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Abstract. Mesoscale fractures, with lengths between meters and tens of meters, cannot be effectively characterized in the
subsurface, due to limitations of borehole and geophysical datasets. On the other hand, large quantitative structural datasets
can be collected on outcrops by combining direct observations and remote sensing (digital outcrop models - DOMs). These
data can be used to constrain_geometrical models of subsurface fracture networks with the outcrop analogue approach.

In this contribution we present a complete-and-rigoreus-workflow that leverages digital-outerop-modelsDOMs with at least
two perpendicular faces;-in-combination-with-varieuskinds_and combines multiple types of POMs;input data (point cloud,

textured surfaces and orthophoto DOMs). to collect farge-multi-parameter datasets-optimized-to-inelude-allrelevant-a suite of

statistical distributionsparameters to be used as input in current stochastic 3D DFN (Discrete Fracture Network) models.

Orientation data are collected with a semi-automatic procedure applied to point cloud BPOMDOMs of the vertical side of the
outcrops—resulting—in_to extract 2D polygonal facets. Fracture sets are defined with a clustering procedure and different
orientation distributions are fitted and #pessible;-tested with-preper goodness-of-fit tests.

Fracture traces are digitized on textured surface or orthophoto DOMs. Topological parameters are calculated on the digitized
fracture network on horizontal and vertical orthomosaics, also considering relationships with-between fractures and bedding.
Trace length and height distributions are eharacterizedestimated with a—rebustan innovative approach, accounting for the
censoring bias with survival/reliability analysis. P,, (ratio between total fracture length and sampling area) is measured from
traces digitized on the large horizontal outcrop, also allowing for the Representative Elementary Area (REA) to be assessed.
Even if the height/length ratio cannot be measured on an outcrop by any means, we applya-realistic-attempt to relate heights
and lengths under the assumption and-aregression-test-that aveids-makine completely-theoretical assumptions-not-supported

by-data-the two datasets are correlated, with the longest fractures being also the tallest. We discuss the applicability of our

workflow on a large tephigh-quality fractured limestone outcrop in the Murge Plateau near Altamura (Puglia, Italy).
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1 Introduction

Fractures exert a fundamental control on the mechanical and hydraulic properties of rock masses, and their relevance extends

to multiple applications, including reservoirs of every kind of geofluid (March et al., 2017; Wallace et al., 2021; Wang et al.

2022; Forstner et al., 2025), nuclear waste repositories (Follin et al., 2014; Hadgu et al., 2017), geology engineering (Eberhardt
et al., 2004; Agliardi et al., 2017; Franzosi et al., 2023a, b) and contaminant transport (Medici et al., 2024; Cherubini, 2008).

In all these applications, fracture patterns hold great importance as they influence the direction, magnitude, and heterogeneity

of fluid flow. the storage volume of reservoirs (Davy et al., 2013; Wang et al., 2022), and rock mass strength.

Fracture networks are complex geological objects composed of all the fractures in a rock mass. Here, the term “fracture” will

be used as a general term including both opening-mode or shear fractures (joints, faults, etc.), filled or not (veins, joints, etc.).

Broadening the meaning of “fracture” by including other kind of discontinuities, such as deformation/compaction bands,

foliations, bedding, pressure solution seams and stylolites, etc., may be useful in some research field or application, such as

engineering rock mechanics, geomorphology or hydrogeology (Schultz, 2019; Eppes et al., 2024),, Fractures can be classified

fault), filling (e.g. quartz vein) and orientation, within statistical variability (Hancock, 1985; Laubach et al., 2019).
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The quantitative characterization of fracture networks requires the determination of several geometrical and topological

attributes of fractures and their statistical distributions (Table 1). Some of these attributes apply to the individual fracture set

(e.g., orientation, length/height distribution) others to the whole fracture network (e.g., topology).

Several factors negatively impact our ability to quantify these parameters, both in the subsurface and in outcrops (e.g. Healy

etal., 2017; Laubach et al., 2019; Martinelli et al., 2020):

1

Fractures in the subsurface (e.g. in reservoirs) can only be partially characterized at the mesoscale (meters to tens of

2)

3)

meters) using direct techniques. Boreholes provide local information (limited tolD traces in a 3D volume) about the

orientation distribution, aperture, fracture abundance (P;,, Dershowitz and Herda, 1992) and, if the borehole is properly

oriented with respect to the average orientation of a fracture set, 1D spatial arrangement. In contrast, length and height

distributions, connectivity and the REA cannot be measured.

Geophysical methods can provide continuous 3D information, but with important limitations since (i) netabways-fractures
are not always associated to a contrast in physical properties that can be imaged with geophysical techniques, and (ii) in
any case the spatial resolution of these datasets is limited. For instance, in good quality industrial 3D seismics, fractures
smaller than about 200-300m cannot be detected, and, in order to be directly observed, these fractures should be
characterized by a displacement that results in a contrast of seismic impedance across the discontinuity. Summing up, only
macro-scale faults can be reasonably imaged in seismics, and this induces a biased estimate of volumetric fracture metrics
(e.g. Laubach et al., 2019).

At the outcrop scale four major biases must be taken into account (Baecher and Lanney, 1978): orientation bias, truncation
bias, censoring bias and size bias. The orientation bias stems from the nature of the intersections between the fracture
plane and the outcrop surface and to the choice of the sampling dimensionality (e.g., lines, areas or volumes). It influences
the representativity of field measurements, and results in downsampling of certain fracture sets with respect to others. The
truncation bias imposes a lower boundary to the measured fracture trace length, and it is defined by the smallest feature
that is possible to detect. The censoring bias is due to the finite nature of outcrops since the full length of the longest
fractures is limited by the outcrop size, and in any case the length of fractures ending outside of the outcrop is not known

exactly. The size bias states that larger fractures (i.e. fracture surfaces with a larger area) have a greater probability to

intersect the outcrop surface and to be sampled.

intensityAnother bias, related to layered media, is the under-sampling of fractures shorter than the bed thickness (Ortega

and Marrett, 2000). This bias changes the shape of the length distribution, given that only the fracture high enough to

about or crosscut the bedding interface can be systematically sampled. To these major biases it is important to add that

the morphological and weathering conditions of the outcrop strongly influence the calculation of parameters like topology.,

density and intensity. In addition to objective biases related to outcrop geometry or sampling methods, subjective biases

4



introduced by the interpreter should also be considered (Andrews et al., 2019). In the specific context of automatic feature

extraction, it is also important to account for biases inherent to the algorithms themselves, including the potential for

120 extracting artifact features.
4) A complete 3D description of the fracturingfracture state is only possible in the lab at the centimetric to decametric scale,

using non-destructive imaging techniques such as X-Ray Computer Tomography (Agliardi et al., 2014, 2017), which
allow measuring volumetric parameters such as P;5; (fracture porosity, i.e. fracture volume per unit volume), Ps,
(volumetric fracture intensity, i.e. fracture area per unit volume) and P;, (volumetric fracture density, i.e. fracture number

125 per unit volume; Dershowitz and Herda, 1992).
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1aThe impossibility to directly map or image fractures in the subsurface lead to using continuum representations based on

some form of upscaling or homogenization, such as the dual porosity model (Warren and Root, 1963). Alternatively, the

Discrete Fracture Network (DFN) approach allows generating stochastic simulations where fractures are simplified as planar

polygons in 3D or segments in 2D. In the standard and most widespread approaches to stochastic 3D DFNs, the geometrical

properties of each fracture are drawn from parametric length and orientation distributions, and fracture height is generally

controlled by a fixed height/length ratio. The simulator generates fractures until a target fracture intensity P, (Dershowitz and

Herda, 1992) is reached in the simulation volume (e.g. Move — https:/www.petex.com/pe-geology/move-suite/, Petrel —

https://www.slb.com/products-and-services/delivering-digital-at-scale/software/petrel-subsurface-software/petrel, FracMan —

https://www.wsp.com/en-gl/services/fracman, DFNworks — https://dfnworks.lanl.gov/). Fractures are randomly distributed in

the simulation volume according to a Poisson point process, therefore connectivity or any other form of spatial organization

cannot be reproduced in these models. More sophisticated approaches have been developed in the last years to try and solve

this fundamental limitation (Bonneau et al., 2013; Davy et al., 2013; Bonneau et al., 2016; Shakiba et al., 2024), but a

satisfactory solution has yet to be found, especially in 3D.

Due to the beforementioned limitations in subsurface datasets, input properties for generating stochastic DFNs are often

obtained from representative analogues exposed in outcrops that can be characterized, compensating for the information gap

at the reservoir scale. The outcrop analogue approach assumes that the detailed information gathered at selected, high-quality

rock outcrops can be considered representative of the fracture network properties of deep rock masses that underwent a

geological and tectonic evolution that is at least partly comparable. The applicability of an outcrop as an analogue should be

evaluated carefully, and some assumptions should be eventually made (Forstner and Laubach, 2022).

This approach relies on the availability of extensive datasets to characterize statistical distributions of the fracture network. In

this regard, field survey, intended as physically inspecting and collecting data from outcrops, is a fundamental step in the

6
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process of fracture network characterization, because features such as kinematics, roughness, relative chronology and

mineralization/filling can only be gathered during fieldwork. At the same time, even if it is possible, manually collecting

massive amounts of data is time consuming on horizontal outcrops, and very difficult in vertical outcrops, where the

accessibility is limited (data can only be collected in the portion of the outcrop reachable by the geologist) and depending on

the conditions, safety is not guaranteed (e.g. rocks falling from the top of the cliff). To solve this problem, Digital Outcro

Models (DOMs) - high-resolution 3D photorealistic representations of natural outcrops (Bellian et al., 2005; Bistacchi et al.

2022b) have been successfully employed to collect large quantitative structural datasets, overcoming the limitations of classical

survey techniques (Sturzenegger and Stead. 2009; Gigli and Casagli, 2011; Sturzenegger et al., 2011; Riquelme et al., 2014
2015; Bistacchi et al., 2020; Martinelli et al., 2020; Bistacchi et al., 2022a; Storti et al., 2022).

Depending on the outcrop morphological expression, data can be collected from DOMs using either facets - 2D planes

interpolated on the DOM., or traces - polylines that are usually digitized in a GIS environment, but sometimes also on a 3D

DOM (Bistacchi et al., 2022b). These two types of data carry different but complementary information; however, the

methodologies developed in previous contributions by different authors are often based on only one of these kind of data

limiting the number of parameters that can be obtained (Ortega et al., 2006; Boro et al., 2014; Martinelli et al., 2020; Smeraglia
etal., 2021).

The scope of this paper seis to present a workflow that—cembines—new—and—existingbased on_statistically rigorous
methodologies to-quantitatively characterize al-the parameters-ofa fracture network;with from the geometrical point of view.

The result of such workflow provides a partietlarfoeus

bust-statistiealsuite of parametrical distributions to be

e
Hootatiih

q

used as input in

types—ofDOMs;—ineladingcurrent stochastic 3D DFN _models. The parameters considered here are: The orientation
distributions-topelegical relationships;distribution, the length-and-/height distributions-ané, the topological parameters, the
fracture_arcal intensity: Somc-of-these-paramcters-{hetopologyare not-dircet-inputs—to-PEN-modelsvet-theyv-represen

distributien-integrating 2D and 3D data sources (point clouds, orthomosaics, DEMs), vertical and horizontal outcrops and

facets and traces data to achieve a 3D geometrical parametrization of the fracture network (Sect. 9 and following). The

methodologies proposed to estimate each parameter can be applied independently, subject to the type and quality of the
outcrop.

The complete-workflow(Figure);combining first part of the paper is dedicated to best practices about data acquisition (both
facetground-based and trace—data;—ineludesUAV-based), pre-processing, reconstruction and quality assessment of a

photogrammetric model (Sect. 3). Then two separate processing pipelines are presented. depending on the DOM type: (i) semi-

automated fracture orientation analysis carried out on point cloud DOMs (Sect-4-4);. 4.4); and (ii) fracture trace analysis carried

7



220 out on orthomosaics, allowing to measure topological relationships, length and/or height distributions, P,;, and to estimate

(subject to assumptions) the H/L ratio distribution (Sect. 5

We tested our workflow at an abandoned quarry of the Altamura Limestone Fm. (Puglia, Italy), where both a horizontal

pavement and vertical walls provide the opportunity to fully characterize the fracture network in 3D.
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Figure 1 Flow chart of the presented workflow. Numbered boxes define the sections of this contribution in which the respective steps
of the workflow are addressed.

2 Selecting an outcrop: the Altamura Limestone at Pontrelli quarry

Outcrops for quantitative fracture survey needs to be carefully selected, in order to satisfy some requirements: a)
representativity of the structural and lithological properties of the larger rock volume of interest (e.g. someformation,-afold
Himblithological characteristics, structural setting, etc.); b) size large enough to aeeeuntbe representative for the-seale-of

structures to be investigated; c¢) continuous unimpeded exposure; d) optimal orientation with respect to the main fracture sets,
to minimize orientation biases (Terzaghi, 1965; Zhang et al., 2002). In this context, it is important to select outcrops that
present at least two exposed perpendicular sides (e.g., a vertical cliff and an exposed pavements), natural or artificial (e.g.,
quarry site), for a full 3D characterization of the fracture network metrics.

Here we consider an abandoned quarry (cava Pontrelli) carved into the fractured limestone-outeropslimestones of the Apulian

platform, in the Murge Plateau near Altamura (Puglia, Italy), in the forebulge of the euterApulian-platform -infront-of the
southern-part-of-the-Southern Apennines fold and thrust belt-(Panza et al., 2019). The-abandenedPontrell quarry provides

18.000 m? of horizontal pavement and vertical walls with a cumulative width of up to 500500 m and up to 6m6 m in height,

where fractures are beautifully exposed thanks to the careful maintenance of the site (Figure 2A, B, C) that is carried out

9
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because of thousands of dinosaur footprints that were discovered by Nicosia et al. (1999). The outcrop, well known and
described in seientifie-literature-previous papers(Panza et al., 2015, 2016, 2019) has been recognized as a suitable analogue
for reservoirs in related areas (Zambrano et al., 2016).

The quarry is carved into the shallow marine intertidal limestones of the Calcare di Altamura Formation- (Coniacian to Early

Campanian, Panza et al.. 2016). Limestones are well-stratified light-brown mudstones, with wackestone-packstone layers at

the bottom of the beds and sometimes algal laminites in the upper parts. Strata are 20 — 60 cm thick and are organized in
thickening upward cycles, some meters thick, bounded at the top by major surfaces of subaerial exposure. Bed interfaces often
consist of stylolites having teeth both perpendicular to the folded bedding and tangential (slickolites). The outcrop shows 3
differentthree main fracture sets and a set of “major” structures, that are actually major at the outcrop scale, but negligeable at
the regional scale (Figure 2B). Set 1 is the most persistent, it is NW-SE striking and, based on abutting relationships, predates
all the other sets (Table 2). It presents both joints and meso-faults with a vertical displacement up to a few cm. Set 2 is also
striking NW-SE on average, but with a wider scatter, and it also includes both joints and strike-slip meso-faults. However,
structures belonging to Set 2 always abut on those belonging to Set 1, showing that Set 2 is distinethy-younger (Table 2). Set 3
is NE-SW striking and includes fractures that abut on those belonging to both Set 1 and 2. The trace of these fractures, that are
limited by older structures, are relatively short, but are responsible of most of the connectivity of the network (Table 2). Aside
from the geometrical characteristics, veins are absent in all of the three fracture sets, as well as fibres on small faults (Set 1
and Set 2).

Even though this outcrop is top-quality in terms of fracture parameterization, due to the areal extension, cleanliness of the

pavement, and the association between horizontal and vertical outcrops, some preblemslimitations must be still evaluated.

The pavement (Figure 1A, B) presents some no data zones — where no data can be collected at all, due to debris patches or the
presence of strong concentrations of non-natural features produced by quarrying activities. Other zones distributed across the
pavement are partially affected by non-natural, quarrying-related fractures, but with a careful analysis it is still possible to
detect Set 1, while Set 2 and especially Set 3, being eharacterized-byycomposed of smaller fractures, are drewned-by-artifieial

more difficult to interpret and separate from the ones related to quarrying. Regarding the quarry walls, here we present data on

the NW partwall (Figure 2C), that is less disturbed by quarrying activities and favourably oriented with respect to Set 1 and 2,
while Set 3 is sub-parallel to the wall. The wall is around 6m tall, and according to the stratigraphic analysis proposed by Panza
et al., (2016), includes a bed package developed above the quarry pavement, which is one major subaerial exposure surface,

while other prominent subaerial exposure surfaces are not detected inside the wall.
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Figure 2 (A) Aerial view of the Pontrelli quarry, Altamura, Italy. Ia-pink-theThe quarry pavement is highlighted in pink, while the
analysed quarry wall is highlighted in green. (B) Orthomosaic of the quarry pavement, with digitized fractures and interpretation
boundary. (C) Orthomosaic of the interpreted vertical wall, with digitized fractures and interpretation boundary. (D) Field data
collected along the quarry walls. The stars represent the medoid of each cluster. Each medoid is colorized with the color of the set
according to the legend. (E) Rose diagram of orientation data collected from fracture traces on the orthophoto of the pavement (B).
(F) Rose diagram of orientation data collected from fracture facets on the digital outcrop shown in (C).

Fracture set Structures & kinematics  Average strike Relative chronology
Set 1 Joints and meso-faults NW-SE Abutted by Set 2 & 3
Joints abut on Set 1 & abutted by Set 3.
Set 2 Joints and meso-faults NW-SE
Faults crosscut Set 1 & abutted by Set 3.
Set 3 Joints SW-NE Abut on Set 1 and 2

Table 2 Summary of fracture sets characteristics at the Pontrelli quarry.

3 Digital Outcrop Model reconstruction and pre-processing

Once the best exposures have been selected, we must also take care of collecting the best input data in order to create a high-
quality DOM, that will greatly facilitate the workflow downstream. This topic was covered in-detailsextensively by Bistaechi
et-al—+2022b)Bistacchi et al. (2022b) and here we just summarize the main requirements in the next paragraphs, always

considering the Cava Pontrelli case study.

3.1 Photogrammetric acquisition

Horizontal pavement DOMs have been acquired with a DJI Mavic 3E drone flown with an autonomous flight application (DJI
Fly app). The photos were shot perpendicular to the outcrop, with a 70% overlap, both between photos pertaining to a single

strip and between adjacent strips. As-diseussed-i is - 22byAs discussed in Bistacchi et al. (2022b), flights at

different altitudes were collected to avoid large-scale distortion in the photogrammetric model, and the minimum altitude of
8m allowed collecting images with a ground resolution of 4 mm/pixel. Georeferencing of these DOMs is based on GPS data
collected by the drone and recorded in EXIF data of each photo.

Vertical cliff DOMs have been collected with a Nikon Z7 full-frame mirrorless camera mounted on a tripod with a graduated
head, adopting a multiple fan scheme (Bistacehi-et-al-2022b)(Bistacchi et al., 2022b), in which every shooting station is

evenly spaced by 10° of interstation vision angle, measured targeting a certain point on the outcrop and moving parallel to the

outcrop by a distance corresponding to 10°. From each camera locations several photos were shot with a fan pattern, trying to

cover the whole outcrop and using different focal lengths, and some shooting stations were collected from a larger distance.

13
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This shooting scheme allows (i) avoiding large-scale distortion in the photogrammetric model and (ii) results in an optimal
reconstruction of rough outcrop faces, characterized by facets that form a high angle with respect to the main viewpoint.
Noteworthy, this kind of survey could be also carried out with a drone, flying and shooting manually, replicating the ground-
based multiple fan scheme, but only high-end cinema-grade drones have cameras that can come close to the quality of a high-
end full frame DLSR or mirrorless camera, with significantly higher costs, hence where possible we prefer to use the ground-

based technique. The resulting photogrammetric model has a resolution of approximately 2 mm/pixel.

Georeferencing of the terrestrial surveys was simply performed by marking on the outcrop the location of the mirrorless camera
shooting stations before carrying out the drone survey. These points were then retrieved from the drone dataset with an
accuracy of better than 4 mm (allowed by the very-high resolution) and used to co-locate the terrestrial dataset in an accurate

and perfectly consistent way.

3.2 Point cloud DOM and Textured surface DOM

Regardless of the technique used to acquire the data, DOMs can be rendered, depending on the outcrop morphology and the
scope of the work, as point cloud DOMs (PC-DOMs) or textured surface DOMs (TS-DOMs) (Bistacehi-et-al;-2022b)(Bistacchi
etal., 2022b). PC-DOMs, as the name suggests, are dense sets of points, where each point is characterized by XYZ coordinates
and an RGB value, and they are the main output of SFM/MVS photogrammetric reconstructions or laser scanning acquisitions.
PC-DOMs are particularly suitable to carry on structural interpretations, using specific tools (Thiele et al., 2018), on outcrops
where fractures appear as facets of different size and orientation (as in Figure 3). TS-DOMs are derived from PC-DOMs by
generating a polygonal mesh from the point cloud and texturing images onto its surface (Tavani et al., 2014; Bistacchi et al.,
2015). In this case the geological and structural interpretation can be carried out in 3D or, as we do in this contribution, with a

standard 2D Geographical Information System (GIS) environment (e.g., QGIS).

3.3 Quality of the photogrammetric model

Defining an absolute quality criterion for a point cloud obtained from a photogrammetric survey is not easy, as different kinds
of applications have different requirements. In our application scenario, absolute precision is of lesser priority with respect to
the relative accuracy within a local reference frame. This can be evaluated in early stages of the photogrammetric processing
considering the image reprojection error, measured in pixels, as it directly impacts the relative accuracy of the photogrammetric
model as a fraction of its ground resolution (expressed in mm/pixel).

A fundamental requirement in a DOM aimed at structural analysis is that it must be completely free from artifacts (doubled
surfaces, distortion, doming), and that noise (isolated points outside the outcrop surface) should be as low as possible. A typical
artifact resulting from a low-quality acquisition scheme, that does not include fans or photos collected at variable altitude as
discussed above, is the presence of doubled “surfaces”, consisting in layers of duplicated points that do not define univocally
the outcrop surface. Bistacchi et al., 2022b suggested that the best solution is to use a high-quality acquisition scheme, since a

posteriori solutions do not work or are hugely time-consuming.
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We believe that the most important parameter to evaluate the quality of a photogrammetric model for applications in structural

geology is the point cloud surface density- (SD). By defining a kernel - a sphere of radius R moving in such a way as to being
cantered on each point - the point surface density SD can be calculated as the ratio between the number N of points falling in

the kernel and the area mR? of the largest circle inscribed in the sphere with radius R:

SD = % M

As an example, in Figure 3, two PC-DOMs of the same vertical outcrop are compared, collected in two different ways to obtain
a different SBSD. The PC-DOM in Figure 3D3C is reconstructed from more than 400 photos collected as discussed above
(terrestrial-survey-with-fans scheme, with high end camera, Nikon Z7-mirrerless). On the other hand, the PC-DOM in Figure
3€3D is collected with a smaller dataset (150 photos) collected with thea lower quality camera ofa-small-commercial-drone
(DJI Mini 3 Pro). The mean SD of the PC-DOM shown in Figure 3D is two orders of magnitude higher than the PC-DOM of

Figure 3C (298826 vs. 5249 points/m™), resulting in a much sharper point cloud, from which it is possible to extract more
easily, much more structural information.

In conclusion a good PC-DOM must be free of artifacts, have low noise, and have a very-high SD on all surfaces of interest,
including facets that form a high angle with the outcrop mean plane, which can be properly imaged only if a multiple fans

scheme is used.
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Figure 3 Comparison between two different PC-DOMs of the same vertical outcrop. (A) and (B) frequency distribution of the SD
measured with a Kernel of 0.049m. The parameters are obtained by fitting a Gaussian model. (C) PC-DOM reconstructed from
photos collected with a high-resolution full-frame mirrorless camera. (D) PC-DOM reconstructed from photos collected with a
commercial drone and a simplified acquisition scheme. Point size has been magnified five times, for visualization reasons.

4  PC-DOM: semi-automated analysis of fracture orientation

The goals of orientation analysis are to measure the attitude of each fracture facet that can be mapped on the DOM and to

classify it within a fracture set (i.e. a statistically defined fracture cluster), amongst those identified in the preliminary field
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survey, or emerging from the clustering analysis (Section 4.3), and finally to obtain rebuststatistically validated orientation
statistics for each fracture set.

Fractures in PC-DOMs are mainly represented by point patches that are the morphological expression, on the outcrop surface,
of fracture surfaces, exposed due to natural (e.g. erosion or rockfall) or anthropic (e.g. excavation) events. Here we propose a
semi-automatic workflow to map these patches, based on a first step of manual mapping of a subset of fracture planes on the
PC-DOM. This allows selecting different sets of structures, characterizing their orientation statistics, and assigning them to
sets defined in the field. Based on dip and dip direction ranges, the PC-DOM is manually segmented into as many parts as the
number of recognized fracture sets. The automatic step consists in the automatic interpolation of 2D planar features from the
segmented point cloud, eventually allowing to greatly increase the number of facets included in the analysis, with important
benefits for the statistical analysis (Figure 5).

Our workflow can be carried out in CloudCompare (https:/www.danielgm.net/cc/), the most used open-source software for

point cloud processing (Dewez et al., 2016; Thiele et al., 2018) or in PZero, a new 3D geomodelling application where we are

also developing new tools for DOM analysis (github.com/gecos-lab/PZero).

4.1  Orientation parameters for fracture sets

Orientation data are usually recorded in geology using polar coordinates, either as dip and dip direction (dip azimuth) or dip
and strike for planar features, or as plunge and trend for axes. In general, any orientation can be represented as a unit vector
within a three-dimensional spatial framework (e.g. Mardia and Jupp, 2000), and polar coordinates can be converted into

director cosines in a dextral cartesian reference with:

L = sin(dir) cos(dip) @)
M = cos(dir) cos(dip) (3)
N = —sin(dip) @

where L is the component in direction East, M is directed towards the North, and N is directed upwards (Borradaile, 2003).
The unit normal vector (¥ = L, M, N) is calculated on every point of the point cloud by fitting a plane to the points that fall
within a sphere of specified radius, cantered at the point itself. The larger the radius the smoother the normal vectors will result,
with the drawback of longer computational times.

With a few exceptions (e.g. bedding with polarity, flow directions), the orientation of geological structures and particularly of
deformational features like fractures shows a symmetry where the sense does not bear any geological meaning. In mathematical

terms this means that two vectors ¥ and —7 are equivalent in this kind of analysis. This meanssymmetry implies, that different

conventions can be usedadopted, for the sense of normal vectors, i.e. the geological convention where normal vectors always

point downwards or the photogrammetric convention where they point out of the outcrop.
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4.2  Manual orientation mapping

The first step of the workflow is carried out by manually mapping facets, and particularly their attitude, in the PC-DOM with
the Compass plugin in CloudCompare (Thiele et al., 2018) or with the facet mapping tool in PZero. These tools behave in the
same way and mimic the process of manually collecting attitude data in the field with a geologist compass-clinometer. The
fundamental goal of this step of the workflow is to sample each set to define its dip and dip direction range, that will be used
in the manual segmentation step. Therefore, we suggest carrying out the mapping with an initial random sampling and then
avoiding oversampling the most represented sets (that are generally those favoured by the outcrop orientation bias).

Dip and dip direction values are obtained by fitting a local plane on points selected with a spherical kernel. The kernel radius
is defined on-the-fly during mapping by the user, based on the dimension of the fracture plane. A too small kernel will result
in measurements affected by the roughness of the fracture plane, while a too big kernel will include points pertaining to other

planessurfaces, biasing the orientation value. Orientation data collected in this way are plotted in stereoplots and compared

with data collected in the field (Figure -2D), in order to assess whether all field-defined sets are also represented in the digital

dataset.

4.3  K-medoid clustering

The precise identification of fracture clusters is fundamental in the following automated segmentation step, where each fracture
set corresponds to a cluster of orientation data that can be uniquely defined with a measure of location — a series of measures
to locate the fracture cluster in the parameter space (e.g., mean L, M, N), and a measure of concentration or dispersion
(Borradaile, 2003). Clustering analysis provides a quantitative answer to both the number of clusters the dataset is composed
of, and the parameters of each cluster, given an assumption on the type of distribution.

We apply the K-medoid method to a dataset represented-byorganized as a table, with n rows corresponding to individual
orientation data and three columns corresponding to the three director cosines. K-medoids is a partitional method (Kaufman
and Rousseeuw, 1987) aimed at classifying the data into k,, groups, where k,, is the number of fracture set defined in the
field, eventually adjusted by the visual inspection of the plotted data . Each group must contain at least one object, and each
object must belong to only one group. Partitional methods try to find a suitable partition by separating objects close to each
other from objects far away from each other, and how the proximity between objects is calculated determines the specificity
of the method. Considering K-medoids in a 3D parameter space (L, M, N), the location parameter is defined by a medoid, i.e.
the point belonging to the cluster that minimizes the average distance in the 3-dimensional space between all the other data
belonging to the cluster and the medoid itself (Kaufman and Rousseeuw, 1987, 2005). K-medoids therefore measure distance
in an isotropic way in the 3-dimensional space of the dataset. When compared to the more popular K-means approach, K-
medoids are more robust and less affected by outliers (Kaufman and Rousseeuw, 1987).

One of the problems that arises with K-medoids and other similar partitional methods lies in the definition of the approach

itself, as the number k,, of cluster is imposed by the user, and this can lead to an underestimation or overestimation of the real
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number of clusters (Kaufman and Rousseeuw, 2005). However, in our application this is not a problem, since the number of
fracture sets is iteratively defined starting from an initial guess defined in the field and the clustering algorithm is applied as a
validation of that hypothesis, eventually adjusting the number of sets to account for clusters that only surfaced during the
statistical analysis.

A second drawback is that in the standard implementation the initial guess for the medoids is chosen randomly, and when
different fracture sets show a partial superposition, the clustering algorithm could yield inconsistent and unreliable results. To
address this issue, the initial guess can be defined by the interpreter by manually positioning the initial guess for the medoid.
Finally, to avoid the sense ambiguity of orientation unit vectors discussed above, particularly critical for clusters of sub-
horizontal vectors that can be mirrored across the stereoplot equator, we have developed a solution based on mirroring all input
data. For each input vector U, we create another vector —v, with parallel direction and opposite sense (i.e. pointing in the upper
hemisphere (Figure 4). Then we perform the K-medoids clustering on this duplicated dataset, extracting 2k,, clusters both in
the upper and lower hemisphere. Given the symmetry imposed by duplicating the data with mirroring, also the resulting 2k,
medoids will be symmetrical, with each medoid in the lower hemisphere having a perfectly symmetrical pair in the upper
hemisphere and vice versa, then to conclude the analysis we extract just the k,, clusters with the medoid pointing downwards,

in the lower hemisphere (Figure 4).

I:l Upper emishpere ‘ Accepted centrotype ® Pole
[ ] Lower emisphere YA Rejected centrotype (® Reference pole
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Figure 4 (A) 3D stereoplot of two hypothetical fracture set collected on the field. Light blue set-and magenta setsets are the same set
but recognized as two different sets, due to the geological sign convention. (B) Every set is doubled and mirrored with respect to the
center of the sphere (B). The clustering algorithm is applied on double the number of the set and only the centrotypes that follow
the geological sign convention are kept (B).

4.4  Manual segmentation of PC-DOM and semi-automatic planar feature extraction

Based on orientation statistics and K-medoids clustering, it is now possible to segment the whole point cloud into subsets with
normal unit vectors falling within the statistical variability of different fracture sets.

The subsets are composed of isolated clusters of points, with the same orientation, each representing a portion of a separated
fracture plane. This greatly improves the automatic extraction of 2D polygonal features during the following steps because
every patch of points is isolated from the others, nullifying the risk of merging adjacent clusters into one bigger 2D polygon
and avoiding the possibility of generating planes with an averaged orientation between two different point clusters, pertaining
to two different fracture sets with different orientations. Another advantage of the manual segmentation is that it is possible to

specifically calibrate the algorithm for each fracture set.
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The segmented point cloud subsets are then fed to the CloudCompare FACETS plugin (Dewez et al., 2016), and specifically
to its fast-marching algorithm (Sethian, 1999), to interpolate a planar polygonal feature per every point patch that matches the
calibrated algorithm parameters. In this context, manual mapping and orientation analysis act as a calibration step in
preparation for the final automatic extraction of planar features, that is greatly simplified and results in wery-clean results thanks

to the segmentation step, that-fer-instance avoids generating spurious facets.
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Figure 5 Scheme of the semi-automatic workflow for segmenting the point cloud presented in Section 4. Point cloud colored based

on dip direction with a HSV_38(, colour scale. (A) Manual data collection on PC-DOM. (B) Manually collected orientation data
during the preliminary orientation analysis. Number of data: Set 1 = 351, Set 1 =256, S = 87, Set 3a = 74, Set 3b = 42 (C) Manual
segmentation of the PC-DOM. (D) automatic feature detection with FACETS plugin. (E) Final result of the semi-automatic
extraction workflow. Each fracture set is individually shown with contour lines.

Fast marching algorithms are a class of methods developed to track propagating interfaces into a bi-dimensional or three-

dimensional space (Sethian, 1999). In the FACETS plugin (Dewez et al., 2016), the fast-marching algorithm is employed to

create polygonal planar surfaces interpolating subsets of the point cloud. The algorithm is based on four parameters that need

to be calibrated for optimal results. In particular:

e Octree level defines the level of systematic recursive subdivision of the point cloud three-dimensional space, defined by
its bounding box, in this case, a cube. Every level involves subdividing the box into 8 sub-cubes, that allow optimizing
the definition of the smallest feature we want to detect (i.e. the scale of analysis), with the computational time increasing

with the level. No specific strategy exists to calibrate the octree level. As a starting guess we should chose a value that
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results in cubes with a dimension comparable to the smaller fracture facet we want to detect. From this value, it is possible
to decrease or increase the octree level by one level, visually checking the results. In our experience, increasing too much
the octree level does not increase the quality of the analysis but will result in an over-segmentation of the facets and
possibly in aan increase of noise-inereasing.

e Maximum distance defines a generalization criterion to merge adjacent features. For instance, if maximum distance is set
at 68%, at least 68% of the points associated to a facet must have a distance to the facet mean plane that is lower than the
standard deviation of the distances from the mean plane fitted from the points defining the facet. In geological terms, this
parameter controls the maximum roughness accepted for a plane to be fitted. The maximum distance parameter can be
calculated by manually isolating a certain patch of points, representing a fracture plane. The distance from the mean plane
of every point can be manually calculated by fitting a mean plane to the point patch. The result is given in the form of a
scalar field associated to the point cloud. The mean distance is calculated by fitting a Gaussian model to the frequency
histogram of the previously calculated distances.

e Minimum points per facet defines the minimum number of points needed to define a facet. The higher the octree level, the
smaller this parameter should be, as the dimension of the smallest feature detected decreases and so the related number of
points. This parameter can be considered a threshold between what we consider as noise, and what we consider as a proper
feature. The minimum points per facet parameter must be tuned according to the average surface density SD of the PC-
DOM. The higher the surface density the higher will be number of points in the smaller element produced by the octree
subdivision, therefore the higher this parameter can be set.

e Maximum edge length is related to the length of the boundary of the facet. Small values of this parameter impose concave
and compact boundaries, while larger values allow for elongated and/or convex boundaries. There is no general rule for
the calculation of this parameter, which must be empirically calibrated on a case-by-case basis.

Calibrating all these parameters on the whole point cloud is taxing in terms of computational time, therefore we suggest

selecting at least 30 representative facets (Fisher, 1992), in terms of dimension and roughness, for every fracture set, calibrating

the algorithm parameters on these facets, and then use this calibration to process the whole PC-DOM. When working on a

single facet, the octree level must be set to 0, as an isolated facet is considered as a point cloud on its own (Figure 6).

The result of the feature extraction algorithm is a set of 2D polygonal facets resulting from the interpolation of point patches

that met the criteria defined in the calibration, from which orientation parameters will be obtained (Figure 7E).

It is important to remember that facets can be interpolated only on fully exposed planar structures, therefore they represent

only the part of the fracture plane that shows a morphological expression. Moreover, based on the calibrated parameters there

is the possibility that the interpolation of an exposed surface will result in a combination of facets, and not a single one. All of
this to say that data like faces height and surface extension can be useful but should be handled with care if trying to obtain

volumetric parameters (P3o or P3,) or height distributions.
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Figure 6 Example of the parameter calibration on a single facet. The max distance is calculated as the mean of the frequency
distribution of the distances from the mean plane. (A) Example of a planar feature extraction when the max edge length parameter
is too low. (B) When the max edge length is too high the planar feature results in a non-representative polygon. When the parameters

are correctly calibrated the output planar feature precisely follows the point cloud border and no point is excluded from the
interpolation for a too low max distance value.
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4.5  Orientation parameters calculation

In structural studies of fracture networks, is common practice to assume that each fracture set shows an orientation distribution
described by the unimodal circular symmetric Von Mises-Fisher distribution on a sphere (Fisher, 1953) - a specific declination
of the more general Von Mises distribution (Mardia and Jupp, 2000) that, following a common practice in geological
applications, will be called “Fisher distribution” in the following.

Even if it is sometimes reasonable to assume that fracture sets follow a distribution with circular symmetry, with the exception
of particular situations like radial dikes and fractures formed in a flat layer before the onset of folding (e.g. Mandl, 2005), a
statistical test is needed, particularly if the final goal is to use the results of orientation analysis in downstream simulations.
Fisher and Best (1984) proposed a goodness-of-fit test for the Fisher model, starting from a previous graphical test developed
by the same authors (Lewis and Fisher, 1982). The poles of the family of n planes that need to be tested (I}, D;) with mean dip
and direction (I, D), are rotated to obtain vectors with new coordinates (I}, D;), with mean dip and dip direction (0,0). The
original vectors are than rotated a second time to obtain a new set of vectors (/ v”,Dj”)A On these rotated values, the following

derived datasets are tested:

o Sgp={c=1-cosDj,1<j<n} ()
o Sy={li1<j<n} (6)
. Sy E{Zl- =Dj”\/sinDj”,1 San} %)

S is tested with the Kolmogorov-Smirnov test (Stephens, 1974) against an exponential distribution £ (1 /i) to check the
underlying colatitude distribution (exponentiality test). The Kuiper test (Stephens, 1974) is applied to test S;; against a uniform
distribution U(0,2m) to check the assumption of rotational symmetry around the mean vector (circularity test). The goodness-
of-fit of Sy to a normal distribution N (0, g?) is tested with the Kolmogorov-Smirnov test (Stephens, 1974) to check against
the correlation between colatitude and longitude (normality test) (Figure 7).

Overall, this procedure provides a quantitative way to assess if the dataset can be fit with a Fisher model, allowing the

calculation of the mean dip and dip direction of the cluster and the concentration parameter k.
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Figure 7 Example of the goodness-of-fit test for Set 2 and Set 3a of the Pontrelli quarry. The hypothesis of sphericity of the data is
rejected based on all the tests.

If the Goodness-of-fit test is rejected, it is possible to fit a more general distribution. The Kent distribution is a natural extension
555  of the Fisher distribution as it represents the analogue of a general bivariate normal distribution on a sphere (Kent, 1982). It
includes the additional parameter £ that describe the ovalness of the distribution, allowing to fit more elliptical clusters (Kent,

1982). No goodness-of-fit tests exist to check if the data follow the Kent distribution. Noteworthy, the Kent model results in
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orientation distributions that are similar to those off the Bingham-5-parameter distribution (Kent, 1982), but has a different

mathematical formula.

5  Enhanced interpretation on orthomosaic and DEM

Collecting orientation data directly from outcrops that lack a noticeable 3D morphological expression (i.e. the facets discussed
above) is not possible. At the same time, measuring fracture size and intensity or density (length, height, P,,, etc.) from PC-
DOMs is not reliable because facets do not correspond to complete fracture surfaces. For these reasons, we digitize fracture
traces on TS-DOMs, obtained by projecting and merging the images collected during the photogrammetric survey onto a
polygonal mesh or a DEM (in turn interpolated from the PC-DOM). Fhiskind-efThe data isextracted from fracture traces are
different and complementary to what-we-diseussed-abevethose provided b fracture traces, and only combining both kinds of

information we can extract the most complete datasets from a DOM. The digitization of fracture traces on the vertical TS-

DOM is done considering also the corresponding PC-DOM. By integrating TS-DOM and PC-DOM data, each digitized

fracture trace can be associated with a best-fit plane derived from the point cloud. This approach enables the assignment of

fracture traces to specific fracture sets. Fractures on the vertical wall that could not be reliably linked to a fracture plane were

excluded from the digitization process.

The dataset deriving from the interpretation of TS-DOMs is composed of an interpretation boundary (closed polygon) and a
series of fracture traces (polylines) attributed to different fracture sets. The interpretation boundary limits the portion of the
outcrop where fractures can be detected and digitized. It can include holes to isolate parts of the outcrop, covered by debris or
vegetation, that are large enough to hinder the interpretation.

In this case study we were able to obtain orthophotos (see Section 3) of both the sub-horizontal pavement and of sub-vertical
walls (Figure 2), and this allowed carrying out the fracture trace digitalization in a 2D GIS environment.

The availability of both RGB images and DEM for the sub-horizontal pavement (from which we can derive slope, aspect and

hillshade), can allow following;-with-a-bettereontinuity; structures that may be challenging to detect in RGB_images only, due

to alteration of the pavement surface, lack of colour contrast or zones damaged by quarrying activities, where longer fractures
can still be digitized but are difficult to detect.

Every fracture set is saved in a dedicated file and every characteristic pertaining to a specific set is recorded into an attribute
table field. For example, both set 1 and set 2 have-bethinclude meso-faults and joints, this information is stored in an integer
field coded as 1 for faults and O for joints. At the same time, set 3 is characterized by two main average orientations (Set 3a
and Set 3b), but the fractures can be associated by their average length and abutting relationships with other sets. Fractures of
Set 3a and 3b are than separated in a specific field.

Precise termination (snapping in GIS jargon) of abutting fracture traces is managed automatically, defining a threshold distance
quantified in pixels. In the following sections we discuss how we characterize topological relationships, length/height

distribution, H/L ratio and P,; from digitized fracture traces.
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6  Fracture network topology

Due to the limitations imposed by observing them in euteropsoutcrop, the topology of fracture networks, which are actually
composed of fracture surfaces embedded in a 3D rock volume, is most of the times characterized in 2D, from fractures traces
limited and/or connected by nodes (Dershowitz and Einstein, 1988; Barton et al., 1989; Renshaw, 1996; Manzocchi, 2002;
Sanderson and Nixon, 2015; Sanderson et al., 2019). Even under this limitation, topology is a fundamental component of
fracture network analysis because it is directly related to connectivity-ané-fhid-flew, as demonstrated by Sanderson and Nixon
(2015).

Topological relationships are also instrumental in calculating unbiased length and height distributions, because topology allows

identifying censored fractures by means of B nodes (Benedetti et al., 2025), and this also cascades into the estimation of the

H/L ratio.

6.1 Standard topological analysis

From a topological point of view, a fracture network can be seen as a connected set of branches (fracture traces) and nodes

(terminations and intersections), delimited by an interpretation boundary (e.g. defined by the natural limits of an outcrop). Six

main nodes categories can be defined in a fracture network (Benedetti et al., 2025; Forstner and Laubach, 2022; Nyberg et al.

2018, Figure 8):

e Inodes: fracture trace true tip points;

e Y nodes: abutting relationship;
e X nodes: crosscutting relationship;
eV nodes: perfect coincidence of two tip points belonging to two different fractures - these are theoretically

possible, but extremely-unlikelyhard to recognize at the interpretation scale;

e B nodes: boundary nodes, where a fracture trace terminates at the interpretation boundary.

e Cnodes: Contingent nodes that can be enabled or not, generating different fracture network configurations,

depending on configuration rules defined according to the study objectives and sometimes micro-scale

observations (Forstner & Laubach, 2022).

The nature of I, Y, X-and, V and C nodes is related to the processes that generate the fractures in the first place, but an additional

consideration pertains to B nodes (Nyberg et al., 2018, Benedetti et al., 2025), which result from the interaction between the

fracture network and external-ps the size and shape of the outcrop. This interaction leads to the formation of false tip
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lines (false I nodes = B nodes) and the censoring of fracture traces. To prevent an underestimation of network connectivity,
it is fundamental to exclude B nodes from the calculation of the relative proportions of I, Y, and X nodes.

Nodes classification is based on their topological value (Sanderson-et-al;—2049)(Sanderson et al., 2019), representing the

number of branches connected to each node. Specifically, I nodes have a topological value of 1, V nodes have a value of 2, Y
nodes have a value of 3, and X nodes have a value of 4. B nodes can be categorized as nodes with a topological value of 3, but
one branch originates from the fracture trace while the others come from the interpretation boundary. C nodes assume a

different topological value depending on the chosen configuration. If they are enabled, the topological value will be equal to

2 (V node), if they are not enabled, topological value will be equal to 1, and one C node generates two I nodes. This choice

heavily impacts length and height distribution calculation as it is controlling the results of the topological analysis. Therefore

the decision about connecting or not fractures through C nodes should be made before running the topological classification.
FracAbility (Benedetti et al., 2025) is an easy-to-use original Python library developed for the quantitative statistical processing
of fracture networks. Taking as input a set of polylines for each fracture set and a polygon representing the interpretation
boundary, it is possible to obtain:
e IYX ternary diagram: the standard classification when it comes to topology (Figure 8A). In this diagram, the
normalized distance from each vertex represents the relative frequency of I, Y and X nodes.
e Connectivity Index (CI): the mean number of connections per line, rendered as contour lines on the IYX
ternary diagram (Manzocchi, 2002). As a reference, CI = 3.57 was defined as the critical CI for a constant
length uniformly clustered system (Manzocchi, 2002).
e Backbone: the largest cluster of connected fractures in the network.
These results represent different aspects of the degree of connectivity of the fracture network. The ternary diagram and the
connectivity index give information about the average connectivity of the network. Only when a fracture abuts on another one
it is possible to reduce the number of I nodes in the network, thus moving towards the X and Y nodes vertices in the diagram
means increasing, on average, the possibility to form large, connected clusters within the network. However, the presence of
clusters of connected fractures with a high connectivity index cannot be unravelled by the simple node count. Backbone
extraction selvesaddresses this problem; by highlighting the mere-numereusmost extensively connected clusters-and. Under

the assumption that all fractures are open, it also representsprovides a graphical solution to the percolation threshold problem;

sinee. Specifically. if the backbone teuehesspans two opposite sides of the interpretation boundary, this-means-that-it indicates
the presence of a giant connected component-exists;—and, allowing for the establishment of a thereushgeinecontinuous flow

ean—be—established (Haridy—et—al—2020)(Haridy et al., 2020). As shewnillustrated in Figure 9, the backbone is
markedcharacterized by a signifieantnotable increase in the CI value.
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Figure 8 Topological relationship of the Pontrelli quarry fracture network. (A) Associated 1YX ternary diagram, the red dot
655  represents the connectivity index (CI).
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Figure 9 Backbone of the Pontrelli quarry fracture network. The backbone connects two sides of the pavement, indicating the
presence of a giant connected component. (A) XYI ternary diagram of the backbone zone, the CI increase form 1.4 for the whole
network to 3.5 along the backbone zone.

6.2  Directional Topology

Topological parameters presented in the previous section give a general picture of the fracture network as a whole and are
calculated considering the fracture network as a single entity, not considering the geological classification of fractures in
different sets (Figure 10A). It is thus impossible to retrieve information about a specific fracture set, for example, how many
I, Y and X nodes a certain set have, or how a set is related to another one in terms of crosscutting and abutting relationships.
This kind of information can be obtained wwithusing what we call “directional topology”;—where-everynedesnet.” In standard

topological analysis, nodes store only ineludesthe topological value. In contrast, in directional topology nodes also contain
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information about its—type(the fracture set (in the case of I;-nodes) or sets (in the case of Y53X- and B)-but-alse-abeut-its
“origin’”or—direction’—i-e-X-nodes) from which sets—a-the connected branches originate. This enables a more detailed

topological characterization: I-nodes are classified by set, X-nodes are described by the intersecting sets (e.g., an X-node

between Set 1 and Set 2), and for Y-nede-is-nodes, it is possible to determine whether they are generated and-if-itis-thefirst
fracture set-thatabutsby Set | abutting on the-secondSet 2 or vice versa—The-same Hine-of thought can be-appliedtoX-and -1

oaes—od o—a—SHaHOW 5 a € a o55¢cH aHORSHP S—HOtPOssto o—& T FEStW oporogica

-, by counting the

number of branches (Fig. 10).

To address this issue, when splitting fractures into branches to calculate topological values, FracAbility stores into the node

attributes the set to which every branch belongs and the associated directionality (Figure 10B).

A Node count: B

Figure 10 (A) Topological relatienshiprelationships based on the topological value for a fracture network composed of two fracture
sets. Highlighted in red, the branches necessary branches-to define one specific node. (B) Topological relationship calculated taking
into account the branch origin. X nodes are identified by the presence of two branches for every fracture set, Y nodes are identified
by three connected branches. Of the three branches if only one pertain to a specific set it means that it is abutting on the other. I
nodes are classified depending on the origin of the connected branch.

The usefulness of directional topology is not only limited to a more advanced description of the topological relationships
within the fracture network, but can be also employed to define a quantitative parametrization of relative chronology between

fracture sets, and of the stratabound versus non-stratabound nature of fractures.
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In a hypothetical case where a fracture network is composed of two fracture sets, without censored terminations, and one of
the two sets consistently abuts on the other, the abutting set will only show Y nodes. Thus, dividing the number of nodes by
the number of fractures will yield exactly 2. In a real scenario, where the fracture network also includes censored fractures and
695 B nodes, this result will be less than 2 because some of the Y-nodes are masked by censoring. To shield this relationship from
censoring, it is necessary not only to subtract the number of censored fracture traces from the total, but also the number of Y-

nodes that represent the termination of a censored fracture trace from the total Y-nodes, defining the following relationship:

Fracture Binding Index = ——Ynodes” censored _ 10 = 100% @®)

2 (Nfrac.— frac. censored

700

where Ny o465 15 the number of Y nodes of the abutting set, Ny censoreq 1S the number of Y nodes associated to a censored < [ Formatted: Left

fracture (i.e. trace with one B node and one Y node), 1t fyqcrures 1S the total number of fractures of the abutting set and
Nfrac. censored 18 the number of censored fractures of the abutting set. The Fracture Binding Index (FBI) ranges from 0, when
no fractures from the abutting set abuts on the other set, to 100% when every fracture is abutting on another fracture set.
705  100% of abutting nodes is an asymptotic value,~ery difficult to reach in a natural context, but nonetheless revealing a
tendency in this direction would be interesting.
FBI can assume a different meaning depending on the context in which it is applied. In general FBI represents a quantitative
way to assess relative chronology. In fact, considering two fracture sets, the one with the higher FBI is interpreted as being
younger than the other one since it is consistently abutting. Moreover in vertical outcrops, if we consider the topological
710 relationships between one fracture set and the bedding, FBI represents a quantitative parameter for the quantification of the

tendency of a fracture set to be stratabeund-bounded by bedding surfaces.
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715  Figure 11 (A) Directional topology applied to Set 1 fractures on Pontrelli vertical wall (B) Standard topological classification of
Pontrelli vertical wall. The complete topological characterization is given by the combination of A and B visualizations.

Figure 11 shows the application of directional topology to the Pontrelli vertical wall, considering Set 1 and the bedding (S).
Applying the directional topology analysis we obtain:
720
- MNynoges = 100

Ny censored = 28

- N frac. = 93

- nfrac. censored — 40
725

100-28
FBlLp = 5 imer* 100 = 67%
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Therefore Set 1 is stratabound at 67%.

Considering now, for example, the abutting relationships of Set 3 on Set 1 as mapped in the pavement:

- Mynodes (3-1) = 1161

- Ny censored 3= 4

- Mfrac 3 = 1863

- nfrac. censored (3) = 12

1161-4
0
FBI;_; = TTTE 100 = 31.2%

On the contrary:

- Ny nodes 1-3) = 183
- Ny censored 3) = 1
- N frac. 3) = 2003

= Mfrac. censored (3) = 175

183-1
0,
FBI,_3 = TGo0175) ¢ 100 = 4.9%

Therefore Set 3 abuts with a FBI of 31.2% on Set 1, and on the other hand Set 1 abuts with only a marginal FBI of 4.9% on

Set 3, which is considered just an effect of a few digitization errors or local deformational effects.

7  Trace length/height distribution

Defining an unbiased trace length distribution has always been one of the main challenges in rock mass and fracture network

characterization.

calculating or estimating trace length parameters it is possible to distinguish between distribution-dependent (assume a specific

probability distribution) and distribution-free methods (population parameters not linked to any specific probability

distribution, Mauldon, 1998). On one hand. distribution-free methods do not rely on any specific assumption about the

underlying distribution, but provide an unbiased estimator of only the mean trace length by an indirect correlation (i.e. length

is not physically measured, Warburton, 1980; Pahl, 1981; Kulatilake and Wu, 1984; Mauldon, 1998; Zhang and Einstein,
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1998; Mauldon et al., 2001; Rohrbaugh Jr. et al., 2002). Not making assumptions about the shape and mathematical form of
the distribution could be seen as an advantage, but actually the non-parametrical nature of these approaches implies that it is
not possible to obtain impertant-statisties_statistical parameters of the population such as the standard deviation without
imposing further assumptions (Pahl 1981). This makes distribution-free methods unsuitable for modern modelling
applications, such as stochastic generation of fracture network, where a fully specified distribution is required. On the other
hand, distribution-dependent methods make assumptions on the shape of the underlying trace length distribution, thus
constraining their results. Because of this, it is necessary to test how well the chosen distribution fits the data. In the past this
was a strong limitation, due to the biases discussed in Section 1.

Digital outcrops and the increasing computational power make it possible to overcome-with-huge-datasets some problems that

previous authors could only consider theoretically from a mathematical and stereological point of view. WithOn one hand

these new techniques it-is-possible-to-aequirefacilitate the acquisition of massive datasets on-very large sampling windows and

successfully tackle the different biases that can be present on an outcrop. On the other hand, the increased computational power

makes it possible to calculate the solution to mathematical problems that previously could not be solved due to the lack of a

closed form solution (Baecher, 1980).

The orientation bias can be treated by applying areal sampling on outcrops with perpendicular faces. All the fracture sets
perpendicular or sub-perpendicular to the horizontal plane are detected on the pavement. If present, fracture sets parallel to the
horizontal pavement can be measured on the perpendicular vertical wall, eliminating the issue of under-sampling fracture sets
with unfavourable orientations.

The size bias applies to 1D sampling methodologies (scanlines) where longer fractures have a higher probability of being
sampled, but this bias does not apply to areal sampling strategies where everything inside the interpretation boundary is
sampled. Even fractures much longer than the interpretation boundary are sampled and classified as censored fractures (see

below)._Areal sampling alone, however, does not account for the possibility of fractures parallel to the outcrop mean plane

and for the under-sampling of fractures shorter than the bed thickness (Ortega and Marrett, 2000). The association between

the vertical and horizontal side of the outcrop can partially solve this bias. On the vertical side it is possible to check the

presence/absence of a fracture set parallel to the horizontal outcrop surface and the relationship between fractures and the

bedding interface. The problem remains for fracture sets parallel to the vertical outcrop mean plane, as the orientation bias

hinders the trace mapping. Regarding our case study, we observed that the number of Set 1 fractures on the vertical outcrop

roughly matches the number of fractures in the adjacent part of the horizontal outcrop. For Set 2 fractures, we can measure

them on the vertical side but they are hidden by artificial fractures related to quarrying activities on the horizontal side. Set 3

is almost parallel to the vertical outcrop configuring the situation in which this bias cannot be evaluated.

Working with DOMs, the truncation bias applies to small fractures that can be truncated by limited DOM resolution. In our
case, the resolution of the TS-DOM is around 4 mm/pixel and the smallest digitized fracture is 57 cm. Fhis-meansAlthough
the possibility remains, that there—is-ansome fractures were missed during the digitization process — including potentially

fractures smaller than the identified truncation threshold — the, order of magnitude difference between the tweresolution of
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Consequently, the only remaining bias to be treated is the censoring bias, which occurs naturally due to the finite nature of the

795  outcrop or due to the presence of vegetation or debris. In statistics, censoring is a condition where the value of a measurement

is partially known. This occurs when some of the data are subject to limitations or restrictions, preventing us from observing
the complete information. Censoring can happen for various reasons, and it is a common scenario in statistical analysis (Kaplan

and Meier, 1958; Leung et al., 1997; Lawless, 2011). In our case, the fractures that touch the interpretation boundary are

objects whose length is partially measured, therefore affected by random censoring (Benedetti et al., 2024). [ Field Code Changed

D Interpretation boundary . Fracture - scan line

) intersection
D Information gap

/ Fracture o I node
‘ Boundary - scan line
intersection

‘ B node

Same fracture?
two different right
censored fractures

Double
censoring
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We thus apply the theory and approaches described in Benedetti et al., (2024) to obtain an unbiased statistical model from

censoring of both the length and height distributions. As discussed in Benedetti et al., (2024), this analysis solves the problems

related to single censoring, double censoring, and those related to “holes” within the interpretation boundary, as depicted in

Figure 12.

Fracture - scan line
intersection

O | node

‘ Boundary - scan line
intersection

‘ B node

D Interpretation boundary
D Information gap

/ Fracture

Two separated right
censored fractures

Double
censoring

Figure 12 Different cases of censoring in a natural outcrop. The presence of information gaps affects trace length measurements.
Double censored fractures are considered a single censored fractures with one of the end nodes coinciding with the interpretation
boundary. Fractures that look coplanar across an information gap are considered two separate censored fractures.

Survival analysis parameter estimation is based on optimization algorithms, like the Maximum Likelihood Estimation (MLE),
where censoring is taken into account by calculating the likelihood of a censored measurement by using the survival function

instead of the probability density function (Benedetti-et-al2024)(Benedetti et al., 2024). MLE is a parametric approach that

needs a testing phase to validate its results. Working with censored data, without a specified distribution, leads to a situation

where none of the standard non-parametric goodness-of-fit test can be applied (Benedetti-et-al;2024)(Benedetti et al., 2024).
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Using the survival analysis approach different hypothesis (statistical models) can be estimated with the censored data. For this
case study we propose to fit the following statistical models: Lognormal, General Gamma, Weibull, Exponential, Gamma,
Logistic and Normal. Several statistical distances are calculated between the available empirical data and the fitted model to
show which of the proposed models is more representative of the data. We chose to use the same distances as (Benedetti et al,
2025) thus using: Kolmogorov-Smirnov distance (DC,,) (maximum distance), the Koziol-Green distance (¥?) (sum of squared

distances) and the Anderson-Darling distance (AC2) (weighted sum of squared distances), with respect to a uniform distribution

U(0,1) (2) Akaike information criterion {Benedetti-et-al2024)(Benedetti et al., 2024).

7.1  Distance from U(0,1)

The probability integral transformation theorem (Fisher, 1930) is a fundamental concept in probability and statistics, whose
primary application is to transform the values of a random variable into a random uniform variable. The perfect model for
fitting a dataset will follow a uniform distribution between 0 and 1, meaning a perfect correspondence between the empirical
data and the theoretical distribution, and other models that are close to the uniform U(0,1) with a small deviation will be
suitable to describe the data (Figure 13). Therefore, the purpose of the probability integral transformation is to normalize
distributions in order to be able to compare deviations on a common ground.

Table 3 show the rankings based on the different normalized distances for Set 1 fractures. The lognormal distribution and the
general gamma distribution rank respectively first and second in all the 3 rankings. In contrast, the logistic and the normal
distribution are not suitable for our data. With intermediate rankings, we can appreciate the different meaning of the various
distances; for example, the Weibull distribution shows a smaller maximum distance (DC,,) with respect to the exponential and

the gamma distribution.
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Figure 13 PIT visualization for Set 1 fractures.

Name DC,, rank Y2 rank AC? rank

Mean rank

Lognormal 1 1

1

General Gamma

2

Weibull

3.33

Exponential

Gamma

4.67

AN | (W=
AN | W |

Logistic

6

N ||| W

Normal 7 7

7

Table 3 Ranking based on the Kol
length data.

ov-Smirnoff dist:

7.2 Akaike information criterion

e, Koziol-Green distance and Anderson-Darling distance for Set 1 trace

The Akaike information criterion (AIC), is a criterion to rank models from the best to worst based on the empirical data
(Akaike, 1974; Burnham and Anderson, 2004). AIC is designed to identifying the so called MAICE (Minimum information
theoretic criterion (AIC) Estimate) (Akaike, 1974), as the model that give the minimum of AIC, defined as:

AIC = 2k — 2In(Lpmay) 9)

Where:
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e : number of model parameters

® L4y maximized value of the likelihood function

Therefore the Akaike Information Criterion favours parsimony, preferring models with fewer parameters that still adequately
explain the data (Akaike, 1974).

Associated to AIC, there is another important parameter that gives the probability that a certain model is the best model for a
given dataset, the Akaike weights (w;) (Burnham and Anderson, 2004). These sum to 1 and have to be interpreted as a weight
of evidence, meaning that the higher the value, the higher the probability that a certain model, in the pool of the selected
models, is the best model for our data (Benedetti-et-al;2024)(Benedetti et al., 2024).

The main advantage of this method is that it takes as input the maximized value of the likelihood function, de facto ranking

models and their relative parameters taking into account censored data.

Rank Distribution name AIC w;
1 Lognormal 7514.617939 0.9912701876
2 General Gamma 7524.082426 0.0087298124
3 Gamma 7636.568978 0
4 Weibull 7653.734152 0
5 Exponential 7655.821815 0
6 Logistic 8804.536054 0
7 Normal 9246.922169 0

Table 4 Ranking based on the Akaike information criterion for Set 1 trace length data.

Just looking at AIC values (Tab.4), and at the various distances measured in the previous section, it seems that even if the
lognormal distribution wins, the three-parameters general gamma distribution is still a valid model for our data. Akaike weights
clarify this situation showing that the lognormal model is much more powerful at describing our data with respect to the gamma
model. At the same time, all the other models have Akaike weight equal to 0 meaning that with respect to the lognormal and

the General gamma models, they are completely unsuitable.

8  Fracture areal intensity (P;,)

Fracture areal intensity is defined as the ratio between the total sum of fracture trace length and the sampling area (Dershowitz
and Herda, 1992; Mauldon et al., 2001). This parameter is very important since its volumetric equivalent P, (total fracture
area in unit volume) is used as a stopping criterion in stochastic DFN modelling, meaning that the stochastic generation of

fractures will stop when the target intensity is reached, and P;, can be obtained form P,; via a calibration procedure (Staub et
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al., 2002). Given the heterogeneous distribution of fractures in natural outcrops, the characterization of this value cannot be
separated from the concept of Representative Elementary Volume (REV) or Area (REA) (Bear, 1975). In outcrop studies REA
is the area above which a certain parameter value becomes independent from the position and scan area size with which it is
calculated and thus the value can be used to constrain wider models.

To perform this analysis limiting the orientation bias we cover the outcrop surface with hexagonal grids of increasing edge
length, ranging from 1m to 26m in the Pontrelli quarry case study. Only whole hexagons are considered and data are plotted
using the graphical boxplot method proposed by Tukey, 1977 (Figure 14A). The lower threshold of REA can be defined as
the minimum hexagon area where no significant difference is detected between the mean and standard deviation of P,;
obtained at that area and at the next step.

To quantitatively measure the significance of this difference, statistical techniques like ANOVA, used to compare the mean of
different populations, can be used in theory (Stahle and Wold, 1989; Moder, 2010). However, ANOVA is based on three
assumptions: (i) hypothesis of normality, (ii) homogeneity of variances, (iii) independence between samples (Moder, 2010).
In our case, P,; samples collected with smaller scan areas are clearly asymmetrical (from 1m to 5m), while P,; samples
collected with larger scan areas tend to be more symmetrical (Figure 14A). Consequently, variance is inhomogeneous through
the dataset, leading to an increase of type 1 errors (Moder, 2010). This problem is enhanced by the fact that the sample size is
unequal and decays as the scan area edge length increases due to the finite size of the outcrop (the larger the outcrop, the
smaller the number of scan areas). For these reasons, ANOVA and similar tests cannot be applied, and we decided to adopt a
more qualitative approach based on the difference between the interquartile range (deltalQR) of two subsequential P,;
samples. With this approach, REA is reached when deltalQR stabilizes around 0 (Figure 14B). To account for “far out” data,
that are not included in the IQR, we also consider the range between the whiskers calculated as the difference between the
upper whisker length (Q3 +1.5IQR) and the lower whisker length (Q1 - 1.5IQR) (Figure 14C).

In both cases, the REA correspond to a plateau that in our case study between 5Sm and 12m of scan-area edge length. Above
12m, the representativity is compromised by the too small sample size (<15 hexagons).

P,; REA can be safely calculated only for Set 1 fractures, because, as highlighted in Section 2, in some areas only Set 1

fractures can be digitized, while Set 2 and Set 3 are drowned by the quarrying related fractures.
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Figure 14 Representative Elementary Area analysis on Pontrelli quarry Set 1. (A) Boxplot of P54 data collected with increasing scan
area size. Red dashed line: P,; calculated on the whole outcrop, with the interpretation boundary as scan area. GreenThe green box
identifies REA range. Small number under the boxplot: sample numerosity. (B) Delta between IQR of two subsequential P,
samples. (C) Range between upper and lower whiskers for each P,; sample.
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9  Height/Length ratio

The H/L ratio between height of fractures, measured along the dip direction, and their length, measured along strike, is the
object of an extensive literature and is believed to span from 1:2 (Odling, 1997; Panza et al., 2015; Giuffrida et al., 2020), to
1:4 (Panza et al., 2015) or even 1:5 (Boro et al., 2014; Smeraglia et al., 2021), depending and different mechanical hypotheses,

but could be probably even more variable when the possible combinations of crosscutting/abutting relationships between

fracture sets and with bedding are considered.
H/L ratio is applied, in association with the length distribution, in most commercial and open-source 3D stochastic DFNs to
model the geometry of the discontinuities, often represented as rectangular or elliptical surfaces. Therefore, the H/L ratio is

directly correlated to the shape of the fracture planes generated by the DFN and it-is+esponsible-forcontrols the jumpswitch in

dimensionality between 2D and 3D models. Unfortunately, the H/L ratio cannot be directly measured in outcrops due to the
impossibility to map the full extension of fracture surfaces (but only their traces or partial facets).

In the studied outcrop, the availability of both height and length data allows us to make at least some realistic and transparent
assumption on the H/L ratio based on a correlation of length and height distributions.

Our assumption is that traces mapped on the pavement (i.e. lengths) and on the wall (i.e. heights) can be associated in ordered
pairs from the shortest to the longest. Making some assumption of this kind is unavoidable since there is no way to directly
observe the correspondence between horizontal and vertical traces. We want to stress that this criterion is not unique, and other
relationships can be established between length and height data (e.g., random association), but this criterion seems reasonable
from a fracture mechanics point of view.

To test our hypothesis, a hundred values of length and height are randomly sampled from the statistical distributions of length
and height, ordered from smallest to largest and associated in pairs, and the H/L ratio is eventually obtained with linear
regression (Figure 16A).

In our case study the height of Set 1 fractures should be limited by the height of the bed package, but the random sampling of
the height distribution, that is a lognormal distribution, also generates, although with decreasing probability, fractures that are
much higher. This is why in Figure 15 we limited the linear regression to height values smaller than 6m (height of bed package,
Panza et al., 2016). One thousand realizations are made to account for the variability of the random sampling and the arithmetic

mean of the regression line is taken as the representative H/L ratio (Figure 15B).
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Figure 15 H/L ratio calculated for Set 1 fractures. (A) Example of one realization, where hundred values are sampled from the height
and length distributions. r: Pearson correlation coefficient. (B) Frequency histogram of H/L ratios calculated from thousand
realizations.
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10 Summary of the results: fracture network characteristics at the Pontrelli quarry

In this section we describe the fracture network of the Pontrelli quarry and the results and limitations of the parametrization
obtained with our workflow. Field observations show that Set 1 is the most prominent set in the outcrop, its fracture traces are
homogeneously distributed across the pavement, and it can be detected even in areas damaged by quarrying. From field and
DOM evidence, all other fracture sets abut or crosscut Set 1, therefore pinpointing this set as the older one. This conclusion is
also supported by the topological, length and height analyses. Set 1 shows a lognormal length distribution with the largest
average and maximum length, in agreement with a condition in which fractures are free to grow, in absence of a mechanical
compartmentalization defined by previously developed fracture sets, bedding aside (Ackermann and Schlische, 1997). Set 1
also shows a negligible percentage of abutting relationships with Set 2 (2.7%) and Set 3 (4.9%). This marginal number of
unlikely relationships, in a geological context in which Set 2 and Set 3 postdate Set 1, can be explained considering a limited
reactivation of Set 1 fractures in more recent tectonic phases. On the contrary, both Set 2 and Set 3 exhibit a significant number
of abutting relationships against Set 1, respectively 21.41% and 31.2%.

The favourable orientation of the vertical wall supports the collection of a consistent statistical sample of height measurements,
allewingfor-arebust-fitenabling reliable fitting of the height distribution. However, the height of the vertical wall is barely
sufficient to get a complete observation window on a bed package. This limits the representativity of the assumption on the
stratabound nature of Set 1. Our interpretation relies on the results from the directional topology analysis between Set 1 and
the bedding. Since more than 67% of the observed Set 1 fractures abut on bedding surfaces, we believe that it should be

vertically confined by the height of the bed package. In relation to classical height pattern classification schemes (Hooker et

al., 2013), Set 1 falls between the perfectly bed bounded and the top bounded classes, given that even if the majority of the
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fracture about on the bedding, some fractures (33% of the non-censored fractures) end between two bedding surfaces. The H/L

ratio for set 1 is calculated as discussed above from the trace height and length distributions, under the assumption that height
and length values are associated in pairs from smallest to largest. This assumption is supported by the strong linear correlation

between the two sets of values (Figure 15) and the resulting mean H/L ratio is 0.345.

Set 1
Test result Mean dip dir. Mean dip Fisher K KentK Kentf n.data
Orientation rejected 213.94 86.3 36.59 39.59 542 1475
Set 2 Set 3 S (Bedding)
FBI 2.70% 4.9% 67%
Dist. Type Mean Standard dev. n. data
Length distribution Lognormal 4.49 6.03 2014
Height distribution Lognormal 2.09 1.69 93
Value
H/L ratio 0.345
Value REA
Py 0.7 m;! 5-2m12 m [Formatted: Superscript

Table 5 Result summary for Set 1 fractures.

Set 2 mean length is intermediate between Set 1 and Set 3 and the topological relationships exhibit a higher occurrence of Y
nodes against Set 1 with respect to Set 3, in good agreement with Set 2 being the second older set. The orientation of the
vertical wall still allows to collect both faces and traces of Set 2 fractures, albeit the trace height dataset is less numerous than
for Set 1, resulting in a less constrained height distribution. This is also reflected in the H/L ratio calculation, which should be
applied more cautiously to stochastic modelling.

Unlike Set 1, Set 2 fracture traces in the northern part of the outcrop are drewnedmasked by the damaged zones-and-the-noise

non-systematic fractures generated by quarrying activities.

sFaces and traces data collected on the wall prove etherwisehowever that set 2 fractures are

developed also in this sector of the quarry. The incomplete sampling of fracture traces across the pavement defines a strong

bias that hinders the calculation of the P,; for Set 2, since without a sufficiently wide sampling area the REA calculation is
not representative. Therefore, if we would model this fracture set with a stochastic approach, some assumption on the REA

mustshould be introduced.

47




Most of Set 1 and set 2 fractures on the vertical wall abut on bedding surfaces. In particular, almost all the Set 2 fractures abut

on the bedding surfaces, identifying it a perfectly bed bound fracture set in the height classification scheme of Hooker et al.

(2013). This imphyimplies that bedding surfaces, in this context, actually have a control on the vertical development of the

fractures. This is particularly true for the “high order” bedding surfaces that limit the bed package, where almost 50% of Set 1
975 fractures abut.

Set 2
Test result ~ Mean dip dir. Mean dip Fisher K KentK Kentf n.data
Orientation rejected 75.37 89.31 26.47 2791 3.1 1933
Set 1 Set 3 S (Bedding)
FBI 21.41% 9.69% 97.91%
Dist. Type Mean Standard dev.  n. data
Length distribution Lognormal 2.094 2.2 913
Height distribution Lognormal 1.3 0.78 32
H/L ratio 0.359
Value REA
Py, \ \

Table 6 Result summary for Set 2 fractures.

Set 3 shows the highest number of abutting relationships against the other sets and the smallest average length, in agreement

with Set 3 being the younger represented-enin this outcrop.

Given the unfavourable orientation of the vertical wall (sub-parallel to Set 3 average attitude), only orientation data from facets
980 can be collected and the height distribution cannot be characterized. This implies that also the H/L ratio cannot be obtained.

Finally, regarding P,; and REA, the same limitations as for Set 2 apply. Therefore, in case we would model this fracture set

with a stochastic approach, many relevant assumptions must be introduced even if in general the quality of the outcrop is very

high.
Set 3
Test result Mean dip dir. Mean dip Fisher K KentK Kentp n.data
Orientation (Set 3a) rejected 157.46 78.75 132.83 133.52 4.45 1269
Orientation (Set 3b) rejected 124.08 76.8 91.83 92.63 4.2 2123
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Set 1 Set 3 S (Bedding)

FBI 31.2% 21.19% \
Dist. Type Mean Standard dev. n. data
Length distribution Lognormal 0.74 0.75 1863
Height distribution \ \ \ \
H/L ratio \
Value REA
Py \ \

985  Table 7 Result summary for Set 3 fractures.

11 Discussion

990

995

Fhe-veryThis contribution is focused on the geometrical characterization of fracture networks and in particular on the input

parameters necessary to generate stochastic DFN models. The main goal of the paper is to provide quantitative methodologies

that limit the user choices as much as possible through the implementation of statistical tests (e.g. orientation distribution). If

000 statistical tests are not viable due to the violation of the underlying assumptions, other statistical parameters (P, REA) or

statistical distances from a non-parametrical estimator (length and height distribution) are provided. The presented

methodologies are based on data collected from DOMs, both point clouds and orthomosaics. In the context of upscaling

geometrical parameters, DOMs are a convenient framework when it comes to collecting data on wide outcrops, decreasing the

time for the acquisition process, allowing data collection in areas inaccessible due to practical or safety reasons, and opening

005 to the possibility of implementing automatic feature extraction methods or automatic classification methods (topology). For a
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complete characterization of the fracture network, especially when targeted to fluid flow simulations, the geometrical

parameters included in this contribution have to be integrated with further analysis, to characterize filling, mineralization and

other characteristics of the network (e.g., microscale connectivity) that can be assessed with other type of techniques and at a

smaller scale (Forstner et al., 2025). Our approach is based on a combination of field surveys and DOM surveys, the latter

used to obtain large datasets to support statistical analysis, the former to guide the digital mapping, filtering the noise given by

external factors (e.g. quarrying operations) and assigning every fracture to a specific set through geological observations

(particularly kinematics and relative chronology).

In quarries some fractures are generated during excavation. It is thus of the utmost importance, for both genetic reconstructions

and analogue modelling, to exclude fractures that are related to anthropogenic surface processes. In our case study, the

measured fracture sets are in accordance with the existing literature on the area (Sec. 2). In the outcrop pavement are present

no data zones, characterized by debris accumulations, where no fracture set can be detected. Other parts of the pavement are

affected by quarrying activities, resulting in zones “saturated” by fractures with random orientations or distributed following

aradial pattern (related to explosions). In these areas only Set 1 is clearly detectable, given the constant spacing and orientation

an average length higher than the other fractures and the centimetrical displacement. Set 2 and Set 3 are drowned by these

artificial fractures and even if present it is difficult to reliably isolate and digitized them.

The high quality of eurthe outcrop, with perfeetly-expesedadjacent horizontal and vertical surfaces, was instrumental in testing

techniques that represent, in our opinion, a step forward in collecting rich quantitative datasets and developing rigorous

statistical treatments for many geometrical parameters of a fracture network (Table 1). On the other hand, we must also recall
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that for some parameters there are still limitations in data collection and analysis. Both these points are discussed in the

following sub-sections.

11.1 Combined analysis of fracture traces and faces

The integration of facets and traces (collected both on horizontal and vertical outcrops) allows a complete characterization of

fracture-networkthg parameters;—unlike listed in Table 1. while, other approaches thatrely on the analysis of facets or traces
only ene-ofthese-two-datasets-(e.g. Ortega et al., 2006; Boro et al., 2014; Martinelli et al., 2020; Smeraglia et al., 2021).

Orientation data have been collected on the vertical wall PC-DOM, where dip and dip direction of true 3D planes can be
measured by fitting a mean plane to planar patches of the point cloud.

I'S-DOMs altewenable, the digitalization of fracture traces and eftheinterpretation beundaryboundaries on, both en;horizontal

and vertical outcrops at a fixed scale, corresponding to the resolution at which they were collected. Nonetheless, the proposed

methodologies can be applied to different scales, from thin sections to satellite images, provided that data are organized as

digitized fracture traces combined with the interpretation boundary, The integration between fracture traces and the

interpretation boundary is fundamental to avoid underestimating the connectivity index by misinterpreting B-nodes as I-nodes;

and provides a fundamental input to identify censored fractures,
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P54, is calculated on the pavement TS-DOM where the huge areal extension (= 18.000 m2) enables to define a sufficient number

of scan areas to detect the REA lower threshold.

11.2  Orientation analysis

The methodologies we suggest for orientation analysis are aimed at reducing subjective choices of the interpreter and at the

same time exploiting semi-automatic data collection to increase the volume of data that support statistical analysis. This was

achieved by:

e Introducing cluster analysis, in addition to classical structural observation, to segment fracture sets following a rebust
statistical criterion.

e  Calibrating an automatic feature extraction algorithm (FACETS) to maximize the data that can be extracted from PC-

DOMs, avoiding the generations of artifacts (e.g. planes with an intermediate orientation) as sometimes happens in

workflows tested by previous authors (e.g. Menegoni et al., 2019; Panara et al., 2024).

e Rather than assuming circular symmetry and fitting a Fisher distribution without prior statistical verification, our approach

explicitly tests the fitted orientation distributions using goodness-of-fit tests. This provides a statistically grounded

assessment of fracture set orientation parameters.

Our rigorous analysis revealed that, in our case study, no fracture set follows a Fisher distribution (Tab.5, 6, 7), in contrast to
the conclusions of previous studies on the same outcrop (Panza et al., 2016; Zambrano et al., 2016). At the same time, Kent
distribution parameters indicate a-very low ovalness for all fracture sets, even if Set 3a and Set 3b seem to be almost elliptical
clusters (Fig Se). The reason is that sets 2, 3a, and 3b are strongly asymmetrical and set 1 is multimodal, as highlighted by
contour plots in figure 5.

In the context of generating analogue fracture sets with stochastic modelling (e.g. in DEN), where only the Fisher distribution
can be modelled by standard software, these parameters should be handled with care. Using a Fisher distribution with a K
parameter small enough to fit all the planes in the cluster (i.e. with a large spherical variance) will result in artifacts along the
minimum axis of the elliptical distribution, or in not properly represented tails in case of asymmetrical distributions. On the
contrary, using a K parameter that is too large (i.e. with a small spherical variance) will result in an underrepresentation of the
oval tails of the data. All these problems will result in an incorrect modelling of connectivity, that is positively correlated to
orientation dispersion {e-g-Smith-et-al-2043)(e.g. Smith et al., 2013).

A possible workaround for this problem, using the available software, could be to split the oval clusters and fit multiple Fisher
distributions to model their parts, possibly validating the results generating synthetic clusters and comparing them with the
natural ones. More in general, more advanced distributions such as the, Kent, Bingham-5-parameters, Bingham-8-parameters
or mixed Bingham can be adopted to fit asymmetrical or multimodal clusters (Kurz et al., 2014; Gilitschenski et al., 2016;
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Yamaji, 2016), and we feel that adopting at least the Kent distribution in stochastic modelling applications would be a

significant improvement along the path of creating realistic stochastic fracture networks.

11.3 Topology

In the ongoing discussion on topological analysis in fracture studies, some authors (e.g. Sanderson and Nixon, 2015) proposed
to consider the connectivity of fracture branches, instead of full fracture traces, due to a supposed uncertainty in unravelling

crosscutting, abutting, or splay relationships when branches form a small angle.

otherOther authors (Forstner and Laubach, 2022) suggest considering also contingent nodes (C nodes) that would allow
merging individual small branches to form larger traces, based on genetie-orhydraulicconsiderations-the considered scale

and/or diagenetic consideration. In this context, we like to recall that (i) linear traces or branches represent the intersection of

fracture surfaces with the outcrop surface (e.g. Sanderson and Nixon, 2015), and that (ii) most of the time we are actually
interested in fracture surfaces rather than in their traces. In other words, branch connectivity parameters and length distribution
can be useful information to characterize 2D connectivity of lines, but we would like to stress that considering branch length
data as if they were full trace lengths would dramatically underestimate the dimensions of the underlying fracture surfaces,
overestimate fracture density (since branches are more numerous that full traces) and would not allow performing directional
topology analysis on a per-set basis, as discussed above. For these reasons we insist in considering fracture traces, relying on
geological information collected in the field to solve the ambiguity highlighted by Sanderson and Nixon (2015).

Directional topology adds a further layerimprovement to the fracture network characterization by assigning every node to
specific fracture set(s). This allows quantifying crosscutting and abutting relationships between different fracture sets and
understanding how the different fracture sets contribute to the overall connectivity of the fracture network. At the same time,
it is possible to derive parameters like the FBI that express the relative chronology and stratabeund-relationships with bedding
surfaces in a more quantitative way. The necessity of excluding censored fracture traces from the FBI calculation might result
in either an overestimation of this index, in case the longest traces tend to have I-nodes, or an underestimation in case they
tend to terminate with Y-nodes. Unfortunately, this effect is-very difficult to assess at the moment, and we leave a more detailed
analysis for future studies.

Extracting the backbone of the trace network as in Figure 9, i.e. the largest connected cluster of the network, seems a really
interesting result, and is possible thanks to the code we developed (https://github.com/gecos-lab/FracAbility). However, we
would like to raise some cautionary note about these results. In fact in our outcrop the backbone is located along one of the
major structures present in the pavement but, at the same time, it has been detected in a zone of the pavement that is
veryparticularly clean and free from quarrying-induced fractures, and it is bound by zones where the possibility to detect
smaller fractures belonging to Set 2 and 3 is more limited. Therefore, there is no way of knowing if the shape and position of
the backbone are due only to the presence of a major structure, or if they would change if other areas of the outcrop were not

disturbed. In conclusion, the backbone detected by our analysis probably represents a subset of what it could be, if a complete
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undisturbed dataset was available. This also means that the connectivity index of the whole fracture network is probably

underestimated, even in such a high-quality outcrop.

11.4 Length and height distributions

Of the four major biases that hinder the definition of a correct length and height distribution, censoring is the only one that
cannot be addressed by changing sampling strategy (as for size and orientation bias) or improving data acquisition techniques
and checking the quality of the input data by quantifying the resolution of the TS-DOM with respect to the smallest fracture
that can be detected (truncation bias, Section 7). This has led to excluding censored data (Bisdom et al., 2014) or considering
censored fractures as complete ones (Panara et al., 2024; Smeraglia et al., 2021), resulting in statistical models that always
underestimate length (Benedettiet-al-—2024)(Benedetti et al., 2024). At the same time, non-parametric approaches do not
provide a fully specified parametric distribution (Mauldon et al., 2001), that is a fundamental input data in applications such
as stochastic models, and also to evaluate the meaning of data in general (i.e. knowing the mean without any hint on standard

deviation is meaningless). The-censoring-correction-obtained-by-(Benedetti-et-al5 2024 The censoring correction obtained by
(Benedetti et al., 2024) with survival analysis allows to use the full extent of the dataset collected from TS-DOM, and obtaining

an unbiased statistical distribution.

In this contribution we leverage the availability of both pavement and vertical wall exposures, obtaining an H/L ratio specific
for our outcrop. This is a significant improvement with respect to previous approaches, where the H/L ratio is generally
assumed based e.g. on theoretical mechanical considerations, without any comparison with empirical data (Odling et al., 1999;
Schultz and Fossen, 2002, and references therein).

The approach we propose, however, is not completely immune from a-priori assumptions. In fact, even in ideal outcrops, it is
impossible to actually measure H/L of a single fracture surface because either we see the direct connection of the fracture
surface in the vertical and pavement exposures — but in this case both traces are censored, or we see complete traces — but in
this case we cannot see the connection. Our assumption is that height and length statistics must be correlated according to size
rank, as discussed above in Section 9, and we believe that this is a reasonable assumption based e.g. on mechanical
considerations (Odling et al., 1999) and results of our linear regression (Figure 15) but it is nevertheless important to state this

transparently.

11.5 Fracture intensity and representative elementary area

Areal fracture intensity is often estimated using methods based on scan lines, scan areas or circular scan line (Rohrbaugh Jr.

et al., 2002; Zeeb et al., 2013). These methods provide a minimum scan area size for a representative estimation of P,; based
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on the mean fracture trace length. In this contribution we proposed a different approach, based on the concept of Representative
Elementary Area to try to quantify the range of scan area size in which fracture intensity can be mediated to ensure a proper
continuum-equivalent description (Bear, 1975).

As a partial correction to the approach in Martinelli-et-al+{(2020)Martinelli et al. (2020), we recently noticed that the finite

nature of outcrops determines limits in the collection of P,, data, such as the progressive decrease in scan areas numerosity as

the scan area is increased, and the non-independence of P,, samples collected at increasing scan area sizes. Eorthesereasens

al2020);-adeopting-a-mere-qualitative-approach-which;-however,For these reasons a quantitative approach based on formal

statistical tests cannot be safely applied. Adopting a more qualitative approach will result in a less significant result, which

partially depends on the interpreter choice, however, it, does not require such stringent assumptions as the tests used by

any—casewe-believe th to—formal-st

apphlieations-Martinelli et al., (2020). We also recognize that adopting a more qualitative approach may introduce subjectivity

in the selection of window size, but still having an order of magnitude for the REA (and hence for REV) is important in

modelling studies. Indeed, in addition to formal statistical reasons, defining the REA has important practical applications. For

instance, the choice of the optimal cell size in reservoir-scale models stems from a combination of several factors, that are the
geological characteristics of the area, lithostratigraphic heterogeneities, mean spacing between wells and the available
computational power. In general, however, there is a lower limit to the resolution of the model - around 50 m of cell size,
dictated by computational power. This is an important piece of information because it outlines the minimum size that an
analogue outcrop should have to capture all the variability within a hypothetical cell. From this point of view, the Pontrelli
quarry provides a pavement two to three times larger than the minimum cell size, granting a sufficient area to calculate
representative statistics. At the same time, the P,; REA, determined for Set 1 fractures between 5m and 12m, is approximately

five to ten times smaller than the minimum cell size, allowing a safe application of continuum-equivalent upscaling techniques.

12 Conclusions

In conclusion, this eentribution—we-paper presented a series of methodsformeasuringeveryrelevant parameterquantitative

methodologies, to characterize fracture network geometry from Digital Outcrop Models (DOMs). Among all the parameters
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required to fully characterize a fracture network, partieularly—under—the-point-ofview—of-we focused on those required to
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- EstimatingOrientation data are collected through a semi-automatic workflow, clustered with k-medoids, and

tested for the goodness-of-fit to a Fisher distribution. Alternatively, the Kent distribution parameters are also

provided. This procedure allows subjectivity to be removed from the assignment of dip/dip direction data to a

specific fracture set and supports the choice of meaningful orientation parameters through the implementation of
170 statistical tests.
- Topological relationships are calculated including the interpretation boundary, this allows to: (i) to define B

nodes and exclude them from the connectivity index (CI) calculation (ii) to identify censored fractures in an

automatic way. Backbone extraction highlights the presence of large, connected clusters in the network.

Crosscutting and abutting relationships between different fracture sets are quantified through directional

175 topology.
- The approach developed to deal with censoring bias provides as a result a set of fully specified distributions (all

parameters are explicit) corrected for censoring. The best model among the initial selection is defined through a

graphical approach and a series of statistical distances.

- We demonstrate that estimating, H/L wasis not possible without introducing some assumption, even for the best Formatted: English (United States)
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P,; REA is calculated with a qualitative approach to avoid violating the underlying assumption of more formal

statistical tests.

13 Code and data availability

1205 Codes and data are available at the following GitHub repositories owned by the Gecos-lab group of the University of Milano

— Bicocca (https:/github.com/gecos-lab):

1210 -

FracAttitude: Python code for orientation data analysis available at https://github.com/gecos-lab/FracAttitude;
DomStudioOrientation: Matlab code for orientation data analysis available at https:/github.com/gecos-
lab/DomStudioOrientation;

FracAbility: Python toolbox for topology and survival analysis available at https:/github.com/gecos-
lab/FracAbility;

FracAspect: Python code for H/L ratio calculation available at https:/github.com/gecos-lab/FracAspect;
FracElementary: Python code for P,y and REA analysis available at https:/github.com/gecos-

lab/FracElementary.
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