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Abstract. Data assimilation (DA) has been successfully applied in paleoclimate reconstruction. DA combines model
simulations and climate proxies based on their error sizes. Therefore, the error information is crucial for DA to work optimally.
However, little attention has peen paid to the observation errors in the previous studies, especially when the proxies are
assimilated directly. This study assessed the feasibility of innovation statistics, a method developed for numerical weather
prediction, for estimating observation errors in climate reconstruction and its impact on the reconstruction skills. For this
purpose, we conducted offline-DA experiments over 1870-2000. Here, we assimilated stable water isotope records from ice
cores, tree-ring cellulose, and corals. We found that the innovation statistics-based approach correctly estimated the
observation errors, even with the offline-DA scheme. Although the accuracy of the estimation depended on the sample size
and accuracy of the prior error covariance, the estimation generally improved the reconstruction skills. The reconstruction
skills with the estimated observation errors were comparable to those with errors defined differently in the previous studies.
In contrast with those methods used in previous studies, however, innovation statistics-based approach offers an objective and
systematic way to estimate observation errors with light computational cost. As such, the innovation statistics-based approach

should contribute to improving the reconstruction skills and observation networks.

1 Introduction

Data assimilation (DA) estimates the most likely states or parameters by combining prior information drawn from model
simulations (background) and observations. DA is a well-established method in numerical weather prediction (NWP) (e.g.,
Houtekamer and Zhang, 2016; Kalnay, 2003; and references therein), and has recently been applied in, among other fields,

paleoclimate reconstruction. Earlier studies have focused on the last millennium (e.g., Franke et al., 2017; Goosse et al., 2010,
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2012; Hakim et al., 2016; Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022; Wu et al., 2025) while recent studies have
started investigating deeper into the past (e.g., Annan et al., 2024; Kurahashi-Nakamura et al., 2017; Li et al., 2024; Mathiot
et al., 2013; Osman et al., 2021; Renssen et al., 2015; Tierney et al., 2020; 2022).

The DA weighs the simulation and observations based on their errors in the estimation. Therefore, the error information is
crucial for DA to work optimally. Let us introduce the definition of the errors in DA here to depict issues in paleo-DA. In DA,

background error €2 and observation error €° are defined as

b=xb_xt (1)

€=y —HE) =[y’ -y ]+ [y —H )] + [H' ") - HE] )

€

where, x is the model state, y is the observations, and # is the observation operator that converts the model state to an
observation-equivalent quantity. The superscripts b, ¢, and o represent the background, the truth, and the observations,
respectively. Observation error €° consists of three distinct components: measurement error, which arises from instrumental
limitations and observational noise; representativeness error, which reflects discrepancies between the model’s spatial and
temporal resolution and the actual observations; and errors in the observation operator. Each component is represented by the

term on the right side of Eq. 2 from left to right. The corresponding error covariance matrices denoted as B and R are defined

as
B = (e"(e”)") 3)
R = (GO(GO)T), (4)

where the brackets (-) denote a statistical expectation.

Here, we briefly review how B and R are treated in paleo-DA. Because of its common use, we focused on ensemble-based
approaches in reviewing B (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al.,
2022; 2024). Generally, background ensembles can be drawn from any collection of reasonable states. This may be a highly
informed prior, such as a short-term forecast from an accurate analysis as in NWP, or an “uninformed” prior, such as a random
sample from a model climatology (Hakim et al., 2016). In paleo-DA, regardless of the accuracy of the model initial condition,
the information will be lost long before the next analysis step because of the chaotic nature of the climate and temporarily
sparse observations (typically, observations are available once a year). Therefore, it is meaningless to use the analysis as the
initial condition for the subsequent model forecasting (Bhend et al., 2012). For this reason, “offline-DA” is commonly used,
where the background ensembles are drawn either from a single long climate simulation or from an ensemble of such
simulations (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022; 2024)
referred to as stationary offline-DA and transient offline-DA, respectively. Because there is no information other than external

forcings (e.g., greenhouse gas concentrations, total solar irradiance, and orbital parameters) to constrain the model states, such
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an "uninformed" background ensemble is suitable for representing the error or the uncertainty of the background. While several
studies have explored the feasibility of the online-DA and demonstrated its potential (e.g., Acevedo et al., 2017; Matsikaris et
al., 2015; Okazaki et al., 2021; Perkins and Hakim, 2017; 2021), offline-DA remains the preferred approach owing to its

simplicity and the low computational costs.

There is no established method for defining the observation error or observation error covariance matrix R in paleo-DA. The
most common method for specifying observation errors is to use residuals (e.g., Dalaiden et al., 2021; Franke et al., 2017,
Hakim et al., 2016; Osman et al., 2021; Steiger et al., 2018; Tardif et al., 2019; Perkins and Hakim, 2021; Tierney et al., 2020;

Valler et al., 2022). Here, the specified observation errors €° are given by the following form:
&€ =y’ —HXx") (5)

where X' represents reference data. Many of the paleo-DA studies employ linear regression models as an observation
operators, where each proxy record is linearly regressed against reference data from the instrumental period (e.g., Dalaiden et
al., 2021; Franke et al., 2017; Hakim et al., 2016; Steiger et al., 2018; Tardif et al., 2019; Perkins and Hakim, 2021; Valler et
al., 2022). In this approach, observation-based gridded surface temperature data, such as HadCRUTS (Morice et al., 2021), is
typically used as the reference data. Alternatively, process-based proxy system models (PSMs; Evans et al., 2013; Dee et al.,
2015) are sometimes used as observation operators (e.g., Acevedo et al., 2017; Dee et al., 2017; Okazaki and Yoshimura, 2017,
Steiger et al., 2017) to provide a more physically informed representation of proxy-climate relationships. A PSM provides a
complete set of forward and mechanistic processes by which climatic information is imprinted and subsequently observed in
proxy archives. Although they are more complex than the linear regression models, the same approach can be used to obtain
observation errors, provided that all the input variables for H are available at the proxy sites. However, it is rarely possible to
obtain all necessary variables directly from observations at proxy sites. In such cases, model simulations are instead used as

x"/ to provide the required inputs (Tierney et al., 2020; Osman et al., 2021).

Some studies have approximated observation errors by assuming that the representativeness error is dominant (e.g., Goosse et
al., 2012; Dalaiden et al., 2021; Rezsohazy et al., 2022). These studies estimated representativeness errors at each observation
location by comparing two timeseries with different spatial representations, for instance, in-situ observation and the gridded

observation data or two simulations, one with high and the other with low spatial resolutions.

An alternative method for estimating observation error is based on the variance of the observation timeseries (Franke et al.,
2017; Okazaki and Yoshimura, 2017; Valler et al., 2022). In paleoclimate studies, it is common to show the observation noise
level as a function of the variance (6%) with SNR (signal-to-noise ratio) defined as a5,/ 0,0, where the numerator and the
denominator are the standard deviation of the error and signal in a proxy timeseries, respectively (Smerdon et al., 2012 and

references therein). Typically, one-fourth of the variance, which corresponds to an SNR of 2, is assumed to be an observational
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error in paleo-DA. The factor was decided based on measurement errors in Okazaki and Yoshimura (2017), while it was used
without grounds for documentary-type observations in Franke et al. (2017) but verified later with the innovation statistics

(Valler et al., 2022).

Although the aforementioned methods are widely accepted, they also have limitations. The first approach using linear
regression models becomes impractical when the overlapping period between x"¢ and y° is too short. In general, climate proxies
that span long periods tend to have low temporal resolution and few overlapping points, making it difficult to use this approach
for deep climate reconstruction. Given that paleo-DA is also used to reconstruct deep-time paleoclimates, such as the Paleocene
and Eocene (e.g., Li, et al., 2024; Tierney et al., 2022), different approaches are required. Besides, the observation error €°
defined in Eq. 5 is different from €° in Eq. 2, because x'?, whether it is based on observations or simulations, is not the truth.
Because x"¢ contains errors, the derived matrix R is likely to be overestimated. A few studies have introduced a scaling factor
to compensate for overestimation, where a globally uniform factor is multiplied by all records to maximize the resultant
analysis skill (Osman et al., 2021; Tierney et al., 2020). However, a globally constant scaling factor may not yield the best
results. Although these factors may be individually tuned, manual tuning is unrealistically time-consuming. The second
approach, which estimates observation errors based on the representativeness errors, requires a dense observation network,
gridded observation datasets, or high-resolution model simulations, which are limited in terms of climate proxies or equivalent
quantities. Additionally, the representativeness error may not always be dominant since its magnitude depends on the resolution
of the model simulation used for the background, proxy type, and accuracy of the observation operators. The third approach,
which assumes that the observation error is a fixed fraction of the total variance, is not well-supported by theoretical
considerations, and there is no clear justification for its universal adoption. In addition, the manual tuning of this factor for
each proxy record is impractical. Some studies use multiple error specification approaches, depending on the observation types
(e.g., Dalaiden et al., 2021; Franke et al., 2017; Valler et al., 2022). However, hybrid approaches may introduce biases to

specific types of observations, leading to suboptimal DA performance.

Wrongly specified observation error covariance matrix R can severely reduce paleoclimate reconstruction accuracy. Tierney
et al. (2020) showed that the reconstruction skill score varied up to 20 % depending on the magnitude of error variance. We
also confirmed that misspecified R can lead to skill score variations of up to 68 % (Fig. A1). The skill difference is as large as
that between prior and analysis, highlighting the importance of accurate observation errors. Therefore, paleo-DA requires

sophisticated and systematic methods to estimate observation errors.

In the field of NWP, several methods have been developed to estimate observation errors using innovation statistics (e.g., Dee
and da Silva, 1999; Desroziers et al., 2005; Hollingsworth and Lonnberg, 1986). Here, the term “innovation” refers to the
differences between the observations and background state in the observation space. The statistics of innovations are called

“innovation statistics” and contains the information on the observation and background errors. Innovation statistics has been
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widely adopted in many studies and weather forecasting centers (e.g., Honda et al., 2018; Lellouche et al., 2018; Minamide

and Zhang, 2017; Okamoto et al., 2018; Schraff et al., 2016; Tandeo et al., 2020 and references therein).

This study investigated the feasibility of innovation statistics in estimating observation errors in paleo-DA and its impact on
the reconstruction skill. For this purpose, we “reconstructed” climate for the 19" and 20" centuries, where abundant
instrumental data is available for verification. We adopted the ensemble-based offline-DA approach, in which isotopic proxies

were assimilated using PSMs based on Okazaki and Yoshimura (2017).

The remainder of this paper is structured as follows: Section 2 describes the methods and the experimental design. Section 3
examines the accuracy of the observation error estimation and evaluates the reconstruction skills using a series of observing
system simulation experiments (OSSEs). Section 4 presents the estimation results obtained from the real observational data.

Finally, Sections 5 and 6 present a discussion and summary of the study findings, respectively.

2 Methods
2.1 Local Ensemble Transform Kalman Filter (LETKF)

This study used the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007), a variant of the ensemble Kalman
filter (EnKF), to solve the update equation of the Kalman filter. Let X be the N-dimensional model state and consider an

ensemble of m-members. The analysis ensemble mean and the perturbations in the LETKF are given by:

X = %P + XPP(HX?) "R (y° — H(XP)) (6)
X = Xbvm — 14"/, (7)

where, X denotes the ensemble mean, and X denotes the ensemble perturbation matrix, and the superscripts a and b denote the
analysis and background, respectively. Here, X is a vector of length N, and X is the N X m matrix whose i th column is x® —
X, where superscript (i) denotes the i th member of the ensemble (i = {1,2, ..., m}). The notation y° is the observation vector
of length p, R the observation error covariance matrix whose size is p X p, H the observation operator that converts the model
state to the observation equivalent quantity, H the linearized observation operator whose size is p X N, and P the covariance

matrix in the ensemble space whose size is m X m given by
P® = [(m — DI/A + (HX")"R™'(HX")] %, ®)

where, A is a covariance inflation parameter, which inflates the prior error covariance matrix to avoid underestimation of the
analysis error covariance and filter divergence. To reduce the spurious error covariance among distant points due to sampling

errors caused by the limited ensemble size, covariance localization has been commonly used in EnKF (e.g., Houtekamer and
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Mitchell, 2001). Localization in the LETKF is implemented by inflating the observation error variance distant from the analysis
model grid point (Hunt et al., 2007; Miyoshi and Yamane, 2007). With localization, the observation error covariance matrix

is replaced by
R<ploR ©)

Here, p denotes the localization weights and is a function of the distance between the observations and the analysis model grid
point. The LETKF solves the above equations at all model grid points by assimilating a subset of observations surrounding

each analysis grid point. Therefore, X and X reduce to a scalar and 1 X m matrix, in practice.

2.2 Innovation statistics

This study used the innovation statistics proposed by Desroziers et al. (2005) to estimate observation errors. This study also
estimates the covariance inflation factor because accurate B is required to estimate the observation error (Li et al., 2009). The
observation-minus-background innovation vector (d), given by the difference between the observations and the background

state in the observation space, can be expressed as
dp = y° — #(x?) = €° — He?, (10)

where €° and €” are observation and background errors, respectively and are defined as the difference from the truth (see also
Eq. 1). Similarly, the observation-minus-analysis innovation vector (d3), the differences between observations and analysis in

the observation space are given by
d2 =y° — H(x%) = y° — H(x? + 8x%) = y° — H(x?) — H8x* = d) — H8x%. (11)

The Taylor series expansion around x® and Eq. 10 were used for the transformation. The notation 8§x% denotes the analysis
y p q y

increment and is defined as

8x% = x* — xP = K[y° — H(x?)] = KdJ, (12)
where K is the Kalman gain given by

K = BH”(HBH” + R). (13)
With the above equations, Eq. 11 can be further transformed into

d9 = (1 - HK)d$ = R(HBHT + R)"1dj. (14)

Finally, the differences between the analysis and background in the observation space (df) can be derived using Eq. 14 as

follows:

d¢ =d? — d° = HKdS. (15)
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The innovation vectors defined in Eqgs. 10, 14, and 15 can be used to derive several diagnostics based on the following
assumptions: (1) the observation and background errors are unbiased and uncorrelated, and (2) the observation and background
error covariances in the observation space (HBHT) are correctly specified. The first diagnostic considers HBHT + R and is

given as follows:
(d9(dT) = (e°(€°)T) + (He? (He?)T) = HBHT + R. (16)

Here, the cross-covariance terms are assumed to be zero because of the assumption (1). The background error covariance in

the observation space (HBHT) can be estimated using Eqgs. 13, 15, and 16:

(dZ(d9)T) = HK(d$(d2)T) = HK(HBHT + R) = HBH”. (17)
Finally, the observation error covariance (R) can be estimated using Eqs. 14 and 16:

(dg(d3)") = R(HBH" + R)"X(dj(d})") = R. (18)

The covariance inflation factor (A) can be estimated adaptively by comparing HBHT represented by the background ensemble
and the estimated one with Eq. 17 (Li et al., 2009). This study estimated the factor for each model grid point (i.e., locally)
following Miyoshi (2011).

trace((dg(dg)T)OpOR_l)

A= T
trace(l/(m—l) HXP(HXP) OpOR_l)

(19)

Here, o denotes the Schur product. The inverse of R and p is multiplied for the normalization of multiple observations and
spatial smoothing of the inflation estimates. Note that R and HBHT constitute the observations and simulated equivalent

quantities within the radius of influence.

2.3 Experimental design

We conducted two series of DA experiments, OSSE and REAL, which only differ in the observations to be assimilated. In
OSSE, we created the observations using a reference simulation (so-called “nature run”) and observation operators. As such,
OSSE can be considered as an idealized experiment and is equivalent to the idea of pseudoproxy experiment in paleo-DA (e.g.,
Steiger et al., 2014). The background ensemble was created using the same model as that for the nature run (i.e., perfect model
experiment), but with slightly different external forcings (see below for more details). This allows for a direct evaluation of
the observation error estimation in the absence of other error sources. We also performed climate reconstruction with the
estimated observation errors in REAL, which uses real observation data for DA. In addition to the differences in observations,
the OSSE and REAL experiments shared the same experimental settings. Multiple experiments were conducted for each
framework. The default experimental settings and experiment-specific configurations are detailed in Sections. 2.3.1 and 2.3.2,

respectively.
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2.3.1 Default experimental settings

Background ensemble: We constructed a background ensemble by running MIROCS5-iso (Okazaki and Yoshimura, 2017,
2019), an isotope-enabled atmospheric general circulation model (GCM) developed based on the atmospheric component of
MIROCS5 (Watanabe et al., 2012). MIROCS5-iso is forced by simulated SST and sea ice concentrations (SIC), observed
greenhouse gases (carbon dioxide, methane, and chlorofluorocarbons), ozone, and land-use changes. We derived the SST and
SIC data from the Coupled Model Intercomparison Project Phase 5 (CMIPS; Taylor et al., 2012) historical simulation of
MIROCS with the “rlilpl” ensemble member. The isotopic compositions of sea surface water and sea ice were kept constant
and assumed to be 0%o0 and 3%, respectively (Joussaume and Jouzel, 1993). The model resolution was set to T42 (~280 km
on the equator), with 40 vertical levels. We used a single-member simulation covering 1870-2005 to generate a 136-member
background ensemble, where 136 annual means (i.e., model states) are used as an ensemble member (Steiger et al., 2014). We
used the same background ensemble for all experiments, unless otherwise noted.

Observations: We used the Iso2k (Konecky et al., 2020) and PAGES2k databases (PAGES2k Consortium, 2017) for the
observation data. The Iso2k database contains stable oxygen ('*0) and hydrogen (*H) isotopic records from various archives.
This study used isotopic records of ice cores, corals, and tree-ring cellulose, as described by Okazaki and Yoshimura (2017
2019). In addition, three surface temperature records in historical documents from the PAGES2k database are used for the ease
of comparison of the observation errors with the previous studies. In the REAL experiments, observations with a temporal
resolution shorter than 1 year were averaged to obtain annual means, whereas observations with a resolution longer than 1 year
were discarded. In OSSEs, observations were made based on the nature run, which was constructed using a simulation with a
configuration identical to that for the background except for SST and SIC; the MIROCS simulation of the CMIP5 historical
run with the ensemble member “r2ilpl” was used. The model fields at the proxy locations were extracted using bilinear
interpolation and then converted to an observation-equivalent quantity using observation operators, or PSMs, as described
below. The input and output variables for the PSMs were monthly means and were annualized such that the experimental
setting was comparable to that for REAL. To simulate the observational uncertainty, random noise was added to each data.
This noise was drawn from a normal distribution with zero mean and variance equal to one-fourth of the temporal variance of

the annualized time series. The number of observations and the spatial distribution are shown in Fig. 1.
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Figure 1: (a) Number of proxies used in this study. The color shows the type of proxy. (b) Geographical location of proxies.

Observation operators (PSMs): We used the PSM developed by Liu et al. (2013, 2014) for corals, and that of Roden et al.
(2000) for tree-ring cellulose. For the ice cores, we assumed that the isotopic composition was the same as that of precipitation
at the time of deposition. In reality, the isotope ratios in ice cores may deviate from those in precipitation due to post-
depositional processes (e.g., Schotterer et al., 2004). More detailed information on PSMs can be found in Okazaki and
Yoshimura (2017; 2019). For surface temperature, simulated 2-m temperature is directly used.

Data assimilation: The assimilation was conducted following the anomaly-DA approach (e.g., Keenlyside et al., 2008; Smith
et al., 2007), where the corresponding climatological mean is subtracted from both observations and background in the
observation space to mitigate the detrimental impact of model bias. We calculated the climatological mean using the
overlapping years between observations and simulations during the period from 1900 to 2000. The overlapping period must
span longer than 30 years for the computation of the climatological mean. Otherwise, the corresponding observation is
discarded. Note that the period represented by the climatological mean differs by site since the observational period varies.
For the background covariance localization, a fifth-order polynomial function was used (Gaspari and Cohn, 1998). The
localization scale was manually tuned beforehand to maximize the correlation coefficient, and a half-localization scale of 8,000
km was used for all the experiments. The observation error covariance matrix was assumed to be diagonal, as in many other
studies (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022). The diagonal
element of the matrix (i.e., error variances) was set to one-fourth of the temporal variance of the annual observation timeseries,
unless otherwise specified. This size of the error variance was identical to that used to create the observations in the OSSE.

The assimilation was conducted for 1870-2000 in both OSSE and REAL experiments.
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2.3.2 List of experiments

In the OSSE, we performed the “EST” and “BIAS” experiments. In EST, the observation errors were estimated using
innovation statistics and the performance of the climate reconstruction with DA with estimated observation errors was
assessed. In BIAS, we investigated the impact of a biased background error covariance. In general, the structure of the
background error is different from that of the nature. The experiment is designed to investigate the impact of a misrepresented
background error covariance. In the REAL, observation errors defined in different ways as in previous studies (UNI, VAR,
and RES) were tested and compared with “EST”. Each experimental setting is detailed below and summarized in Table. 1.
EST: We estimated observation errors based on innovation statistics (Eq. 18). To address sampling error in the estimation, a
large number of samples is required for reliable estimates. We used the entire period of one DA experiment (i.e., 1870-2000;
131 samples) to maximize the sample size. We also estimated the covariance inflation factor as well (Li et al., 2009) since the
simultaneous estimation of the covariance inflation factor and R improves the analysis skills. The set of DA experiment and
the estimation of the inflation factor and R can be conducted iteratively, where the estimated inflation factor and R from one
iteration are used in the subsequent DA experiment. In this study, we repeated the procedure 10 times. In the OSSE, R used in
the first iteration (Rini) of the DA is given by either of 4-times of variance (Rx16), one-fourth the variance (Rx1), or one-
sixteenth the variance (Rx0.25). In Rx1, Rini is equal to the actual error (Ru). No covariance inflation was applied in the first
iteration for either in the OSSE or REAL.

BIAS: We conducted an experiment similar to EST but with a biased background ensemble to examine the impact of the
biased off-diagonal term of B. Instead of the MIROCS5-iso simulation used in EST, the model simulation forced by observation-
based SST and SIC from HadISST1 (Rayner et al., 2003) was used. The experiment was conducted only for the OSSE.

UNI: In this experiment, each observation type shared the same observation errors, given by the mean of the estimated values
from EST multiplied by the globally constant scaling factor &£ (0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, and 2). The experiment was
conducted only for the REAL.

VAR: Observation errors were determined based on the standard deviations of each proxy record multiplied by a globally
constant scaling factor (Franke et al., 2017; Okazaki and Yoshimura, 2017; Valler et al., 2022). The scaling factor k£ was varied
at 1/8,1/4,1/2,3/4, 1, 2,4, 8, and 16. The experiment was conducted only for the REAL.

RES: In this experiment, observation variances are given as follows:
R = k diag({(e€”)), where € = y° — I (x"¢)). (20)

We used a simulation forced by observation-based SST and SIC, HadISST1 (Rayner et al., 2003), as x"¢ instead of gridded
instrumental observation data. The other simulation settings were identical to those for the background ensemble. Only the
records that overlapped with the simulation for at least 30 years were used. We used this approach because no gridded isotopic
observation dataset is available to drive the observation operators. The scaling factor £ was varied at 0.25, 0.5, 0.6, 0.7, 0.8,

0.9, 1, 1.5, and 2. The experiment was conducted only for the REAL.
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Table 1: Experimental settings

Exp. Type Exp. Name Background Observation R

OSSE EST rlilpl? 2ilpl® Estimated with innovation statistics
BIAS HadISST1¢ 2ilpl® Estimated with innovation statistics
REAL EST rlilpl? Iso2k¢ Estimated with innovation statistics
UNI rlilpl? Iso2k¢ Same observation errors for each observation type
VAR rlilpl? Iso2k¢ Variance of the proxy timeseries multiplied by a scaling factor
RES rlilpl? Iso2k¢ Based on the difference between observation and a reference
simulation

*MIROCS-iso forced by a historical run of MIROCS in CMIPS, labelled “rlilpl”

bIso2k-like observation created with MIROC5-iso forced by a historical run of MIROCS in CMIPS5, labelled “r2ilpl”
*MIROCS5-iso forced by observation-based SST and SIC of HadISSTI (Rayner et al., 2003)

4Konecky et al. (2020)

2.4 Metrics

We verified the results for the annual mean 2-m air temperature against the reference data x’¢. Three metrics were used to
evaluate the reconstruction skills; the Pearson correlation coefficient (CC), the coefficient of efficiency (CE; Nash and

Sutcliffe, 1970), and the relative variance (RV). The definitions are as follows:

cc =2t
) 2(x )
Z(x‘-‘—x.”f)z
CE=1- &Telf)z , and
) X
Ry = 204 22.
(=)

Here, x{* and xir °f denote i th year of the analysis and the reference. Accordingly, the metrics evaluates the interannual
variability. In all the metrics, the inputs are given in anomaly forms with respect to the climatological mean to ignore the model
biases. For the OSSE experiments, the nature run was used as the reference data. For the REAL, HadCRUTvVS (Morice et al.,

2021) was used as the reference data.

3 Perfect model results

This section evaluated the performance of the innovation statistics in estimating the observation errors and its effects on the

reconstruction skills in the OSSE experiments.
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Figure 2a compares the true observation variances (Ruu) and the estimated observation variances (Rest) for EST with an initial
R 16-times larger than Ruu (Rx16). Most of the estimated observations fall between the two reference lines in Fig. 2a with the
slopes of 2 and 4. Given that the initial observation variances were 16-times larger than the truth, the differences between Rest

and R became smaller than Rini after the estimation. Improvements were observed across different proxy types, demonstrating

that the estimation method functioned properly.
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Figure 2: Relationship between true and estimated observation error variances at each iteration step for the OSSE with initial

observation variance of Rx16. The units of the axes are all %o or C.

With a more accurate and representative R, the DA is expected to become more accurate. Moreover, the observation error
estimates are expected to be more accurate when R is correctly specified (Desroziers et al., 2005). Accordingly, we conducted
a similar DA experiment but with Rest instead of Rini. We also applied the estimated prior error covariance inflation factors in
the DA, following Li et al. (2009). After analyzing the 131-year states with Rest and inflation factors, we estimated both R and
the inflation factors again using a new set of x* and x°. We repeated the procedure 10 times. Iteratively applying the innovation

statistics further improved the accuracy of the observation error estimates (Figs. 2b-j and 3). After the 5™ and 6™ iterations, the
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estimated errors converged. The ratio of Rest to the Rew was 0.1-3.5 after the 10" iteration, with a mean absolute percentage
error of ~46%. The remaining inaccuracies can be attributed to sampling errors associated with the limited sample size. A
more detailed discussion of this limitation is provided in Sect. 6.2.

The estimated inflation factors are shown in Fig. A2. Along with the iteration, the factors converged to a certain pattern after
the 5™ and 6 iterations as seen in Resi. The inflation factors are globally smaller than 1.0 at each iteration. This suggests that
the background ensemble should be overdispersive. The background ensemble includes the simulations for the late 20* century,
which is strongly affected by the global warming. These states should not be reasonable ones for e.g., 19" century and caused

the overdispersive background. This suggests the importance of selecting the background ensemble carefully.
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Figure 3: Ratio of the estimated observation error variance according to iteration in OSSE Rx16 (dark grey), Rx1 (grey), and Rx0.25
(white). Horizontal bars of each box correspond to the 1%, 50, and 99" percentiles. Data smaller (larger) than the 1% (99t") percentile

are plotted as dots. Grey horizontal line shows a ratio of 1. The values shown at 0" iteration are Rini/Rru.

The reconstruction skills improved for all metrics with Rest (Fig. 4). With iteration, the global mean CC increased from 0.55
to 0.58, and CE improved from 0.28 to 0.37. The best skill scores were obtained when Rest was estimated using x* and x° from
the 5" iteration. After peaking, the skill scores gradually decreased with further iterations. This could be due to the overfitting
of Rest associated with the sampling bias. The largest improvements were observed in the tropics, particularly in the western
tropical Pacific Ocean (Fig. 5). This is likely due to the significant impact of corals on reconstruction skills (Okazaki and

Yoshimura, 2017; Shoji et al., 2022).
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Figure 4: Reconstruction skill score of (a) CC, (b) CE, and (c) RV according to iteration in OSSE Rx16 (thick black line with circle),

360 Rx1 (thin dashed grey line with square), and Rx0.25 (thin dashed-dotted grey line with triangle).

365

0.1 0.2

-0.2 -01 O

0.1 0.2

-0.2 -0.1

0 0.1

-0.2 -0.1 O

0.2

0.1 0.2

Figure 5: Reconstruction skill score of (top) CC, (middle) CE, and (bottom) RV in OSSE EST Rx16. Left column shows the

reconstruction skill at the 1% iteration (i.e., without observation error estimation). Second to fifth columns show the skill difference

from the previous iteration; for instance, the second column shows the difference between 2"! and 1% iterations. Markers in each

map show the position of proxies.
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To assess the dependence on the initial observation error covariance, we repeated the same test using two different Rini. The
results showed a similar tendency in Rx0.25 and Rx16, where both observation error estimates and the reconstruction skills
improved with iterations (Figs. 3 and 4). In contrast, Rest gradually deviated from the Ruwu with increasing iterations in Rx1,
where Rini = R, leading to a slight decrease in the reconstruction skill scores. This is due to the sampling error reducing
estimation accuracy, as shown in Rx16. A notable difference in RV was found among the experiments, which increased with
iterations in Rx16, whereas it decreased in the others. This can be explained by how the DA weighs the model prior and
observations based on their errors: Larger observation errors result in lower observation weights. In Rx16, the observation
error variances in the analysis step of the 1 iteration are intentionally overestimated, resulting in the small difference between
the analysis and the prior. Because the prior was the same at all the analysis steps, the analysis also remains nearly stationary,
leading to a low RV. With iteration, the observation error decreased, allowing the DA to assign more weight to the observations,
in turn increasing the RV. The opposite occurred in Rx0.25, where the observation errors were initially underestimated. With
increasing iterations, the estimated observation errors increased, shifting more weight onto the prior in the DA process.
Consequently, the RV decreased with iterations in Rx0.25. Despite these differences, all the experiments ultimately converged
to the same Rest and the skill scores, suggesting the little dependency on Rini including RV.

With different Rini, the estimated inflation factors exhibit different spatial patterns at the first iteration, where large (small) Rini
resulted in small (large) inflation factors (Fig. A2), as deduced from Egs. 16, 17, and 18 and the fact that (d$(d$)T) is the
same for all the experiments with different Rini. Nonetheless, the inflation factors converge to the similar patterns after the
iterations (Fig. A2). The ensemble spread follows the inflation factors because otherwise the background ensemble is the same
at all the analysis steps in this study (not shown).

The inflation factors and the ensemble spreads are tightly connected with Rest and deducible by it. Thereby, we focus only on

observation errors hereafter.

4 Real observation results

Observation errors were estimated using innovation statistics, as in Sect. 3, but for real observations. The estimated errors after
the 10" iteration ranged from 0.79 °C to 2.11 °C (mean of 1.59 °C) for surface temperature, from 0.45 %o to 3.50 %o (mean of
1.42 %o) for ice cores, 0.02 %o to 0.44 %0 (mean of 0.12 %o) for corals, and 0.07 %o to 1.54 %o (mean of 0.82 %o) for tree-ring
cellulose (Fig. 6a and 6b). Errors can be expressed as the ratio of Rest to the variance of each observation. At most locations,
the estimated observation errors exceeded one-fourth of the variance, which is the typical value for paleo-DA (Figs. 7c and
7d). Although the estimated observation errors were system specific, as shown in Eq. 2, these results suggest a need for
reconsidering the size of observation errors in paleo-DA. The corresponding SNR were approximately 1.25, and 1.22 for the
corals and tree-ring cellulose, respectively, whereas it was approximately 1.0 for ice cores, indicating that either measurement,

representativeness, or observation operator errors for ice cores is larger than those for the other proxy types. This may be
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because no PSM was applied for ice cores. However, even with PSM, the estimated SNR should be smaller for ice cores
because the skill of the PSM is found to be relatively low compared to the ones for coral and tree-ring cellulose (Okazaki and
Yoshimura, 2019). The estimated SNR for the surface temperature (1.14) was smaller than that estimated by Valler et al.
(2022) (2), showing that the estimated error was larger in the current study. This was likely due to the coarser horizontal

405 resolution of the background in this study (T42) compared with that in Valler et al. (2022) (T63).
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Figure 6: Estimated observation error at the 10" iteration in the REAL experiment in the (a, b) ratio to the temporal variance of

each observation and (c, d) physical unit (%o or C).

16



410

415

420

o O o o o o o o o
5_
4_

~ | o

Q

>

52

>

<

4

x21{o 0o O O O o o o o o
0 © o o o o o

1 2 3 4 5 6 7 8 9 10

# of iteration

Figure 7: Similar to Fig. 3 but for REAL experiment. Estimated observation error variances are normalized to temporal variance

of corresponding proxy. Horizontal dashed line shows the one-fourth of the variance, corresponding to SNR = 0.5.

The reconstruction skills for surface temperature are shown as a function of the number of iterations in Fig. 8. Here, the scores
were computed against HadCRUTS (Morice et al., 2021) for 1960-2000. This period was selected for better spatial coverage
of the reference data. The skill scores increase with each iteration, regardless of the metrics used. Without error estimation, the
CC and the CE scores were 0.38 and 0.04, respectively. After iteration, these values increased to 0.43 and 0.16, respectively.
The skill scores were relatively low compared to those of previous paleo-DA studies (e.g., Steiger et al., 2018; Tardif et al.,
2019; Valler et al., 2024), likely due to the limited number of assimilated observations. The most notable improvements
occurred in the tropical Atlantic Ocean, North Africa, and the north-eastern part of North America, where the initial CC and
CE scores were relatively low (Fig., 9). In these regions, the estimated observation errors increase with iterations, effectively
reducing the detrimental increments in the DA process and improving the reconstruction skill. In Siberia and south Pacific

near the coast of south Chile, the skills decrease along with iteration, likely due to the bias in the background error covariance.
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Figure 8: Reconstruction skill score of CC (circle), CE (triangle), and RV (square) in the REAL experiment according to iteration.
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Figure 9: Similar to Fig. 5 but for the REAL EST experiment. The scores were calculated against HadCRUTVS (Morice et al., 2021)

430 for 1960-2000. Areas where observations covers less than half of the period are masked and shaded in grey.

435 The reconstruction skills of the REAL EST were compared to the UNI, RES, and VAR experiments, which defined the

observation errors in different ways (Fig. 10 and Table. 2). The global mean skill scores for CC and CE were the best in the

18



440

EST, whereas RES and VAR achieved comparable skills with the EST when the scaling parameter is carefully tuned. In
contrast, UNI exhibits the lowest skill scores. In terms of RV, UNI performed remarkably better than the others, when the
scaling factor or number of iterations was tuned with CC. Among the other experiments, EST maintained a relatively high RV,

primarily because the observation errors in EST were smaller than those in RES and VAR (Fig. 10). Similar results were

obtained when validating against GISTEMP (Lenssen et al., 2024; Fig. A3 and Table. Al).
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Figure 10: Surface temperature reconstruction skill score for the REAL EST, RES, VAR, and UNI experiments based on the CC
445  (circle), CE (triangle), and RV (square). Each mark corresponds to the skill score of a scaling factor or an iteration. The scores were
calculated with HadISST for 1960-2000.
Table 2: Global mean skill scores for REAL experiments verified with HadCRUT for 1960-2000
Exp. Name # of iteration / cC CE RV
Scaling factor
EST 10 0.432 0.162 0.183
UNI 0.7 0.224 -0.038 0.274
VAR 8 0.407 0.159 0.138
RES 1.5 0.416 0.158 0.162
450
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Here we compared the observation errors in all the experiments except for UNI, since the skills based on CC and CE were
exceptionally lower than those of the others. The observation errors in RES and VAR were roughly proportional to those in
EST (Fig. 11a). This suggests that using a globally constant scaling factor may be reasonable for first-order approximation in
paleo-DA. However, a closer examination revealed large variations in the ratio of the errors in RES and VAR to those in EST.
Specifically, the 10" and 90" percentile of the ratios were 1.84 and 4.37 for VAR and 1.79 and 5.29 for RES, respectively,
indicating significant spatial differences (Fig. 11b). This large variability also suggested that the observation errors cannot be
optimally tuned using a globally constant factor. This, combined with the poor skills of UNI, underscores the importance of
setting and tuning observation errors individually for each observation point, rather than applying a uniform universal

adjustment.
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Figure 11: (a) Comparison of observation errors in REAL EST and those in VAR (blue), RES (magenta), and UNI (green) in scatter
plot. Cross indicates old documents; hexagon, ice cores; triangle, corals; and diamond, tree-ring cellulose. The observation errors

are shown with physical units (°C or %o). (b) Ratio of observation errors in REAL VAR, RES, and UNI to those in EST. Horizontal

bars show the minimum, 10, 50", 90", and maximum. R}l(g( denotes observations errors either in VAR, RES, or UNIL
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5 Limitations of the proposed method
5.1 Biases in background error covariance

This study used anomaly assimilation to mitigate model bias in the mean states and estimated the prior error covariance
inflation factors to ensure that the variance of B used in the DA matched that of Best (Eq. 19). This should ensure that biases
in the prior mean and the variance do not affect the reconstruction skills significantly. We investigated the impact of biases in
the covariance structure among the model states, specifically the off-diagonal elements of B. In DA, the covariance plays a
key role in spreading observation information spatially. If the prior covariance structure differs from the true covariance

structure, incorrect increments are included in the prior update.

We investigated the impact of covariance bias using “BIAS”, an experiment similar to the OSSE EST but with a different
model simulation for the background ensemble. Figure A4 shows the correlation between the mean surface temperature in the

NINO3 area and each model grid point and indicates that the nature run exhibited stronger correlations globally than the BIAS.

Figure 12 shows the estimated observation errors for the BIAS experiment and compares them with those from the OSSE EST
Rx16. The observation errors were consistently overestimated in BIAS for all the iterations. Although the iterative estimation
brings Rest closer to Ruu, the discrepancy was larger than that in the unbiased case. Moreover, the ratio of Rest to the Ruw
exhibited a wider distribution compared to that without bias, indicating greater uncertainty in error estimation. Nevertheless,
the reconstruction skills are all improved with Rest, although the improvements were less pronounced than those without bias
(Fig. 13). These findings suggested that the innovation statistics remain effective even in the presence of model bias, and that
the reconstruction skills can still be improved through observation error estimations. The effectiveness of this method likely
depends on the magnitude of bias. However, the innovation statistics exhibited some tolerance to biases in B, which is

consistent with previous findings (e.g., Li et al., 2009).
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Figure 12: Similar to Fig. 3 but for the OSSE EST (dark grey) and BIAS (grey). Ri,i is Rx16 in both cases.
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Figure 13: Similar to Fig. 4 but for the OSSE EST (thick black line with circle) and BIAS (thin grey dashed line with square).

5.2 Impact of sample size on observation error estimation

500 We investigated the impact of sample size on the accuracy of observation error estimations using a simplified two-variable

model. The experimental design was the same as that of the OSSE EST, except for the background ensemble and observations:
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1. First, background state x° € R? is generated by randomly sampling from a normal distribution with a mean of 0 and the
variance of 1. Each element of x° was designed to correlate with the other element with a correlation coefficient of 0.7.
An ensemble of 136 members was generated in the same way.

2. Observations y° € R? are randomly sampled from a normal distribution with a mean of 0 and the variance of 1. The
observations were generated for 131 time steps, assuming that the true state is always 0, meaning that the true observation
error variance is 1.

3. Using the same background ensemble at every timesteps as in the stationary offline-DA, the analysis is computed by
assimilating the observations. In the first iteration, the diagonal components of R are set to 2, which is twice the true
observation variance.

4. Observation errors and covariance inflation factors are then estimated based on the analysis, prior, and observations using
innovation statistics.

5. The 3" and 4™ steps are repeated, but with the estimated observation errors and the covariance inflation factors in DA.
The set of analyses and estimations of the observation errors and inflation factors were repeated 20 times.

6. Steps 1 to 5 were repeated 100 times but with different realizations of x° and y°.

Fig. 14 compares the estimated sizes of the observation errors after the 20" iterations and (d9(d$)”). Here, (d3(d2)T) is
expected to be 2 because the error variances of the prior and observation are both 1.0 (see Eq. 16). However, the estimated
values varied between 1.2 to 2.7, highlighting the effect of sampling error. We observed a strong correlation between the
estimated observation errors and (d$(d9)7T). Specifically, when (d$(d9)T) is overestimated, the Rest is also overestimated, and
vice versa. This occurs because R is estimated based on (d(d9)T) (see Eq. 18). Therefore, if (d9(d$)T) is biased due to

sampling noise, Rest will also be systematically biased.
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Figure 14: Relationship between (d2(d)”) and Res: at the 20™ iterations for the simplified two-variable model.

The Rest based on 131 samples was insufficient to suppress sampling noise even in a simplified two-variable model (Fig. 14),
suggesting that the sample size used in Sects 3 and 4 (n=131) should also be too small for reliable observation error estimation.
In case (d9(d)T) is biased, iterative estimation of observation errors can degrade the reconstruction skill score, because the
estimation seeks to minimize the discrepancy between (d9(d%)T) and HBH™R used in DA. Thus, a larger sample size should

be used for the more robust observation error estimation.

When the correlation between the model state variables is zero, (d9(d9)T) explains almost all the variability in estimated
observation errors (i.e., a correlation coefficient is nearly 1.0; not shown). However, as the correlation between the model
states increased, the explained variance decreased (Fig. 14), likely because the observation error estimation at a given location
is influenced by (d9(d$)T) in the surrounding points. When the estimation is affected by multiple surrounding observations,

a simple linear relationship between the estimated error and (d$ (d$)T) does not hold true anymore.

6 Summary and conclusions

This study investigated the feasibility of observation error estimation using innovation statistics (Desroziers et al., 2005) within
an offline-DA framework for paleoclimate reconstruction. We compared the performance of this approach in both an idealized
framework assimilating pseudo-proxy data and a real case study assimilating actual proxy data. We found that the innovation
statistics accurately estimated observation errors within the offline-DA scheme for the OSSE, achieving an absolute percent

error of ~46%. Incorporating the estimated observation errors into DA improved reconstruction skill scores (CC and CE) by
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5%-30% compared to the ones without them. Furthermore, we also found there are little dependence on the initial size of
observation error variance used in DA in subsequent observation error estimation and analyses. Although the accuracy of the
estimation depended on the sample size and the quality of the prior error covariance, the estimation method consistently

improved the reconstruction skills.

Beyond idealized experiments, we demonstrated that the innovation statistics-based method also improved the reconstruction
skills in real-world applications. The reconstruction skills with the estimated observation errors were comparable with or
slightly better than those based on the variance of the observation or the differences between the observation and simulated
observation-equivalent quantities. Although further tuning may result in better reconstruction skills in these other approaches,
careful and manual parameter tuning is required, which is prohibitively time-consuming. In this regard, innovation statistics-

based approach offers the advantage of automatically and systematically estimating errors.

DA nowadays is used to reconstruct climate of the ages deeper in the past such as the Eocene. In such applications, it is difficult
to build linear regression models only with proxy data and instrument-based observations due to the shortage of overlapping
periods. As a consequence, observation errors based on the residual of the linear regression, which is the commonly used
approach in the previous studies, are not available. Not only for deep time paleo-DA but also for the late Holocene, direct
assimilation of proxy data using process-based model is expected to be mainstream in the future as seen in the history of
satellite data assimilation for NWP. The situation necessitates the development of other approaches to estimate observation
errors. This study successfully demonstrated a feasible approach for paleoclimate reconstruction with DA. The method can be
readily expanded to online-DA, since it was originally designed for this purpose. With more accurate observation errors, the
observation impact estimates, such as analysis sensitivity to observation (e.g., Cardinali et al., 2004; Liu et al., 2009) and
forecast sensitivity to observations in online-DA (e.g., Langland and Baker, 2004; Liu and Kalnay, 2008; Li et al., 2010) will
be more accurate, too. These diagnostics can help to identify detrimental observations and/or key data sources for paleoclimate
reconstruction. As such, the observation error estimation method should sophisticate and expand the possibility and accuracy

of paleo-DA.

Despite the benefits, several challenges remain in the application of innovation statistics for offline-DA. Our study indicates
that sampling noise may affect the accuracy of error estimation, especially with limited proxy records. If the sampling noise is
not negligible, iterative estimation may worsen the reconstruction skill. To mitigate this, an iteration threshold should be set
to avoid any detrimental impact on the estimates. This issue was outside the scope of this study and requires future research.
We did not consider age uncertainty on the exact date and the length of the representative period of the proxy records. Although
this is not vital for the present study or climate reconstruction in the last millennium, it is not true for deep-time paleo-DA.
Even for the last millennium, it may not be negligible when aiming to reconstruct climate at a monthly or finer temporal

resolution. Age uncertainty can be considered as a misrepresentation in the archive model, a sub-model of the PSM (Evans et
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al., 2013). Accordingly, the uncertainty can be regarded as a part of an observation error in DA. However, it remains unclear
whether we should do so or not. Observation errors that include age uncertainty can be much larger than prior errors. In such
cases, the analysis is reduced to the prior with little information from assimilated observations. To avoid this scenario, a method
that separately accounts for age uncertainty (e.g., Osman et al., 2021) and/or a refinement of the dating (e.g., Furukawa et al.,

2017) is required. For the similar reason, the size of each error component must be evaluated, too.

In this study, we tested a specific method for estimating observation errors. However, several alternative approaches exist with
different complexities and applicability (e.g., Tandeo et al., 2020 and references therein). Other estimation methods should be

explored for paleo-DA to refine observation error estimations.

Finally, it is important to emphasize that the estimated observation errors do not represent the true accuracy of the proxies in
recording environmental conditions. Instead, as defined by Eq. 2, the estimated errors are specific to the DA system. Therefore,
the estimated observation errors are a system dependent, and not necessarily valid across systems. Consequently, the

observation errors must be estimated separately for each reconstruction system.

Appendices
A.1 Sensitivity to the observation error variance in R

The sensitivity to the observation error variance was examined using the configuration of the OSSE. In this experiment, we
tested the effects of variation in R = k R,.,. The scaling factor was set to 0.25, 0.5, 1, 2, 4, 8, 16, or 32. The reconstruction
skills ranged from 0.5 to 0.55 for CC and from 0.19 to 0.32 for CE, respectively, showing the importance of using accurate

observation error R in DA.

26



0.6

. 1 Rx0.25
054 | [ Rx0.5
1 Rx1
Y o4 1 Rx2
8 [ Rx4
n 0.3 - | 1 Rx8
= — I Rx16
~
0 0-2- B Rx32
0.1 -
0.0

R CE

Figure Al: Sensitivity to the observation error variance in OSSE. The color of the bar indicates the scaling factor.

A.2 Estimated inflation factors

605 The estimated inflation factors for the OSSE are shown in Fig. A2. The estimated inflation factors exhibit different spatial
patterns at the first iteration with different Rini, where large (small) Rini resulted in small (large) inflation factors. Nonetheless,

the inflation factors converge to the similar patterns after the iterations.

Figure A2: Estimated inflation factors for the OSSE (top) Rx16, (middle) Rx1, and (bottom) Rx0.25.
610
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A.3 Validation result with GISTEMP
The reconstruction skills of the REAL EST, UNI, RES, and VAR experiments were computed with GISTEMP (Lenssen et al.,

2024; Fig. A3 and Table. Al). The similar tendency described in Sect. 4 was observed.
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615 Figure A3: Surface temperature reconstruction skill score for the REAL EST, RES, VAR, and UNI experiments based on the CC

(circle), CE (triangle), and RV (square). The scores were calculated with GISTEMP for 1960-2000.

Table Al: Global mean skill scores for the REAL experiments verified with GISTEMP for 1960-2000

Exp. Name  # of iteration/ cC CE RV
Scaling factor

EST 10 0.420 0.155 0.170

UNI 0.6 0.226 -0.042 0.278

VAR 8 0.403 0.153 0.133

RES 1.5 0.408 0.150 0.154

A.4 Covariance structure of B in BIAS
The BIAS experiment examined the impact of the biased off-diagonal term of B. The correlation between the mean surface

620
temperature in the NINO3 area and that in each model grid point was mapped to show the covariance structure difference

between the nature run and BIAS.
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Figure A4: Correlation coefficients between mean surface temperature in NINQO3 area (rectangle area) and surface temperature in
each model grid points for (a) nature run and (b) background ensemble used in the BIAS experiment.
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