regions for early warning signal detection were
found near 34°S (2)(Smolders et al., 2025). The results presented here (cf. Figure 3) show an increase in the Fi,g variance
close to the tipping point. This increase in variability indicates that the AMOC loses resilience and making it more prone to
transitions, characteristic of approaching a saddle-node bifurcation (van Westen et al., 2024b).

The implications of this result are substantial. First of all, it shows that, for the AMOC tipping problem, conceptual mod-
els that capture only the dominant feedbacks are useful (Dijkstra, 2024). For example, in the E-CCM only the salt-advection
feedback and gyre feedback are captured which are also dominant in CESM and hence it is relatively easy to tune the be-
havior of the E-CCM to the CESM. Similarly, Wood et al. (2019) tuned a box model (only representing the salt-advection
feedback) to the FAMOUS (Hawkins et al., 2011) where likely due to its low resolution the gyre feedback is relatively
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weak. Sensitivity studies in the conceptual model can then be used to design useful simulations in the complex model
and also physical explanations can be sought in the reduced model. Second, if the multi-stable regime of the AMOC is
585 bounded by saddle-node bifurcations, then the effect of model biases can be studied in terms of shifts of the saddle-node
bifurcations. In fully-implicit ocean models, it was recently shown that a bias in Indian Ocean precipitation leads to a right
shift (i.e., to higher Atlantic freshwater flux forcing strengths) of the bifurcation diagram Bijkstra-and-van-Westen;2024)
(Dijkstra and van Westen, 2024; Boot and Dijkstra, 2025). Our reduced model (cf. Section 4b4.2) also shows that positive
freshwater transport biases at 34°S make the AMOC more stable under hosing. If indeed a saddle-node bifurcation is present in

590 all global climate models (GCMs), this would indicate that GCMs having such a bias {2)-would be too stable (Van Westen and Dijkstra, 202

So far, the saddle-node bifurcation was discussed only in the case of an AMOC collapse when changing the freshwater flux
forcing. However, under climate change mainly the heat flux forcing will change and not in a quasi-equilibrium way. Also
in this case, we have shown that the existence of the saddle-node bifurcation is an important aspect to explain the transient

595 behavior of the CESM. Climate change modifies the atmospheric meridional temperature gradient and shifts the saddle-node
bifurcation to lower freshwater flux forcings, making the ‘AMOC on’ state less resilient. This was shown in greater detail

by the idealized results of the E-CCM, the collapse behavior can be viewed as crossing a moving saddle-node bifurcation

in time (Ritchie et al., 2021). Rate-induced effects are also highly relevant under climate change (Hankel, 2025), with the

600 and Fy7 = 0.18 Sv. Although the AMOC collapses for both the RCP4.5 and RCPS.5 under Fyy = 0.45 Sv, which suggests a
moving saddle-node bifurcation under climate change, rate-induced effects cannot be dismissed and to test this we need to
conduct more climate change forcing experiments, this is out of the scope of this paper. Note that the E-CCM is limited in
representing other (non-linear) climate change feedbacks, such as enhanced evaporation (due to higher temperatures) which
could partly stabilize the AMOC (Van-Westen-and-Dijkstra;2024)(van Westen et al., 2025).

605 Finally, as the phase space of the CESM is so high-dimensional, why would a saddle-node bifurcation appear in such a
model (as there are many instabilities)? This result can be possibly explained by looking at the Lorenz84-Stommel1961 model
or the PlaSim sea-ice model (Tantet et al., 2018), which both display chaotic behavior, but also show a large-scale transition
under variation of one parameter. Here, the chaotic behavior is only in the atmosphere component and the large-scale transition
dynamics is governed only by the slow component, which is then noise-forced. While in the total phase space, this may be

610 a crisis bifurcation, in the reduced phase space of the slow component, this would appear then as a saddle-node bifurcation.

However, more work is needed to make this more precise.

Code and data availability. All processed model output and Python scripts to generate the results are available at:

https://doi.org/10.5281/zenodo.17123475
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Appendix A: The Analytical Solutions of the Stommel Box Model

The Stommel 2-box model (Stommel, 1961) consists of two well-mixed boxes (equal volume) and the boxes exchange water
mass properties over time (Figure A1). The circulation strength, v, is set by the density difference between the high-latitude

(Ty, S7) and equatorial box (T5, Ss):

¥ =k(p1— p2) (A1)
where k is a hydraulic pumping constant. A linear equation of state (p = pg — (T — Tp) + B(S — Sp)) yields:

¥ = k(aAT — SAS) (A2)

where AT =T, — T} and AS = S, — S1. The governing (dimensionless) differential equation for the Stommel model are then
given by:
dT
dt
dTs
dt
asy
dt
s
dt
In these relations Ar is the thermal exchange coefficient with the overhead atmosphere, the atmospheric temperatures are
fixed.

|| AT + A\p (T —T1) (A3)
= —|Y|AT + Ap (TS —Tb) (A4)
= [p|AS—n (A5)

= —lplas+y (A6)

Under the assumption that the thermal exchange with the atmosphere is much faster than the thermal exchange between the
boxes (YAT < Ap(T# —T;), with ¢ = 1,2), the steady state for the temperatures has 77 = T} and T5 = T'. Using this steady
state assumption, the time-evolution equation of the circulation strength (from A2 and A3 — A6) reduces to:

dy dAS kB (ng dsS,

E:_kﬁﬁ_ dt_dt> =2kB ([Y|AS —n) (AT)

where the temperature contribution vanishes as the atmospheric temperatures are constant (ddA—tT = % = 0). The final step

is to substitute AS = % from (A2) to obtain:
dvy “
8 = 2yl + 2ha AT | - 2k8n (A8)

The steady states (i—t = 0) with northward overturning (¢) > 0) are given by:

kaAT* kaATe\?
P12 = 5 + \/( 5 > —kBn (A9)
For the reversed circulation (¢ < 0), these are:

kaAT® kaATe\?
Y34 = 5 + \/( 5 ) +kBn (A10)
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Figure A1. Schematic representation of the Stommel 2-box model in its northward overturning state with AMOC strength . The blue and
brown arrows are freshwater and heat fluxes, respectively. The hosing is directed from the equatorial box (with 75, S2) to the high-latitude

box (with 11, S1).

but note that 13 has to be rejected since 103 £ 0. The stable AMOC on state is given by 11, the stable AMOC off state by 14,
and the unstable state by 1/o. The (dimensionless) solutions for two different atmospheric temperature differences are shown in

Figure A2.

Appendix B: The Normal Form of the Saddle Node Bifurcation

For the Stommel model, the dynamics of the AMOC strength in the AMOC on state is given by:

% = — 2% + 2ka AT — 2kfn, (B1)

which can be generalised for the saddle-node bifurcation to:

%:AW+B¢+C—D7§. (B2)

where A, B, C and D are constants, and the freshwater flux forcing is now varied linearly with time (i.e., n(f) =

eneralised form also holds for the reduced model (Section 4.1).
Following the procedure outlined in Faure Ragani and Dijkstra (2025), we rewrite (B2) as:

dy B\? B?
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a) Stommel model, AT2=5 b) Stommel model, AT? =3
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Figure A2. Bifurcation diagram for the Stommel 2-box model, where the black dots indicate saddle-node bifurcations. The atmospheric
temperature differences are (a): AT =5 and (b): AT = 3. For the other dimensionless coefficients, we used: o = 2 X 1074, 8=8x10"*

and k=2 x 10°.

When time ¢ is considered as a parameter, the saddle-node bifurcation can be found by setting the last two terms on the right
hand side of (B3) to zero and solving for ¢ yields:

tSN o C B2

(B4)

D __4AD
To obtain the normal form, we apply a rescaling of the variables:

B
r=—AtSN (w + 2A> and T= 5% (B3)

and the dynamics of the AMOC in the rescaled variables are:

dv dedt  ovdd oy e B\’ B?
o war s AT gt A At ) F\ O o) (6)

Now using (B4) and (B5) to find the normal form of:

ar _
dr

ZL‘2
—A(t%N)? (A(_ yroyehs Dt — DtSNT> =r—a’ (B7)

where r = —AD(#5N)3 (1 — 7). Note that r > 0 for 7 < 1 as A <0 and D > 0,

The non-autonomous system (B7) can be solved analytically (Li et al., 2019) and it was shown that the collapse time

t* =14+2.33301/3 where o = — AD(t5N)3 > 0. If the forcing value at which the collapse occurs for a rate D is indicated b
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then for the collapse forcing (v, ) at half rate D /2, we find that o

665 Hence, the transition occurs at lower forcing strength (and faster) when the rate is lower (see also Figure 3b and Figure 4 in
Liet al. (2019)).
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