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Abstract. Data assimilation (DA) has been successfully applied in paleoclimate reconstruction. DA combines model 

simulations and climate proxies based on their error sizes. Therefore, the error information is crucial for DA to work optimally. 

However, little attention has peen paid to the observation errors in the previous studies, especially when the proxies are 15 

assimilated directly. This study assessed the feasibility of innovation statistics, a method developed for numerical weather 

prediction, for estimating observation errors in climate reconstruction and its impact on the reconstruction skills. For this 

purpose, we conducted offline-DA experiments over 1870-2000. Here, we assimilated stable water isotope records from ice 

cores, tree-ring cellulose, and corals. We found that the innovation statistics-based approach correctly estimated the 

observation errors, even with the offline-DA scheme. Although the accuracy of the estimation depended on the sample size 20 

and accuracy of the prior error covariance, the estimation generally improved the reconstruction skills. The reconstruction 

skills with the estimated observation errors were comparable to those with errors defined differently in the previous studies. 

In contrast with those methods used in previous studies, however, innovation statistics-based approach offers an objective and 

systematic way to estimate observation errors with light computational cost. As such, the innovation statistics-based approach 

should contribute to improving the reconstruction skills and observation networks. 25 

 

1 Introduction 

Data assimilation (DA) estimates the most likely states or parameters by combining prior information drawn from model 

simulations (background) and observations. DA is a well-established method in numerical weather prediction (NWP) (e.g., 

Houtekamer and Zhang, 2016; Kalnay, 2003; and references therein), and has recently been applied in, among other fields, 30 

paleoclimate reconstruction. Earlier studies have focused on the last millennium (e.g., Franke et al., 2017; Goosse et al., 2010, 
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2012; Hakim et al., 2016; Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022; Wu et al., 2025) while recent studies have 

started investigating deeper into the past (e.g., Annan et al., 2024; Kurahashi-Nakamura et al., 2017; Li et al., 2024; Mathiot 

et al., 2013; Osman et al., 2021; Renssen et al., 2015; Tierney et al., 2020; 2022).  

 35 

The DA weighs the simulation and observations based on their errors in the estimation. Therefore, the error information is 

crucial for DA to work optimally. Let us introduce the definition of the errors in DA here to depict issues in paleo-DA. In DA, 

background error 𝛜! and observation error 𝛜" are defined as  

𝛜! ≡ 𝐱! − 𝐱#            (1)	

𝛜" ≡ 𝐲" −ℋ(𝐱#) = [𝐲" − 𝐲#] + [𝐲# −ℋ#(𝐱#)] + [ℋ#(𝐱#) −ℋ(𝐱#)]      (2) 40 

where, x is the model state, y is the observations, and ℋ is the observation operator that converts the model state to an 

observation-equivalent quantity. The superscripts b, t, and o represent the background, the truth, and the observations, 

respectively. Observation error 𝛜" consists of three distinct components: measurement error, which arises from instrumental 

limitations and observational noise; representativeness error, which reflects discrepancies between the model’s spatial and 

temporal resolution and the actual observations; and errors in the observation operator. Each component is represented by the 45 

term on the right side of Eq. 2 from left to right. The corresponding error covariance matrices denoted as 𝐁 and 𝐑 are defined 

as  

𝐁 = 〈𝛜!(𝛜!)$〉            (3) 

𝐑 = 〈𝛜"(𝛜")$〉,            (4) 

where the brackets 〈∙〉 denote a statistical expectation.  50 

 

Here, we briefly review how 𝐁 and 𝐑 are treated in paleo-DA. Because of its common use, we focused on ensemble-based 

approaches in reviewing B (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al., 

2022; 2024). Generally, background ensembles can be drawn from any collection of reasonable states. This may be a highly 

informed prior, such as a short-term forecast from an accurate analysis as in NWP, or an “uninformed” prior, such as a random 55 

sample from a model climatology (Hakim et al., 2016). In paleo-DA, regardless of the accuracy of the model initial condition, 

the information will be lost long before the next analysis step because of the chaotic nature of the climate and temporarily 

sparse observations (typically, observations are available once a year). Therefore, it is meaningless to use the analysis as the 

initial condition for the subsequent model forecasting (Bhend et al., 2012). For this reason, “offline-DA” is commonly used, 

where the background ensembles are drawn either from a single long climate simulation or from an ensemble of such 60 

simulations (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022; 2024) 

referred to as stationary offline-DA and transient offline-DA, respectively. Because there is no information other than external 

forcings (e.g., greenhouse gas concentrations, total solar irradiance, and orbital parameters) to constrain the model states, such 
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an "uninformed" background ensemble is suitable for representing the error or the uncertainty of the background. While several 

studies have explored the feasibility of the online-DA and demonstrated its potential (e.g., Acevedo et al., 2017; Matsikaris et 65 

al., 2015; Okazaki et al., 2021; Perkins and Hakim, 2017; 2021), offline-DA remains the preferred approach owing to its 

simplicity and the low computational costs.  

 

There is no established method for defining the observation error or observation error covariance matrix R in paleo-DA. The 

most common method for specifying observation errors is to use residuals (e.g., Dalaiden et al., 2021; Franke et al., 2017; 70 

Hakim et al., 2016; Osman et al., 2021; Steiger et al., 2018; Tardif et al., 2019; Perkins and Hakim, 2021; Tierney et al., 2020; 

Valler et al., 2022). Here, the specified observation errors 𝛜3" are given by the following form: 

𝛜3" = 𝐲" −ℋ(𝐱%&')           (5) 

where xref represents reference data. Many of the paleo-DA studies employ linear regression models as an observation 

operators, where each proxy record is linearly regressed against reference data from the instrumental period (e.g., Dalaiden et 75 

al., 2021; Franke et al., 2017; Hakim et al., 2016; Steiger et al., 2018; Tardif et al., 2019; Perkins and Hakim, 2021; Valler et 

al., 2022). In this approach, observation-based gridded surface temperature data, such as HadCRUT5 (Morice et al., 2021), is 

typically used as the reference data. Alternatively, process-based proxy system models (PSMs; Evans et al., 2013; Dee et al., 

2015) are sometimes used as observation operators (e.g., Acevedo et al., 2017; Dee et al., 2017; Okazaki and Yoshimura, 2017; 

Steiger et al., 2017) to provide a more physically informed representation of proxy-climate relationships. A PSM provides a 80 

complete set of forward and mechanistic processes by which climatic information is imprinted and subsequently observed in 

proxy archives. Although they are more complex than the linear regression models, the same approach can be used to obtain 

observation errors, provided that all the input variables for ℋ are available at the proxy sites. However, it is rarely possible to 

obtain all necessary variables directly from observations at proxy sites. In such cases, model simulations are instead used as 

xref to provide the required inputs (Tierney et al., 2020; Osman et al., 2021). 85 

 

Some studies have approximated observation errors by assuming that the representativeness error is dominant (e.g., Goosse et 

al., 2012; Dalaiden et al., 2021; Rezsöhazy et al., 2022). These studies estimated representativeness errors at each observation 

location by comparing two timeseries with different spatial representations, for instance, in-situ observation and the gridded 

observation data or two simulations, one with high and the other with low spatial resolutions.  90 

 

An alternative method for estimating observation error is based on the variance of the observation timeseries (Franke et al., 

2017; Okazaki and Yoshimura, 2017; Valler et al., 2022). In paleoclimate studies, it is common to show the observation noise 

level as a function of the variance (σ2) with SNR (signal-to-noise ratio) defined as 𝜎(")*& 𝜎+!5 , where the numerator and the 

denominator are the standard deviation of the error and signal in a proxy timeseries, respectively (Smerdon et al., 2012 and 95 

references therein). Typically, one-fourth of the variance, which corresponds to an SNR of 2, is assumed to be an observational 
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error in paleo-DA. The factor was decided based on measurement errors in Okazaki and Yoshimura (2017), while it was used 

without grounds for documentary-type observations in Franke et al. (2017) but verified later with the innovation statistics 

(Valler et al., 2022).  

 100 

Although the aforementioned methods are widely accepted, they also have limitations. The first approach using linear 

regression models becomes impractical when the overlapping period between xref and yo is too short. In general, climate proxies 

that span long periods tend to have low temporal resolution and few overlapping points, making it difficult to use this approach 

for deep climate reconstruction. Given that paleo-DA is also used to reconstruct deep-time paleoclimates, such as the Paleocene 

and Eocene (e.g., Li, et al., 2024; Tierney et al., 2022), different approaches are required. Besides, the observation error 𝛜3" 105 

defined in Eq. 5 is different from 𝛜" in Eq. 2, because xref, whether it is based on observations or simulations, is not the truth. 

Because xref contains errors, the derived matrix 𝐑 is likely to be overestimated. A few studies have introduced a scaling factor 

to compensate for overestimation, where a globally uniform factor is multiplied by all records to maximize the resultant 

analysis skill (Osman et al., 2021; Tierney et al., 2020). However, a globally constant scaling factor may not yield the best 

results. Although these factors may be individually tuned, manual tuning is unrealistically time-consuming. The second 110 

approach, which estimates observation errors based on the representativeness errors, requires a dense observation network, 

gridded observation datasets, or high-resolution model simulations, which are limited in terms of climate proxies or equivalent 

quantities. Additionally, the representativeness error may not always be dominant since its magnitude depends on the resolution 

of the model simulation used for the background, proxy type, and accuracy of the observation operators. The third approach, 

which assumes that the observation error is a fixed fraction of the total variance, is not well-supported by theoretical 115 

considerations, and there is no clear justification for its universal adoption. In addition, the manual tuning of this factor for 

each proxy record is impractical. Some studies use multiple error specification approaches, depending on the observation types 

(e.g., Dalaiden et al., 2021; Franke et al., 2017; Valler et al., 2022). However, hybrid approaches may introduce biases to 

specific types of observations, leading to suboptimal DA performance. 

 120 

Wrongly specified observation error covariance matrix R can severely reduce paleoclimate reconstruction accuracy. Tierney 

et al. (2020) showed that the reconstruction skill score varied up to 20 % depending on the magnitude of error variance. We 

also confirmed that misspecified R can lead to skill score variations of up to 68 % (Fig. A1). The skill difference is as large as 

that between prior and analysis, highlighting the importance of accurate observation errors. Therefore, paleo-DA requires 

sophisticated and systematic methods to estimate observation errors.  125 

 

In the field of NWP, several methods have been developed to estimate observation errors using innovation statistics (e.g., Dee 

and da Silva, 1999; Desroziers et al., 2005; Hollingsworth and Lönnberg, 1986). Here, the term “innovation” refers to the 

differences between the observations and background state in the observation space. The statistics of innovations are called 

“innovation statistics” and contains the information on the observation and background errors. Innovation statistics has been 130 
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widely adopted in many studies and weather forecasting centers (e.g., Honda et al., 2018; Lellouche et al., 2018; Minamide 

and Zhang, 2017; Okamoto et al., 2018; Schraff et al., 2016; Tandeo et al., 2020 and references therein). 

 

This study investigated the feasibility of innovation statistics in estimating observation errors in paleo-DA and its impact on 

the reconstruction skill. For this purpose, we “reconstructed” climate for the 19th and 20th centuries, where abundant 135 

instrumental data is available for verification. We adopted the ensemble-based offline-DA approach, in which isotopic proxies 

were assimilated using PSMs based on Okazaki and Yoshimura (2017).  

 

The remainder of this paper is structured as follows: Section 2 describes the methods and the experimental design. Section 3 

examines the accuracy of the observation error estimation and evaluates the reconstruction skills using a series of observing 140 

system simulation experiments (OSSEs). Section 4 presents the estimation results obtained from the real observational data. 

Finally, Sections 5 and 6 present a discussion and summary of the study findings, respectively. 

2 Methods  

2.1 Local Ensemble Transform Kalman Filter (LETKF) 

This study used the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007), a variant of the ensemble Kalman 145 

filter (EnKF), to solve the update equation of the Kalman filter. Let 𝐱 be the N-dimensional model state and consider an 

ensemble of m-members. The analysis ensemble mean and the perturbations in the LETKF are given by:  

𝐱6, = 𝐱6! + 𝐗!𝐏9,(𝐇𝐗!)$𝐑-.;𝐲
" −ℋ(𝐱6!)<         (6) 

𝐗, = 𝐗!√𝑚 − 1𝐏9,
./0,           (7) 

where, 𝐱6	denotes the ensemble mean, and X denotes the ensemble perturbation matrix, and the superscripts 𝑎 and 𝑏 denote the 150 

analysis and background, respectively. Here, 𝐱6 is a vector of length 𝑁, and  𝐗 is the 𝑁 ×𝑚 matrix whose i th column is 𝐱()) −

𝐱6, where superscript (𝑖) denotes the i th member of the ensemble (𝑖 = {1,2, … ,𝑚}). The notation 𝐲" is the observation vector 

of length p, 𝐑 the observation error covariance matrix whose size is 𝑝 × 𝑝, ℋ the observation operator that converts the model 

state to the observation equivalent quantity, 𝐇 the linearized observation operator whose size is 𝑝 × 𝑁, and 𝐏9, the covariance 

matrix in the ensemble space whose size is 𝑚×𝑚 given by 155 

𝐏9, = [(𝑚 − 1)𝐈/Δ + (𝐇𝐗!)$𝐑-.(𝐇𝐗!)]-.,         (8) 

where, Δ is a covariance inflation parameter, which inflates the prior error covariance matrix to avoid underestimation of the 

analysis error covariance and filter divergence. To reduce the spurious error covariance among distant points due to sampling 

errors caused by the limited ensemble size, covariance localization has been commonly used in EnKF (e.g., Houtekamer and 
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Mitchell, 2001). Localization in the LETKF is implemented by inflating the observation error variance distant from the analysis 160 

model grid point (Hunt et al., 2007; Miyoshi and Yamane, 2007). With localization, the observation error covariance matrix 

is replaced by 

𝐑 ← 𝛒-. ∘ 𝐑.            (9) 

Here, 𝛒 denotes the localization weights and is a function of the distance between the observations and the analysis model grid 

point. The LETKF solves the above equations at all model grid points by assimilating a subset of observations surrounding 165 

each analysis grid point. Therefore, 𝐱6 and 𝐗 reduce to a scalar and 1 ×𝑚 matrix, in practice.   

2.2 Innovation statistics 

This study used the innovation statistics proposed by Desroziers et al. (2005) to estimate observation errors. This study also 

estimates the covariance inflation factor because accurate B is required to estimate the observation error (Li et al., 2009). The 

observation-minus-background innovation vector (𝐝!"), given by the difference between the observations and the background 170 

state in the observation space, can be expressed as 

𝐝𝒃𝒐 ≡ 𝐲𝒐 −𝓗;𝐱
𝒃
< ≅ 𝛜𝒐 −𝐇𝛜𝒃,          (10) 

where 𝛜" and 𝛜! are observation and background errors, respectively and are defined as the difference from the truth (see also 

Eq. 1). Similarly, the observation-minus-analysis innovation vector (𝐝,"), the differences between observations and analysis in 

the observation space are given by 175 

𝐝," ≡ 𝐲" −ℋ(𝐱,) = 𝐲" −ℋ(𝐱! + 𝛅𝐱,) ≅ 𝐲" −ℋ(𝐱!) − 𝐇𝛅𝐱, = 𝐝!" −𝐇𝛅𝐱,.    (11) 

The Taylor series expansion around xb and Eq. 10 were used for the transformation. The notation 𝛅𝐱, denotes the analysis 

increment and is defined as  

𝛅𝐱, ≡ 𝐱, − 𝐱! = 𝐊[𝐲" −ℋ(𝐱!)] = 𝐊𝐝!",         (12) 

where 𝐊 is the Kalman gain given by 180 

𝐊 = 𝐁𝐇$(𝐇𝐁𝐇$ + 𝐑)-..           (13) 

With the above equations, Eq. 11 can be further transformed into 

𝐝," ≅ (𝐈 − 𝐇𝐊)𝐝!" = 𝐑(𝐇𝐁𝐇$ + 𝐑)-.𝐝!" .         (14) 

Finally, the differences between the analysis and background in the observation space (𝐝!,) can be derived using Eq. 14 as 

follows: 185 

𝐝!, 	≡ 𝐝!" − 𝐝," ≅ 𝐇𝐊𝐝!" .           (15) 
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The innovation vectors defined in Eqs. 10, 14, and 15 can be used to derive several diagnostics based on the following 190 

assumptions: (1) the observation and background errors are unbiased and uncorrelated, and (2) the observation and background 

error covariances in the observation space (𝐇𝐁𝐇$) are correctly specified. The first diagnostic considers 𝐇𝐁𝐇$ + 𝐑 and is 

given as follows: 

〈𝐝!"(𝐝!")$〉 ≅ 〈𝛜"(𝛜")$〉 + 〈𝐇𝛜!(𝐇𝛜!)$〉 = 𝐇𝐁𝐇$ + 𝐑.       (16) 

Here, the cross-covariance terms are assumed to be zero because of the assumption (1). The background error covariance in 195 

the observation space (𝐇𝐁𝐇$) can be estimated using Eqs. 13, 15, and 16: 

〈𝐝!,(𝐝!")$〉 ≅ 𝐇𝐊〈𝐝!"(𝐝!")$〉 = 𝐇𝐊(𝐇𝐁𝐇$ + 𝐑) = 𝐇𝐁𝐇$.       (17) 

 Finally, the observation error covariance (𝐑) can be estimated using Eqs. 14 and 16: 

〈𝐝,"(𝐝!")$〉 ≅ 𝐑(𝐇𝐁𝐇$ + 𝐑)-.〈𝐝!"(𝐝!")$〉 = 𝐑.        (18) 

The covariance inflation factor (Δ) can be estimated adaptively by comparing HBHT represented by the background ensemble 200 

and the estimated one with Eq. 17 (Li et al., 2009). This study estimated the factor for each model grid point (i.e., locally) 

following Miyoshi (2011).  

Δ =
#%,5&6〈𝐝"

#
9𝐝"
!
:
$
〉∘𝛒∘𝐑%&?

#%,5&6𝟏 (𝒎-𝟏)⁄ 	𝐇𝐗𝒃9𝐇𝐗𝒃:
𝐓
∘𝛒∘𝐑%&?

          (19) 

Here, ∘ denotes the Schur product. The inverse of 𝐑 and 𝛒 is multiplied for the normalization of multiple observations and 

spatial smoothing of the inflation estimates. Note that R and HBHT constitute the observations and simulated equivalent 205 

quantities within the radius of influence.  

2.3 Experimental design 

We conducted two series of DA experiments, OSSE and REAL, which only differ in the observations to be assimilated. In 

OSSE, we created the observations using a reference simulation (so-called “nature run”) and observation operators. As such, 

OSSE can be considered as an idealized experiment and is equivalent to the idea of pseudoproxy experiment in paleo-DA (e.g., 210 

Steiger et al., 2014). The background ensemble was created using the same model as that for the nature run (i.e., perfect model 

experiment), but with slightly different external forcings (see below for more details). This allows for a direct evaluation of 

the observation error estimation in the absence of other error sources. We also performed climate reconstruction with the 

estimated observation errors in REAL, which uses real observation data for DA. In addition to the differences in observations, 

the OSSE and REAL experiments shared the same experimental settings. Multiple experiments were conducted for each 215 

framework. The default experimental settings and experiment-specific configurations are detailed in Sections. 2.3.1 and 2.3.2, 

respectively. 
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2.3.1 Default experimental settings 220 

Background ensemble: We constructed a background ensemble by running MIROC5-iso (Okazaki and Yoshimura, 2017; 

2019), an isotope-enabled atmospheric general circulation model (GCM) developed based on the atmospheric component of 

MIROC5 (Watanabe et al., 2012). MIROC5-iso is forced by simulated SST and sea ice concentrations (SIC), observed 

greenhouse gases (carbon dioxide, methane, and chlorofluorocarbons), ozone, and land-use changes. We derived the SST and 

SIC data from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) historical simulation of 225 

MIROC5 with the “r1i1p1” ensemble member. The isotopic compositions of sea surface water and sea ice were kept constant 

and assumed to be 0‰ and 3‰, respectively (Joussaume and Jouzel, 1993). The model resolution was set to T42 (~280 km 

on the equator), with 40 vertical levels. We used a single-member simulation covering 1870-2005 to generate a 136-member 

background ensemble, where 136 annual means (i.e., model states) are used as an ensemble member (Steiger et al., 2014). We 

used the same background ensemble for all experiments, unless otherwise noted.  230 

Observations: We used the Iso2k (Konecky et al., 2020) and PAGES2k databases (PAGES2k Consortium, 2017) for the 

observation data. The Iso2k database contains stable oxygen (18O) and hydrogen (2H) isotopic records from various archives. 

This study used isotopic records of ice cores, corals, and tree-ring cellulose, as described by Okazaki and Yoshimura (2017; 

2019). In addition, three surface temperature records in historical documents from the PAGES2k database are used for the ease 

of comparison of the observation errors with the previous studies. In the REAL experiments, observations with a temporal 235 

resolution shorter than 1 year were averaged to obtain annual means, whereas observations with a resolution longer than 1 year 

were discarded. In OSSEs, observations were made based on the nature run, which was constructed using a simulation with a 

configuration identical to that for the background except for SST and SIC; the MIROC5 simulation of the CMIP5 historical 

run with the ensemble member “r2i1p1” was used. The model fields at the proxy locations were extracted using bilinear 

interpolation and then converted to an observation-equivalent quantity using observation operators, or PSMs, as described 240 

below. The input and output variables for the PSMs were monthly means and were annualized such that the experimental 

setting was comparable to that for REAL. To simulate the observational uncertainty, random noise was added to each data. 

This noise was drawn from a normal distribution with zero mean and variance equal to one-fourth of the temporal variance of 

the annualized time series. The number of observations and the spatial distribution are shown in Fig. 1. 
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Figure 1: (a) Number of proxies used in this study. The color shows the type of proxy. (b) Geographical location of proxies.  
 255 

 

Observation operators (PSMs): We used the PSM developed by Liu et al. (2013, 2014) for corals, and that of Roden et al. 

(2000) for tree-ring cellulose. For the ice cores, we assumed that the isotopic composition was the same as that of precipitation 

at the time of deposition. In reality, the isotope ratios in ice cores may deviate from those in precipitation due to post-

depositional processes (e.g., Schotterer et al., 2004). More detailed information on PSMs can be found in Okazaki and 260 

Yoshimura (2017; 2019). For surface temperature, simulated 2-m temperature is directly used. 

Data assimilation: The assimilation was conducted following the anomaly-DA approach (e.g., Keenlyside et al., 2008; Smith 

et al., 2007), where the corresponding climatological mean is subtracted from both observations and background in the 

observation space to mitigate the detrimental impact of model bias. We calculated the climatological mean using the 

overlapping years between observations and simulations during the period from 1900 to 2000. The overlapping period must 265 

span longer than 30 years for the computation of the climatological mean. Otherwise, the corresponding observation is 

discarded. Note that the period represented by the climatological mean differs by site since the observational period varies. 

For the background covariance localization, a fifth-order polynomial function was used (Gaspari and Cohn, 1998). The 

localization scale was manually tuned beforehand to maximize the correlation coefficient, and a half-localization scale of 8,000 

km was used for all the experiments. The observation error covariance matrix was assumed to be diagonal, as in many other 270 

studies (e.g., Franke et al., 2017; Hakim et al., 2016, Steiger et al., 2018; Tardif et al., 2019; Valler et al., 2022). The diagonal 

element of the matrix (i.e., error variances) was set to one-fourth of the temporal variance of the annual observation timeseries, 

unless otherwise specified. This size of the error variance was identical to that used to create the observations in the OSSE. 

The assimilation was conducted for 1870-2000 in both OSSE and REAL experiments. 
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2.3.2 List of experiments 280 

In the OSSE, we performed the “EST” and “BIAS” experiments. In EST, the observation errors were estimated using 

innovation statistics and the performance of the climate reconstruction with DA with estimated observation errors was 

assessed. In BIAS, we investigated the impact of a biased background error covariance. In general, the structure of the 

background error is different from that of the nature. The experiment is designed to investigate the impact of a misrepresented 

background error covariance. In the REAL, observation errors defined in different ways as in previous studies (UNI, VAR, 285 

and RES) were tested and compared with “EST”. Each experimental setting is detailed below and summarized in Table. 1.  

EST: We estimated observation errors based on innovation statistics (Eq. 18). To address sampling error in the estimation, a 

large number of samples is required for reliable estimates. We used the entire period of one DA experiment (i.e., 1870-2000; 

131 samples) to maximize the sample size. We also estimated the covariance inflation factor as well (Li et al., 2009) since the 

simultaneous estimation of the covariance inflation factor and R improves the analysis skills. The set of DA experiment and 290 

the estimation of the inflation factor and R can be conducted iteratively, where the estimated inflation factor and R from one 

iteration are used in the subsequent DA experiment. In this study, we repeated the procedure 10 times. In the OSSE, R used in 

the first iteration (Rini) of the DA is given by either of 4-times of variance (Rx16), one-fourth the variance (Rx1), or one-

sixteenth the variance (Rx0.25). In Rx1, Rini is equal to the actual error (Rtru). No covariance inflation was applied in the first 

iteration for either in the OSSE or REAL.   295 

BIAS: We conducted an experiment similar to EST but with a biased background ensemble to examine the impact of the 

biased off-diagonal term of B. Instead of the MIROC5-iso simulation used in EST, the model simulation forced by observation-

based SST and SIC from HadISST1 (Rayner et al., 2003) was used. The experiment was conducted only for the OSSE.  

UNI: In this experiment, each observation type shared the same observation errors, given by the mean of the estimated values 

from EST multiplied by the globally constant scaling factor k (0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, and 2). The experiment was 300 

conducted only for the REAL. 

VAR: Observation errors were determined based on the standard deviations of each proxy record multiplied by a globally 

constant scaling factor (Franke et al., 2017; Okazaki and Yoshimura, 2017; Valler et al., 2022). The scaling factor k was varied 

at 1/8, 1/4, 1/2, 3/4, 1, 2, 4, 8, and 16. The experiment was conducted only for the REAL. 

RES: In this experiment, observation variances are given as follows: 305 

𝐑 = 𝑘	𝑑𝑖𝑎𝑔(〈𝛜𝛜$〉), 𝑤ℎ𝑒𝑟𝑒	𝛜 = 𝒚F −ℋ(𝐱%&').        (20) 

We used a simulation forced by observation-based SST and SIC, HadISST1 (Rayner et al., 2003), as xref instead of gridded 

instrumental observation data. The other simulation settings were identical to those for the background ensemble. Only the 

records that overlapped with the simulation for at least 30 years were used. We used this approach because no gridded isotopic 

observation dataset is available to drive the observation operators. The scaling factor k was varied at 0.25, 0.5, 0.6, 0.7, 0.8, 310 

0.9, 1, 1.5, and 2. The experiment was conducted only for the REAL. 
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Table 1: Experimental settings 

Exp. Type Exp. Name Background Observation R 

OSSE EST r1i1p1a r2i1p1b Estimated with innovation statistics 

 BIAS HadISST1c r2i1p1b Estimated with innovation statistics 

REAL EST r1i1p1a Iso2kd Estimated with innovation statistics 

 UNI r1i1p1a Iso2kd Same observation errors for each observation type 

 VAR r1i1p1a Iso2kd Variance of the proxy timeseries multiplied by a scaling factor 

 RES r1i1p1a Iso2kd Based on the difference between observation and a reference 
simulation 

aMIROC5-iso forced by a historical run of MIROC5 in CMIP5, labelled “r1i1p1” 
bIso2k-like observation created with MIROC5-iso forced by a historical run of MIROC5 in CMIP5, labelled “r2i1p1”  315 
cMIROC5-iso forced by observation-based SST and SIC of HadISST1 (Rayner et al., 2003) 
dKonecky et al. (2020) 

 

2.4 Metrics 

We verified the results for the annual mean 2-m air temperature against the reference data xref. Three metrics were used to 320 

evaluate the reconstruction skills; the Pearson correlation coefficient (CC), the coefficient of efficiency (CE; Nash and 

Sutcliffe, 1970), and the relative variance (RV). The definitions are as follows: 
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?
-.  325 

Here, 𝑥),  and 𝑥)
%&'denote i th year of the analysis and the reference. Accordingly, the metrics evaluates the interannual 

variability. In all the metrics, the inputs are given in anomaly forms with respect to the climatological mean to ignore the model 

biases. For the OSSE experiments, the nature run was used as the reference data. For the REAL, HadCRUTv5 (Morice et al., 

2021) was used as the reference data. 

3 Perfect model results 330 

This section evaluated the performance of the innovation statistics in estimating the observation errors and its effects on the 

reconstruction skills in the OSSE experiments. 
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 335 

Figure 2a compares the true observation variances (Rtru) and the estimated observation variances (Rest) for EST with an initial 

R 16-times larger than Rtru (Rx16). Most of the estimated observations fall between the two reference lines in Fig. 2a with the 

slopes of 2 and 4. Given that the initial observation variances were 16-times larger than the truth, the differences between Rest 

and Rtru became smaller than Rini after the estimation. Improvements were observed across different proxy types, demonstrating 

that the estimation method functioned properly. 340 

 

 

 
Figure 2: Relationship between true and estimated observation error variances at each iteration step for the OSSE with initial 

observation variance of Rx16. The units of the axes are all ‰ or ℃. 345 

 

 

With a more accurate and representative R, the DA is expected to become more accurate. Moreover, the observation error 

estimates are expected to be more accurate when R is correctly specified (Desroziers et al., 2005). Accordingly, we conducted 

a similar DA experiment but with Rest instead of Rini. We also applied the estimated prior error covariance inflation factors in 350 

the DA, following Li et al. (2009). After analyzing the 131-year states with Rest and inflation factors, we estimated both R and 

the inflation factors again using a new set of xa and xb. We repeated the procedure 10 times. Iteratively applying the innovation 

statistics further improved the accuracy of the observation error estimates (Figs. 2b-j and 3). After the 5th and 6th iterations, the 

Formatted: English (US)



 

13 
 

estimated errors converged. The ratio of Rest to the Rtru was 0.1-3.5 after the 10th iteration, with a mean absolute percentage 

error of ~46%. The remaining inaccuracies can be attributed to sampling errors associated with the limited sample size. A 355 

more detailed discussion of this limitation is provided in Sect. 6.2.  

The estimated inflation factors are shown in Fig. A2. Along with the iteration, the factors converged to a certain pattern after 

the 5th and 6th iterations as seen in Rest. The inflation factors are globally smaller than 1.0 at each iteration. This suggests that 

the background ensemble should be overdispersive. The background ensemble includes the simulations for the late 20th century, 

which is strongly affected by the global warming. These states should not be reasonable ones for e.g., 19th century and caused 360 

the overdispersive background. This suggests the importance of selecting the background ensemble carefully.  

 
 

 
Figure 3: Ratio of the estimated observation error variance according to iteration in OSSE Rx16 (dark grey), Rx1 (grey), and Rx0.25 365 
(white). Horizontal bars of each box correspond to the 1st, 50th, and 99th percentiles. Data smaller (larger) than the 1st (99th) percentile 

are plotted as dots. Grey horizontal line shows a ratio of 1. The values shown at 0th iteration are Rini/Rtru. 

 

 

The reconstruction skills improved for all metrics with Rest (Fig. 4). With iteration, the global mean CC increased from 0.55 370 

to 0.58, and CE improved from 0.28 to 0.37. The best skill scores were obtained when Rest was estimated using xa and xb from 

the 5th iteration. After peaking, the skill scores gradually decreased with further iterations. This could be due to the overfitting 

of Rest associated with the sampling bias. The largest improvements were observed in the tropics, particularly in the western 

tropical Pacific Ocean (Fig. 5). This is likely due to the significant impact of corals on reconstruction skills (Okazaki and 

Yoshimura, 2017; Shoji et al., 2022). 375 
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Figure 4: Reconstruction skill score of (a) CC, (b) CE, and (c) RV according to iteration in OSSE Rx16 (thick black line with circle), 

Rx1 (thin dashed grey line with square), and Rx0.25 (thin dashed-dotted grey line with triangle). 380 
 

 
Figure 5: Reconstruction skill score of (top) CC, (middle) CE, and (bottom) RV in OSSE EST Rx16. Left column shows the 

reconstruction skill at the 1st iteration (i.e., without observation error estimation). Second to fifth columns show the skill difference 

from the previous iteration; for instance, the second column shows the difference between 2nd and 1st iterations. Markers in each 385 
map show the position of proxies. 
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To assess the dependence on the initial observation error covariance, we repeated the same test using two different Rini. The 390 

results showed a similar tendency in Rx0.25 and Rx16, where both observation error estimates and the reconstruction skills 

improved with iterations (Figs. 3 and 4). In contrast, Rest gradually deviated from the Rtru with increasing iterations in Rx1, 

where Rini = Rtru, leading to a slight decrease in the reconstruction skill scores. This is due to the sampling error reducing 

estimation accuracy, as shown in Rx16. A notable difference in RV was found among the experiments, which increased with 

iterations in Rx16, whereas it decreased in the others. This can be explained by how the DA weighs the model prior and 395 

observations based on their errors: Larger observation errors result in lower observation weights. In Rx16, the observation 

error variances in the analysis step of the 1st iteration are intentionally overestimated, resulting in the small difference between 

the analysis and the prior. Because the prior was the same at all the analysis steps, the analysis also remains nearly stationary, 

leading to a low RV. With iteration, the observation error decreased, allowing the DA to assign more weight to the observations, 

in turn increasing the RV. The opposite occurred in Rx0.25, where the observation errors were initially underestimated. With 400 

increasing iterations, the estimated observation errors increased, shifting more weight onto the prior in the DA process. 

Consequently, the RV decreased with iterations in Rx0.25. Despite these differences, all the experiments ultimately converged 

to the same Rest and the skill scores, suggesting the little dependency on Rini including RV. 

With different Rini, the estimated inflation factors exhibit different spatial patterns at the first iteration, where large (small) Rini 

resulted in small (large) inflation factors (Fig. A2), as deduced from Eqs. 16, 17, and 18 and the fact that 〈𝐝!"(𝐝!")$〉 is the 405 

same for all the experiments with different Rini. Nonetheless, the inflation factors converge to the similar patterns after the 

iterations (Fig. A2). The ensemble spread follows the inflation factors because otherwise the background ensemble is the same 

at all the analysis steps in this study (not shown).  

The inflation factors and the ensemble spreads are tightly connected with Rest and deducible by it. Thereby, we focus only on 

observation errors hereafter. 410 

4 Real observation results 

Observation errors were estimated using innovation statistics, as in Sect. 3, but for real observations. The estimated errors after 

the 10th iteration ranged from 0.79 ℃ to 2.11 ℃ (mean of 1.59 ℃) for surface temperature, from 0.45 ‰ to 3.50 ‰ (mean of 

1.42 ‰) for ice cores, 0.02 ‰ to 0.44 ‰ (mean of 0.12 ‰) for corals, and 0.07 ‰ to 1.54 ‰ (mean of 0.82 ‰) for tree-ring 

cellulose (Fig. 6a and 6b). Errors can be expressed as the ratio of Rest to the variance of each observation. At most locations, 415 

the estimated observation errors exceeded one-fourth of the variance, which is the typical value for paleo-DA (Figs. 7c and 

7d). Although the estimated observation errors were system specific, as shown in Eq. 2, these results suggest a need for 

reconsidering the size of observation errors in paleo-DA. The corresponding SNR were approximately 1.25, and 1.22 for the 

corals and tree-ring cellulose, respectively, whereas it was approximately 1.0 for ice cores, indicating that either measurement, 

representativeness, or observation operator errors for ice cores is larger than those for the other proxy types. This may be 420 
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because no PSM was applied for ice cores. However, even with PSM, the estimated SNR should be smaller for ice cores 

because the skill of the PSM is found to be relatively low compared to the ones for coral and tree-ring cellulose (Okazaki and 

Yoshimura, 2019). The estimated SNR for the surface temperature (1.14) was smaller than that estimated by Valler et al. 425 

(2022) (2), showing that the estimated error was larger in the current study. This was likely due to the coarser horizontal 

resolution of the background in this study (T42) compared with that in Valler et al. (2022) (T63).  

 
Figure 6: Estimated observation error at the 10th iteration in the REAL experiment in the (a, b) ratio to the temporal variance of 

each observation and (c, d) physical unit (‰ or ℃).  430 
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Figure 7: Similar to Fig. 3 but for REAL experiment. Estimated observation error variances are normalized to temporal variance 440 
of corresponding proxy. Horizontal dashed line shows the one-fourth of the variance, corresponding to SNR = 0.5. 

 

The reconstruction skills for surface temperature are shown as a function of the number of iterations in Fig. 8. Here, the scores 

were computed against HadCRUT5 (Morice et al., 2021) for 1960-2000. This period was selected for better spatial coverage 

of the reference data. The skill scores increase with each iteration, regardless of the metrics used. Without error estimation, the 445 

CC and the CE scores were 0.38 and 0.04, respectively. After iteration, these values increased to 0.43 and 0.16, respectively. 

The skill scores were relatively low compared to those of previous paleo-DA studies (e.g., Steiger et al., 2018; Tardif et al., 

2019; Valler et al., 2024), likely due to the limited number of assimilated observations. The most notable improvements 

occurred in the tropical Atlantic Ocean, North Africa, and the north-eastern part of North America, where the initial CC and 

CE scores were relatively low (Fig., 9). In these regions, the estimated observation errors increase with iterations, effectively 450 

reducing the detrimental increments in the DA process and improving the reconstruction skill. In Siberia and south Pacific 

near the coast of south Chile, the skills decrease along with iteration, likely due to the bias in the background error covariance.   
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3 

Figure 8: Reconstruction skill score of CC (circle), CE (triangle), and RV (square) in the REAL experiment according to iteration. 455 
 

 
Figure 9: Similar to Fig. 5 but for the REAL EST experiment. The scores were calculated against HadCRUTv5 (Morice et al., 2021) 

for 1960-2000. Areas where observations covers less than half of the period are masked and shaded in grey.  

 460 
 

 

 

The reconstruction skills of the REAL EST were compared to the UNI, RES, and VAR experiments, which defined the 

observation errors in different ways (Fig. 10 and Table. 2). The global mean skill scores for CC and CE were the best in the 465 
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EST, whereas RES and VAR achieved comparable skills with the EST when the scaling parameter is carefully tuned. In 

contrast, UNI exhibits the lowest skill scores. In terms of RV, UNI performed remarkably better than the others, when the 

scaling factor or number of iterations was tuned with CC. Among the other experiments, EST maintained a relatively high RV, 

primarily because the observation errors in EST were smaller than those in RES and VAR (Fig. 10). Similar results were 

obtained when validating against GISTEMP (Lenssen et al., 2024; Fig. A3 and Table. A1).  470 

 

 
Figure 10: Surface temperature reconstruction skill score for the REAL EST, RES, VAR, and UNI experiments based on the CC 

(circle), CE (triangle), and RV (square). Each mark corresponds to the skill score of a scaling factor or an iteration. The scores were 

calculated with HadISST for 1960-2000.  475 
 

 

Table 2: Global mean skill scores for REAL experiments verified with HadCRUT for 1960-2000  

Exp. Name # of iteration /  
Scaling factor 

CC CE RV 

EST 10 0.432 0.162 0.183 

UNI 0.7 0.224 -0.038 0.274 

VAR 8 0.407 0.159 0.138 

RES 1.5 0.416 0.158 0.162 
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Here we compared the observation errors in all the experiments except for UNI, since the skills based on CC and CE were 

exceptionally lower than those of the others. The observation errors in RES and VAR were roughly proportional to those in 485 

EST (Fig. 11a). This suggests that using a globally constant scaling factor may be reasonable for first-order approximation in 

paleo-DA. However, a closer examination revealed large variations in the ratio of the errors in RES and VAR to those in EST. 

Specifically, the 10th and 90th percentile of the ratios were 1.84 and 4.37 for VAR and 1.79 and 5.29 for RES, respectively, 

indicating significant spatial differences (Fig. 11b). This large variability also suggested that the observation errors cannot be 

optimally tuned using a globally constant factor. This, combined with the poor skills of UNI, underscores the importance of 490 

setting and tuning observation errors individually for each observation point, rather than applying a uniform universal 

adjustment. 

 

 
Figure 11: (a) Comparison of observation errors in REAL EST and those in VAR (blue), RES (magenta), and UNI (green) in scatter 495 
plot. Cross indicates old documents; hexagon, ice cores; triangle, corals; and diamond, tree-ring cellulose. The observation errors 

are shown with physical units (℃ or ‰). (b) Ratio of observation errors in REAL VAR, RES, and UNI to those in EST. Horizontal 

bars show the minimum, 10th, 50th, 90th, and maximum. 𝐑𝐗𝐗𝐗
𝟏/𝟐  denotes observations errors either in VAR, RES, or UNI. 
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5 Limitations of the proposed method 500 

5.1 Biases in background error covariance   

This study used anomaly assimilation to mitigate model bias in the mean states and estimated the prior error covariance 

inflation factors to ensure that the variance of B used in the DA matched that of Best (Eq. 19). This should ensure that biases 

in the prior mean and the variance do not affect the reconstruction skills significantly. We investigated the impact of biases in 

the covariance structure among the model states, specifically the off-diagonal elements of B. In DA, the covariance plays a 505 

key role in spreading observation information spatially. If the prior covariance structure differs from the true covariance 

structure, incorrect increments are included in the prior update.  

 

We investigated the impact of covariance bias using “BIAS”, an experiment similar to the OSSE EST but with a different 

model simulation for the background ensemble. Figure A4 shows the correlation between the mean surface temperature in the 510 

NINO3 area and each model grid point and indicates that the nature run exhibited stronger correlations globally than the BIAS. 

 

Figure 12 shows the estimated observation errors for the BIAS experiment and compares them with those from the OSSE EST 

Rx16. The observation errors were consistently overestimated in BIAS for all the iterations. Although the iterative estimation 

brings Rest closer to Rtru, the discrepancy was larger than that in the unbiased case. Moreover, the ratio of Rest to the Rtru 515 

exhibited a wider distribution compared to that without bias, indicating greater uncertainty in error estimation. Nevertheless, 

the reconstruction skills are all improved with Rest, although the improvements were less pronounced than those without bias 

(Fig. 13). These findings suggested that the innovation statistics remain effective even in the presence of model bias, and that 

the reconstruction skills can still be improved through observation error estimations. The effectiveness of this method likely 

depends on the magnitude of bias. However, the innovation statistics exhibited some tolerance to biases in B, which is 520 

consistent with previous findings (e.g., Li et al., 2009). 
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Figure 12: Similar to Fig. 3 but for the OSSE EST (dark grey) and BIAS (grey). Rini is Rx16 in both cases. 525 
 

 
Figure 13: Similar to Fig. 4 but for the OSSE EST (thick black line with circle) and BIAS (thin grey dashed line with square). 

 

5.2 Impact of sample size on observation error estimation 530 

We investigated the impact of sample size on the accuracy of observation error estimations using a simplified two-variable 

model. The experimental design was the same as that of the OSSE EST, except for the background ensemble and observations: 
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1. First, background state 𝐱I ∈ ℝ0 is generated by randomly sampling from a normal distribution with a mean of 0 and the 

variance of 1. Each element of xb was designed to correlate with the other element with a correlation coefficient of 0.7. 535 

An ensemble of 136 members was generated in the same way.  

2. Observations 𝐲" ∈ ℝ0 are randomly sampled from a normal distribution with a mean of 0 and the variance of 1. The 

observations were generated for 131 time steps, assuming that the true state is always  0, meaning that the true observation 

error variance is 1. 

3. Using the same background ensemble at every timesteps as in the stationary offline-DA, the analysis is computed by 540 

assimilating the observations. In the first iteration, the diagonal components of R are set to 2, which is twice the true 

observation variance. 

4. Observation errors and covariance inflation factors are then estimated based on the analysis, prior, and observations using 

innovation statistics.  

5. The 3rd and 4th steps are repeated, but with the estimated observation errors and the covariance inflation factors in DA. 545 

The set of analyses and estimations of the observation errors and inflation factors were repeated 20 times. 

6. Steps 1 to 5 were repeated 100 times but with different realizations of xb and yo. 

 

Fig. 14 compares the estimated sizes of the observation errors after the 20th iterations and 〈𝐝!"(𝐝!")$〉. Here, 〈𝐝!"(𝐝!")$〉 is 

expected to be 2 because the error variances of the prior and observation are both 1.0 (see Eq. 16). However, the estimated 550 

values varied between 1.2 to 2.7, highlighting the effect of sampling error. We observed a strong correlation between the 

estimated observation errors and 〈𝐝!"(𝐝!")$〉. Specifically, when 〈𝐝!"(𝐝!")$〉 is overestimated, the Rest is also overestimated, and 

vice versa. This occurs because R is estimated based on 〈𝐝!"(𝐝!")$〉 (see Eq. 18). Therefore, if 〈𝐝!"(𝐝!")$〉 is biased due to 

sampling noise, Rest will also be systematically biased.  

 555 
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Figure 14: Relationship between 〈𝐝!"(𝐝!")$〉 and Rest at the 20th iterations for the simplified two-variable model.  

 

 560 

The Rest based on 131 samples was insufficient to suppress sampling noise even in a simplified two-variable model (Fig. 14), 

suggesting that the sample size used in Sects 3 and 4 (n=131) should also be too small for reliable observation error estimation. 

In case 〈𝐝!"(𝐝!")$〉 is biased, iterative estimation of observation errors can degrade the reconstruction skill score, because the 

estimation seeks to minimize the discrepancy between 〈𝐝!"(𝐝!")$〉 and HBHT+R used in DA. Thus, a larger sample size should 

be used for the more robust observation error estimation. 565 

 

When the correlation between the model state variables is zero, 〈𝐝!"(𝐝!")$〉 explains almost all the variability in estimated 

observation errors (i.e., a correlation coefficient is nearly 1.0; not shown). However, as the correlation between the model 

states increased, the explained variance decreased (Fig. 14), likely because the observation error estimation at a given location 

is influenced by 〈𝐝!"(𝐝!")$〉 in the surrounding points. When the estimation is affected by multiple surrounding observations, 570 

a simple linear relationship between the estimated error and 〈𝐝!"(𝐝!")$〉 does not hold true anymore.  

6 Summary and conclusions 

This study investigated the feasibility of observation error estimation using innovation statistics (Desroziers et al., 2005) within 

an offline-DA framework for paleoclimate reconstruction. We compared the performance of this approach in both an idealized 

framework assimilating pseudo-proxy data and a real case study assimilating actual proxy data. We found that the innovation 575 

statistics accurately estimated observation errors within the offline-DA scheme for the OSSE, achieving an absolute percent 

error of ~46%. Incorporating the estimated observation errors into DA improved reconstruction skill scores (CC and CE) by 
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5%-30% compared to the ones without them. Furthermore, we also found there are little dependence on the initial size of 

observation error variance used in DA in subsequent observation error estimation and analyses. Although the accuracy of the 

estimation depended on the sample size and the quality of the prior error covariance, the estimation method consistently 580 

improved the reconstruction skills.  

 

Beyond idealized experiments, we demonstrated that the innovation statistics-based method also improved the reconstruction 

skills in real-world applications. The reconstruction skills with the estimated observation errors were comparable with or 

slightly better than those based on the variance of the observation or the differences between the observation and simulated 585 

observation-equivalent quantities. Although further tuning may result in better reconstruction skills in these other approaches, 

careful and manual parameter tuning is required, which is prohibitively time-consuming. In this regard, innovation statistics-

based approach offers the advantage of automatically and systematically estimating errors. 

 

DA nowadays is used to reconstruct climate of the ages deeper in the past such as the Eocene. In such applications, it is difficult 590 

to build linear regression models only with proxy data and instrument-based observations due to the shortage of overlapping 

periods. As a consequence, observation errors based on the residual of the linear regression, which is the commonly used 

approach in the previous studies, are not available. Not only for deep time paleo-DA but also for the late Holocene, direct 

assimilation of proxy data using process-based model is expected to be mainstream in the future as seen in the history of 

satellite data assimilation for NWP. The situation necessitates the development of other approaches to estimate observation 595 

errors. This study successfully demonstrated a feasible approach for paleoclimate reconstruction with DA. The method can be 

readily expanded to online-DA, since it was originally designed for this purpose. With more accurate observation errors, the 

observation impact estimates, such as analysis sensitivity to observation (e.g., Cardinali et al., 2004; Liu et al., 2009) and 

forecast sensitivity to observations in online-DA (e.g., Langland and Baker, 2004; Liu and Kalnay, 2008; Li et al., 2010) will 

be more accurate, too. These diagnostics can help to identify detrimental observations and/or key data sources for paleoclimate 600 

reconstruction. As such, the observation error estimation method should sophisticate and expand the possibility and accuracy 

of paleo-DA.  

 

Despite the benefits, several challenges remain in the application of innovation statistics for offline-DA. Our study indicates 

that sampling noise may affect the accuracy of error estimation, especially with limited proxy records. If the sampling noise is 605 

not negligible, iterative estimation may worsen the reconstruction skill. To mitigate this, an iteration threshold should be set 

to avoid any detrimental impact on the estimates. This issue was outside the scope of this study and requires future research. 

We did not consider age uncertainty on the exact date and the length of the representative period of the proxy records. Although 

this is not vital for the present study or climate reconstruction in the last millennium, it is not true for deep-time paleo-DA. 

Even for the last millennium, it may not be negligible when aiming to reconstruct climate at a monthly or finer temporal 610 

resolution. Age uncertainty can be considered as a misrepresentation in the archive model, a sub-model of the PSM (Evans et 
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al., 2013). Accordingly, the uncertainty can be regarded as a part of an observation error in DA. However, it remains unclear 

whether we should do so or not. Observation errors that include age uncertainty can be much larger than prior errors. In such 

cases, the analysis is reduced to the prior with little information from assimilated observations. To avoid this scenario, a method 

that separately accounts for age uncertainty (e.g., Osman et al., 2021) and/or a refinement of the dating (e.g., Furukawa et al., 620 

2017) is required. For the similar reason, the size of each error component must be evaluated, too.  

 

In this study, we tested a specific method for estimating observation errors. However, several alternative approaches exist with 

different complexities and applicability (e.g., Tandeo et al., 2020 and references therein). Other estimation methods should be 

explored for paleo-DA to refine observation error estimations.  625 

 

Finally, it is important to emphasize that the estimated observation errors do not represent the true accuracy of the proxies in 

recording environmental conditions. Instead, as defined by Eq. 2, the estimated errors are specific to the DA system. Therefore, 

the estimated observation errors are a system dependent, and not necessarily valid across systems. Consequently, the 

observation errors must be estimated separately for each reconstruction system.  630 

Appendices 

A.1 Sensitivity to the observation error variance in R 

The sensitivity to the observation error variance was examined using the configuration of the OSSE. In this experiment, we 

tested the effects of variation in 𝐑 = 𝑘	𝐑#%J. The scaling factor was set to 0.25, 0.5, 1, 2, 4, 8, 16, or 32. The reconstruction 

skills ranged from 0.5 to 0.55 for CC and from 0.19 to 0.32 for CE, respectively, showing the importance of using accurate 635 

observation error R in DA.  
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Figure A1: Sensitivity to the observation error variance in OSSE. The color of the bar indicates the scaling factor.  

A.2 Estimated inflation factors 

The estimated inflation factors for the OSSE are shown in Fig. A2. The estimated inflation factors exhibit different spatial 

patterns at the first iteration with different Rini, where large (small) Rini resulted in small (large) inflation factors. Nonetheless, 645 

the inflation factors converge to the similar patterns after the iterations.  

 

Figure A2: Estimated inflation factors for the OSSE (top) Rx16, (middle) Rx1, and (bottom) Rx0.25.  
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A.3 Validation result with GISTEMP 

The reconstruction skills of the REAL EST, UNI, RES, and VAR experiments were computed with GISTEMP (Lenssen et al., 

2024; Fig. A3 and Table. A1). The similar tendency described in Sect. 4 was observed.  

 
Figure A3: Surface temperature reconstruction skill score for the REAL EST, RES, VAR, and UNI experiments based on the CC 655 
(circle), CE (triangle), and RV (square). The scores were calculated with GISTEMP for 1960-2000.  

 
Table A1: Global mean skill scores for the REAL experiments verified with GISTEMP for 1960-2000 

Exp. Name # of iteration /  
Scaling factor 

CC CE RV 

EST 10 0.420 0.155 0.170 

UNI 0.6 0.226 -0.042 0.278 

VAR 8 0.403 0.153 0.133 

RES 1.5 0.408 0.150 0.154 

 

A.4 Covariance structure of B in BIAS 660 

The BIAS experiment examined the impact of the biased off-diagonal term of B. The correlation between the mean surface 

temperature in the NINO3 area and that in each model grid point was mapped to show the covariance structure difference 

between the nature run and BIAS.  
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Figure A4: Correlation coefficients between mean surface temperature in NINO3 area (rectangle area) and surface temperature in 
each model grid points for (a) nature run and (b) background ensemble used in the BIAS experiment. 670 

 

Code availability  

The codes to reconstruct climate fields and estimate observation errors are written in Fortran and are available at Zenodo 

(https://zenodo.org/records/14987726) 

Data availability 675 

Proxy records used in this study were obtained from https://pastglobalchanges.org/science/wg/2k-

network/Phase_3_Databases/Iso2k for Iso2k and https://pastglobalchanges.org/science/wg/2k-

network/Phase_2_Databases/Global_Temp/V2.0.0_2017 for PAGES2K. Gridded surface temperature data used to validate 

the reconstruction skills were obtained from https://www.metoffice.gov.uk/hadobs/hadcrut5/ for HadCRUT5 and 

https://data.giss.nasa.gov/gistemp/ for GISTEMP v4. CMIP5 MIROC5 historical runs which are used to drive the 680 

atmospheric GCM is available at https://esgf-node.llnl.gov/projects/cmip5/. 
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