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Abstract. Increasing evidence highlights the disruptive effects of compound climate extremes on global crop yields under 

climate change. Existing studies predominantly rely on the whole growing–season scale and relative thresholds, and limit  

hamper the capture of crop physiological sensitivities and yield responses that vary critically across growth stages. Here, we 15 

analyzed the spatiotemporal variations, dominant drivers, and potential impacts on the yields of concurrent heat–drought and 

chilling–rainyrain events for single– and late–rice in southern China from 1981 to 2018. Specifically, we carefully 

distinguished three sensitive growth stages of rice and stage–specific climate stress types and thresholds based on rice 

physiologyused growth-stage-specific physiological thresholds. Temporally, single–rice experienced a significant increase in 

concurrent heat–drought events, while late–rice experienced a modest rise in chilling–rainyrain events. Spatially, the hotspot 20 

distributions of concurrent heat–drought events varied greatly across the three growth stages, being concentrated in regions 

from the upper–middle to the middle–lower reaches of the Yangtze RiverHotspots of concurrent heat-drought events in single-

rice systems moved upstream in the Yangtze Basin during the growing season, and. These spatial patterns are driven primarily 

by differences in crop phenology across locations, such as the timing of flowering was earlier in the upstream than in the lower 

Yangtze River basin, rather than by the spatial distributionoccurrence of extreme climate conditions. While the concurrent 25 

chilling–rainyrain events of late–rice were widespread within the planting regions, with a higher incidence in certain areas. 

These spatial characteristics were primarily driven by spatial differences in phenology rather than the occurrence of extreme 

events. Path analysis identified heat stress as the primary driver of heat–drought impacts (particularly in jointing–booting and 

heading–flowering stages), whereas chilling and rainyrain stress exerted comparable effects for late–rice. Our assessment of 

compound event impacts and sensitivity to on rice yield revealed significant growth–stage-specific differences, with 30 

comparable yield losses from both concurrent heat–drought and chilling–rainyrain events. Single–rice showed the highest 

sensitivity to heat–drought events during the grain filling stage, whereas the late–rice exhibited greater sensitivity during 

the heading–flowering stage. The historical yield impact on yield diverged markedly across growth stages, with the largest 

having occurred in the grain filling stage, particularly for heat–drought events. Our study provided important information on 
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compound agroclimatic extremes, in the context of southern China’s rice production system, and the results provide important 35 

information for risk management and adaptation strategies under climate change. 

 

1 Introduction 

Compound climate extreme events, driven by the interaction of multiple drivers and/or hazards, often have more severe 

ecological and socioeconomic consequences than single events (Urban et al., 2018; Zscheischler et al., 2020). There is 40 

increasing concern regarding the future impacts of compound climate extreme events considering their projected increasing 

frequency and intensity (IPCC, 2022). Among the multiple potential impacts, agricultural production has received specific 

attention. The regional threats posed by these extreme events could further lead to global food security issues and the need to 

develop food system resilience (Chenu et al., 2017; Lobell and Gourdji, 2012; Trnka et al., 2014).  

Previous studies have identified increasing trends in compound agroclimatic extremes, mostly in maize and wheat. Globally, 45 

analyses using diverse metrics, including growing–season precipitation–temperature anomalies(He et al., 2022), growing–

season standardized anomalies of soil moisture and killing–degree–days (Lesk and Anderson, 2021), and Standardized 

Temperature Index (STI) with multiple drought indicators (i.e., scPDSI, SPI, and SPEI) (Feng et al., 2021), have consistently 

revealed intensified hot–dry extremes across major crops since 1950, with ∼2% annual expansion of maize/wheat areas 

exposed to such events. Regionally, similar upward trends are seen in China’s rainfed maize and wheat systems during 1980-50 

2015  when assessed by percentiles of daily mean temperature and precipitation (Lu et al., 2018). However, analyses combining 

temperature indices (heating/freezing degree days) and drought indicators (SPI) or standardized drought–heat indices have 

revealed limited temporal trends despite the widespread spatial coverage of compound events since 1990 (Li et al., 2022; Wang 

et al., 2018). 

The literature has also investigated the impact of compound agroclimatic extremes on yield, mostly focusing on compound 55 

heat and drought events (Lesk et al., 2021). A study on the impact on U.S. soybean yields showed that Ccompound hot and 

dry summer conditions in the U.S. reduced soybean yields by two standard deviations. This, a sensitivity is about four times 

larger than for heat alone and three times larger than for drought alonefour and three times larger than the sensitivity to hot or 

dry conditions alone, respectively (Hamed et al., 2021). Another study examined the combined effects of temperature and 

precipitation on county-level corn and soybean yields in irrigated and rainfed crops in the United States. This county–level 60 

studies also shows showed that combined heat and drought events sharply reduce rainfed maize and soybean yields in the U.S. 

suppressed rainfed maize and soybean yields (Luan et al., 2021). In addition to concurrent hot–dry events, the impact of 

consecutive–dry–and–wet (CDW) extremes have been linked to yield losses:on crop yield has also been discussed. one analysis 

found that Evidence have shown that the risk of yield loss caused by CDW extremes can be twice as high as that from individual 
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wet and dry extremes (Chen and Wang, 2023). Several studies have been conducted to explain crop yield reduction caused by 65 

compound heat and drought events from the perspective of temperature–moisture couplings (Lesk et al., 2021). 

Despite the growing recognition of compound climate extremes as critical threats to global food security, critical knowledge 

gaps  remainpersist in quantifying their agricultural impacts. First, while concurrent heat–drought events in staple crops have 

been extensively documented (Rötter et al., 2018), concurrent chilling and rain eventschilling-rainy events, although equally 

destructive, have received little attention compared to heat–drought combinationsremain understudied, particularly in 70 

monsoon-dominated agroecosystems (Chen and Wang, 2023). Second, most studies define for the analyses of compound 

extremesseverity, there has been a preference for the use ofusing relative statistical thresholds (e.g., percentiles of indicators) 

rather than crop– and stage–specific physiological thresholdslimits,  crop-specific physiological thresholds to define extremes. 

which may overlook important crop’s biophysical sensitivities of Nevertheless, the use of relative thresholds cannot reflect the 

crop’s biophysical sensitivity to climate extremes, which vary by differentby growth stage and event type (Kern et al., 2018). 75 

For example, rice faces different chilling thresholds of ≤ 17 °C at the booting stage and ≤ 20 °C at the grain filling stages 

(Zhang et al., 2014). Third, analyses focusing on the whole growing season can mask critical sub-seasonal dynamics. For 

example, stress during the flowering stage can disrupt pollen viability and fertilization, while stress during the grain-filling 

stage can affect sucrose transport, which are all critical for yield formationThird, growing-season-scale analyses mask critical 

sub-seasonal dynamics: extremes during flowering stage disrupt pollen viability and fertilization, whereas grain-filling stages 80 

extremes impair sucrose transporters critical for yield formation (Sehgal et al., 2018; Xiong et al., 2016). Nevertheless, such 

stage-specific effects are seldom investigated independently.; however these mechanisms remain poorly integrated into impact 

assessments. Additionally, quantitative analyses of yield losses under compound extreme in rice are limited.  

 

Rice, as a critical staple crop for a large portion of the global population, deserves particular attention (Yu et al., 2024). Rice 85 

production in China includes single-rice in northeast China and in the Yangtze River Basin, and late–rice in southern parts of 

the country. The climate of these rice cropping systems varies substantially, from sub–tropical to warm temperate, and 

consequently the crop is exposed to a range of agroclimatic extremes. For single–rice, summer (July to September) is the 

highest temperature period in southern China and is prone to seasonal drought (Tan et al., 2020). At this time, single–rice in 

its jointing to flowering and maturity stage is vulnerable to the combined effects of heat and drought. From September to 90 

October each year, late–rice in its heading–flowering and grain filling stages is critically vulnerable to low temperatures, strong 

winds, and persistent rainy weather (Guo et al., 2020). These climate extremes compounded together are commonly referred 

to as “chilling–dew wind” and “continuous rain” events (Xie et al., 2016; Zhang et al., 2021). Climate change has driven more 

frequent and intensive extreme events for rice cultivation (He et al., 2022; Yu et al., 2024). The 2022 summer compound hot–

dry events in the Yangtze River Basin once induced considerable worry about the rice–based autumn grain production in 95 

southern China (Fu et al., 2024).  (Lü and Zhou, 2018)Therefore, focusing on the compound climate extremes related to rice 
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production in China could help add new wisdom about compound agroclimatic extremes to those reported about other staple 

crops.  

This study aims to examineexplore the spatiotemporal variations of concurrent compound extremes (CCEs) for single– and 

late–rice in southern China during the period 1981−2018, identify their underlying drivers, and quantifyassess their their 100 

impacts on yieldyield impact. Here, concurrent events refer to cases in which multiple types of extremes occur in the same 

growth stage. Unlike previous studies, we carefully distinguished CCEs by specifying the growth-stage physiological 

thresholds. We divided the rice-growing season into three critical stages: the jointing-booting stage (#1), heading-flowering 

stage (#2), and grain filling stage (#3). We considered four types of climate extremes that could substantially affect rice yield: 

heat (H), drought (D), chilling (C) and rainy (R). Correspondingly, wWe considered focus on concurrent heat–drought events 105 

for single–rice, and concurrent chilling–rainyrain events for late–rice, during the critical growth stages for each crop. The 

analysis uses crop–specific growth stages and physiological thresholds (detailed in Methods) to better capture the biophysical 

sensitivities of rice. Specifically, the study addresses the following questions:Our main questions are as follows: (1) How did 

the concurrent heat–drought and chilling–rainyrain events change temporally and spatially for rice in southern China’s rice 

systems during 1981–2018? (2) To what extent are changes in compound severity driven by changes in individual climate 110 

factors? How was the temporal change in the severity of compound events driven by that of individual events? (3) What are 

the impacts of these concurrent events on rice yield?To what extent do these concurrent events cause yield losses? (4) How 

did do the answers to the above question differ among different growth stagesby the rice growth stage?  

 

2 Materials and Methods 115 

2.1 Study area 

Our study area covers the major rice–growing areas in southern China (Fig. 1). Local rice–growing systems include typical 

late–rice in the southeast and single–season rice (hereafter “single–rice”) in the Yangtze River basin and southwestern China. 

Late–rice generally grows from July to November and is subjected to extremely low temperatures and continuous rain from 

September to October. Single–rice generally grows from June to November. Its heading–flowering stages overlap with the 120 

hottest season and are prone to drought owing to the hilly terrain of southern China (Tan et al., 2020). To best present the 

complicated temporal structure of climate extremes, both single– and late–rice were considered in our analyses.  
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Figure 1. Raster samples of single–rice and late–rice growing areas. Yellow grids indicate areas where single–rice is grown 

and blue grids indicate areas where late–rice is grown.  125 

2.2 Data  

A gridded daily dataset containing daily mean temperature and precipitation was obtained from the CN05.1 dataset prepared 

by the Institute of Atmospheric Physics, Chinese Academy of Science (Wu and Gao, 2013). The CN05.1 is a gridded daily 

dataset based on interpolation from over 2400 observation stations in China, with spatial resolution of 0.25° latitude and 0.25° 

longitude. It is regarded as the best choice for gridded climate forcing data in mainland China and has been widely used and 130 

tested in previous studies (Li et al., 2022; Zhu and Yang, 2020). The 0.25° gridded daily 0–10 cm soil moisture data were 

obtained from the VIC–CN05.1 surface hydrology dataset (Miao and Wang, 2020). The dataset was simulated by the latest 

variable infiltration capacity (VIC) model and driven by pure station–based atmospheric forcings and high–resolution soil 

parameters based on field surveys. The modeled 0–10 cm soil moisture anomalies were highly correlated with in situ 

measurements (438 stations) during 2003–2016, with a mean R = 0.80. 135 

We used two rice phenology datasets: rice agrometeorological station observations dataset (1981–2018) (CMA, 

http://data.cma.cn) and the ChinaCropPhen1km dataset (2000–2019) (Luo et al., 2020). Two versions of rice phenology dataset 

were used to derive gridded rice phenological dates. Rice phenological datesRice agrometeorological station observations 

http://data.cma.cn/
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dataset was obtained from the China Meteorological Administration (CMA, http://data.cma.cn), comprising rice phenological 

dates recorded by agrometeorological stations across China from 1981 to 2014 2018were obtained from the China 140 

Meteorological Administration (CMA, http://data.cma.cn). This dataset is considered the best quality crop phenology 

observation station dataset in China and has gained widespread usage (Chen et al., 2021; Liu et al., 2023; Zhang et al., 2022a). 

Each station systematically records the rice cropping type (single–rice or late–rice) and the corresponding dates of key 

phenological stages throughout the growing season, in accordance with the "Specifications for agrometeorological 

observation–Rice" developed in 2018 (QX/T 468–2018). Each station meticulously documents the rice cropping type (single-145 

rice or late-rice) and the corresponding dates for every phenological event during the rice-growing season following the 

specifications for agrometeorological observation—Rice (QX/T 468–2018). Rigorous checks and validation during the data 

preparation process resulted in the production of extremely accurate data on rice phenology, with an accuracy rate exceeding 

95%. Records that exceeded twice the standard deviation were rejected to ensure the data quality (Zhao et al., 2016).  The 

ChinaCropPhen1km dataset provides gridded rice phenology data at a 1–km spatial resolution for the period 2000–2019 (Luo 150 

et al., 2020). This data was derived based on Global Land Surface Satellite (GLASS) leaf area index (LAI) products. This 

dataset is superior to the previous one due to its spatially gridded format, but does not offer information before 2000. Both 

datasets were later fused to derive annual phenological dates from all rice–growing grids.  

The annual spatial distribution data of single and late rice were obtained from a high–resolution distribution dataset of single–

rice (Shen et al., 2023) and late–rice (Pan et al., 2021). The dataset provided a 10–m gridded distribution of single rice for 21 155 

provinces in China and that of late rice for nine provinces in Southern China. The two datasets used a method that combined 

optical and synthetic aperture radar images based on the time–weighted dynamic time warping method. For single–rice, the 

data achieved an average overall accuracy of 85.23% across 21 provincial regions, based on 108,195 samples, with a mean R² 

value of 0.83 when compared to county–level statistical planting areas over three years. For late–rice, the identification 

accuracy reached 90.46% based on 145,210 survey samples. We took the data for 2020 as the southern China rice–growing 160 

area mask.  

Historical gridded rice yield data were obtained from the AsiaRiceYield4km dataset (Wu et al., 2023) covering 1995 to 2015. 

The AsiaRiceYield4km dataset was generated by integrating multisource predictors into machine learning models, using 

inverse probability weighting to select the optimal model. It achieved high accuracy for seasonal rice yield estimation, with R² 

value of 0.88 and 0.91for single and late–rice, and significantly outperformed existing models. Thus far, the dataset provides 165 

the longest time series covering all rice cultivation areas in China.  

Owing to the difference in the spatial resolution of the above datasets, we harmonized those data to one base grid for later 

analyses. We used 0.25°×0.25° grids of the CN05.1 dataset as the base. Rice–growing area masks for single rice and late rice 

were then applied to the base grid map to mask valid rice–growing grids. As one single 0.25°×0.25° climate grid covered many 

10–m rice pixels, we kept climate grids with rice pixels ≥5% of the area of each climate grid. The final base map contained 170 

http://data.cma.cn/
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2262 0.25°×0.25° grids for single–rice and 1383 0.25°×0.25° grids for late–rice (Fig. 1). For each grid, rice phenological dates 

were interpolated from station–observed dates using the co–kriging method with Gaussian function, and the gridded phenology 

information from the ChinaCropPhen1km dataset as a covariate. Our interpolation effectively captured spatial variability 

characteristics and compensated for the sparse coverage of station observations in many areas. We also adjusted the resolution 

of AsiaRiceYield4km to the base grid using bilinear interpolation. 175 

2.3 Compound Individual extreme types and thresholds for concurrent events and severity metrics 

2.3.1 Definition of iIndividual extremes considered 

We divided the rice-growing season into three critical stages: the jointing-booting stage (#1), heading-flowering stage 

(#2), and grain filling stage (#3). We considered four types of climate extremes that could substantially affect rice yield: 

heat (H), drought (D), chilling (C) and rainy (R). 180 

Three growth stages that were most susceptible to extreme stress were considered in this study: jointing–booting stage (#1), 

heading–flowering stage (#2) and grain filling stage (#3). The jointing–booting stage refers to the period from the first day of 

jointing to the last day before heading. The heading–flowering stage refers to the period from heading to flowering and 

generally lasts for 10 days. The grain filling stage refers to the period from the 11th day after heading to maturity. The exact 

dates of the different stages were obtained from phenological records for each year and station.  185 

We considered four types of climate extremes known to impactthat could substantially affect rice yields: heat (H), drought (D), 

chilling (C) and rain (R)drought, heat, chilling and rainy. Thresholds for these extremes were initially based on To determine 

the thresholds, we referred to national and provincial standards for each stress. Our preliminary analysis showed that strictly 

adhering to these official thresholds led to a small sample size for a valid statistical analysis. Consequently, after a thorough 

literature review, we relaxed the thresholds of duration but reserved those for temperature/moisture. Finally, we specified 190 

thresholds for each climate extreme by growth–stage (Table 1), which were applied to daily climate data to screen the historical 

occurrence of these events.  

Table 1 The thresholds of each type ofindividual extreme event.  

Rice type Growth stage 
Climate 

extremes 

Indicator & threshold: daily mean temperature (T/℃), 

daily total precipitation (PRE/mm), relative soil 

moisture (SM/%) 

Single–rice 

Jointing–booting (#1) 

Heading–flowering (#2) 

Grain filling (#3) 

Heat T ≥ 33 ℃ ≥ 1 successive day 

Drought SM ≤ 75 % ≥ 10 successive days 

Late–rice Heading–flowering (#2) Chilling T ≤ 20 ℃ ≥ 1 successive day 
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RainyRain P ≥ 25 mm ≥ 1 successive day 

Grain filling (#3) 
Chilling T ≤ 17 ℃ ≥ 1 successive day 

RainyRain P ≥ 25 mm ≥ 1 successive day 

Note: The above thresholds are referenced from: <NY/T 2915–2016>, Identification and classification of heat injury of 

rice; <NY/T 3043–2016>, Code of practice for field investigations and classification of rice seasonal drought stressess in 195 

southern–China; <NY/T 2285–2012>, Technical specification of field investigations and the grading of chilling damage 

to rice and; <DB5101/T 125–2021>, Indica rice weather stress level–continuous rain. NY/T is the Agricultural 

Information Resource Classification and Coding Specification in China. DB5101/T is the Local Standard of Chengdu, 

Sichuan Province. Thresholds for duration were relaxed from original standards to ensure adequate samples for later 

analyses.  200 

Here, concurrent events refer to cases in which multiple types of extremes occur in the same growth stage. 

2.3.2 Individual sSeverity metrics for individual events 

Here, severity (Haqiqi et al., 2021) was used to measure the stress imposed by individual extreme event. It was defined as 

the cumulative deviation from the threshold value of each stress. Following the concept, heat stress (H) severity 𝑆𝐻,𝑔,𝑡 at a 

given growth stage (g) in a given year (t) that meets the condition can be computed by the cumulative deviation of mean 205 

daily temperature (T) above its threshold (𝑇𝑏𝑎𝑠𝑒) for all the days (𝑖) within this stage. We used 33°C as the base temperature 

(Table 1) in Eq. (1).  

𝑆𝐻,𝑔,𝑡 = ∑ |𝑇𝑖 − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≥ 𝑇𝑏𝑎𝑠𝑒)      (1) 

Similarly, chilling stress severity 𝑆𝐶,𝑔,𝑡 can be computed by the cumulative deviation of daily mean temperature (T) below 

its threshold (𝑇𝑏𝑎𝑠𝑒), for which we used 20 °C for heading–flowering stage and 17 °C for grain filling stage for one or more 210 

consecutive days in Eq. (2).   

𝑆𝐶,𝑔,𝑡 = 𝑆𝑇 = ∑ |𝑇𝑖 − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≤ 𝑇𝑏𝑎𝑠𝑒)    (2) 

Drought stress severity 𝑆𝐷,𝑔,𝑡 can be computed by the cumulative deviation of soil moisture (𝑆𝑀𝑖) ≤75 % (𝑆𝑀𝑏𝑎𝑠𝑒) for 10 

or more consecutive days in Eq. (3). Specifically, drought severity was calculated cumulatively from the first day that 

moisture fell below this threshold and only events lasting at least 10 consecutive days were retained for further analysis. 215 

The trigger of 10 days was applied based on physiological and agronomic relevance and experimental evidence. Many 

existing studies, particularly experiments, have used longer duration for droughts to examine its impact on rice yield 

(Amin et al., 2022; Barnaby et al., 2019). The impact of short–duration drought on rice remains debated. While extremely 
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severe but brief droughts can be fatal, recent studies have also suggested that short–term drought triggers compensatory 

recovery post–stress, potentially accelerating grain filling without yield loss (Jiang et al., 2019; Li et al., 2005)  220 

𝑆𝐷,𝑔,𝑡 = 𝑆𝑆𝑀 = ∑ |𝑆𝑀𝑖 − 𝑆𝑀𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑆𝑀𝑖 ≤ 𝑆𝑀𝑏𝑎𝑠𝑒)   (3) 

Rain stress severity 𝑆𝑅,𝑔,𝑡 can be computed by the cumulative deviation of daily total precipitation (PRE) ≥  25 mm 

(𝑃𝑅𝐸𝑏𝑎𝑠𝑒) for one or more consecutive days in Eq. (4). 

𝑆𝑅,𝑔,𝑡 = 𝑆𝑃𝑅𝐸 = ∑ |𝑃𝑅𝐸𝑖 − 𝑃𝑅𝐸𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑃𝑅𝐸𝑖 ≥ 𝑃𝑅𝐸𝑏𝑎𝑠𝑒)   (4) 

For each grid, severity of heat, drought, chilling, and rain stress were computed by growth stage by using above equations.  225 

2.4 Severity of individual and cCompound climate extremes types and severity metrics 

2.4.1 Definition of cCompound climate extremes types 

For compound climate extremes, we exclusively consideredfocus on the cases in whichwhere two types of stress occurred in 

during the same growth stage, that is,for example, simultaneous exposure to exposure to heat and drought during the jointing–

booting stage of single–rice (Table 2). This structure definition aligns with the topological framework proposed byfollowed 230 

the topological structures suggested by Zscheischler (Zscheischler et al., 2020) and is hereafter referred to as concurrent climate 

extremes (CCEs). Specifically, fCorrespondingly, we have three CCEs for late riceor single–rice (Table 2),  we defined three 

concurrent climate extremes:namely, concurrent heat-drought events concurrent heat–drought in events during the jointing–

booting stage (H1D1), heading–flowering stage (H2D2), and grain filling stage (H3D3). A similar naming convention was 

applied to late–rice, which includes two concurrent climate extremes:The same rule of naming was also applied to single rice, 235 

which has two CCEs: concurrent chilling–rain events during the heading–flowering stage (C2R2) and grain filling stage 

(C3R3)C2R2 and C3R3.  

Table 2 The types of compound climate extremes. 

Single–rice 

Climate extremes #1 Jointing–booting #2 Heading–flowering #3 Grain filling 

Heat (H) & Drought (D) H1D1 H2D2 H3D3 

Late–rice 

Climate extremes  #2 Heading–flowering #3 Grain filling 

Chilling (C) & Rain (R)  C2R2 C3R3 

Note: H: heat. D: drought. C: chilling. R: rain. #1: jointing–booting stage. #2: heading–flowering stage. #3: grain filling stage.  
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Here, severity (Haqiqi et al., 2021) was used to measure the stress imposed by individual extreme event. It was defined as 

the cumulative deviation from the threshold value of each stress. Following the concept, heat stress (H) severity 𝑆𝐻,𝑔,𝑡 at a 

given growth stage (g) in a given year (t) that meets the condition can be computed by the cumulative deviation of mean 

daily temperature (T) above its threshold (𝑇𝑏𝑎𝑠𝑒) for all the days (𝑖) within this stage. We used 33°C as the base temperature 

(Table 1) in Eq. (1).  245 

𝑆𝐻,𝑔,𝑡 = ∑ |𝑇𝑖 − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≥ 𝑇𝑏𝑎𝑠𝑒)      (1) 

Similarly, chilling stress severity 𝑆𝐶,𝑔,𝑡 can be computed by the cumulative deviation of daily mean temperature (T) below 

its threshold (𝑇𝑏𝑎𝑠𝑒), for which we used 20 °C for heading-flowering stage and 17 °C for grain filling stage for one or more 

consecutive days in Eq. (2). Drought stress severity 𝑆𝐷,𝑔,𝑡 can be computed by the cumulative deviation of soil moisture 

(𝑆𝑀𝑖) ≤75 % (𝑆𝑀𝑏𝑎𝑠𝑒) for ten or more consecutive days in Eq. (3). Rainy stress severity 𝑆𝑅,𝑔,𝑡 can be computed by the 250 

cumulative deviation of daily total precipitation (PRE) ≥  25 mm (𝑃𝑅𝐸𝑏𝑎𝑠𝑒) for one or more consecutive days in Eq. (4). 

𝑆𝐶,𝑔,𝑡 = 𝑆𝑇 = ∑ |𝑇𝑖 − 𝑇𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑇𝑖 ≤ 𝑇𝑏𝑎𝑠𝑒)    (2) 

𝑆𝐷,𝑔,𝑡 = 𝑆𝑆𝑀 = ∑ |𝑆𝑀𝑖 − 𝑆𝑀𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑆𝑀𝑖 ≤ 𝑆𝑀𝑏𝑎𝑠𝑒)   (3) 

𝑆𝑅,𝑔,𝑡 = 𝑆𝑃𝑅𝐸 = ∑ |𝑃𝑅𝐸𝑖 − 𝑃𝑅𝐸𝑏𝑎𝑠𝑒|𝑛
𝑖=1  (𝑃𝑅𝐸𝑖 ≥ 𝑃𝑅𝐸𝑏𝑎𝑠𝑒)   (4) 

For each grid, severity of heat, drought, chilling, and rainy stress were computed by growth stage by using above equations.  255 

2.4.2 Compound severity metrics 

To quantify the severity of concurrent climate extremesprovide a metric for the severity of compound events, we developed a 

copula–based framework for compound severity assessmentcopulas were used to fit marginal distributions of CCEs specified 

in Table 1 to derive compound severity. This framework integrates (1) the modeling of marginal distributions and joint 

dependence using copula functions, (2) a correction procedure to account for years with zero severityout any events, and (3) a 260 

transformation of the joint exceedance probability into a standardized severity index. The resulting metric enables consistent 

and comparable assessment of compound event severity. 

(1) Marginal and Jjoint Mmodeling Uusing Ccopulas 

Copulas have been widely used in modeling compound climate extremes by constructing bivariate models (Li et al., 2021; 

Tavakol et al., 2020). It provides distinct advantages for multivariate analysis, including the ability to separately model 265 



11 

 

marginal distributions and joint dependence, a mathematically feasible formulation, and the flexibility to select various 

marginal distributions (Sadegh et al., 2018; Salvadori et al., 2016; Vandenberghe et al., 2010). Specifically, the dependence 

structure between univariate indices (temperature and precipitation) was modeled using copula theory to fit a joint distribution 

of these variables (Madadgar et al., 2016; Mazdiyasni et al., 2019).  

Let 𝑋 and 𝑌 denote the univariate indices (severity) of climate extremes for the given growth stage in Table 2. The marginal 270 

distributions of the random variables 𝑋  and 𝑌  are defined as 𝑢 =  𝐹(𝑋)  and 𝑣 =  𝐺(𝑌) , respectively. To model the 

dependence structure between the two variables, we used copula theory to construct a bivariate joint distribution. The copula 

function 𝐶(𝑢, 𝑣) captures the joint cumulative probability 𝑃(𝑋 ≤  𝑥, 𝑌 ≤  𝑦) and is expressed as: 

The copula 𝐶 for two random variables 𝑋 and 𝑌 can be represented as follows: 

𝑃(𝑋 ≤  𝑥, 𝑌 ≤  𝑦)  =  𝐶[𝐹(𝑋), 𝐺(𝑌)]  =  𝐶(𝑢, 𝑣)     (5) 275 

A range of copula families were tested, and the best–fitting model was selected using goodness–of–fit tests (at a 0.05 

significance level) and Bayesian Information Criterion (BIC) (Ribeiro et al., 2020; Salvadori et al., 2016). Models that cannot 

be rejected, based on p–values at the 0.05 significance threshold, are considered for final selection (Li et al., 2022; Sadegh et 

al., 2018). In our case, the Clayton copula was selected to construct the concurrent climate extremes.  

(2) Incorporating zero–severity samples into joint probability calculation 280 

According to our definition, our severity scores (the calculated 𝑆𝐻, 𝑆𝐷, 𝑆𝐶 or 𝑆𝑅 values) have many “0” values as in years that 

the threshold is not surpassed. In the fitting process, samples that 𝑢 =0 or 𝑣 =0 were not included, and should be taken back 

into account when we derive the joint exceedance probability. As our main quantity of interest is the joint exceedance 

probability 𝑃(𝑋 >  𝑥, 𝑌 >  𝑦), we apply the law of total probability to reconstruct the full joint exceedance probability by 

using 𝑃(𝐴)  =  𝑃(𝐴|𝐵)  ×  𝑃(𝐵):  285 

𝑃𝑆𝐻1𝑆𝐷1
 =  𝑃(𝑆𝐻1 ≥ 𝑥, 𝑆𝐷1 ≥ 𝑦|𝑥 > 0, 𝑦 > 0) ∙ 𝑃(𝑥 > 0, 𝑦 > 0)                                 (6) 

where 𝑢 =  𝐹(𝑋) and 𝑣 =  𝐺(𝑌) are marginal distributions of the random variables 𝑋 and 𝑌, respectively. 𝑋 and 𝑌 represent 

the univariate indices (severity) of climate extremes for the given growth stage in Table 2.For instance, the joint distribution 

of concurrent heat–drought event across stages #1 can be fitted by using the severity of heat stress 𝑆𝐻1 for stage #1 of all grids 

and all years together with that of the drought stress 𝑆𝐷1 of stage #1.  290 

Here, the conditional probability 𝑃(𝑆𝐻1 ≥ 𝑥, 𝑆𝐷1 ≥ 𝑦|𝑥 > 0, 𝑦 > 0)  is computed from the copula as: 1 − 𝑢 − 𝑣 +

𝐶𝐻1𝐷1(𝑢, 𝑣), and the proportion of valid (non–zero) severity pairs is calculated as: 
𝑛(𝑥>0,𝑦>0)

𝑁
 , where 𝑛 denotes the number of 
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years when both stress indicesseverities are non–zero, and 𝑁 is the total number of years. Therefore, the corrected joint 

exceedance probability becomes: 

𝑃𝑆𝐻1𝑆𝐷1
 =  𝑃(𝑆𝐻1 ≥ 𝑥, 𝑆𝐷1 ≥ 𝑦|𝑥 > 0, 𝑦 > 0) ∙ 𝑃(𝑥 > 0, 𝑦 > 0) = [1 − 𝑢 − 𝑣 + 𝐶𝐻1𝐷1(𝑢, 𝑣)] ∙

𝑛(𝑥>0,𝑦>0)

𝑁
         (7) 295 

This adjustment ensures that the joint probability calculation reflects all years in the dataset, not just those included in the 

copula fitting. 

(3) Inverse-–transformation of Standardization of Joint Exceedance Probability to Compound Severity Scores 

To make the severity scores comparable across locations and compound types, we transformed the joint exceedance probability 

into a standardized z–score. This was done by applying the inverse standard normal distribution function 𝜑−1: 300 

𝐶𝑆𝐻1𝐷1 = 𝜑−1[𝑃𝑆𝐻1𝑆𝐷1
]      (8) 

Higher CS values correspond to more severe compound events. 

To identify suitable models when fitting those copulas, we first conduct goodness-of-fit tests at a 0.05 significance level 

(Salvadori et al., 2016). The best-fitting admissible model is then determined using the Bayesian Information Criterion 

(BIC) (Ribeiro et al., 2020). Models that cannot be rejected, based on p-values at the 0.05 significance threshold, are 305 

considered for final selection (Li et al., 2022; Sadegh et al., 2018). In this study, the Clayton copula was selected to 

construct the compound climate extremes. For the spatial distribution of severity, the average severity across all years 

with occurrence was used. 

2.5 Contribution of temporal changes of Individual stress to compound events based on path analysis 

We attempted to understand how the temporal changes in individual stress were attributed to compound climate extremes. 310 

Specifically, we attempted to determine how the changes in compound severity (CS) of a specific concurrent climate extremes 

are related to the corresponding heat/chilling stress severity and drought/rainyrain stress severity changes over time. Because 

there can be strong interactions between temperature and moisture, path analysis was conducted. A path analysis decomposes 

the interaction between the dependent and independent variables (correlation coefficients) into direct (direct path coefficients) 

and indirect (indirect path coefficients) based on a multiple linear regression, without requiring the variables to be independent 315 

of each other (Zhang et al., 2022b). It has been widely applied to estimate the magnitude and significance of hypothesized 

causal connections between dependent and independent variables when the effects of the variables are confounded (Zhang et 

al., 2022b, c; Yan et al., 2022). 
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We separated the system of correlations between the dependent variable and two corresponding independent variables to obtain 

the path coefficients. Taking single–rice as an example, the path coefficient of heat stress severity (𝑆𝐻) to compound severity 320 

(𝐶𝑆)  𝑅𝑆𝐻,𝐶𝑆, which was also the Pearson correlation coefficient between 𝑆𝐻 and 𝐶𝑆, could be decomposed into direct and 

indirect effects by: 

𝑅𝑆𝐻,𝐶𝑆 = 𝑃𝑆𝐻,𝐶𝑆 + 𝑟𝑆𝐻,𝑆𝐷
𝑃𝑆𝐷,𝐶𝑆                                                                  (89) 

where, 𝑃𝑆𝐻,𝐶𝑆  is the direct path coefficient of 𝑆𝐻  on 𝐶𝑆, and 𝑟𝑆𝐻,𝑆𝐷
 is the Pearson correlation coefficient between the two 

independent variables, 𝑆𝐻 and 𝑆𝐷. Thus, 𝑟𝑆𝐻,𝑆𝐷
𝑃𝑆𝐷,𝐶𝑆 is the indirect path coefficient of drought stress severity on 𝐶𝑆. 𝑃𝑆𝐻,𝐶𝑆 325 

and 𝑃𝑆𝐷,𝐶𝑆 are two standardized linear regression coefficients obtained by regressing 𝐶𝑆 on 𝑆𝐻 and 𝑆𝐷. An F–test is conducted 

to test the statistical significance of the results, and the results of the path analysis were statistically significant when the p–

value was < 0.05.  

Based on the direct and indirect path coefficients, and the independent variables’ relative effect on the dependent variable, we 

calculated the determination coefficient (DC) to assess the explanatory power of individual and interactive climate stresses on 330 

compound eventscould be derived. For each climate variable (i.e., heat stress 𝑆𝐻, drought stress 𝑆𝐷, chilling stress 𝑆𝐶, and rain 

stress 𝑆𝑅 ), the individual coefficient of determination was computed asThe DC for each climate variable is 𝐷𝐶𝑖 =

𝑃𝑖
2, where 𝑖 = 𝑆𝐻 , 𝑆𝐷, 𝑆𝐶  or 𝑆𝑅 . where 𝑃𝑖  is the total (direct plus indirect) path coefficient, 𝑖 = 𝑆𝐻, 𝑆𝐷, 𝑆𝐶  or 𝑆𝑅 . For the 

contribution from the cooperative interaction between two climate variables, the co-determination coefficient is then To 

quantify the contribution from the cooperative interaction between two stresses, the co–determination coefficient was 335 

calculated as 𝐷𝐶𝑐𝑜 = 2𝑃𝑖𝑟𝑖𝑗𝑃𝑗 , where 𝑟𝑖𝑗  is the correlation between variables 𝑖  and 𝑗 ;.  𝑖, 𝑗 = 𝑆𝐻, 𝑆𝐷, 𝑆𝐶  or 𝑆𝑅 . 𝐷𝐶𝑐𝑜  can 

indicate the extent to which the interaction of two independent variables affected the compound extremes. The total explanatory 

power of all stresses, represented by theThe total coefficient of determination (𝐷𝐶𝑡𝑜𝑡𝑎𝑙 ), was obtained by summing all 

individual and co–determination terms: 𝐷𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐷𝐶𝑖 + ∑ 𝐷𝐶𝑐𝑜can be obtained by summing the direct coefficients of 

determination and the coefficients of co-determination of all independent variables, which was used to indicate the magnitude 340 

of the joint explanatory power of individual stress. Since 𝐷𝐶𝑡𝑜𝑡𝑎𝑙 captures both independent and interactive effects, its value 

may exceed 1, which reflects the cumulative explanatory power. 

2.6 Yield Impact Assessment of compoundoncurrent climate extremes impact on yield  

To evaluate the impact of relationship between The yield impact of concurrent climate extremesCCEs was evaluated using 

the relationship between the yield anomaly and its corresponding compound severities. andofon rice yield, we used yield 345 

anomalies that had been detrended from the historical yield time-series to remove long-term trends. This was done to isolate 

interannual variability from structural trends such as technological progress. Yield anomalies were calculated computed 

following theThe detrend method methodology outlined byof followed Wang and Zhang (Holly Wang & Zhang, 2003) and 
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Ye (Ye et al., 2015), in which h fits a log–linear regression models to historical yield time–series at each grid cell: istorical 

yield trends were fitted first and subtracted from the time series to obtain anomalies. Yield trends were derived by fitting a 350 

log-–linear regression model. The ordinary least squares method was then applied to fit the model directly to the yield-–time 

series of each grid, enabling us to derive the detrended values for subsequent analysis. Specifically, the The yield 𝑌𝑡 at time 𝑡 

denoted by 𝑌𝑡, was modeled as: 

 

log (𝑌𝑡) = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡      (910) 355 

Where 𝛽0 is the intercept and 𝛽1 represents the linear trend in the log–transformed yield.  

The detrended yield anomaly  𝑌𝑑,𝑡 was calculated as the residual from the regressioncan be calculated as: 

𝑌𝑑,𝑡 = 𝑌𝑡 − 𝑌𝑡̂        (1101) 

Where 𝑌𝑡̂ is the predicted fitted yield at timevalueyear 𝑡 obtained from the fitted regression modellinear regression. 

To enable cross–grid and cross–year comparisons, we used standardized yield anomalies the detrended yields were further 360 

standardized usingStandardization can be achieved by converting the detrended data into z-–scores: 

𝑌𝐴𝑡 =
𝑌𝑑,𝑡−𝜇

𝜎
       (1112) 

Where 𝑌𝐴𝑡 is the standardized yield anomaly. 𝜇 =
1

𝑛
∑ 𝑌𝑑,𝑡

𝑛
𝑖=1  is the mean of the detrended yield, 𝜎 = √

1

𝑛−1
∑ (𝑌𝑑,𝑡 − 𝜇)2𝑛

𝑖=1  

and 𝑛 − 1 is used instead of 𝑛 to provide an unbiased estimate of the population standard deviation. 

To formally characterize the relationship between standardized yield anomalies and compound climatic stress, we employed 365 

a simple linear regression model. For each growth stage, the standardized yield anomaly (YAₜ) was regressed against on the 

corresponding compound severity (CS) value: 

𝑌𝐴𝑡 = 𝛽0 + 𝛽1 ∙ 𝐶𝑆 + 𝜖                                                                                      (13) 

where 𝑌𝐴𝑡 is the standardized yield anomaly (detrended and normalized, see section 2.6), 𝐶𝑆 is the standardized compound 

stress severity index, 𝛽0  is the intercept representing the expected yield anomaly when compound stress is absent, 𝛽1 370 

represents the yield loss per unit increase in compound severity and 𝜖 is the error term. The regression model is fitted 

exclusively using observations where 𝑌𝐴𝑡 < 0, i.e., only negative yield anomalies are included in the analysis. 
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3 Results 

3.1 Temporal changes of compound climate extremes  

Using growth–stage–specific thresholds, we quantified the annual compound severity (CS) for of each concurrent climate 375 

extremeevent across three critical rice growth stages: jointing-booting (H1D1), heading-flowering (H2D2/C2R2), and 

grain filling (H3D3/C3R3). The copula cumulative distribution functions were plotted and presented in the supplementary 

materials (Fig. A1). Grid–level values were aggregated to show yearly trends from 1981 to 2018We aggregated the grid-

level severity into the annual average CS to show the overall temporal changes in compound events (Fig. 2b 2aand –2de). 

We also plotted the kernel density estimate (KDE) of the annual CS (Fig. 2a and 2c). Higher KDE values at specific time 380 

intervals denote clusters of events, whereas lower values suggest sporadic occurrence. For single–rice, the concurrent 

heat–drought events during jointing–booting (H1D1), heading–flowering (H2D2), and grain filling (H3D3) stages (Fig. 

2a–c) all exhibited statistically significant increasing trends, with decadal rates of approximately 0.03–0.06 in compound 

severity.concurrent heat-drought events of single-rice, the annual CS (Fig. 2b) displayed an increasing trend with a rate 

of approximately 0.12 per decade, which was statistically significant. Notably, H1D1 eventsH1D1 events, which were 385 

observed as early as 1981 and have persisted with high temporal frequency, occurring almost annually since the 2000s. 

first appeared in 1981, exhibited clustered occurrences with abrupt KDE peaks around 2003 and 2010. H2D2 events 

began to emerge after 1992, while H3D3 appeared the latest, around 1998H2D2 events emerged after 1992 but showed 

sharp KDE increases after 2010, suggesting a shift toward higher frequency in the recent decade. Unlike the first two 

events, H3D3 appeared the latest (1998), with a KDE peak between 2005 and 2010, followed by a slow decline after 390 

2010.  In contrast, concurrent chilling–rain events during late–rice development (C2R2–events during heading–flowering 

and C3R3–events during grain filling; Fig. 2d–e) occurred frequently throughout the historical period, but showed only 

weak and statistically insignificant upward trends over time. 

Concurrent chilling-rainy events were frequent throughout the historical period (Fig. 2c and 2d). There was only a weak upward 

trend along the time series, which was not significant. The occurrence of concurrent chilling-rainy events for both stages was 395 

less frequent around 2005 (from 2003 to 2007) and peaked around 1981-2000, and 2017. 
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Figure 2. Absolute annual compound severity (b, d) and the kernel density estimate (KDE) (a, c) of concurrent 

compound events (CCEs) for single- and late-rice during  the period of 1981−2018. Panels (a–c):  show the concurrent 400 

heat–drought events infor single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), and grain filling 

stages#3 (H3D3). Panels (d–e): show the concurrent chilling–rain events infor late–rice during heading–flowering#2 (C2R2), 

grain filling stages#3 (C3R3). * and ** indicate statistically significant at the significance levels of 0.05 and 0.01, respectively.   

3.2 Spatial distribution of compound climate extremes  

To characterize the spatial distribution of severity, the average severity was calculated across all years in which occurrences 405 

were recorded. Specifically,We averaged the annual compound severity for each type of concurrent climate extremes was 

averaged within each grid cell to identify and map spatial hotspots in each grid to map the spatial hotspots (Fig. 3). The patterns 
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were clear and contrasting. The average compound severity for concurrent heat–drought events covered a limited growing area, 

whereas that for chilling–rainyrain events was widespread.  

Hotspots of high–compound severity grids for concurrent heat–drought events differed largely among the three types (Fig. 3a–410 

c). The hotspots shifted gradually from the coast H1D1( (heat–drought events during jointing–booting stageH1D1) to were 

concentrated in coastal areas, inland China H3D3 (grain filling–stage eventsH3D3) were mainly concentrated in inland China 

and H2D2 (flowering–stage events) were mainly distributed between these two regions.with rice growth. Specifically, H1D1 

were mostly concentrated in the lower reaches of the Yangtze River (East China region), while H3D3 were concentrated in 

the eastern part of the Sichuan–Chongqing area. H2D2 showed a clustered occurrence in central Anhui, eastern Hunan, and 415 

eastern Sichuan. 

 

Figure 3. Spatial distribution of compound severity for concurrent climate extremes during 1981–2018. Panels (a–c) 

showthe concurrent heat-drought events of single-rice (a-c) and the concurrent chilling-rainy events of late-rice (d, e) for the 

period of 1981−2018. The shading indicates the compound severity for each compound event.  concurrent heat–drought events 420 

in single–rice during jointing–booting#1 (H1D1), heading–flowering#2 (H2D2), and grain filling stages#3 (H3D3). Panels (d–

e) show concurrent chilling–rain events in late–rice during heading–flowering#2 (C2R2), and grain filling stages#3 (C3R3). 

Shading represents compound severity (unitless index), with more negativedarker colors values indicating higher stress 

intensityseverity. Darker areas reflect regions exposed to more severe compound stress. 
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Unlike heat–drought events, concurrent chilling–rainyrain events were widespread within the planting regions, with a higher 425 

incidence in certain areas (Fig. 3d and 3e). Hotspots of C2R2 (chilling–rain events during heading–flowering stage)C2R2 were 

mostly concentrated in the southern parts of the study area, hilly regions to the south of Hunan and Jiangxi, and eastern Guangxi. 

The hotspots moved northward in C3R3 (chilling–rain events during grain filling stage), reaching the northeastern part of the 

study area, occurring in Hubei, Anhui, Zhejiang, and hilly regions in southern Hunan province where the altitude is relatively 

high.  430 

3.3 Effects of individual stress severity on concurrent climate extremes 

We took the path coefficient as the relative sensitivity of 𝐶𝑆 (compound severity) to 𝑆𝐻 and 𝑆𝐷 for single–rice, 𝑆𝐶 and 𝑆𝑅 for 

late–rice. For three types of the concurrent heat–drought events, the direct path coefficient for heat stress severity (𝑃𝑆𝐻,𝐶𝑆) and 

drought stress severity (𝑃𝑆𝐷,𝐶𝑆) were both positive (Fig. 4a), indicating that the changes in the severities of heat and drought 

stress both contributed to increasing the compound severity. The contribution of 𝑆𝐻 was much larger than 𝑆𝐷 in stage#1, but 435 

slightly smaller in stage#3. Considering that the distribution of spatial hotspots for concurrent heat–drought events varied 

markedly across three growth stages (Fig. 3a–3c), the pattern also suggests the regional difference of relative contribution. In 

the lower–reaches of the Yangtze River Basin (where H1D1 and H2D2 occurred), heat stress was a greater determinant of 

concurrent heat–drought events than the drought stress, while in the eastern Sichuan Basin (where H3D3 occurred), the 

influence of drought stress exceeded slightly the influence of heat stress. 440 

For single–rice, the total determination coefficient, 𝐷𝐶𝑡𝑜𝑡𝑎𝑙, which indicates the total effect of the two independent variables 

on the dependent variable, was similar across concurrent heat–drought events (median around 0.9) (Fig. 4c). The single–factor 

determination coefficients (𝐷𝐶𝑆𝐻,𝐶𝑆 and 𝐷𝐶𝑆𝐷,𝐶𝑆) indicated that the severity of heat stress affected the change of concurrent 

climate extremes to a greater extent than the severity of drought stress in H1D1 and H2D2, with a similar pattern observed for 

the path coefficients (𝑃𝑆𝐻,𝐶𝑆 , 𝑃𝑆𝐷,𝐶𝑆 ). The median 𝐷𝐶𝑐𝑜  was around 0.3, which indicated that the two variables are not 445 

independent and positively correlated. It is worth noting that the median of 𝐷𝐶𝑐𝑜 is higher than the median of 𝐷𝐶𝑆𝐷,𝐶𝑆 in H1D1 

and H2D2, which may result from the dominant effect from heat stress on concurrent heat–drought events in jointing–booting 

stage (H1D1) and heading–flowering stage (H2D2).  

The pattern of the effects of chilling and rainyrain stress severity on concurrent chilling–rainyrain events for late–rice was very 

different to that of heat–drought events (Fig. 4b). Both chilling and rainyrain stress severity had a strong direct effect on the 450 

changes in climate extremes, with chilling having a slightly larger effect in C2R2 and rainyrain had a slightly larger effect on 

C3R3. This pattern was also supported by the DCs of individual variables (𝐷𝐶𝑆𝐶,𝐶𝑆 and 𝐷𝐶𝑆𝑅,𝐶𝑆) (Fig. 4d). 𝐷𝐶𝑐𝑜 was almost 0 

for both growth stages (Fig. 4d), due to the very small indirect coefficient, indicating that there was little correlation between 
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the two stresses in concurrent chilling–rainyrain events. That means the interactive effects of temperature and moisture had 

quite small influence on the changes observed in concurrent chilling–rainyrain events for late–rice.  455 

 

Figure 4. Boxplot of the path analysis of climate factors on the duration of concurrent climate extremes duringCCEs 

for the period of 1981−2018. Only relationships that passed the F–test at the 0.01 significance level are presented. Panels (a, 

c) show the path coefficient and determination coefficient of concurrent heat–drought events in single–rice during jointing–

booting#1 (H1D1), heading–flowering#2 (H2D2), grain filling stages#3 (H3D3). Panels (b, d) show the path coefficient and 460 

determination coefficient of concurrent chilling–rain events in late–rice during heading–flowering#2 (C2R2), grain filling 

stages#3 (C3R3). F-test results that were statistically significant at the 0.01 significance level of were retained in the figure. 

3.4 Rice yield iImpact on yield of compound events  

We used the linear regression model described in Section 2.6 to examine the relationship between compound severity and 

standardized yield anomaly across different growth stages, resulting in five statistical models for various compound events 465 
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and stages. These models provide quantitative measures of the stage-specific sensitivity of rice yield to compound climatic 

stress. Figure 5 presents the fitted data points and the regression trend lines to visually illustrate the models. For each regression, 

we reported the slope (𝛽0), intercept (𝛽1), and significance level. To emphasize the magnitude of yield loss (negative yield 

anomalies) under severe compound stress (negative values), the axes in Figure 5a–e were restricted to negative ranges. Five 

types of concurrent extreme events were examined: H1D1, H2D2, H3D3 (heat–drought), and C2R2, C3R3 (chilling–rain). 470 

Our yield impact analyses found significantly different historical average yield losses and yield sensitivities across growth 

stages for both types of CCEs. For concurrent heat-drought events heat–drought events on single–rice, the highest average 

yield loss  occurredwas the highest in the during grain filling stage (H3D3), which was slightly greater than one standard 

deviation (Fig. 5f). This phenomenon was determined by  the combined effects a combination of historical event severity, 

frequency, and spatial extent.the actual compound severity of each event during the historical period, number of years, and 475 

size of the region of occurrence. Regression analysis (Fig. 5a–c) revealed significant positive relationships between compound 

severity and yield loss across all growth stages. Rice yield showed the largest Ssensitivity was highest in the grain filling stage 

(H1D1, 𝛽1 = 0.29, p < 0.05). It suggested that for every standard deviation increase in compound severity, yield would fall 

0.29 standard deviation correspondingly. The sensitivity was, followed by heading–flowering (H2D2, 𝛽1 = 0.24, p < 0.05) and 

jointing–booting (H3D3, 𝛽1  = 0.23, p < 0.05). For late–rice, sensitivity to chilling–rain events were greater in heading–480 

flowering (C2R2, 𝛽1 = 0.37) than in grain filling (C3R3, 𝛽1 = 0.19), both statistically significant (Fig. 5d–e). 

The regression results quantitatively confirm that yield of single–rice is most vulnerablesensitive to heat–drought events 

during grain filling, whereas yield of late–rice is most sensitive vulnerable to chilling–rain events during heading–

flowering. These stage–specific sensitivities reflect physiological vulnerabilities at different developmental stages. 

 485 
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Figure 5. The compound severity of rice climate extremes versus standardized yield anomaly (a-e) and the bar plot of 

standardized yield anomaly (f) during the period of 1995−2015. The symbol * indicates that F-test results were significant 

at the 10% significance level. Relationship between compound severity and standardized yield anomaly  (a–e: for specific 490 

growth stages and event types) and bar plot of mean standardized yield anomaly by growth stage (f) during 1995−2015. 

Panels (a–c): show concurrent heat–drought events for in single–rice during jointing–booting#1 (H1D1), heading–flowering#2 

(H2D2), grain filling stages#3 (H3D3). Panels (d–e): show concurrent chilling–rain events infor late–rice during heading–

flowering#2 (C2R2), grain filling stages#3 (C3R3). *** indicates statistically significant at the significance levels of 0.001. 

 495 

 

We also examined rice yield sensitivity to concurrent events using the scatter plot of the standardized yield anomaly 

versus compound severity (Fig. 5a-e). A positive correlation was observed between compound severity and yield 

reduction, which was significant for all event types and growth stages. For single-rice, yield was more sensitive in the 

grain filling stage (#3) to concurrent heat-drought events, with a linear regression coefficient of 0.29, significant at the 500 

0.05 significance level (Fig. 5c). This indicated that in response to every one standard deviation increase in the compound 
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severity, a single rice yield would drop by 0.29 standard deviation. The sensitivity was slightly smaller in the heading-

flowering stage (Fig. 5b) and the smallest in the jointing-booting stage (Fig. 5a), but both were significant. For late-rice, 

yield was more sensitive in the heading-flowering stage than in the grain filling stage, with a greater slope coefficient of 

0.37 than 0.19, both of which were significant (Fig. 5d and 5e).  505 

4 Discussion 

4.1 Divergent spatial distribution patterns yet increasing temporal trends of concurrent events for rice 

We revealed the spatiotemporal variation of concurrent compound extremes for single–and late–rice in southern China, using 

growth–stage–specific physiological thresholds for temperature and moisture (either soil moisture or precipitation). This 

approach minimizes uncertainties inherent in applying uniform thresholds across the entire growing season. For example, the 510 

spatial shifts difference in the hotspots of concurrent heat–drought events of single–rice would have not been identified if we 

conducted evaluations over the entire growing–season. For the chilling stress to late–rice, the different effects of extremes at 

the heading–flowering and grain filling stages would not have been distinguishable if only one single temperature threshold 

was used to screen the whole growing–season. The consideration of a growth–stage–specific type–threshold enabled us to 

distinguish the different spatial and temporal characteristics of concurrent climate extremes in different stages for single–rice 515 

and late–rice.  

Temporally, we found a statistically significant increasing trend in the compound severity of concurrent heat–drought events, 

in southern China. The concurrent chilling–rainyrain events for late–rice had a weak increasing trend, which was insignificant. 

The result was consistent with the increasing frequency of concurrent heat–drought events reported in previous studies. For 

example, increasing trends for concurrent heat–drought events in the main crop production areas since 1980 have also been 520 

reported by He (He et al., 2022), Zhang (Zhang et al., 2022b) and Lu (Lu et al., 2018). For chilling–rainyrain events in late–

rice, (Liu et al., 2013) also reported that the frequency of chilling events in rice during the period 2001–2011 was higher than 

that in 1990–2000. They suggested that despite the increase in mean climatic temperatures, the occurrence of chilling events 

in rice did not decrease, but instead showed a gradually increasing trend. This pattern was also consistent with our findings.   

Spatially, we found that concurrent heat–drought events occurred only in specific regions in each of the three growth stages of 525 

single–rice, and coincided with the occurrence of heat stress in each growth–stage (Fig. A2). These spatial differences could 

mainly be attributed to regional differences in rice phenology rather than regional high–temperature events. That said, high 

temperatures in July and August in southern China enacted the precondition for heat events, and the dates of the susceptible 

growth–stage eventually determined the final period of exposure to concurrent events. For example, the single–rice 

transplanting date was 30 days earlier (day of the year, DOY 174–198) in the upstream than in the lower Yangtze River basin 530 

(DOY 207–232). When the single–rice in Chongqing entered the grain filling stage, rice in the middle and lower reaches of 
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the Yangtze River just entered the jointing–booting stage. Consequently, concurrent heat–drought events had a higher 

frequency in the later growth–stage in the upstream than in the downstream.  

Similarly, the late–rice heading date was 20 days earlier in the northern part of study area (DOY 255 in Hubei, Hunan, Anhui 

and Zhejiang) than in the southern part (DOY 273 in Guangdong, Guangxi and Hainan). In October, the late–rice in the 535 

northern part was mostly in the grain filling stage, whereas in the southern region, due to later planting dates, it was mostly in 

the heading–flowering stage. Consequently, southern late rice is more susceptible to the impact of chilly and rainyrain 

conditions caused by the southward movement of cold air from the north, which converges with warm and moist air currents 

in the south, leading to low–temperature and continuous rainyrain days. This finding further emphasized the importance of 

using growth–stage–specific thresholds, which allowed the exact spatiotemporal overlap of climate extremes and susceptible 540 

growth stages to be captured.  

4.2 The predominance of individual stress in driving concurrent events varies across different growth stages 

Path analysis identified the relative contribution of individual stress to compound severity and found large differences by 

growth stage. For instance, individual heat stress had a greaterlarger  direct effect than drought stress on heat–drought events 

during jointing–booting (H1D1) and heading–flowering (H2D2)H1D1 and H2D2 of single–rice, but the result was not 545 

apparent in heat–drought events during grain filling (H3D3). For concurrent chilling–rainy events of late–rice, the effects 

of chilling and rainy stress were comparable, with a slightly larger effect of chilling in C2R2 and a greaterlarger effect of 

rainy stress in C3R3.  

Previous studies on the factors driving changes in climate extremes have reported divergent results. For example, Zhang 

(Zhang et al., 2022b) suggested that temperature is the dominant factor influencing compound drought and heatwave events. 550 

In contrast, Bevacqua (Bevacqua et al., 2022) speculated that precipitation trends are believed to determine the future 

occurrence of concurrent heat–drought events. This is because future local warming would be sufficiently large 

enoughfrequent that future droughts would always coincide with moderate heat extremes, and consequently, the changes in 

drought frequency would become the modulating factor. In this study, concurrent heat and drought events in the joint–

booting stage (H1D1) and in the flowering stage (H2D2) mainly occurred in the middle–lower Yangtze River Basin. The 555 

spatial distribution maps of single extreme events (Figure A1) showed that drought stress exhibited broad spatial coverage 

and higher severity across this region (Fig. A2 d, e). Our findings revealed that drought stress exhibited widespread spatial 

coverage and higher severity, particularly in the middle-lower Yangtze River Basin, where concurrent heat-drought events 

mostly occurred, particularly during the jointing-booting (H1D1) and heading-flowering (H2D2) stages (Fig. A1d, e). In 

contrast, heat stress was spatially concentrated within a limited spatial extentareas (Fig. A2a, b).  The heat stress 560 

demonstrated spatially concentrated patterns with a limited spatial extent (Fig. A1a, b). Consequently, when heat stress 

occurred, it had a higher likelihood of coinciding with drought conditions, thereby forming concurrent heat–drought events. 



26 

 

This spatial dichotomy highlights the fact that heat stress emerges as the dominant driver of concurrent heat–drought events, 

where its localized intensification, superimposed on drought conditions, triggers compound cascading effects. However, 

heat stress in growth stage#3during grain filling stage in the Sichuan and Chongqing regions was slightly more severe than 565 

that in drought. (Fig. A2 c, f), thus, the heat in this region has a slightly higher impact on the occurrence events. 

The results of the path analysis also showed a correlation between the heat stress and drought stress of the concurrent heat–

drought event (Fig. 4c, 𝐷𝐶𝑐𝑜). Previous studies have shown that enhanced dry–hot dependence can lead to more frequent 

concurrent heat–drought events (Hao and Singh, 2020; Zscheischler and Seneviratne, 2017). The combination of these 

processes leads to a strong negative temperature–soil moisture correlation, which can be explained by two pathways: land–570 

atmosphere feedbacks and weather–scale correspondence between clouds and incoming shortwave radiation. Specifically, soil 

moisture deficits caused by low precipitation can lead to reduced evaporative cooling, along with increased sensible heat fluxes 

and higher surface air temperatures. High temperature anomalies accelerate evapotranspiration, which further depletes soil 

moisture (Liu et al., 2020; Miralles et al., 2019). In addition, low levels of cloudiness associated with low precipitation (and 

subsequent soil moisture deficits) tend to enhance incoming shortwave radiation, which leads to higher surface air temperatures 575 

(Berg et al., 2015). For chilling–rainyrain events for late–rice, our results also indicated a weak individual chilling and rainyrain 

correlation (Fig. 4d, 𝐷𝐶𝑐𝑜). However, compared with heat–drought events, the relationships behind chilling–rainyrain events 

have largely been ignored in previous studies, and the underlying mechanism requires further investigation (Trotsiuk et al., 

2020).  

4.3 The sensitivity and impact of yield reduction to concurrent extreme events differed by growth stages 580 

Our study evaluated the historical yield impact on yield and yield sensitivity of concurrent climate extremes across different 

sensitive growth stages and found comparable yield losses from concurrent heat–drought and chilling–rainyrain events (Fig. 

5a–e). Yield sensitivity also exhibited comparable values between heat–drought events (0.29 on average) and chilling–

rainyrain events (0.19–0.37). This comparable effect is due to the disruption of physiological processes, such as photosynthesis 

and nutrient uptake, while increasing pest and disease risks caused by chilling or excessive rainfall (Arshad et al., 2017; Fu et 585 

al., 2023; Jiang et al., 2010). Therefore, results add important evidence about the yield impact of compound chilling–rainyrain 

on rice yieldfor rice, to those that have reported heat–drought events on crops such as maize and soybeans (Luan et al., 2021; 

Seneviratne et al., 2010).  

Different impacts of heat–drought events on yields were also evident across growth stages, with the highest average yield 

loss observed during grain filling stage (H3D3) (Fig. 5f).Our results also revealed significantly different historical yield 590 

impacts across growth stages, particularly for heat-drought events Spatial distribution patterns of compound events indicate 

that H3D3 was concentrated in the Sichuan–Chongqing region (Fig. 3c). Therefore, we speculate on the potential causes of 

the severe historical yield reductions in this area.  (Fig. 5f). These losses likely resulted from the combined effects of regional 
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exposure,These differences in historical yield reductions likely stem from the interplay between exposed regions , regional 

climate interactionscouplings, and local infrastructure limitations. Variations in regional climatic conditions can lead todrive 595 

differential responses of rice yield responsess to extreme events across geographical areas (Li and Tao, 2023). In the 

Sichuan–Chongqing hotspot, tThe concentration of H3D3heat–drought events in the Sichuan-Chongqing hotspot was 

amplified by topography–driven vapor pressure deficit anomalies (Zhu et al., 2024), which intensified moisture stress and 

ultimately caused substantial yield declinesled to severe yield losses in this region. MoreoverAdditionally, the 

region’sSichuan-Chongqing region is a hilly terrain area makes the development of irrigation infrastructure challengingwith 600 

difficulty in providing irrigation infrastructure (Ye et al., 2012), and rice crop cultivation here depends heavilyheavily relies 

on precipitation. Consequently, under persistent hot and dry conditions, the lack of irrigation facilities can further aggravate 

yield losses Therefore, a lack of irrigation infrastructure can exacerbate yield losses under persistent hot and drought 

conditions(Hao et al., 2023). 

Rice sensitivity to compound events also differed substantially according to the growth stage. Specifically, single–rice showed 605 

the highest sensitivity to heat–drought events during the grain filling stage, followed by the heading–flowering and jointing–

booting stage. Late–rice exhibited greater sensitivity during the heading–flowering stage than during the grain filling stage. 

These growth–stage–specific patterns may be attributed to the physiological vulnerabilities of rice at different growth 

stages and the mechanisms by which climatic stressors exert their effects. Although experimental studies explicitly revealing 

the mechanisms of yield reduction under compound events remain limited, plausible explanations can be inferred from the 610 

physiological responses of rice to individual stressors. For instance, heat stress during the grain filling process inhibits the 

grain starch biosynthesis and shortens the grain filling duration, leading to reduced grain weight and yield (Cao et al., 2008; 

Tenorio et al., 2013). Drought negatively impacts photosynthetic rate and chlorophyll content, while drought occurring during 

the grain filling stage reduces the 1000–grain weight, ultimately leading to yield loss (Amin et al., 2022). Chilling stress during 

the heading–flowering stage impairs rice yield by inhibiting spikelet opening, inducing spikelet sterility, and potentially 615 

leading to spikelet abortion and incomplete panicle exertion (Arshad et al., 2017; Suh et al., 2010). Rainy stress exerts a 

physical disturbance on pollination, thereby reducing the number of filled grains per panicle. Additionally, the overcast 

conditions associated with rainyrain stress severely impair photosynthetic assimilation in rice (Luo et al., 2018; Proctor, 2023).  

4.4 Limitations 

Our study was limited by the length of the time–series of data. Agrometeorological station data were only available up to 2018, 620 

and recent years that had experienced the most pronounced warming (IPCC, 2021) were therefore not included in the analysis. 

In particular, the severe concurrent heat–drought event in southern China in 2022 had a substantial impact on rice production 

(Hao et al., 2023). The absence of above data might have led to underestimates of the temporal trend and yield impact. We 

focused on concurrent climate extremes only in this research. However, climate extremes can occur consecutively in different 

growth stages (Zscheischler et al., 2020). Several studies have discussed the yield impact on yield of switches of dry–and–wet 625 
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in different stages of rice growth (Chen and Wang, 2023). Due to limited sample size, other types of compound climate 

extremes (like consecutive climate extremes, where rice is impacted by one event at one growth–stage, and by another at a 

different growth–stage) were not discussed in this study, but requires future investigation, including its spatial temporal 

variation, possible physical compound mechanisms, and the underlying process of yield loss.  

5 Conclusions 630 

In this study, we investigated the spatiotemporal variation of concurrent compound extremes for single– and late–rice in 

southern China and their underlying climate drivers, by distinguishing stage–specific climate stress types and thresholds based 

on rice biologygrowth-stage-specific event types and thresholds. Temporally, our results indicated a significantly increasing 

trend of concurrent heat–drought events for single–rice and a slight increasing trend for concurrent chilling–rainyrain events 

for late–rice. Spatially, the hotspots distributions of concurrent heat–drought events varied greatly across the three growth 635 

stages, being concentrated in regions from the upper–middle to the middle–lower reaches of the Yangtze River. Spatially, the 

hotspots of concurrent heat-drought events for single-rice shifted from the lower Yangtze River Basin to its upper stream, and 

were dominated by the spatial differences in phenology rather than the occurrence of extreme events.These spatial patterns are 

driven primarily by differences int the timing of croprice phenologyical stages across locations, such as the timing of flowering 

was earlier in the upstream than in the lower Yangtze River basin, rather than by the spatial distributionoccurrence of climate 640 

extremes climate conditions. The concurrent chilling–rainyrain events of late–rice were widespread within the planting regions, 

with a higher incidence at higher altitudes and latitudes. Path analysis suggested that heat stress had a larger direct effect than 

drought on compound severity, particularly in H1D1 and H2D2. For concurrent chilling–rainyrain events of late–rice, the 

effects of chilling and rainyrain stress were comparable. The assessment of compound event impacts and sensitivity to on rice 

yield revealed significant growth–stage–specific differences, with comparable yield losses from both concurrent heat–drought 645 

and chilling–rainyrain events. 

Recent studies have provided additional details regarding the impacts of compound events on other staple crops (Hamed et al., 

2021), or single climate extremes for rice (Fu et al., 2023)Our results provided critical insights into the comprehensive impacts 

of compound events on rice production and established a scientific foundation for developing targeted adaptation strategies. A 

straightforward extension of the present study was to project the future occurrence and severity of compound extremes for rice. 650 

It is also important to project future yield impacts of compound extreme events for on rice yield, and their future impact on 

yield, for risk management and adaptation purposes. Such a projection requires quantitative vulnerability functions or growth 

model simulations of compound extreme events. To increase the capability of the models, controlled experiments and field 

observations are needed to improve our understanding of the impact of compound extremes on rice (Lesk et al., 2022). 

Consequently, our study provides critical insights into the comprehensive impacts of compound events on rice production and 655 

establishes a scientific foundation for developing targeted adaptation strategies.  
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Appendix A: Additional Figures 

 

Figure A1. Copula cumulative distribution functions as 3D surface of u (heat or chilling severity) and v (drought or 

rain severity) for concurrent heat–drought events during jointing–booting#1 (a, H1D1); heading–flowering#2 (b, H2D2); 660 

grain filling stages#3 (c, H3D3) and concurrent chilling–rain events during heading–flowering#2 (d, C2R2); grain filling 

stages#3 (e, C3R3). 
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Figure A2. Spatial distribution of single heat and drought extreme events of rice for the period of 1981–2018. Each 

subgraph represents the heat stress severity (a–c) and drought stress severity (d–f). 665 
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