Supplementary Materials for: What is a drought-to-flood transition? Pitfalls and recommendations for defining consecutive hydrological extreme events

Bailey J. Anderson^{1,2,3}, Eduardo Muñoz-Castro^{1,2,3}, Lena M. Tallaksen⁴, Alessia Matano⁵, Jonas Götte^{1,2,3}, Rachael Armitage⁷, Eugene Magee⁷, and Manuela I. Brunner^{1,2,3}

1 Contents

Table S1

¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

²WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

³Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland

⁴Department of Geosciences, University of Oslo, Oslo, Norway

⁵Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

⁷UK Centre for Ecology and Hydrology, Wallingford, United Kingdom

Table 1. Further information about case study events.

Case Study	Case study event drivers	Streamflow gauge	Data source	Catchment area
Australia: Daintree River	Heavy rain and high tides in December (1) followed by an active monsoon trough and slow-moving low pressure system [F](2, 3)	WMIP Gauge ID: 108002A	Streamflow and catchment outline (4)	$913 km^2$
California, USA: Ventura River	Atmospheric rivers [F] (5), precipitation deficit [D] (5)	USGS Gauge ID: 11118500	Streamflow (6) and catchment outline (7)	$486~km^2$
Chile: Rio Colorado	Strong La Niña year [D] (8)	Camels Chile Gauge ID: 7112001	Streamflow and catchment outline (9)	878 km²
England: River Aire	Persistent blocked weather patterns [D], jet stream [F] (10)	NRFA Gauge ID: 27080	Streamflow and catchment outline (11)	$862 \ km^2$
Italy: River Savio (Tributary of the Po)	Below average snowfall (D), persistent anomalous anticyclonic circulation (D), Storm Minerva (F)	Arpae Emilia Ro- magna Gauge ID: Savio at San Carlo	Streamflow (12) and catchment outline (13)	$580~km^2$
Norway: Ulvåa River (Tributary of the Glomma)	Hot and wet October weather resulted in early snow melt and heavy precipitation [F] (14)	NVE Gauge ID: 103.1.0	Streamflow and catchment outline (15)	$432 \ km^2$
Switzerland: River Emme		BAFU Gauge ID: 2409	Streamflow and catchment outline (16)	$124 \ km^2$
Texas, USA: Llano River	Heavy convective rainstorm [F] (17-18), hot and dry summer weather [D] (19)	USGS Gauge ID: 8151500	Streamflow (6) and catchment outline (7)	$10899 \ km^2$

References: 1. Jess Fagan (2023), 2. Staff Writers (2018), 3. ?, 4. (Fowler et al., 2021), 5. (Medellín-Azuara et al., 2022), 6. (Cicco et al., 2022), 7. (U.S. Geological Survey and U.S. Department of Agriculture, Natural Resources Conservation Service, 2015), 8. (Oertel et al., 2020), 9. (Alvarez-Garreton et al., 2018), 10. (Kendon et al., 2013), 11. (Vitolo et al., 2017), 12. (Arpae Emilia-Romagna, 2025), 13. (Nascimento et al., 2024), 14. (Nina Berglund, 2018), 15. (Norwegian Water Resources and Energy Directorate (NVE), 2025), 16. (Swiss Federal Office for the Environment (BAFU), 2025), 17. (Anna Skinner, 2023a), 18. (Anna Skinner, 2023b), 19. (noa, 2023)

References

20

30

- No Highland Lakes water available for LCRA agricultural customers this year LCRA Energy, Water, Community, https://www.lcra.org/ news/news-releases/no-highland-lakes-water-available-for-lcra-agricultural-customers-this-year/, 2023.
 - Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies Chile dataset, Hydrology and Earth System Sciences, 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, publisher: Copernicus GmbH, 2018.
- 10 Anna Skinner: Chart Shows Lake Travis' Dramatic Change in Water Levels After Sudden Flood, News Week, https://www.newsweek.com/chart-shows-lake-travis-dramatic-change-water-levels-after-sudden-flood-1839063, 2023a.
 - Anna Skinner: Texas River Floods After Massive Water Level Increase Overnight, News Week, https://www.newsweek.com/texas-river-floods-after-massive-water-level-increase-overnight-1838326, 2023b.
 - Arpae Emilia-Romagna: Dext3r Hydrological Data Platform, https://simc.arpae.it/dext3r/, 2025.
- 15 Cicco, L. A. D., Lorenz, D., Hirsch, R. M., Watkins, W., and Johnson, M.: dataRetrieval: R packages for discovering and retrieving water data available from U.S. federal hydrologic web services, U.S. Geological Survey, Reston, VA, https://doi.org/10.5066/P9X4L3GE, backup Publisher: U.S. Geological Survey Version Number: 2.7.11, 2022.
 - Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth System Science Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, publisher: Copernicus GmbH, 2021.
 - Jess Fagan: Mangroves remember droughts this could be bad news for our coastlines, ANU Reporter, https://reporter.anu.edu.au/all-stories/mangroves-remember-droughts-this-could-be-bad-news-for-our-coastlines, 2023.
 - Kendon, M., Marsh, T., and Parry, S.: The 2010–2012 drought in England and Wales, Weather, 68, 88–95, https://doi.org/10.1002/wea.2101, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wea.2101, 2013.
- Medellín-Azuara, J., Escriva-Bou, A., Rodríguez-Flores, J. M., Cole, S. A., Abatzoglou, J. T., Viers, J. H., Santos, N., Summer, D. A., Medina, C., and Arévalo, R.: Economic Impacts of the 2020–22 Drought on California Agriculture, UC Merced, https://cawaterlibrary.net/wp-content/uploads/2022/11/20AmSf-Economic_Impact_CA_Drought_V01.pdf, 2022.
 - Nascimento, T. V. M., Rudlang, J., Höge, M., van der Ent, R., Chappon, M., Seibert, J., Hrachowitz, M., and Fenicia, F.: EStreams: An integrated dataset and catalogue of streamflow, hydro-climatic and landscape variables for Europe, Scientific Data, 11, 879, https://doi.org/10.1038/s41597-024-03706-1, publisher: Nature Publishing Group, 2024.
 - Nina Berglund: Flash floods sweep through valleys, https://www.newsinenglish.no/2018/10/14/flash-floods-sweeping-through-valleys/, 2018.
 - Norwegian Water Resources and Energy Directorate (NVE): NVE Hydrological API, https://api.nve.no/hydrological, 2025.
- Oertel, M., Meza, F. J., and Gironás, J.: Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile, Hydrological Processes, 34, 159–174, https://doi.org/10.1002/hyp.13596, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.13596, 2020.
 - Staff Writers: Daintree Ferry closed as river flooding causes chaos, Newsport, https://archive.newsport.com.au/2018/december/daintree-ferry-closed-as-river-flooding-causes-chaos, 2018.

- Swiss Federal Office for the Environment (BAFU): Hydrological Data Service for Watercourses and Lakes,

 40 https://www.bafu.admin.ch/bafu/en/home/topics/water/state/data/obtaining-monitoring-data-on-the-topic-of-water/
 hydrological-data-service-for-watercourses-and-lakes.html, 2025.
 - U.S. Geological Survey and U.S. Department of Agriculture, Natural Resources Conservation Service: National Watershed Boundary Dataset (WBD), https://www.usgs.gov/national-hydrography/watershed-boundary-dataset, 2015.
- Vitolo, C., Fry, M., and Buytaert, W.: rnrfa: An R package to Retrieve, Filter and Visualize Data from the UK National River Flow Archive,

 The R Journal, 8, 102–116, https://rjournal.github.io/, 2017.