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Abstract. Data assimilation (DA) has been successfully ap-
plied in paleoclimate reconstruction. DA combines model
simulations and climate proxies based on their error sizes.
Therefore, error information is crucial for DA to work op-
timally. However, little attention has been paid to obser-5

vation errors in previous studies, especially when proxies
are assimilated directly. This study assessed the feasibil-
ity of innovation statistics, a method developed for numer-
ical weather prediction, for estimating observation errors in
climate reconstruction and its impact on the reconstruction10

skills. For this purpose, we conducted offline-DA experi-
ments over 1870–2000. Here, we assimilated stable water
isotope records from ice cores, tree-ring cellulose, and corals.
We found that the innovation-statistics-based approach cor-
rectly estimated observation errors, even with the offline-DA15

scheme. Although the accuracy of the estimation depended
on the sample size and accuracy of the prior error covariance,
the estimation generally improved the reconstruction skills.
The reconstruction skills with the estimated observation er-
rors were comparable to those with errors defined differently20

in the previous studies. In contrast with those methods used
in previous studies, however, the innovation-statistics-based
approach offers an objective and systematic way to estimate
observation errors with light computational cost. As such, the
innovation-statistics-based approach should contribute to im-25

proving the reconstruction skills and observation networks.

1 Introduction

Data assimilation (DA) estimates the most likely states or pa-
rameters by combining prior information drawn from model
simulations (background) and observations. DA is a well- 30

established method in numerical weather prediction (NWP)
(e.g., Houtekamer and Zhang, 2016; Kalnay, 2003; and ref-
erences therein) and has recently been applied in, among
other fields, paleoclimate reconstruction. Earlier studies have
focused on the last millennium (e.g., Franke et al., 2017; 35

Goosse et al., 2010, 2012; Hakim et al., 2016; Steiger et
al., 2018; Tardif et al., 2019; Valler et al., 2022; Wu et
al., 2025), while recent studies have started investigating
deeper into the past (e.g., Annan et al., 2024; Kurahashi-
Nakamura et al., 2017; Li et al., 2024; Mathiot et al., 2013; 40

Osman et al., 2021; Renssen et al., 2015; Tierney et al., 2020,
2022).

The DA weighs the simulation and observations based on
their errors in the estimation. Therefore, the error informa-
tion is crucial for DA to work optimally. Let us introduce the 45

definition of the errors in DA here to depict issues in paleo-
DA. In DA, background error εb and observation error εo are
defined as

εb
≡−xt (1)

εo
≡ yo
−H

(
xt)
=
[
yo
− yt]

+
[
yt
−Ht (xt)]

+
[
Ht (xt)

−H
(
xt)] , (2) 50
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where x is the model state, y is the observations, and H is
the observation operator that converts the model state to an
observation-equivalent quantity. The superscripts b, t, and o
represent the background, the truth, and the observations,
respectively. Observation error εo consists of three distinct5

components: measurement error, which arises from instru-
mental limitations and observational noise; representative-
ness error, which reflects discrepancies between the model’s
spatial and temporal resolution and the actual observations;
and errors in the observation operator. Each component is10

represented by the term on the right side of Eq. (2) from
left to right. The corresponding error covariance matrices de-
noted as B and R are defined as

B=
〈
εb
(
εb
)T 〉

, (3)

R=
〈
εo(εo)T 〉, (4)15

where the brackets 〈 · 〉 denote a statistical expectation.
Here, we briefly review how B and R are treated in paleo-

DA. Because of its common use, we focused on ensemble-
based approaches in reviewing B (e.g., Franke et al., 2017;
Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019;20

Valler et al., 2022, 2024). Generally, background ensembles
can be drawn from any collection of reasonable states. This
may be a highly informed prior, such as a short-term forecast
from an accurate analysis as in NWP, or an “uninformed”
prior, such as a random sample from a model climatology25

(Hakim et al., 2016). In paleo-DA, regardless of the accuracy
of the model initial condition, the information will be lost
long before the next analysis step because of the chaotic na-
ture of the climate and temporarily sparse observations (typi-
cally, observations are available once a year). Therefore, it30

is meaningless to use the analysis as the initial condition
for the subsequent model forecasting (Bhend et al., 2012).
For this reason, “offline-DA” is commonly used, where the
background ensembles are drawn either from a single long
climate simulation or from an ensemble of such simulations35

(e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et
al., 2018; Tardif et al., 2019; Valler et al., 2022, 2024) re-
ferred to as stationary offline-DA and transient offline-DA,
respectively. Because there is no information other than ex-
ternal forcings (e.g., greenhouse gas concentrations, total so-40

lar irradiance, and orbital parameters) to constrain the model
states, such an “uninformed” background ensemble is suit-
able for representing the error or the uncertainty of the back-
ground. While several studies have explored the feasibility of
the online-DA and demonstrated its potential (e.g., Acevedo45

et al., 2017; Matsikaris et al., 2015; Okazaki et al., 2021;
Perkins and Hakim, 2017, 2021), offline-DA remains the pre-
ferred approach owing to its simplicity and the low compu-
tational costs.

There is no established method for defining the observa-50

tion error or observation error covariance matrix R in paleo-
DA. The most common method for specifying observation
errors is to use residuals (e.g., Dalaiden et al., 2021; Franke

et al., 2017; Hakim et al., 2016; Osman et al., 2021; Steiger
et al., 2018; Tardif et al., 2019; Perkins and Hakim, 2021; 55

Tierney et al., 2020; Valler et al., 2022). Here, the specified
observation errors ε̂o are given by the following form:

ε̂o
= yo
−H

(
xref

)
, (5)

where xref represents reference data. Many of the paleo-
DA studies employ linear regression models as an obser- 60

vation operators, where each proxy record is linearly re-
gressed against reference data from the instrumental period
(e.g., Dalaiden et al., 2021; Franke et al., 2017; Hakim et
al., 2016; Steiger et al., 2018; Tardif et al., 2019; Perkins
and Hakim, 2021; Valler et al., 2022). In this approach, 65

observation-based gridded surface temperature data, such
as HadCRUT5 (Morice et al., 2021), are typically used as
the reference data. Alternatively, process-based proxy sys-
tem models (PSMs; Evans et al., 2013; Dee et al., 2015) are
sometimes used as observation operators (e.g., Acevedo et 70

al., 2017; Dee et al., 2016; Okazaki and Yoshimura, 2017;
Steiger et al., 2017) to provide a more physically informed
representation of proxy–climate relationships. A PSM pro-
vides a complete set of forward and mechanistic processes
by which climatic information is imprinted and subsequently 75

observed in proxy archives. Although they are more complex
than the linear regression models, the same approach can be
used to obtain observation errors, provided that all the input
variables for H are available at the proxy sites. However, it is
rarely possible to obtain all necessary variables directly from 80

observations at proxy sites. In such cases, model simulations
are instead used as xref to provide the required inputs (Tier-
ney et al., 2020; Osman et al., 2021).

Some studies have approximated observation errors by as-
suming that the representativeness error is dominant (e.g., 85

Goosse et al., 2012; Dalaiden et al., 2021; Rezsöhazy et
al., 2022). These studies estimated representativeness errors
at each observation location by comparing two time series
with different spatial representations, for instance, in situ ob-
servation and the gridded observation data or two simula- 90

tions, one with high and the other with low spatial resolution.
An alternative method for estimating observation error

is based on the variance of the observation time series
(Franke et al., 2017; Okazaki and Yoshimura, 2017; Valler
et al., 2022). In paleoclimate studies, it is common to show 95

the observation noise level as a function of the variance
(σ 2) with SNR (signal-to-noise ratio) defined as σnoise

/
σyo ,

where the numerator and the denominator are the standard
deviation of the error and signal in a proxy time series, re-
spectively (Smerdon, 2012, and references therein). Typi- 100

cally, one-fourth of the variance, which corresponds to an
SNR of 2, is assumed to be an observational error in paleo-
DA. The factor was decided based on measurement errors
in Okazaki and Yoshimura (2017), while it was used with-
out grounds for documentary-type observations in Franke 105
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et al. (2017) but verified later with the innovation statistics
(Valler et al., 2022).

Although the aforementioned methods are widely ac-
cepted, they also have limitations. The first approach using
linear regression models becomes impractical when the over-5

lapping period between xref and yo is too short. In general,
climate proxies that span long periods tend to have low tem-
poral resolution and few overlapping points, making it dif-
ficult to use this approach for deep climate reconstruction.
Given that paleo-DA is also used to reconstruct deep-time10

paleoclimates, such as the Paleocene and Eocene (e.g., Li, et
al., 2024; Tierney et al., 2022), different approaches are re-
quired. Besides, the observation error ε̂o defined in Eq. (5) is
different from εo in Eq. (2) because xref, whether it is based
on observations or simulations, is not the truth. Because xref

15

contains errors, the derived matrix R is likely to be overesti-
mated. A few studies have introduced a scaling factor to com-
pensate for overestimation, where a globally uniform factor
is multiplied by all records to maximize the resultant anal-
ysis skill (Osman et al., 2021; Tierney et al., 2020). How-20

ever, a globally constant scaling factor may not yield the best
results. Although these factors may be individually tuned,
manual tuning is unrealistically time-consuming. The second
approach, which estimates observation errors based on the
representativeness errors, requires a dense observation net-25

work, gridded observation datasets, or high-resolution model
simulations, which are limited in terms of climate proxies
or equivalent quantities. Additionally, the representativeness
error may not always be dominant since its magnitude de-
pends on the resolution of the model simulation used for the30

background, proxy type, and accuracy of the observation op-
erators. The third approach, which assumes that the observa-
tion error is a fixed fraction of the total variance, is not well
supported by theoretical considerations, and there is no clear
justification for its universal adoption. In addition, the man-35

ual tuning of this factor for each proxy record is impractical.
Some studies use multiple error specification approaches, de-
pending on the observation types (e.g., Dalaiden et al., 2021;
Franke et al., 2017; Valler et al., 2022). However, hybrid ap-
proaches may introduce biases to specific types of observa-40

tions, leading to suboptimal DA performance.
A wrongly specified observation error covariance matrix

R can severely reduce paleoclimate reconstruction accuracy.
Tierney et al. (2020) showed that the reconstruction skill
score varied up to 20 % depending on the magnitude of error45

variance. We also confirmed that misspecified R can lead to
skill score variations of up to 68 % (Fig. A1). The skill differ-
ence is as large as that between prior and analysis, highlight-
ing the importance of accurate observation errors. Therefore,
paleo-DA requires sophisticated and systematic methods to50

estimate observation errors.
In the field of NWP, several methods have been devel-

oped to estimate observation errors using innovation statis-
tics (e.g., Dee and da Silva, 1999; Desroziers et al., 2005;
Hollingsworth and Lönnberg, 1986). Here, the term “innova-55

tion” refers to the differences between the observations and
background state in the observation space. The statistics of
innovations are called “innovation statistics” and contain in-
formation on the observation and background errors. Innova-
tion statistics has been widely adopted in many studies and 60

weather forecasting centers (e.g., Honda et al., 2018; Lel-
louche et al., 2018; Minamide and Zhang, 2017; Okamoto et
al., 2018; Schraff et al., 2016; Tandeo et al., 2020 and refer-
ences therein).

This study investigated the feasibility of innovation statis- 65

tics in estimating observation errors in paleo-DA and its im-
pact on the reconstruction skill. For this purpose, we “re-
constructed” climate for the 19th and 20th centuries, for
which abundant instrumental data are available for verifica-
tion. We adopted the ensemble-based offline-DA approach, 70

in which isotopic proxies were assimilated using PSMs based
on Okazaki and Yoshimura (2017).

The remainder of this paper is structured as follows. Sec-
tion 2 describes the methods and the experimental design.
Section 3 examines the accuracy of the observation error es- 75

timation and evaluates the reconstruction skills using a series
of observing system simulation experiments (OSSEs). Sec-
tion 4 presents the estimation results obtained from the real
observational data. Finally, Sects. 5 and 6 present a discus-
sion and summary of the study findings, respectively. 80

2 Methods

2.1 Local ensemble transform Kalman filter (LETKF)

This study used the local ensemble transform Kalman fil-
ter (LETKF; Hunt et al., 2007), a variant of the ensemble
Kalman filter (EnKF), to solve the update equation of the 85

Kalman filter. Let x be the N -dimensional model state and
consider an ensemble of m members. The analysis ensemble
mean and the perturbations in the LETKF are given by

xa
= xb

+XbP̃a
(

HXb
)T

R−1
(
yo
−H

(
xb
))

(6)

Xa
= Xb√m− 1 P̃a1/2

, (7) 90

where x denotes the ensemble mean, and X denotes the en-
semble perturbation matrix, and the superscripts a and b de-
note the analysis and background, respectively. Here, x is a
vector of length N , and X is the N ×m matrix whose ith
column is x(i)

− x, where the superscript (i) denotes the ith 95

member of the ensemble (i={1,2, . . .,m}). The notation yo

is the observation vector of length p, R the observation error
covariance matrix whose size is p×p, H the observation op-
erator that converts the model state to the observation equiv-
alent quantity, H the linearized observation operator whose 100

size is p×N , and P̃ a the covariance matrix in the ensemble
space whose size is m×m given by

P̃a
=

[
(m− 1)I/1+

(
HXb

)T
R−1

(
HXb

)]−1

, (8)
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where 1 is a covariance inflation parameter, which inflates
the prior error covariance matrix to avoid underestimation
of the analysis error covariance and filter divergence. To re-
duce the spurious error covariance among distant points due
to sampling errors caused by the limited ensemble size, co-5

variance localization has been commonly used in EnKF (e.g.,
Houtekamer and Mitchell, 2001). Localization in the LETKF
is implemented by inflating the observation error variance
distant from the analysis model grid point (Hunt et al., 2007;
Miyoshi and Yamane, 2007). With localization, the observa-10

tion error covariance matrix is replaced by

R← ρ−1
◦R. (9)

Here, ρ denotes the localization weights and is a function
of the distance between the observations and the analysis
model grid point. The LETKF solves the above equations at15

all model grid points by assimilating a subset of observations
surrounding each analysis grid point. Therefore, x and X re-
duce to a scalar and 1×m matrix, in practice.

2.2 Innovation statistics

This study used the innovation statistics proposed by20

Desroziers et al. (2005) to estimate observation errors. This
study also estimates the covariance inflation factor because
accurate B is required to estimate the observation error (Li
et al., 2009). The observation-minus-background innovation
vector (do

b), given by the difference between the observations25

and the background state in the observation space, can be ex-
pressed as

do
b ≡ y

o
−H

(
xb
)
∼= ε

o
−Hεb, (10)

where εo and εb are observation and background errors, re-
spectively, and are defined as the difference from the truth30

(see also Eq. 1). Similarly, the observation-minus-analysis
innovation vector (do

a), the difference between observations
and analysis in the observation space, is given by

do
a ≡ y

o
−H

(
xa)
= yo
−H

(
xb
+ δxa

)
∼= y

o
−H

(
xb
)
−Hδxa

= do
b−Hδxa. (11)

The Taylor series expansion around xb and Eq. (10) was used35

for the transformation. The notation δxa denotes the analysis
increment and is defined as

δxa
≡ xa
− xb

=K
[
yo
−H

(
xb
)]
=Kdo

b, (12)

where K is the Kalman gain given by

K= BHT
(

HBHT
+R

)−1
. (13)40

With the above equations, Eq. (11) can be further trans-
formed into

do
a
∼= (I−HK)do

b = R
(

HBHT
+R

)−1
do

b. (14)

Finally, the difference between the analysis and background
in the observation space (da

b) can be derived using Eq. (14) 45

as follows:

da
b ≡ d

o
b− d

o
a
∼=HKdo

b. (15)

The innovation vectors defined in Eqs. (10), (14), and (15)
can be used to derive several diagnostics based on the fol-
lowing assumptions: (1) the observation and background er- 50

rors are unbiased and uncorrelated, and (2) the observation
and background error covariances in the observation space
(HBHT ) are correctly specified. The first diagnostic consid-
ers HBHT

+R and is given as follows:

〈
do

b(do
b)T
〉
∼=
〈
εo(εo)T 〉

+
〈
Hεb

(
Hεb

)T 〉
=HBHT

+R. (16) 55

Here, the cross-covariance terms are assumed to be zero be-
cause of the assumption (1). The background error covari-
ance in the observation space (HBHT ) can be estimated us-
ing Eqs. (13), (15), and (16):〈
da

b(do
b)T
〉
∼=HK

〈
do

b(do
b)T
〉
=HK

(
HBHT

+R
)
=HBHT . (17) 60

Finally, the observation error covariance (R) can be esti-
mated using Eqs. (14) and (16):〈
do

a(do
b)T
〉
∼= R

(
HBHT

+R
)−1〈

do
b(do

b)T
〉
= R. (18)

The covariance inflation factor (1) can be estimated adap-
tively by comparing HBHT represented by the background 65

ensemble and the estimated one with Eq. (17) (Li et
al., 2009). This study estimated the factor for each model
grid point (i.e., locally) following Miyoshi (2011).

1=
trace

(〈
da

b(do
b)T
〉
◦ ρ ◦R−1)

trace
(

1
/

(m− 1) HXb(HXb)T
◦ ρ ◦R−1

) (19)

Here, ◦ denotes the Schur product. The inverse of R and ρ is 70

multiplied for the normalization of multiple observations and
spatial smoothing of the inflation estimates. Note that R and
HBHT constitute the observations and simulated equivalent
quantities within the radius of influence.

2.3 Experimental design 75

We conducted two series of DA experiments, OSSE and
REAL, which only differ in the observations to be assimi-
lated. In OSSE, we created the observations using a refer-
ence simulation (so-called “nature run”) and observation op-
erators. As such, OSSE can be considered an idealized exper- 80

iment and is equivalent to the idea of pseudo-proxy experi-
ment in paleo-DA (e.g., Steiger et al., 2014). The background
ensemble was created using the same model as that for the
nature run (i.e., perfect model experiment) but with slightly
different external forcings (see below for more details). This 85
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allows for a direct evaluation of the observation error estima-
tion in the absence of other error sources. We also performed
climate reconstruction with the estimated observation errors
in REAL, which uses real observation data for DA. In addi-
tion to the differences in observations, the OSSE and REAL5

experiments shared the same experimental settings. Multiple
experiments were conducted for each framework. The default
experimental settings and experiment-specific configurations
are detailed in Sect. 2.3.1 and 2.3.2, respectively.

2.3.1 Default experimental settings10

Background ensemble. We constructed a background ensem-
ble by running MIROC5-iso (Okazaki and Yoshimura, 2017,
2019), an isotope-enabled atmospheric general circulation
model (GCM) developed based on the atmospheric compo-
nent of MIROC5 (Watanabe et al., 2010). MIROC5-iso is15

forced by simulated sea surface temperature (SST) and sea
ice concentrations (SICs), observed greenhouse gases (car-
bon dioxide, methane, and chlorofluorocarbons), ozone, and
land-use changes. We derived the SST and SIC data from the
Coupled Model Intercomparison Project Phase 5 (CMIP5;20

Taylor et al., 2012) historical simulation of MIROC5 with the
“r1i1p1” ensemble member. The isotopic compositions of
sea surface water and sea ice were kept constant and assumed
to be 0 ‰ and 3 ‰, respectively (Joussaume and Jouzel,
1993). The model resolution was set to T42 (∼ 280 km on the25

Equator), with 40 vertical levels. We used a single-member
simulation covering 1870–2005 to generate a 136-member
background ensemble, where 136 annual means (i.e., model
states) are used as an ensemble member (Steiger et al., 2014).
We used the same background ensemble for all experiments,30

unless otherwise noted.
Observations. We used the Iso2k (Konecky et al., 2020)

and PAGES2k databases (PAGES2k Consortium, 2017) for
the observation data. The Iso2k database contains stable oxy-
gen (18O) and hydrogen (2H) isotopic records from vari-35

ous archives. This study used isotopic records of ice cores,
corals, and tree-ring cellulose, as described by Okazaki and
Yoshimura (2017, 2019). In addition, three surface temper-
ature records in historical documents from the PAGES2k
database are used for the ease of comparison of the obser-40

vation errors with the previous studies. In the REAL exper-
iments, observations with a temporal resolution shorter than
1 year were averaged to obtain annual means, whereas obser-
vations with a resolution longer than 1 year were discarded.
In OSSEs, observations were made based on the nature run,45

which was constructed using a simulation with a configura-
tion identical to that for the background except for SST and
SIC; the MIROC5 simulation of the CMIP5 historical run
with the ensemble member “r2i1p1” was used. The model
fields at the proxy locations were extracted using bilinear in-50

terpolation and then converted to an observation-equivalent
quantity using observation operators, or PSMs, as described
below. The input and output variables for the PSMs were

monthly means and were annualized such that the experi-
mental setting was comparable to that for REAL. To simu- 55

late the observational uncertainty, random noise was added
to each data. This noise was drawn from a normal distribu-
tion with zero mean and variance equal to one-fourth of the
temporal variance of the annualized time series. The num-
ber of observations and the spatial distribution are shown in 60

Fig. 1.
Observation operators (PSMs). We used the PSM devel-

oped by Liu et al. (2013, 2014) for corals and that of Roden
et al. (2000) for tree-ring cellulose. For the ice cores, we as-
sumed that the isotopic composition was the same as that of 65

precipitation at the time of deposition. In reality, the isotope
ratios in ice cores may deviate from those in precipitation due
to post-depositional processes (e.g., Schotterer et al., 2004).
More detailed information on PSMs can be found in Okazaki
and Yoshimura (2017, 2019). For surface temperature, simu- 70

lated 2 m temperature is directly used.
Data assimilation. The assimilation was conducted fol-

lowing the anomaly-DA approach (e.g., Keenlyside et
al., 2008; Smith et al., 2007), where the corresponding cli-
matological mean is subtracted from both observations and 75

background in the observation space to mitigate the detri-
mental impact of model bias. We calculated the climato-
logical mean using the overlapping years between observa-
tions and simulations during the period from 1900 to 2000.
The overlapping period must span longer than 30 years for 80

the computation of the climatological mean. Otherwise, the
corresponding observation is discarded. Note that the period
represented by the climatological mean differs by site since
the observational period varies. For the background covari-
ance localization, a fifth-order polynomial function was used 85

(Gaspari and Cohn, 1999). The localization scale was man-
ually tuned beforehand to maximize the correlation coeffi-
cient, and a half-localization scale of 8000 km was used for
all the experiments. The observation error covariance matrix
was assumed to be diagonal, as in many other studies (e.g., 90

Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018;
Tardif et al., 2019; Valler et al., 2022). The diagonal ele-
ment of the matrix (i.e., error variances) was set to one-fourth
of the temporal variance of the annual observation time se-
ries, unless otherwise specified. This size of the error vari- 95

ance was identical to that used to create the observations in
the OSSE. The assimilation was conducted for 1870–2000 in
both OSSE and REAL experiments.

2.3.2 List of experiments

In the OSSE, we performed the “EST” and “BIAS” experi- 100

ments. In EST, the observation errors were estimated using
innovation statistics, and the performance of the climate re-
construction with DA with estimated observation errors was
assessed. In BIAS, we investigated the impact of a biased
background error covariance. In general, the structure of the 105

background error is different from that of the nature. The ex-
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Figure 1. (a) Number of proxies used in this study. The color shows the type of proxy. (b) Geographical location of proxies.

periment is designed to investigate the impact of a misrepre-
sented background error covariance. In REAL, observation
errors defined in different ways as in previous studies (UNI,
VAR, and RES) were tested and compared with “EST”. Each
experimental setting is detailed below and summarized in Ta-5

ble 1.
EST. We estimated observation errors based on innovation

statistics (Eq. 18). To address sampling error in the estima-
tion, a large number of samples is required for reliable esti-
mates. We used the entire period of one DA experiment (i.e.,10

1870–2000; 131 samples) to maximize the sample size. We
also estimated the covariance inflation factor as well (Li et
al., 2009) since the simultaneous estimation of the covari-
ance inflation factor and R improves the analysis skills. The
set of DA experiment and the estimation of the inflation fac-15

tor and R can be conducted iteratively, where the estimated
inflation factor and R from one iteration are used in the sub-
sequent DA experiment. In this study, we repeated the proce-
dure 10 times. In the OSSE, R used in the first iteration (Rini)
of the DA is given by either of 4 times the variance (Rx16),20

one-fourth the variance (Rx1), or one-sixteenth the variance
(Rx0.25). In Rx1, Rini is equal to the actual error (Rtru). No
covariance inflation was applied in the first iteration for in
either the OSSE or REAL.

BIAS. We conducted an experiment similar to EST but25

with a biased background ensemble to examine the impact of
the biased off-diagonal term of B. Instead of the MIROC5-
iso simulation used in EST, the model simulation forced by
observation-based SST and SIC from HadISST1 (Rayner et
al., 2003) was used. The experiment was conducted only for30

the OSSE.
UNI. In this experiment, each observation type shared the

same observation errors, given by the mean of the estimated
values from EST multiplied by the globally constant scaling
factor k (0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, and 2). The ex-35

periment was conducted only for the REAL.
VAR. Observation errors were determined based on the

standard deviations of each proxy record multiplied by a
globally constant scaling factor (Franke et al., 2017; Okazaki
and Yoshimura, 2017; Valler et al., 2022). The scaling factor40

k was varied at 1/8, 1/4, 1/2, 3/4, 1, 2, 4, 8, and 16. The
experiment was conducted only for the REAL.

RES. In this experiment, observation variances are given
as follows:

R= kdiag
(〈
εεT

〉)
, where ε = yo

−H
(
xref

)
. (20) 45

We used a simulation forced by observation-based SST and
SIC, HadISST1 (Rayner et al., 2003), as xref instead of grid-
ded instrumental observation data. The other simulation set-
tings were identical to those for the background ensemble.
Only the records that overlapped with the simulation for at 50

least 30 years were used. We used this approach because
no gridded isotopic observation dataset is available to drive
the observation operators. The scaling factor k was varied at
0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, and 2. The experiment was
conducted only for the REAL. 55

2.4 Metrics

We verified the results for the annual mean 2 m air tempera-
ture against the reference data xref. Three metrics were used
to evaluate the reconstruction skills: the Pearson correlation
coefficient (CC), the coefficient of efficiency (CE; Nash and 60

Sutcliffe, 1970), and the relative variance (RV). The defini-
tions are as follows:

CC=
∑
xa
i x

ref
i∑ (

xa
i

)2∑ (
xref
i

)2 ,
CE= 1−

∑ (
xa
i − x

ref
i

)2∑ (
xref
i

)2 , and

RV=

∑ (
xa
i

)2∑ (
xref
i

)2 . 65

Here, xa
i and xref

i denote the ith year of the analysis and
the reference. Accordingly, the metrics evaluates the inter-
annual variability. In all the metrics, the inputs are given in
anomaly forms with respect to the climatological mean to
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Table 1. Experimental settings.

Exp. type Exp. name Background Observation R

OSSE EST r1i1p1a r2i1p1b Estimated with innovation statistics
BIAS HadISST1c r2i1p1b Estimated with innovation statistics

REAL EST r1i1p1a Iso2kd Estimated with innovation statistics
UNI r1i1p1a Iso2kd Same observation errors for each observation type
VAR r1i1p1a Iso2kd Variance of the proxy time series multiplied by a scaling factor
RES r1i1p1a Iso2kd Based on the difference between observation and a reference simulation

a MIROC5-iso forced by a historical run of MIROC5 in CMIP5, labeled “r1i1p1”.
b Iso2k-like observation created with MIROC5-iso forced by a historical run of MIROC5 in CMIP5, labeled “r2i1p1”.
c MIROC5-iso forced by observation-based SST and SIC of HadISST1 (Rayner et al., 2003).
d Konecky et al. (2020).

ignore the model biases. For the OSSE experiments, the na-
ture run was used as the reference data. For the REAL, Had-
CRUTv5 (Morice et al., 2021) was used as the reference data.

3 Perfect model results

This section evaluated the performance of the innovation5

statistics in estimating the observation errors and its effects
on the reconstruction skills in the OSSE experiments.

Figure 2a compares the true observation variances (Rtru)
and the estimated observation variances (Rest) for EST with
an initial R 16 times larger than Rtru (Rx16). Most of the10

estimated observations fall between the two reference lines
in Fig. 2a, with slopes of 2 and 4. Given that the initial ob-
servation variances were 16 times larger than the truth, the
differences between Rest and Rtru became smaller than Rini
after the estimation. Improvements were observed across dif-15

ferent proxy types, demonstrating that the estimation method
functioned properly.

With a more accurate and representative R, the DA is ex-
pected to become more accurate. Moreover, the observation
error estimates are expected to be more accurate when R is20

correctly specified (Desroziers et al., 2005). Accordingly, we
conducted a similar DA experiment but with Rest instead of
Rini. We also applied the estimated prior error covariance in-
flation factors in the DA, following Li et al. (2009). After
analyzing the 131-year states with Rest and inflation factors,25

we estimated both R and the inflation factors again using a
new set of xa and xb. We repeated the procedure 10 times. It-
eratively applying the innovation statistics further improved
the accuracy of the observation error estimates (Figs. 2b–j
and 3). After the fifth and sixth iterations, the estimated er-30

rors converged. The ratio of Rest to the Rtru was 0.1–3.5 after
the 10th iteration, with a mean absolute percentage error of
∼ 46 %. The remaining inaccuracies can be attributed to sam-
pling errors associated with the limited sample size. A more
detailed discussion of this limitation is provided in Sect. 6.2.35

The estimated inflation factors are shown in Fig. A2.
Along with the iteration, the factors converged to a certain

pattern after the fifth and sixth iterations as seen in Rest. The
inflation factors are globally smaller than 1.0 at each itera-
tion. This suggests that the background ensemble should be 40

overdispersive. The background ensemble includes the sim-
ulations for the late 20th century, which is strongly affected
by the global warming. These states should not be reasonable
ones for, e.g., the 19th century, and caused the overdisper-
sive background. This suggests the importance of selecting 45

the background ensemble carefully.
The reconstruction skills improved for all metrics with

Rest (Fig. 4). With iteration, the global mean CC increased
from 0.55 to 0.58, and CE improved from 0.28 to 0.37. The
best skill scores were obtained when Rest was estimated us- 50

ing xa and xb from the fifth iteration. After peaking, the skill
scores gradually decreased with further iterations. This could
be due to the overfitting of Rest associated with the sampling
bias. The largest improvements were observed in the tropics,
particularly in the western tropical Pacific Ocean (Fig. 5). 55

This is likely due to the significant impact of corals on re-
construction skills (Okazaki and Yoshimura, 2017; Shoji et
al., 2022).

To assess the dependence on the initial observation error
covariance, we repeated the same test using two different 60

Rini. The results showed a similar tendency in Rx0.25 and
Rx16, where both observation error estimates and the recon-
struction skills improved with iterations (Figs. 3 and 4). In
contrast, Rest gradually deviated from the Rtru with increas-
ing iterations in Rx1, where Rini=Rtru, leading to a slight 65

decrease in the reconstruction skill scores. This is due to
the sampling error reducing estimation accuracy, as shown in
Rx16. A notable difference in RV was found among the ex-
periments, which increased with iterations in Rx16, whereas
it decreased in the others. This can be explained by how the 70

DA weighs the model prior and observations based on their
errors: larger observation errors result in lower observation
weights. In Rx16, the observation error variances in the anal-
ysis step of the first iteration are intentionally overestimated,
resulting in the small difference between the analysis and 75

the prior. Because the prior was the same in all the analy-
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Figure 2. Relationship between true and estimated observation error variances at each iteration step for the OSSE with initial observation
variance of Rx16. The units of the axes are all ‰ or °C.

Figure 3. Ratio of the estimated observation error variance according to iteration in OSSE Rx16 (dark grey), Rx1 (grey), and Rx0.25 (white).
Horizontal bars of each box correspond to the 1st, 50th, and 99th percentiles. Data smaller (larger) than the 1st (99th) percentile are plotted
as dots. Grey horizontal line shows a ratio of 1. The values shown at the 0th iteration are Rini/Rtru.

sis steps, the analysis also remains nearly stationary, leading
to a low RV. With iteration, the observation error decreased,
allowing the DA to assign more weight to the observations,
in turn increasing the RV. The opposite occurred in Rx0.25,
where the observation errors were initially underestimated.5

With increasing iterations, the estimated observation errors
increased, shifting more weight onto the prior in the DA
process. Consequently, the RV decreased with iterations in
Rx0.25. Despite these differences, all the experiments ulti-
mately converged to the same Rest and the skill scores, sug-10

gesting little dependency on Rini including RV.
With different Rini, the estimated inflation factors ex-

hibit different spatial patterns at the first iteration, where

large (small) Rini resulted in small (large) inflation factors
(Fig. A2), as deduced from Eqs. (16), (17), and (18) and the 15

fact that
〈
do

b(do
b)T
〉

is the same for all the experiments with
different Rini. Nonetheless, the inflation factors converge to
similar patterns after the iterations (Fig. A2). The ensem-
ble spread follows the inflation factors because otherwise the
background ensemble is the same at all the analysis steps in 20

this study (not shown).
The inflation factors and the ensemble spreads are tightly

connected with Rest and deducible by it. Thereby, we focus
only on observation errors hereafter.
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Figure 4. Reconstruction skill score of (a) CC, (b) CE, and (c) RV according to iteration in OSSE Rx16 (thick black line with circle), Rx1
(thin dashed grey line with square), and Rx0.25 (thin dashed-dotted grey line with triangle).

Figure 5. Reconstruction skill score of (top) CC, (middle) CE, and (bottom) RV in OSSE EST Rx16. Left column shows the reconstruction
skill at the first iteration (i.e., without observation error estimation). Second to fifth columns show the skill difference from the previous
iteration; for instance, the second column shows the difference between second and first iterations. Markers in each map show the position
of proxies.

4 Real observation results

Observation errors were estimated using innovation statis-
tics, as in Sect. 3, but for real observations. The estimated
errors after the 10th iteration ranged from 0.79 to 2.11 °C
(mean of 1.59 °C) for surface temperature, from 0.45 ‰ to5

3.50 ‰ (mean of 1.42 ‰) for ice cores, 0.02 ‰ to 0.44 ‰
(mean of 0.12 ‰) for corals, and 0.07 ‰ to 1.54 ‰ (mean
of 0.82 ‰) for tree-ring cellulose (Fig. 6a and b). Errors can
be expressed as the ratio of Rest to the variance of each ob-
servation. At most locations, the estimated observation er-10

rors exceeded one-fourth of the variance, which is the typical
value for paleo-DA (Fig. 7c and d). Although the estimated
observation errors were system specific, as shown in Eq. (2),
these results suggest a need for reconsidering the size of ob-
servation errors in paleo-DA. The corresponding SNRs were15

approximately 1.25 and 1.22 for the corals and tree-ring cel-
lulose, respectively, whereas the SNR was approximately 1.0
for ice cores, indicating that either measurement, represen-

tativeness, or observation operator errors for ice cores are
larger than those for the other proxy types. This may be be- 20

cause no PSM was applied for ice cores. However, even with
PSM, the estimated SNR should be smaller for ice cores be-
cause the skill of the PSM is found to be relatively low com-
pared to the skill of coral and tree-ring cellulose (Okazaki
and Yoshimura, 2019). The estimated SNR for the surface 25

temperature (1.14) was smaller than that estimated by Valler
et al. (2022) (2), showing that the estimated error was larger
in the current study. This was likely due to the coarser hori-
zontal resolution of the background in this study (T42) com-
pared with that in Valler et al. (2022) (T63). 30

The reconstruction skills for surface temperature are
shown as a function of the number of iterations in Fig. 8.
Here, the scores were computed against HadCRUT5 (Morice
et al., 2021) for 1960–2000. This period was selected for bet-
ter spatial coverage of the reference data. The skill scores 35

increase with each iteration, regardless of the metrics used.
Without error estimation, the CC and the CE scores were
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Figure 6. Estimated observation error at the 10th iteration in the REAL experiment in the (a, b) ratio to the temporal variance of each
observation and (c, d) physical unit (‰ or °).

Figure 7. Similar to Fig. 3 but for REAL experiment. Estimated
observation error variances are normalized to temporal variance of
corresponding proxy. Horizontal dashed line shows one-fourth of
the variance, corresponding to SNR= 0.5.

0.38 and 0.04, respectively. After iteration, these values in-
creased to 0.43 and 0.16, respectively. The skill scores were
relatively low compared to those of previous paleo-DA stud-
ies (e.g., Steiger et al., 2018; Tardif et al., 2019; Valler et
al., 2024), likely due to the limited number of assimilated ob-5

servations. The most notable improvements occurred in the
tropical Atlantic Ocean, North Africa, and the northeastern
part of North America, where the initial CC and CE scores
were relatively low (Fig. 9). In these regions, the estimated
observation errors increase with iterations, effectively reduc-10

Figure 8. Reconstruction skill score of CC (circle), CE (triangle),
and RV (square) in the REAL experiment according to iteration.

ing the detrimental increments in the DA process and im-
proving the reconstruction skill. In Siberia and South Pacific
near the coast of south Chile, the skills decrease along with
iteration, likely due to the bias in the background error co-
variance. 15

The reconstruction skills of the REAL EST were com-
pared to the UNI, RES, and VAR experiments, which de-
fined the observation errors in different ways (Fig. 10 and Ta-
ble 2). The global mean skill scores for CC and CE were the
best in the EST, whereas RES and VAR achieved comparable 20

skills with the EST when the scaling parameter was carefully
tuned. In contrast, UNI exhibits the lowest skill scores. In
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Figure 9. Similar to Fig. 5 but for the REAL EST experiment. The scores were calculated against HadCRUTv5 (Morice et al., 2021) for
1960–2000. Areas where observations cover less than half of the period are masked and shaded in grey.

Figure 10. Surface temperature reconstruction skill score for the
REAL EST, RES, VAR, and UNI experiments based on the CC (cir-
cle), CE (triangle), and RV (square). Each mark corresponds to the
skill score of a scaling factor or an iteration. The scores were calcu-
lated with HadISST for 1960–2000.

terms of RV, UNI performed remarkably better than the oth-
ers, when the scaling factor or number of iterations was tuned
with CC. Among the other experiments, EST maintained a
relatively high RV, primarily because the observation errors
in EST were smaller than those in RES and VAR (Fig. 10).5

Similar results were obtained when validating against GIS-
TEMP (Lenssen et al., 2024; Fig. A3 and Table A1).

Table 2. Global mean skill scores for REAL experiments verified
with HadCRUT for 1960–2000. The best score in each experiment
is shown in the table. Bold shows that the score is the best among
the four experiments.

Exp. name No. of iteration/ CC CE RV
Scaling factor

EST 10 0.432 0.162 0.183
UNI 0.7 0.224 −0.038 0.274
VAR 8 0.407 0.159 0.138
RES 1.5 0.416 0.158 0.162

Here we compared the observation errors in all the exper-
iments except for UNI, since the skills based on CC and CE
were exceptionally lower than those of the others. The ob- 10

servation errors in RES and VAR were roughly proportional
to those in EST (Fig. 11a). This suggests that using a glob-
ally constant scaling factor may be reasonable for first-order
approximation in paleo-DA. However, a closer examination
revealed large variations in the ratio of the errors in RES and 15

VAR to those in EST. Specifically, the 10th and 90th per-
centiles of the ratios were 1.84 and 4.37 for VAR and 1.79
and 5.29 for RES, respectively, indicating significant spatial
differences (Fig. 11b). This large variability also suggested
that the observation errors cannot be optimally tuned using a 20

globally constant factor. This, combined with the poor skills
of UNI, underscores the importance of setting and tuning
observation errors individually for each observation point,
rather than applying a uniform universal adjustment.
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Figure 11. (a) Comparison of observation errors in REAL EST and those in VAR (blue), RES (magenta), and UNI (green) in scatter plot.
Cross indicates old documents; hexagon, ice cores; triangle, corals; and diamond, tree-ring cellulose. The observation errors are shown with
physical units (°C or ‰). (b) Ratio of observation errors in REAL VAR, RES, and UNI to those in EST. Horizontal bars show the minimum,
10th, 50th, 90th, and maximum. R1/2

XXX denotes observations errors in either VAR, RES, or UNI.

5 Limitations of the proposed method

5.1 Biases in background error covariance

This study used anomaly assimilation to mitigate model bias
in the mean states and estimated the prior error covariance
inflation factors to ensure that the variance of B used in the5

DA matched that of Best (Eq. 19). This should ensure that
biases in the prior mean and the variance do not affect the
reconstruction skills significantly. We investigated the im-
pact of biases in the covariance structure among the model
states, specifically the off-diagonal elements of B. In DA,10

the covariance plays a key role in spreading observation in-
formation spatially. If the prior covariance structure differs
from the true covariance structure, incorrect increments are
included in the prior update.

We investigated the impact of covariance bias using15

“BIAS”, an experiment similar to the OSSE EST but with
a different model simulation for the background ensemble.
Figure A4 shows the correlation between the mean surface
temperature in the NINO3 area and each model grid point
and indicates that the nature run exhibited stronger correla-20

tions globally than the BIAS.
Figure 12 shows the estimated observation errors for the

BIAS experiment and compares them with those from the
OSSE EST Rx16. The observation errors were consistently
overestimated in BIAS for all the iterations. Although the25

iterative estimation brings Rest closer to Rtru, the discrep-
ancy was larger than that in the unbiased case. Moreover, the
ratio of Rest to the Rtru exhibited a wider distribution com-
pared to that without bias, indicating greater uncertainty in
error estimation. Nevertheless, the reconstruction skills are30

all improved with Rest, although the improvements were less
pronounced than those without bias (Fig. 13). These find-

ings suggested that the innovation statistics remain effective
even in the presence of model bias and that the reconstruction
skills can still be improved through observation error estima- 35

tions. The effectiveness of this method likely depends on the
magnitude of bias. However, the innovation statistics exhib-
ited some tolerance to biases in B, which is consistent with
previous findings (e.g., Li et al., 2009).

5.2 Impact of sample size on observation error 40

estimation

We investigated the impact of sample size on the accuracy of
observation error estimations using a simplified two-variable
model. The experimental design was the same as that of the
OSSE EST, except for the background ensemble and obser- 45

vations:

1. First, the background state xb
∈ R2 is generated by

randomly sampling from a normal distribution, with a
mean of 0 and a variance of 1. Each element of xb was
designed to correlate with the other element with a cor- 50

relation coefficient of 0.7. An ensemble of 136 members
was generated in the same way.

2. Observations yo
∈ R2 are randomly sampled from a

normal distribution with a mean of 0 and the variance of
1. The observations were generated for 131 time steps, 55

assuming that the true state is always 0, meaning that
the true observation error variance is 1.

3. Using the same background ensemble at every time step
as in the stationary offline-DA, the analysis is computed
by assimilating the observations. In the first iteration, 60

the diagonal components of R are set to 2, which is
twice the true observation variance.
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Figure 12. Similar to Fig. 3 but for the OSSE EST (dark grey) and BIAS (grey). Rini is Rx16 in both cases.

Figure 13. Similar to Fig. 4 but for the OSSE EST (thick black line
with circle) and BIAS (thin grey dashed line with square).

4. Observation errors and covariance inflation factors are
then estimated based on the analysis, prior, and obser-
vations using innovation statistics.

5. The third and fourth steps are repeated but with the es-
timated observation errors and the covariance inflation5

factors in DA. The set of analyses and estimations of the
observation errors and inflation factors were repeated 20
times.

6. Steps 1 to 5 were repeated 100 times but with different
realizations of xb and yo.10

Figure 14 compares the estimated sizes of the observation
errors after the 20th iterations and

〈
do

b(do
b)T
〉
. Here,

〈
do

b(do
b)T
〉

is expected to be 2 because the error variances of the prior
and observation are both 1.0 (see Eq. 16). However, the es-
timated values varied between 1.2 and 2.7, highlighting the15

effect of sampling error. We observed a strong correlation be-
tween the estimated observation errors and

〈
do

b(do
b)T
〉
. Specif-

ically, when
〈
do

b(do
b)T
〉
is overestimated, the Rest is also over-

estimated, and vice versa. This occurs because R is estimated
based on

〈
do

b(do
b)T
〉
(see Eq. 18). Therefore, if

〈
do

b(do
b)T
〉
is bi-20

ased due to sampling noise, Rest will also be systematically
biased.

The Rest based on 131 samples was insufficient to sup-
press sampling noise even in a simplified two-variable model

Figure 14. Relationship between
〈
do

b(do
b)T

〉
and Rest at the 20th

iterations for the simplified two-variable model.

(Fig. 14), suggesting that the sample size used in Sects. 3 25

and 4 (n= 131) should also be too small for reliable obser-
vation error estimation. In the case that

〈
do

b(do
b)T
〉

is biased,
iterative estimation of observation errors can degrade the re-
construction skill score because the estimation seeks to mini-
mize the discrepancy between

〈
do

b(do
b)T
〉
and HBHT

+R used 30

in DA. Thus, a larger sample size should be used for the more
robust observation error estimation.

When the correlation between the model state variables
is zero,

〈
do

b(do
b)T
〉

explains almost all the variability in es-
timated observation errors (i.e., a correlation coefficient is 35

nearly 1.0; not shown). However, as the correlation between
the model states increased, the explained variance decreased
(Fig. 14), likely because the observation error estimation at a
given location is influenced by

〈
do

b(do
b)T
〉

in the surrounding
points. When the estimation is affected by multiple surround- 40

ing observations, a simple linear relationship between the es-
timated error and

〈
do

b(do
b)T
〉

does not hold true anymore.
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6 Summary and conclusions

This study investigated the feasibility of observation error es-
timation using innovation statistics (Desroziers et al., 2005)
within an offline-DA framework for paleoclimate reconstruc-
tion. We compared the performance of this approach in both5

an idealized framework assimilating pseudo-proxy data and
a real case study assimilating actual proxy data. We found
that the innovation statistics accurately estimated observation
errors within the offline-DA scheme for the OSSE, achiev-
ing an absolute percent error of ∼ 46 %. Incorporating the10

estimated observation errors into DA improved reconstruc-
tion skill scores (CC and CE) by 5 %–30 % compared to the
ones without them. Furthermore, we also found there is lit-
tle dependence on the initial size of observation error vari-
ance used in DA in subsequent observation error estimation15

and analyses. Although the accuracy of the estimation de-
pended on the sample size and the quality of the prior error
covariance, the estimation method consistently improved the
reconstruction skills.

Beyond idealized experiments, we demonstrated that the20

innovation-statistics-based method also improved the recon-
struction skills in real-world applications. The reconstruction
skills with the estimated observation errors were comparable
with or slightly better than those based on the variance of the
observation or the differences between the observation and25

simulated observation-equivalent quantities. Although fur-
ther tuning may result in better reconstruction skills in these
other approaches, careful and manual parameter tuning is re-
quired, which is prohibitively time-consuming. In this regard,
an innovation-statistics-based approach offers the advantage30

of automatically and systematically estimating errors.
DA nowadays is used to reconstruct climate of the ages

deeper in the past such as the Eocene. In such applications, it
is difficult to build linear regression models only with proxy
data and instrument-based observations due to the shortage35

of overlapping periods. As a consequence, observation er-
rors based on the residual of the linear regression, which is
the commonly used approach in the previous studies, are not
available. Not only for deep time paleo-DA but also for the
late Holocene is direct assimilation of proxy data using a40

process-based model expected to be mainstream in the fu-
ture, as seen in the history of satellite data assimilation for
NWP. The situation necessitates the development of other ap-
proaches to estimate observation errors. This study success-
fully demonstrated a feasible approach for paleoclimate re-45

construction with DA. The method can be readily expanded
to online-DA, since it was originally designed for this pur-
pose. With more accurate observation errors, the observation
impact estimates, such as analysis sensitivity to observation
(e.g., Cardinali et al., 2004; Liu and Kalnay, 2008) and fore-50

cast sensitivity to observations in online-DA (e.g., Langland
and Baker, 2004; Liu and Kalnay, 2008; Li et al., 2010), will
be more accurate, too. These diagnostics can help to identify
detrimental observations and/or key data sources for paleo-

climate reconstruction. As such, the observation error esti- 55

mation method should sophisticate and expand the possibil-
ity and accuracy of paleo-DA.

Despite the benefits, several challenges remain in the ap-
plication of innovation statistics for offline-DA. Our study in-
dicates that sampling noise may affect the accuracy of error 60

estimation, especially with limited proxy records. If the sam-
pling noise is not negligible, iterative estimation may worsen
the reconstruction skill. To mitigate this, an iteration thresh-
old should be set to avoid any detrimental impact on the es-
timates. This issue was outside the scope of this study and 65

requires future research. We did not consider age uncertainty
on the exact date and the length of the representative period
of the proxy records. Although this is not vital for the present
study or climate reconstruction in the last millennium, it is
not true for deep-time paleo-DA. Even for the last millen- 70

nium, it may not be negligible when aiming to reconstruct
climate at a monthly or finer temporal resolution. Age uncer-
tainty can be considered a misrepresentation in the archive
model, a sub-model of the PSM (Evans et al., 2013). Ac-
cordingly, the uncertainty can be regarded as a part of an ob- 75

servation error in DA. However, it remains unclear whether
we should do so or not. Observation errors that include age
uncertainty can be much larger than prior errors. In such
cases, the analysis is reduced to the prior with little informa-
tion from assimilated observations. To avoid this scenario, 80

a method that separately accounts for age uncertainty (e.g.,
Osman et al., 2021) and/or a refinement of the dating (e.g.,
Furukawa et al., 2017) is required. For similar reasons, the
size of each error component must be evaluated, too.

In this study, we tested a specific method for estimating 85

observation errors. However, several alternative approaches
exist with different complexities and applicability (e.g.,
Tandeo et al., 2020, and references therein). Other estimation
methods should be explored for paleo-DA to refine observa-
tion error estimations. 90

Finally, it is important to emphasize that the estimated ob-
servation errors do not represent the true accuracy of the
proxies in recording environmental conditions. Instead, as
defined by Eq. (2), the estimated errors are specific to the
DA system. Therefore, the estimated observation errors are 95

system dependent and not necessarily valid across systems.
Consequently, the observation errors must be estimated sep-
arately for each reconstruction system.

Appendix A

A1 Sensitivity to the observation error variance in R 100

The sensitivity to the observation error variance was exam-
ined using the configuration of the OSSE. In this experiment,
we tested the effects of variation in R= kRtru. The scaling
factor was set to 0.25, 0.5, 1, 2, 4, 8, 16, or 32. The recon-
struction skills ranged from 0.5 to 0.55 for CC and from 0.19 105



A. Okazaki et al.: Observation error estimation in climate proxies 15

to 0.32 for CE, respectively, showing the importance of using
accurate observation error R in DA.

Figure A1. Sensitivity to the observation error variance in OSSE.
The color of the bar indicates the scaling factor.

A2 Estimated inflation factors

The estimated inflation factors for the OSSE are shown in
Fig. A2. The estimated inflation factors exhibit different spa-5

tial patterns at the first iteration with different Rini, where
large (small) Rini resulted in small (large) inflation factors.
Nonetheless, the inflation factors converge to the similar pat-
terns after the iterations.

Figure A2. Estimated inflation factors for the OSSE (top) Rx16, (middle) Rx1, and (bottom) Rx0.25.

A3 Validation result with GISTEMP 10

The reconstruction skills of the REAL EST, UNI, RES, and
VAR experiments were computed with GISTEMP (Lenssen
et al., 2024; Fig. A3 and Table A1). A similar tendency de-
scribed in Sect. 4 was observed.

Figure A3. Surface temperature reconstruction skill score for the
REAL EST, RES, VAR, and UNI experiments based on the CC
(circle), CE (triangle), and RV (square). The scores were calculated
with GISTEMP for 1960–2000.
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Table A1. Global mean skill scores for the REAL experiments verified with GISTEMP for 1960–2000. The best score in each experiment is
shown in the table. Bold shows that the score is the best among the four experiments.

Exp. name No. of iteration/ CC CE RV
scaling factor

EST 10 0.420 0.155 0.170
UNI 0.6 0.226 −0.042 0.278
VAR 8 0.403 0.153 0.133
RES 1.5 0.408 0.150 0.154

A4 Covariance structure of B in BIAS

The BIAS experiment examined the impact of the biased off-
diagonal term of B. The correlation between the mean sur-
face temperature in the NINO3 area and that in each model
grid point was mapped to show the covariance structure dif-5

ference between the nature run and BIAS.

Figure A4. Correlation coefficients between mean surface temperature in the NINO3 area (rectangle area) and the surface temperature in
each model grid point for (a) the nature run and (b) the background ensemble used in the BIAS experiment.

Code availability. The codes to reconstruct climate fields and es-
timate observation errors are written in Fortran and are available
at Zenodo (https://doi.org/10.5281/zenodo.14987726, Okazaki,
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to validate the reconstruction skills were obtained from https:
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