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Abstract. Recent Land surface models (LSMs) have evolved significantly in complexity and resolution, requiring 

comprehensive evaluation systems to assess their performance. This paper introduces The Open Source Land Surface Model 

Benchmarking System (OpenBench), an open-source, cross-platform benchmarking system designed to evaluate the state-of-

the-art LSMs. OpenBench addresses significant limitations in the current evaluation frameworks by integrating processes that 

encompass human activities, facilitating arbitrary spatiotemporal resolutions, and offering comprehensive visualization 15 

capabilities. The system utilizes various metrics and normalized scoring indices, enabling a comprehensive evaluation of 

different aspects of model performance. Key features include automation for managing multiple reference datasets, advanced 

data processing capabilities, and support for station-based and gridded data evaluations. By examining case studies on river 

discharge, urban heat flux, and agricultural modeling, we illustrate OpenBench's ability to identify the strengths and limitations 

of models across different spatiotemporal scales and processes. The system's modular architecture enables seamless integration 20 

of new models, variables, and evaluation metrics, ensuring adaptability to emerging research needs. OpenBench provides the 

research community with a standardized, extensible framework for model assessment and improvement. Its comprehensive 

evaluation capabilities and efficient computational architecture make it a valuable tool for both model development and 

operational applications in various fields. 

1 Introduction 25 

Land surface models (LSMs) simulate the complex interactions among the land surface, planetary boundary layer, rivers and 

lakes, glaciers and frozen soils, plant physiology and ecology, vegetation dynamics, biogeochemistry, human activities, and 

other processes occurring on the land surface (Blyth et al., 2021; Dai et al., 2003; Lawrence et al., 2019; Pokhrel et al., 2016). 

These models play an important role in understanding and predicting various changes in the earthEarth system, serving as a 

bridge connecting the land surface, ocean, and atmosphere (Fisher and Koven, 2020; Ward et al., 2020; Liu et al., 2024). As 30 

such, they are key components of earthEarth system models (ESMs) and have significant impacts on our ability to comprehend 

and predict weather, climate, hydrological cycles, carbon cycles, and various other environmental factors. In recent decades, 

LSMs have undergone rapid development, evolving from basic "bucket" models (Manabe, 1969) to advanced multi-module 
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systems (Blyth et al., 2021) that incorporate both biogeochemical processes (e.g., greenhouse gas, carbon, nitrogen, and 

phosphorus cycles), geophysical processes (including land use changes, three-dimensional surface water, subsurface flow, and 35 

flooding), as well as human activities (such as agriculture, reservoir management, and urban development). This evolution has 

been driven by advances in hydrology, meteorology, computer science, and measurement technology, leading to the 

development of increasingly complex models. Concurrent with the increasing complexity of processes represented in LSMs, 

there has been a significant improvement in spatial resolution as well. Models have progressed from traditional forecasting 

scales of 25-100 km (Dai et al., 2003) to current fine scales of 0.1-10 km (Chen et al., 2024). The increasing complexity and 40 

resolution of models require a comprehensive evaluation and analysis of simulation results.  

In recent years, various model benchmarking systems (See Table 1) have been developed. These systems assess model 

performance in comparison to multiple sources of reference datasets. Most of these benchmarking systems consist of 

benchmark datasets, evaluation software, metrics, model operating environments, and auxiliary tools. The benchmark datasets 

standardize observation, reanalysis, and remote sensing data to evaluate model accuracy in simulating land processes. 45 

Evaluation software includes metrics, execution environments, and tools designed for automated assessment and quantifying 

LSMsLSMs' performance. The operating environment comprises the software and hardware for running evaluations, while 

ancillary tools support benchmarking. Despite the importance of LSM evaluation and the development of various 

benchmarking systems, several limitations persist in current evaluation approaches. These limitations have become 

increasingly apparent as the complexity and resolution of LSMs have increased. One significant area for improvement is the 50 

scope of evaluation variables in most existing evaluation systems. These systems typically focus on some range of commonly 

used variables, such as water, heat and carbon fluxes, temperature, and vegetation coverage. This restricted scope fails to 

capture the full range of processes simulated by modern LSMs. For instance, TraceMe (Zhou et al., 2021) is primarily designed 

to evaluate model outputs related to the carbon cycle, while the MetEva software developed by the National Meteorological 

Center of China (https://github.com/nmcdev/meteva) focuses on meteorological fields. However, neither of these tools 55 

provides a comprehensive assessment of land surface processes, nor can they easily adapt to new evaluation indicators or 

datasets. In particular, there is a lack of comprehensive evaluation for hydrological cycles and human activities, making it 

challenging to fully assess model performance in these critical areas fully. Human activity, while an important factor affecting 

surface processes, is one of the most challenging aspects to model and evaluate. This is primarily due to the small-scale nature 

of human activity data (e.g., crop yields, dam operation, and anthropogenic heat) and the involvement of complex socio-60 

economic and land-use change data. These datasets are often multi-source, complex, and highly uncertain. To date, no 

evaluation system has been found to integrate the assessment of human activities in LSMs broadly. 

Another significant challenge in current LSMs evaluation practices is the difficulty in conducting inter-model comparisons. 

This comparative work is a key step in improving model performance and understanding model differences and uncertainties. 

However, the lack of a universal and comprehensive evaluation tool presents significant challenges, especially in the context 65 

of high-resolution complex models and evolving underlying datasets. Traditionally, software tools for evaluating LSMs have 

often been customized for specific models or datasets. For example, the evaluation tools for The Canadian Land Surface 

https://github.com/nmcdev/meteva
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Scheme (CLASS) and The Community Atmosphere Biosphere Land Exchange model (CABLE),For example, the evaluation 

tools for The Canadian Land Surface Scheme (CLASS) (Verseghy, 1991) and The Community Atmosphere Biosphere Land 

Exchange model (CABLE) (Haverd et al., 2018), i.e., AMBER (Arora et al., 2023) and benchcab (https://github.com/CABLE-70 

LSM/benchcab), are optimized for their respective outputs. Customized software designs lead to several issues. Researchers 

must invest time in learning specific usage methods and data formats for each new model, limiting their ability to try new 

models and slowing down comparisons. Different tools using different evaluation criteria and formats make it difficult to 

compare model performance. Evaluation tools like the International Land Model Benchmarking (ILAMB) platform (Collier 

et al., 2018) require complex data processing, such as converting model outputs to the Coupled Model Intercomparison Project 75 

(CMIP) standard. This process consumes time and computing resources, increasing the risk of errors and potentially affecting 

the reliability of evaluations. In the meantime, some platforms, such as ILAMB and the Land Surface Verification Toolkit 

(LVT) (Kumar et al., 2012), offer a wide range of assessments for process variables. However, their spatiotemporal resolution 

is relatively low (typically at a monthly scale and 0.5°). They have limitations in processing data conversion at different scales, 

making it difficult to perform simulation evaluations at multiple spatiotemporal scales. 80 

Visual analysis capabilities are another area where current evaluation tools often fall short. Many lack visual functions or 

produce low-quality visualizations, making it difficult to display evaluation results effectively. For instance, while some can 

produce graphical diagnostics, the quality is often insufficient to meet publication standards, and it is unable to customize 

output. Platform compatibility is also a significant issue, as most evaluation tools are designed to run only on Linux. This 

limits their application on Windows or macOS operating systems, thus restricting their popularity and accessibility. 85 

 

Table 1. The software that can be used or partly used for land surface model evaluation. The abbreviations for specific nouns in the 

table are described below：AMWG: NCAR's CAM Diagnostics Package; CVDP: NCAR's Climate Variability Diagnostics Package; 

ESMValTool: Earth System Model Evaluation Tool; PMP: PCMDI's Metrics Package; ILAMB: International Land Model 

Benchmarking System; MDTF: NOAA's Model Diagnostics Task Force Framework; MPAS-Analysis: analysis for MPAS (Model 90 

for Prediction Across Scales) components of E3SM Ocean and Sea-ice analysis for E3SM's MPAS components; E3SM Diags v2.7: 

The E3SM Diagnostics Package; AMBER: Automated Model Benchmarking; PALS: Protocol for the Analysis of Land Surface 

models; LVT: Land Surface Verification Toolkit; benchcab: Evaluation Tool for the Land Surface Model CABLE; TraceMe: 

Traceability analysis system for model evaluation; AMET: The Atmospheric Model Evaluation Tool; MET: The Model Evaluation 

Tools; MVIETool: the Multivariable Integrated Evaluation Tool. 95 

Name 
Range of 

application 

Arbitrary 

spatiotemporal 

resolution 

Cross-

platform 
Reference Link 

MetEva 
GRAPES 

model 
No Yes NA 

https://github.com/nmcde

v/meteva 

https://github.com/CABLE-LSM/benchcab
https://github.com/CABLE-LSM/benchcab
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AMWG 

(retired) 
CAM No No (Linux) NA 

https://www2.cesm.ucar.e

du/working_groups/Atmo

sphere/amwg-

diagnostics-package/ 

CVDP CMIP-style No No (Linux) Phillips et al. (2014) 

https://www2.cesm.

ucar.edu/working-

groups/cvcwg/cvdp 

ESMValES

MValTool 
CMIP-style No No (Linux) Weigel et al. (2020) 

https://esmvaltool.or

g/ 

PMP CMIP-style No No (Linux) Lee et al. (2023) 
https://github.com/P

CMDI/pcmdi_metrics 

MDTF 

Single 

point，

CMIP-style，

NCAR, and 

GFDL model 

Yes 
No (Linux 

and macOS) 
NA 

https://mdtf-

diagnostics.readthedocs.i

o/en/latest/ 

MPAS-

Analysis 
MPAS model Yes No (Linux) NA 

https://github.com/

MPAS-Dev/MPAS-

Analysis 

E3SM Diags  
E3SM model,  

CMIP-style 
Yes No (Linux) C. Zhang et al. (2022) 

https://github.com/E

3SM-Project/e3sm_diags 

ILAMB CMIP-style No No (Linux) Collier et al. (2018) 
https://www.ilamb.o

rg/ 
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AMBER 
CLASSIC, 

CTEM 
Yes Yes Arora et al. (2023) 

https://cccma.gitlab.i

o/classic_pages/benchma

rking/ 

PALSmodele

valuation.org 
Single point Yes Yes Best et al. (2015) 

https://modelevaluat

ion.org/ 

LVT  Various Yes No (Linux) Kumar et al. (2012) 

https://github.com/N

ASA-

LIS/LISF/tree/master/lvt 

benchcab 

Single point , 

CABLE 

model 

Yes Yes - 
https://github.com/C

ABLE-LSM/benchcab 

TraceME CMIP-style Yes No (Linux) Zhou et al. (2021) 
http://traceme.org.cn

/ 

AMET CMAQ model Yes No (Linux) Appel et al. (2011) 

https://www.epa.gov

/cmaq/atmospheric-

model-evaluation-tool 

MAT 

WRF, UFS, 

and 

SIMA model 

Yes No (Linux) Jensen et al. (2024) 

https://metplus.readt

hedocs.io/projects/met/en

/latest/ 

MVIETool CMIP-style No No (Linux) 
M.-Z. Zhang et al. 

(2021) 

https://github.com/

Mengzhuo-

Zhang/MVIETool 

 

To address these challenges and meet the high standard requirements of new-generation LSM verification and evaluation, we 

have developed OpenBench (The Open Source Land Surface Model Benchmarking System). The core goal of OpenBench is 

to provide an open-source, fast, efficient, diverse, and accurate evaluation mechanism for high-resolution land-surface model 

outputs. OpenBench is designed as a universal and high-performance LSM evaluation system, fully written in Python, that 100 
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realizes functions such as data processing, evaluation method encapsulation, and result analysis visualization. OpenBench 

supports cross-platform, including Windows, macOS, and Linux, enhancing its accessibility and usability across different 

research environments. OpenBench incorporates evaluation metrics and datasets that account for human activities'activities on 

land surface processes, filling a significant gap in current evaluation systems. The system provides a unified and standardized 

benchmark test method framework, allowing for efficient and comprehensive system validation and evaluation of typical land 105 

surface models, such as CoLM, CLM, Noah-MP, GLDAS, and JULES, as well as CMIP styled-style model output. By ensuring 

the widespread sharing of evaluation results, OpenBench aims to advance scientific research and operational work in land 

surface modeling. The system maximizes the use of available observational and reanalysis data through its efficient data 

management and processing capabilities.  

In the following sections of this paper, we will detail the methodology behind OpenBench, including its system architecture, 110 

key components, and the benchmark datasets developed for it. We will then present case studies that demonstrate its application 

in evaluating and comparing different LSMs or parameterizationparameterizations, highlighting its capabilities in handling 

high-resolution data and complex processes. Finally, we will discuss the implications of this new evaluation system for the 

field of land surface modeling and outline future directions for its development and application. 

2 Overall Structure 115 
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Figure 1: General flowchart of the OpenBench.  

OpenBench represents a significant advancement in the field of model evaluation and intercomparison. This section outlines 

the system's overall structure, highlighting its key components and workflow. The benchmarking systemOpenBench is 120 

designed with modularity and flexibility in mind, enabling efficient processing of diverse datasets and model outputs. The 

OpenBench code is designed to simultaneously handle various data types, including plot -scale data (such as station data) and 

gridded data (regional or global) for both simulation and reference datasets. The flowchart of OpenBench is shown in Fig. 1.  

The system includes six components, i.e., configuration management, data processing, evaluation, comparison processing, and 

statistical analysis, and visualization. The configuration management module utilizes a accommodates three configuration 125 

namelist formats (YAML, JSON, and Fortran namelist-based configuration approach, allowing users) to specifymeet different 

user preferences and workflows, with JSON as the default format. Users can utilize the configuration namelist to define 

evaluation parameters, data sources, and model outputs. This flexibleadaptable configuration system supports easyfacilitates 

straightforward customization of evaluation scenarios. The data processing module handles the preprocessing of both reference 

and simulation data, including temporal and spatial resampling to ensure consistent comparison between datasets with different 130 

spatiotemporal resolutions. The evaluation module implements the core evaluation logic, applying various metrics and scores 

to quantify model performance. It supports both gridded and station-based data and adapts its methods accordingly. The 

comparison module facilitates multi-model and multi-scenario comparisons, enabling comprehensive analysis across different 

models or configurations. Finally, advanced statistical techniques are implemented in the statistical analysis module, providing 

deeper insights into model behaviorbehaviors and performance patterns. The system also includes capabilities for generating 135 
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visualizations of evaluation results, which are crucial for interpreting and communicating findings provided in the visualization 

module. 

The system’ssystem's workflow follows a logical sequence of operations. The process begins with initialization, where 

command-line arguments are parsed, and configuration files are read. This stage sets up necessary directories and initializes 

key variables, laying the groundwork for subsequent operations. The system then moves into the data preparation phase, where 140 

both observational and model data are processed to ensure compatibility in terms of temporal and spatial resolution. This 

crucial step handles various data formats and structures, normalizing them for consistent analysis. At the core of the system is 

the evaluation process. Here, a wide array of metrics and scores areis applied to quantify the agreement between model outputs 

and observational data. This step is highly parallelized to efficiently handle large datasets, allowing for a comprehensive 

assessment across multiple variables and timeframes. If multiple models or scenarios are being evaluated, the system performs 145 

comparative analyses to highlight relative strengths and weaknesses. This comparison stage provides valuable perspectives 

into model performance across different conditions or implementations. Following the primary evaluation, the system conducts 

advanced statistical analyses to gain a profound understanding from the evaluation results. This may include uncertainty 

quantification, trend analysis, or other sophisticated statistical methods. The final stages involve result generation and 

visualization. The system compiles evaluation results, generates summary statistics, and prepares data for visualization. The 150 

system can produce various charts, graphs, and maps to effectively communicate the evaluation outcomes. Throughout these 

stages, the system demonstrates flexibility in handling different types of data (grid-based or station-based), various temporal 

resolutions, and a wide range of environmental variables. It also incorporates specialized handling for different land surface 

models, recognizing the unique characteristics and outputs of each. This comprehensive approach allows for a thorough, 

standardized evaluation of land surface models, providing valuable feedback for model development and application in Earth 155 

system science. 

Nevertheless, OpenBench is developed to serve as a specialized tool for land surface model output analysis, evaluation, and 

comparison. The software package is freely available to the community. The code is modular and can be easily extended or 

modified to accommodate the specific requirements of different evaluation tasks. OpenBench relies on various popular and 

well-established Python packages specific to the scientific computing stack: NumPy (Harris et al., 2020), Xarray (Hoyer and 160 

Hamman, 2017), Pandas (Mckinney, 2010), SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Cartopy (Met Office, 

2010), Dask (Rocklin, 2015), and Joblib (Joblib, 2020). The remap functions have several options: SciPy, Cdo (Schulzweida, 

2023) ,, xesmf (Zhuang et al., 2023), and xarray-regrid (Schilperoort et al., 2024) are available for selection. We use as few 

packages as possible, reducing dependencies to improve performance and compatibility. The software is developed and hosted 

on GitHub and is distributed under the Apache-2.0 license. The latest version of OpenBench can be found in the Zenodo 165 

repository, where it has been assigned a Digital Object Identifier (https://doi.org/10.5281/zenodo.14540647).  

OpenBench showcases remarkable efficiency benefits thanks to its parallel processing architecture. Assessment results from 

typical workloads reveal considerable advancements compared to sequential processing methods. In station-based evaluations, 

https://doi.org/10.5281/zenodo.14540647
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which involve IO-intensive tasks due to the requirement to read and process multiple individual site files, OpenBench 

demonstrates outstanding scalability. Evaluating a single variable across 142 stations takes about 3.12 minutes when using 170 

single-process execution. However, with parallel processing utilizing 48 cores, this time is reduced to only 0.509 minutes on 

an Intel(R) Xeon(R) CPU E5-4640 v4 @ 2.10GHz with 48GB RAM, thanks to Joblib's effective task distribution. For gridded 

data processing, OpenBench employs Dask's lazy execution and chunked array processing to effectively manage memory 

while ensuring high processing speeds. Processing model outputs at a 0.25° resolution from 2001 to 2010 with monthly 

temporal resolution against two reference datasets takes approximately 2.302 minutes with sequential processing, but only 175 

1.301 minutes when leveraging Dask's parallel capabilities on the same hardware configuration. These performance 

improvements are particularly beneficial for thorough model evaluations that involve multiple variables, reference datasets, 

and spatial domains. The impressive scalability with available cores makes OpenBench ideal for both rapid diagnostic 

evaluations on personal workstations and extensive comparative studies on high-performance computing systems. Additionally, 

effective memory management guarantees that analyses can be conducted even on systems with limited memory allocations, 180 

thus enabling high-resolution, in-depth model evaluation capabilities. 

The current test data shows notable performance improvements, but the advantages of OpenBench's parallel processing 

architecture stand out even more with higher resolution datasets and temporal resolution in gridded data processing. Here, the 

efficiency gains from Dask's parallel capabilities grow more substantial. In station-based evaluations, the improvement in 

performance scales with the number of stations being assessed. As the number of stations rises, the decrease in processing time 185 

through parallel execution using additional cores becomes significantly greater, further emphasizing OpenBench's scalability 

for extensive, high-resolution analyses.  

3 Evaluation  

3.1 The metric index 

Table 2. Metrics employed in OpenBench 190 

Metric Full name Range Reference Additional Description 

Bias metrics (The smaller is better,. The ideal value is 0).) 

BIAS Bias 
[-∞, +∞](-∞, 

+∞) 
Cole (1981) - 

PBIAS The percentage of bias 
[-∞, +∞](-∞, 

+∞) 
Sorooshian et al. (1993) - 

APBIAS Absolute Percent Bias [0, +∞]) Sorooshian et al. (1993) - 

PC_MAX Percent Bias of Maximum [-∞, +∞](-∞, X. Zhou et al. (2024) Measuring the bias of a 
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+∞) model when predicting the 

maximum value. 

PC_MIN Percent Bias of Minimum 
[-∞, +∞](-∞, 

+∞) 
X. Zhou et al. (2024) 

Measuring the bias of a 

model when predicting the 

minimum value. 

PC_AMPLI 
Percent Bias of 

Amplitude 

[-∞, +∞](-∞, 

+∞) 
X. Zhou et al. (2024) 

Measuring the bias of a 

model when predicting the 

data range. 

APFB 
Annual high flow 

percentagepercent bias 

[-∞, +∞](-∞, 

+∞) 
Mizukami et al. (2019) 

Measuring the relative bias 

between simulated and 

observed annual peak flows 

PBIAS_HF 
Percent Bias of High 

Flows 

[-∞, +∞](-∞, 

+∞) 
Mizukami et al. (2019) 

Measuring the model's bias 

in predicting high flows 

(typically above the 98th 

percentile). 

PBIAS_LF 
Percent Bias of Low 

Flows 

[-∞, +∞](-∞, 

+∞) 
Mizukami et al. (2019) 

Measuring the model's bias 

in predicting low flows 

(typically below the 30th 

percentile). 

PBIAS_FDC 

Percent Bias in the Slope 

of the Mid- 

segment of the Flow 

Duration Curve 

[-∞, +∞](-∞, 

+∞) 
Yilmaz et al. (2008) 

Measuring the model's bias 

in predicting moderate 

flows (typically fall within 

the 25th to 75th 

percentiles). 

P−-factor 

Percent of simulation that 

aresimulations  

without the given 

uncertainty bounds 

[0, 1] Abbaspour et al. (2007) 

Measuring the percentage 

of reference data falling 

outside the given 

uncertainty range. 

Error metrics (The smallercloser to 0 is better,. The ideal value is 0).) 

RMSE Root Mean Square Error [0, +∞]) Kenney & Keeping (1962) - 

MSE Mean Square Error [0, +∞]) Makridakis et al. (1982) - 

ubRMSE 
Unbiased Root Mean 

Square Error 
[0, +∞]) Entekhabi et al. (2010) 

Remove systematic bias 

from RMSE and only 



 

11 

 

considersconsider random 

errors. 

CRMSE 

(NRMSE) 

CenteredCentralized Root 

Mean Square Error 

(Normalized Root Mean 

Square Error) 

[0, +∞]) Stephen & Kazemi (2014) 

Measuring the random 

component of model error , 

independent of their mean 

values. 

MAE Mean Absolute Error [0, +∞]) Yapo et al. (1996) 
lessLess sensitive to 

outliers. 

RSS Residual sum of squares [0, +∞]) Archdeacon (1994) - 

RSR 

RMSE-observations 

minus Observations 

Standard Deviation Ratio 

[0, +∞]) Legates & McCabe Jr (1999) - 

IPE The Ideal Point errorError [0, 1]  Dawson et al. (2012)  - 

Correlation metrics (The larger is better. The ideal value is 1).) 

R Correlation Coefficient [-1, 1] Pearson (1920) - 

R2 
Coefficient of 

Determination 
[0, 1] 

Box (1966) and Barrett 

(1974)   
- 

ubR 
Unbiased Correlation 

Coefficient 
[-1, 1] Olkin & Pratt (1958) 

Not affected by systematic 

bias. 

ubR2 
Unbiased Coefficient of 

Determination 
[-1, 1] Olkin & Pratt (1958) 

Not affected by systematic 

bias. 

rSpearman 

Spearman’sSpearman's 

Rank Correlation 

Coefficient 

[-1, 1] Spearman (1961) 

Measuring the monotonic 

relationship between two 

variables. 

br2 
R-squared multiplied by 

regression slope 
[0, 1] 

Krause et al. (2005)  and 

Krstic et al. (2016) 

Combines the model's bias 

and goodness of fit. 

Efficiency metrics (The larger is better. The ideal value is 1).) 

NSE Nash-Sutcliffe Efficiency [-(-∞, 1] Nash & Sutcliffe (1970) - 

LNSE 
Log Nash-Sutcliffe 

Efficiency 
[0, 1] Lamontagne et al. (2020) 

More sensitive to lower 

values. 
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mNSE 
Modified Nash-Sutcliffe 

Efficiency 
[0, 1] 

Legates & McCabe Jr, 

(1999)Legates & McCabe Jr 

(1999) 

Using absolute differences 

instead of squared 

differences. 

rNSE 
Relative Nash-Sutcliffe 

Efficiency 
[-(-∞, 1] 

Legates & McCabe Jr, 

(1999)Legates & McCabe Jr 

(1999) 

Suitable for evaluating 

relative errors. 

wsNSE 

Weighted Seasonal Nash-

Sutcliffe Effi- 

ciencyEfficiency 

[-(-∞, 1] 
Zambrano-Bigiarini & Bellin 

(2012) 

Allows for evaluating 

model performance across 

different seasons while 

considering the relative 

importance of seasons. 

 

KGE Kling-Gupta Efficiency [-(-∞, 1] Gupta et al. (2009) - 

KGESS 
Standardized Kling-Gupta 

Efficiency 
[-(-∞, 1] Knoben et al. (2019) 

A normalized version of 

KGE, facilitating 

comparison between 

different models. 

ubKGE 
Unbiased Kling-Gupta 

Efficiency 
[-(-∞, 1] Gupta et al. (2009) Removing bias calculation. 

KGEkm 

Kling-Gupta Efficiency 

with Known Mo- 

mentsMoments 

[-(-∞, 1] Pizarro & Jorquera (2024) 
Considering coefficientthe 

Coefficient of Variation. 

KGElf 
Kling-Gupta Efficiency 

for Low Flows 
[-(-∞, 1] Garcia et al. (2017) 

Evaluating the model's 

ability to predict low flows. 

Agreement metric (The larger is better. The ideal value is 1).) 

IA Index of Agreement [0, 1] Krause et al. (2005) - 

RIA 
Relative Index of 

Agreement 
[0, 1] Krause et al. (2005) - 

ReIA 
The Refined Index of 

Agreement 
[0, 1] Willmott et al. (2012) - 

valindex Valid Index [0, 1] Criss & Winston (2008) 

Measuring the proportion of 

model predictions falling 

within an acceptable range. 
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L Likelihood Estimation [0, 1] Myung (2003) 
Evaluating the probability 

of model predictions. 

Others 

rSD 
Ratio of Standard 

Deviations 

[-∞, +∞](-∞, 

+∞) 
Everitt & Skrondal (2010) 

Greater than 1 indicates that 

the simulation has larger 

variability, vice versa. 

RV Relative Variability 
[-∞, +∞](-∞, 

+∞) 
Everitt & Skrondal (2010) - 

CV Coefficient of Variation 
[-∞, +∞](-∞, 

+∞) 
Lovie (2005) - 

KC Cohen's Kappa coefficient [-1, 1] Cohen (1960) 

Evaluates agreement for 

categorical data while 

accounting for chance 

agreement.  

 

Our benchmarking systemOpenBench uses a variety of metrics to evaluate LSM performance thoroughly (Table 2). This 

approach offers different viewpoints on model behavior, detailed comprehension of model strengths and weaknesses, versatile 

comparison abilities for both individual and inter-model assessments, and efficient implementation using Xarray and Dask 

software for handling large datasets. The system incorporates various categories of metrics to capture different aspects of 195 

model performance. For example, Bias metrics, such as Percent Bias (PBPBIAS) and Absolute Percent Bias (APBAPBIAS), 

measure systematic over- or under-estimation and bias magnitude, respectively. Error metrics, including Root Mean 

SquaredSquare Error (RMSE), Unbiased Root Mean SquaredSquare Error (ubRMSE), CenteredCentralized Root Mean Square 

Difference (CRMSDError (CRMSE), and Mean Absolute Error (MAE)), provide different perspectives on the magnitude and 

nature of model errors. Efficiency metrics like Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) evaluate 200 

model performance relative to baselines and combine multiple aspects of the model-data agreement. Correlation metrics, 

including Pearson correlation coefficient and R²,(R) and coefficient of determination (R2), quantify the strength and direction 

of linear relationships between model outputs and observations. The Index of Agreement (IA) provides a more comprehensive 

assessment of magnitude and phase agreement. Variability metrics such as Ratio of Standard Deviations (rSD) and specialized 

bias metrics for maximum (PC_MAX), minimum (PC_MIN), and amplitude (PC_AMPLI) values help identify whether 205 

models accurately capture the range of system variability and extreme conditions. For categorical data, the Cohen's Kappa 

coefficient (KC) evaluates agreement while accounting for chance. Variability metrics such as Relative Variability (RV) and 

Percent Change in maximum and minimum valuesCoefficient of Variation (CV) help identify whether models accurately 

capture the range of system variability. Bias-corrected versions of several metrics focus on assessing agreement in variability 

patterns after removing mean biases. In summary, this comprehensive approach provides a robust foundation for quantitative 210 
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LSMLSM's assessment, enabling a multi-faceted evaluation that captures various aspects of the model-observation agreement. 

By implementing this range of metrics, our benchmarking systemOpenBench offers a thorough and nuanced evaluation of 

LSMs, supporting scientific understanding and practical model improvement. 

3.2 The scoring index 

OpenBench implements a suite of normalized score indices developed in ILAMB (Collier et al., 2018; Arora et al., 2023), 215 

ranging from 0 to 1, with 1 indicating perfect agreement between the model and observations. ILAMB encompasses several 

key indices, each designed to evaluate specific aspects of model performance. The Normalized Bias Score (nBiasScore) 

quantifies systematic errors in the model's predictions, normalized by observational variability. For a given variable 

𝒗(𝒕, 𝒙),𝑣(𝑡, 𝑥), where 𝒕𝑡 represents time and 𝒙𝑥  represents spatial coordinates. We, we first calculate the bias from the 
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temporal means of both the reference 𝒗𝐫𝐞𝐟(𝐱)𝑣𝑟𝑒𝑓(𝑥) and model 𝒗𝒔𝒊𝒎(𝒙)𝑣𝑠𝑖𝑚(𝑥) data. To score the bias, we normalize it by 220 

the centralized root mean squareCentralized Root Mean Square (CRMS) of the reference data: 

𝐂𝐑𝐌𝐒(𝒙) = √
∫ (𝒗𝒓𝒆𝒇(𝒕,𝒙)−𝒗𝒓𝒆𝒇(𝒙))

𝟐
𝒅𝒕

𝒕𝒇
𝒕𝟎

𝒕𝒇−𝒕𝟎
                                                                                                                                         

(1) 

CRMS(𝑥) = √
∫ (𝑣𝑟𝑒𝑓(𝑡, 𝑥) − 𝑣𝑟𝑒𝑓(𝑥))

2

𝑑𝑡
𝑡𝑓

𝑡0

𝑡𝑓 − 𝑡0

  (1) 

Where t0𝑡0  and tf is𝑡𝑓  are the first and final timestep, respectively. We then compute the bias, 𝑏𝑖𝑎𝑠(𝑥) = 𝑣𝑟𝑒𝑓(𝑡, 𝑥) −225 

𝑣𝑠𝑖𝑚(𝑡, 𝑥). The relative error in bias is then given as  𝜺bias(𝒙) =
|bias(𝒙)|

𝐂𝐑𝐌𝐒(𝒙)
.𝜀𝑏𝑖𝑎𝑠(𝑥) =

|𝑏𝑖𝑎𝑠(𝑥)|

CRMS(𝑥)
. The bias score as a function of 

space is then computed as: 

𝐧𝐁𝐢𝐚𝐬𝐒𝐜𝐨𝐫𝐞(𝒙) = 𝒆−𝛆bias(𝒙)                                                                                                                                                       

(2) 

nBiasScore(𝑥) = 𝑒−𝜀𝑏𝑖𝑎𝑠(𝑥) (2) 230 

This score effectively penalizes large biases relative to the natural variability of the system. To evaluate the model's ability to 

capture observational variability, we employ the Normalized RMSE Score (nRMSEScore). Similar to 𝐧𝐁𝐢𝐚𝐬𝐒𝐜𝐨𝐫𝐞, 

WenBiasScore, we first calculate the centralized RSME:Centralized RMSE (CRMSE): 

CRESM(𝒙) = √∫ ((𝒗𝒔𝒊𝒎(𝒕,𝒙)−𝒗𝒔𝒊𝒎(𝒙))−(𝒗𝒓𝒆𝒇(𝒕,𝒙)−𝒗𝒓𝒆𝒇(𝒙)))
𝟐

𝒅𝒕
𝒕𝒇

𝒕𝟎

𝒕𝒇−𝒕𝟎
                                                                                                        

(3)  235 

CRMSE(𝑥) =
√

∫ ((𝑣𝑠𝑖𝑚(𝑡, 𝑥) − 𝑣𝑠𝑖𝑚(𝑥)) − (𝑣𝑟𝑒𝑓(𝑡, 𝑥) − 𝑣𝑟𝑒𝑓(𝑥)))
2

𝑑𝑡
𝑡𝑓

𝑡0

𝑡𝑓 − 𝑡0

 (3)
 

The relative error in bias is then given as  𝜺rmse(𝒙) =
𝐂𝐑𝐄𝐌𝐒(𝒙)

𝐂𝐑𝐌𝐒(𝒙)
.  𝜀𝑟𝑚𝑠𝑒(𝑥) =

CRMSE(𝑥)

CRMS(𝑥)
. The nRMSEScore as a function of space 

is then computed as: 
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𝐧𝐑𝐌𝐒𝐄𝐒𝐜𝐨𝐫𝐞(𝒙) = 𝒆−𝜺CRESM(𝒙)                                                                                                                                                

(4) 240 

nRMSEScore(𝑥) = 𝑒−𝜀𝑟𝑚𝑠𝑒(𝑥) (4) 

This metric is particularly sensitive to differences in variability patterns between model outputs and observations. For variables 

with strong seasonal patterns, the Normalized Phase Score (nPhaseScore) assesses the model's ability to capture the timing of 

seasonal cycles, providing insight into the model's representation of temporal dynamics. The nPhaseScore is calculated as: 

𝐧𝐏𝐡𝐚𝐬𝐞𝐒𝐜𝐨𝐫𝐞(𝒙) =
𝟏

𝟐
[𝟏 + 𝐜𝐨𝐬 (

𝟐𝛑𝛉(𝐱,𝛌,𝛟)

𝒏𝒔𝒕𝒆𝒑
)]                                                                                                                           245 

(5), 

nPhaseScore(𝑥) =
1

2
[1 + 𝑐𝑜𝑠 (

2π𝜃(𝑥)

𝑛𝑠𝑡𝑒𝑝
)]  (5) 

where 𝛉(𝒙, 𝛌, 𝛟)𝜃(𝑥, λ, ϕ) is the time difference between modeled and observed maxima: 

𝛉(𝒙, 𝛌, 𝛟) = maxima(𝒄𝒔𝒊𝒎(𝒙, 𝒕, 𝛌, 𝛟)) − maxima (𝒄𝒓𝒆𝒇(𝒙, 𝒕, 𝛌, 𝛟))                                                                                       

(6). 250 

𝜃(𝑥) = maxima(𝑐𝑠𝑖𝑚(𝑥, 𝑡)) − maxima (𝑐𝑟𝑒𝑓(𝑥, 𝑡)) (6) 

Here 𝒄𝒔𝒊𝒎, 𝑐𝑠𝑖𝑚 and 𝒄𝒓𝒆𝒇𝑐𝑟𝑒𝑓  are the climatological mean cycles (i.e., the average seasonal patterns) of the model and reference 

data, maxima( ) calculates the maximum value at computed by averaging each month or day across all years in the grid 𝒙 of 

evaluation time resolutionseries. The division by "𝑚𝑎𝑥𝑖𝑚𝑎" ( ) identifies the timing (month for monthly data, day for daily 

data) when the peak value occurs in these average seasonal cycles at each spatial location x. The parameter nstep represents 255 
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the number of time steps in a complete annual cycle (e.g., 12 for monthly data or 365 for daily resolution)data) and normalizes 

the phase difference to the annual cycle.  

Interannual variability, a critical aspect of climate modeling, is evaluated using the Normalized Interannual Variability Score 

(nIavScore). nIavScore is given by first removing the annual cycle from both the reference and model: 

𝒊𝒂𝒗𝒊𝒊(𝒙) = √
∫ (𝒗ii(𝒕,𝒙)−𝒄ii(𝒕,𝒙))

𝟐
𝒅𝒕

𝒕𝒇
𝒕𝟎

𝒕𝒇−𝒕𝟎
                                                                                                                                              260 

(7), 

𝑖𝑎𝑣𝑖𝑖(𝑥) = √
∫ (𝑣ii(𝑡, 𝑥) − 𝑐ii(𝑡, 𝑥))

2
𝑑𝑡

𝑡𝑓

𝑡0

𝑡𝑓 − 𝑡0

(7) 

where ii 𝑖𝑖 represents sim or ref. Then, the relative error is calculated as : 

𝜺𝒊𝒂𝒗(𝒙) =
𝒊𝒂𝒗sim(𝒙)−i𝒂𝒗ref(𝒙)

i𝒂𝒗ref(𝒙)
                                                                                                                                                         

(8). 265 

𝜀𝑖𝑎𝑣(𝑥) =
𝑖𝑎𝑣sim(𝑥)−i𝑎𝑣ref(𝑥)

i𝑎𝑣ref(𝑥)
 (8)  

Similar to Equation (2) and (4), the nIavScore is given by  

𝐧𝐈𝐚𝐯𝐒𝐜𝐨𝐫𝐞 (𝒙) = 𝒆−𝛆iav(𝒙)                                                                                                                                                        

(9). 

nIavScore(𝑥) = 𝑒−εiav(𝑥) (9) 270 

This score is crucial for assessing the model's performance in representing year-to-year variations driven by climate factors. 

The Spatial Score (nSpatialScore) is used to evaluateevaluates how well the model captures the spatial distribution of a variable 
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compared to observations.  by assessing both the spatial correlation and the relative variability across the domain. The 

nSpatialScore is calculated as: 

nSpatialScore = 2(1 + 𝑅) (𝜎 +
1

𝜎
)

2

⁄  (10) 275 

where 𝑅 is the spatial correlation coefficient between the model and reference period mean values, and 𝜎 is the ratio of spatial 

standard deviations: 

𝜎 = 𝑠𝑡𝑑𝑒𝑣(𝑣𝑠𝑖𝑚(𝑥)) 𝑠𝑡𝑑𝑒𝑣 (𝑣𝑟𝑒𝑓(𝑥))⁄ (11) 

To provide an overall assessment of model performance, we calculate an Overall Score (OvScore) that combines these 

individual metrics. This composite score gives double weight to the nRMSEScore due to its importance in capturing both bias 280 

and variability aspects, which is consistent with ILAMB.  The Relative Score (ReScore) is designed to compare performance 

across simulations by normalizing a model's overall score relative to the multi-simulation mean and standard deviation. 

Positive values indicate above-average performance, while negative values indicate below-average performance. Detailed 

information can be obtained from Collier et al. (2018). and Arora et al. (2023). 

ILAMB and OpenBench exhibit two key differences in their scoring methodologies. The first distinction lies in their approach 285 

to calculating global mean scores. ILAMB applies mass weighting when evaluating variables that represent carbon or water 

mass/flux, such as Gross Primary Production (GPP) or precipitation. This method can lead to global mean scores being 

disproportionately influenced by middle and low latitudes, as exemplified by the significant impact of GPP or precipitation in 

the Amazon. In contrast, OpenBench offeringoffers greater flexibility in its weighting methods. OpenBench supports multiple 

weighting options that users can select based on their requirements. Users can choose between a simple spatial integral for 290 

unweighted averaging, area weighting to account for varying grid cell sizes across latitudes, or mass weighting for mass/flux 

variables. This flexibility allows researchers to choose the best weighting method for their particular analysis. For example, 

when evaluating GPP, researchers might opt for mass weighting to align with ILAMB's methodology, or they could choose 

area weighting to ensure more balanced representation across latitudes. The choice of weighting method can significantly 

impact the final results, particularly when analyzing variables with strong spatial heterogeneity. The second major difference 295 

pertains to how these systems handle multiple reference datasets. ILAMB combines evaluation results from different reference 

datasets, assigning weights to each and combining them multiplicatively to produce a single final score that incorporates all 

datasets. OpenBench, on the other hand, provides users with multiple reference datasets and allows them to select one or more 

that they consider most accurate. It then reports scores separately for each chosen dataset without applying weights. This 

approach gives users more flexibility and transparency in interpreting results, allowing them to make informed decisions based 300 

on their knowledge of dataset quality and relevance to their specific research questions. These methodological differences 
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reflect the distinct philosophies and goals of each system. ILAMB's approach emphasizes a comprehensive, weighted 

assessment that accounts for the relative importance of different regions and datasets. OpenBench prioritizes user choice and 

equal spatial representation in its scoring methodology, allowing for a more customizable and potentially more equitable 

evaluation process. Both approaches have their merits, and the choice between them may depend on the specific needs and 305 

preferences of the research community using these benchmarking tools. It is worth noting that, although we refer to OpenBench 

as a "benchmarking system" in accordance with community convention, the tool primarily functions as an evaluation and 

comparison framework rather than adhering to strict benchmarking with predetermined performance standards. This design 

choice affords users the flexibility to establish their own performance criteria while benefiting from standardized evaluation 

methodologies. 310 

In summary, by combining multiple normalized scores that assess different aspects of model performance, we enable a nuanced 

understanding of model strengths and weaknesses. This approach not only supports the evaluation of individual models but 

also facilitates inter-model comparisons and the tracking of model improvements over time. 

3.3 Datasets 

OpenBench integrates a diverse array of benchmarking data spanning multiple variables, levels, and spatiotemporal resolutions. 315 

This approach ensures a thorough evaluation of modern high-resolution LSMs, which require increasingly detailed and 

accurate input data to capture complex land-atmosphere interactions. 

The strength of OpenBench lies in its extensive collection of baseline datasets, categorized into five main groups: radiation 

and energy cycle, ecosystem and carbon cycle, hydrology cycle, parameters and atmospheric forcing, and human activity. 

These datasets are derived from five primary sources: field observations, satellite remote sensing, reanalysis data, machine 320 

learning, and model outputs. Each source offers unique advantages, contributing to a more comprehensive understanding of 

land surface processes. Field observations provide high-accuracy, ground-truth data essential for model validation and 

calibration. While often limited in spatial coverage, these datasets offer unparalleled accuracy and temporal resolution. Satellite 

remote sensing delivers extensive spatial coverage and consistent temporal sampling, which are crucial for monitoring large-

scale land surface processes. Reanalysis data combines model simulations with observations to create consistent, gridded data 325 

products, particularly useful for long-term studystudies or filling observational gaps. Model outputs and machine learning, 

while not direct observations, provide estimates of variables that are challenging to measure directly. 

The spatial-temporal scope of OpenBench's datasets is another critical feature. Many datasets span several decades, allowing 

for evaluatingthe evaluation of long-term trends and interannual variability. This extended temporal coverage enables assessing 

LSMsLSMs' performance over long historical periods. The resolution ranges from coarse (e.g., 0.5° for ILAMB datasets 330 

(Collier et al., 2018)) to very fine (e.g., 500m for MODIS-based products (Varquez et al., 2021)), making it possible to evaluate. 

This range allows for evaluating LSMs across different spatial scales, from global assessments to regional or plot -scale studies. 
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A unique aspect of OpenBench is its inclusion of datasets focused on human impacts on land surface processes. This approach 

recognizes the growing importance of anthropogenic factors in shaping the Earth system. Datasets like AH4GUC (Varquez et 

al., 2021), which provides global anthropogenic heat flux data, and GDHY (Iizumi and Sakai, 2020), offering detailed 335 

information on global crop yields, enable the evaluation of urban heat island effects and agricultural impacts in LSMs. 

OpenBench's inclusion of multiple datasets for each variable allows for a more robust evaluation of LSMs. This multi-dataset 

approach enables users to assess model performance against a range of reference data, providing a more comprehensive 

evaluation. For instance, in evaluating evapotranspiration, OpenBench includes datasets like GLEAM4.12a (Miralles et al., 

2011), FLUXCOM (Jung et al., 2019), X-BASE (Nelson et al., 2024), Xu2024 (Xu et al., 2024)(Xu et al., 2025), and ERA5-340 

Land (Muñoz-Sabater et al., 2021), each with its own methodology and characteristics. Users can assess model performance 

across multiple variables simultaneously, identifying potential compensating errors or cross-variable inconsistencies that might 

be missed when evaluating single variables in isolation. This multi-dimensional approach provides a more complete picture of 

model performance and helps guide future model development efforts. Meanwhile, OpenBench's dataset collection is designed 

to be expandable and updateableupdatable, ensuring its relevance in the rapidly evolving field of Earth system science. As new 345 

datasets become available or existing datasets are updated, they can be seamlessly integrated into the OpenBench framework. 

It is noted that while OpenBench integrates with a comprehensive collection of datasets, we cannot directly provide specific 

data due to copyright restrictions and licensing agreements. However, to ensure transparency and reproducibility, we have 

included relevant links to the original data sources in TableTables S1-S5. These links will guide users to the appropriate 

platforms to access the datasets following the respective terms and conditions set by the data providers. To demonstrate the 350 

functionality and structure of OpenBench, we have included a set of self-generated sample data. This sample data mimics the 

characteristics and format of the actual datasets, allowing users to familiarize themselves with the OpenBench framework and 

its capabilities without infringing on any copyright issues. We encourage users to utilize these sample datasets for initial testing 

and exploration of the OpenBench system and then proceed to acquire the complete datasets from the original sources for 

comprehensive model evaluations. 355 

 

3.4 Supporting models 

OpenBench has been designed to accommodate a diverse array of land surface models, facilitating comprehensive 

intercomparison and evaluation studies. This multi-model support is a key feature of OpenBench, enabling researchers to 

assess and compare the performance of various models across different land surface processes and variables. Currently, 360 

OpenBench supports various state-of-the-art land surface models, including multiple versions of the Common Land Model 

(CoLM2014 and CoLM2024) (Bai et al., 2024; Dai et al., 2003; Fan et al., 2024), the Community Land Model Version 5 

(CLM5) (Lawrence et al., 2019), Noah-MP 5.0 (He et al., 2023), the Minimal Advanced Treatments of Surface Interaction and 

Runoff model (Version 2021) (Nitta et al., 2014), Atmosphere-Vegetation Interaction Model (AVIM) (Li et al., 2002), the 

Global Land Data Assimilation System (GLDAS2) (Rodell et al., 2004), Today’sToday's Earth (TE) 365 
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(https://www.eorc.jaxa.jp/water/index.html) and the Variable Infiltration Capacity (VIC) Model (Hamman et al., 2018) and so 

on. OpenBench has expanded its capabilities to support Lambert Conformal projections outputs from regional climate models 

such as the Climate extension of the Weather Research and Forecasting model (CWRF) (Liang et al., 2012) and the Weather 

Research and Forecasting (WRF) model (Lo et al., 2008).  

Furthermore, OpenBench supports CMIP-styledstyle series outputs, such as the Coupled Model Intercomparison Project 370 

(CMIP) -style simulation, such as LS3MIP (Van Den Hurk et al., 2016) and ISIMIP (Wartenburger et al., 2018), allowing for 

seamless integration of global climate model data into the evaluation framework. Each supported model is integrated into the 

system through a dedicated namelist file that maps the model's output variables to standardized variables used within 

OpenBench. This approach ensures consistent comparison and evaluation across different models, regardless of their native 

output format or projection.  375 

3.5 Case studies  

To illustrate the analytical capabilities of our evaluation system, we present comprehensive case studies focusing on two critical 

aspects of hydrological modeling: river discharge evaluation and inundation fraction assessment. These analyses were 

conducted using simulations from the CaMa-Flood Version 4.22 model (Yamazaki et al., 2013), driven by 0.25° remapped 

daily runoff data from the Global Reach-level Flood Reanalysis (GRFR) (Yang et al., 2021). The evaluation was performed 380 

globally with 0.25° spatial resolution, utilizing observational data from the Global Runoff Data Centre (GRDC) for discharge 

validation and the GIEMS datasetGlobal Inundation Extent from Multi-Satellites (GIEMS) (Prigent et al., 2020) for inundation 

fraction assessment. Our analysis demonstrates the system's versatility in conducting site-specific and global-scale evaluations. 

Figure 2a presents a detailed comparison of simulated and observed streamflowdischarge hydrographs for a representative 

station. This station-level analysis reveals the model's strong performance in capturing both the magnitude and temporal 385 

variability of streamflowdischarge patterns. The close alignment between simulated and observed values indicates robust 

model performance at the local scale. Figure 2b illustrates the spatial distribution of KGESS values for simulated discharge 

across the globe. The analysis reveals distinct regional patterns in model performance. The model demonstrates particularly 

strong capabilities in simulating discharge across wet regions, including the Amazon basin, Japan, and the Eastern United 

States. However, performance metrics indicate lower accuracy in the Western United States, Central Australia, and Southern 390 

Africa. These regional variations can be attributed to several factors, including the influence of human activities, uncertainties 

in precipitation datasets, and limitations in model parameterization schemes (Wei et al., 2020). The impact of human activities 

on model performance is particularly evident in regions like the Western United States, where streamflowdischarge patterns 

are significantly modified by dam operations (Hanazaki et al., 2022). This finding underscores the importance of incorporating 

human water management practices in regions with intensive anthropogenic influence to achieve reliable simulation results. 395 

Figure 2c presents global patterns of correlation coefficients for simulated inundation fraction. The results indicate strong 

model performance in low-latitude regions, particularly in the Amazon basin and South Asia. However, significant 

https://www.eorc.jaxa.jp/water/index.html
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discrepancies emerge in high-latitude areas (above 60°N). This spatial pattern of model performance highlights the need for 

improved representation of snow-related processes and precipitation phase partitioning in these regions (Jennings et al., 2018).   

OpenBench implements automated grouping of metrics and scores according to both IGBP and PFT classifications to provide 400 

a comprehensive evaluation of model performance across diverse ecological zones. Figure 3 presents a detailed heatmap 

visualization of performance indices categorized by IGBP land cover types, based on CoLM2024 simulations evaluated against 

X-BASE reference data (Nelson et al., 2024) for 2002-2003. The analysis incorporates six fundamental performance scores 

developed within the ILAMB framework, as detailed in Sect. 3.2. The visualization reveals several significant patterns in 

model performance across different ecosystems. The overall nPhaseScore of 0.6984 demonstrates the model's robust capability 405 

in capturing seasonal variations across all biomes. Particularly noteworthy is the model's exceptional performance in forest 

ecosystems, where Evergreen Needleleaf Forests (ENF), Deciduous Needleleaf Forests (DNF), and Mixed Forests (MF) 

exhibit consistently high nPhaseScoresnPhaseScore. These results indicate the model's sophisticated ability to simulate the 

complex dynamics of multi-layered forest ecosystems. However, the analysis also identifies specific challenges in certain 

environmental contexts. The model's performance notably decreases in extreme environments, with lower scores across 410 

multiple metrics for Snow and Ice (SNO) and Barren or Sparsely Vegetated (BSV) regions. Additionally, Evergreen Broadleaf 

Forests (EBF) show particularly low nBiasScoresIt is important to highlight that the GPP values found in SNO and BSV 

classes could stem from spatial or temporal misalignments between the IGBP land cover classification and GPP datasets. 

Specifically, pixels identified as non-vegetated during the land cover survey might have had vegetation during the GPP 

measurement periods, or mixed pixels may consist of minor vegetated fractions within primarily barren regions. Additionally, 415 

Evergreen Broadleaf Forests (EBF) show particularly low nBiasScore, reflecting substantial magnitude discrepancies between 

simulated and observed values. This finding underscores the persistent challenges in accurately modeling these data-sparse, 

highly dynamic ecosystems. These insights have important implications for model application across different research 

contexts. Researchers focusing on temperate and boreal forest ecosystems can proceed with high confidence in the model's 

capabilities. However, studies targeting arid regions, snow-covered areas, or tropical rainforests should incorporate additional 420 

validation steps and exercise greater caution in interpreting results. This systematic evaluation across biomes thus provides 

essential guidance for appropriate model application in diverse ecological settings. 
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Figure 2: Example of river discharge evaluation: (a) simulated and observed streamflowdischarge hydrographs for 

an example station; (b) global maps of KGESS values for the simulated discharge dataset; and (c) global maps of R 425 

values for the simulated inundation dataset. 
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Figure 3: An example of a scores heatmap of score indexes for GPP classified by IGBP land cover.  

 

Figure 4 demonstrates OpenBench's capability to evaluate anthropogenic influences on urban thermal environments through 430 

a detailed comparison of CoLM2024 simulations with AH4GUC observational data for Southeast Asia. The analysis reveals 

generally strong agreement between simulated and observed anthropogenic heat flux patterns across most regions. However, 

notable discrepancies emerge in specific areas, particularly the corridor extending from central China to northern Vietnam and 

regions near Laos, where negative correlations indicate potential systematic biases in model representation. While the 

preciseexact mechanisms driving these regional differences remain under investigationare still being investigated, these 435 

findings highlight the importanceresults demonstrate OpenBench's ability to identify spatial patterns of refined urban 

parameterization schemes in land surface modelsmodel-observation disagreement that require further exploration. The 

system's evaluation capabilities extend beyond thermal processes to encompass multiple aspects of human-environment 

interactions. Through a comprehensive assessment of variables, including latent heat, albedo, and surface temperature changes, 

OpenBench provides valuable insights into the complex relationships between anthropogenic activities and land surface 440 

processes, guiding improvements in their model representation. 
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Figure 4: Pearson’sPearson's correlation coefficient between CoLM2024 simulation and AH4GUC generation for 

urban anthropogenic heat flux over Southeast Asia. 

Figure 5 presents a detailed analysis of agricultural modeling capabilities, comparing CoLM2024 simulated corn yields with 445 

GDHY-generated observational data across the United States. The analysis reveals distinct regional patterns in model 

performance: approximately 20% yield underestimation in the western United States, significant overestimation in central 

regions, and notable underestimation in eastern areas. These spatial patterns of bias may stem from multiple sources, including 

uncertainties in the GDHY observational dataset and the CoLM2024 model structure. Particularly noteworthy are the 

substantial differences in planted area and crop distribution between the two datasets, indicating fundamental challenges in 450 

representing agricultural systems within current modeling frameworks. These findings underscore the significant opportunities 

for advancement in both modeling and observational approaches to crop yield estimation. Future research efforts should focus 
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on reducing uncertainties in simulation and observational datasets while improving the representation of agricultural processes 

in land surface models. 

In summary, these case studies demonstrate the comprehensive analytical capabilities of our evaluation system. Through its 455 

ability to conduct detailed analyses across multiple spatial scales and variables, OpenBench provides researchers with powerful 

tools for assessing model performance and identifying specific areas for improvement. This multi-scale, multi-variable 

approach supports theoretical understanding and practical application of land surface models, ultimately contributing to 

enhanced representation of Earth system processes. 

 460 

Figure 5: Percentage bias between CoLM2024 simulated and GDHY generated crop yield of corn for the United 

States. 

4 Comparisons  

4.1 Overview 

OpenBench offers a comprehensive suite of comparison capabilities designed to facilitate a thorough evaluation of model 465 

performance across diverse scenarios, land cover types, and temporal scales. The system incorporates several key 

functionalities that enable sophisticated analysis while maintaining user accessibility and scientific rigor. 

The framework's evaluation architecture encompasses multiple complementary approaches to model assessment. At its 

foundation, ecosystem-based comparisons allow researchers to evaluate performance across different IGBP and PFT land 
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cover classifications, providing crucial insights into model behavior within specific ecological contexts. This capability is 470 

enhanced by multi-metric visualization tools, including heat maps, Taylor diagrams, and target diagrams, which offer intuitive 

yet comprehensive overviews of model capabilities by simultaneously displaying multiple statistical metrics for model-

observation comparisons. To support detailed analysis of model behavior, OpenBench implements advanced distribution and 

pattern analysis tools. These include kernel density estimation plots and parallel coordinate plots, which facilitate the 

comparison of metric distributions across models and enable the identification of patterns in multivariate performance data. 475 

The system's temporal performance evaluation capabilities, implemented through seasonal portrait plots, provide detailed 

insights into variations in model accuracy across different seasonal cycles. Statistical analysis within OpenBench is supported 

by robust summary tools, including box and whisker plots that offer concise yet comprehensive overviews of model 

performance across different metrics and scenarios. This statistical framework ensures that comparisons remain objective and 

scientifically sound while presenting results in an accessible format for interpretation.  480 

The implementation of multiple model comparisons follows a systematic and efficient approach. The process begins with the 

standardization of model outputs through a sophisticated data processing pipeline, capable of handling various input formats 

and temporal/spatial resolutions. The comparison processing module orchestrates this analysis through support for multiple 

comparison methods, with parallel processing capabilities implemented via the Joblib library to ensure computational 

efficiency. Evaluation items and reference sources systematically organize results from the comparison process within a 485 

structured output directory. The system automatically generates comparison artifacts, including metrics and score files, which 

form the basis for comprehensive visualization and analysis. This structured approach ensures that adding new models to the 

comparison framework requires minimal effort, typically involving only the update of simulation namelistsnamelist with new 

model information and data sources. This integrated approach to model comparison and evaluation provides researchers with 

powerful tools for understanding model behavior while maintaining the flexibility needed to address diverse research questions 490 

in land surface science. The system's design philosophy emphasizes scientific rigor and practical utility, ensuring that 

comparative analyses can be conducted efficiently while maintaining the highest standards of scientific validity. 

4.2 Case studies 

To demonstrate the comprehensive capability of our evaluation system, we present several case studies to demonstrate the 

ability of the evaluation system to compare between modesmodels, compare between different parameterized schemes, and 495 

compare between CMIP-styledstyle datasets. It's important to note that our primary goal is to showcase the evaluation system's 

functionality rather than to make definitive judgments about any particular model's performance. These case studies are 

practical examples of the system's versatility and analytical power. 
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4.2.1 Multiple models comparison 

 500 

 

 

 

Figure 6: Overall score comparisons of sensible heat, latent heat, total runoff, and canopy transpiration using (a) 

heat map and (b) parallel coordinates approaches for GLDAS2, TE, CLM5, TE, and CoLM2024. 505 
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Figure 7: Evaluation of canopy transpiration using various (a) metricmetrics and (b) score indexes for GLDAS2, TE, 

CLM5, TE, and CoLM2024. 

To demonstrate the multiple models’models' analytical capabilities of OpenBench, we conducted a comparative analysis of 510 

four state-of-the-art land surface models: GLDAS2, TE, CLM5, TE, and CoLM2024. The evaluation period spanned from 

2002 to 2006, utilizing a monthly temporal resolution. Multiple reference datasets were incorporated, including Li et al. (2024) 

for canopy transpiration, the FLUXCOM dataset from ILAMB, GLEAM4.1a for surface heat fluxes, and LORA from ILAMB 

for total runoff assessment.(2024) for canopy transpiration, the FLUXCOM dataset (from ILAMB) and GLEAM4.2a for 

surface heat fluxes, and LORA (from ILAMB) for total runoff assessment (Hobeichi et al., 2019). 515 
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Figure 6 illustrates the comparative analysis through two complementary visualization approaches: a heat map and a parallel 

coordinates plot. The heat map (left panel) provides an intuitive visualization of relative model performance across different 

variables, while the parallel coordinates plot (right panel) reveals intricate relationships between various performance metrics. 

This dual visualization strategy enables researchers to quickly identify patterns and trade-offs in model performance across 

multiple variables simultaneously. The analysis reveals that under current configurations, CoLM2024 and TE demonstrate 520 

superior performance in simulatingachieve the highest score for canopy transpiration, while CLM5 and CoLM2024 show the 

highest score for total runoff, while. CoLM2024 maintains a slight advantagerelatively higher score in other variables. 

For detailed variable-specific analysis, Figure 7 presents an in-depth examination of canopy transpiration across all models, 

utilizing both conventional metrics (Fig. 7a) and normalized scores (Fig. 7b). The metrics analysis reveals that CoLM2024 

exhibits a tendency to overestimate canopy transpiration, while other models show varying degrees of underestimation, as 525 

indicated by the percent bias metric. Furthermore, CoLM2024 achieves optimal performance regarding RMSE minimization, 

correlation maximization, and KGESS optimization. TE demonstrates particularly strong performance in NSE and ranks 

second in KGESS. Regarding scoring indices, TE excels in nRMSEScore, nPhaseScore, and nIavScore, whereas CoLM2024 

achieves the highest nBiasScore overall score. 

This comprehensive comparative analysis not only highlights the relative strengths and weaknesses of each model but also 530 

offers valuable insights into their simulation capabilities regarding various aspects of land surface processes. Such a detailed 

evaluation helps identify areas where models excel or need further refinement, effectively guiding future development efforts. 

4.2.2 Multiple parameterizations and multiple references 
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 535 

Figure 8: Comparison of daily discharge simulated from different parameterizations of the CoLMCoLM2024 model's 

runoff generation scheme with GRDC observations using KGESS metric. 

To evaluate the versatility of OpenBench in analyzing model parameterization schemes, we conducted a comprehensive 

assessment of different runoff generation parameterizations within the CoLMCoLM2024 model framework. The analysis 

focused on daily discharge simulations at 0.1° resolution from 1985 to 1999, comparing three distinct parameterization 540 

approaches: SIMTOP, XinAnjiang, and Simple VICSimpleVIC schemes. These simulations were evaluated against 

observational data from GRDC.  

Figure 8 presents a spatial analysis of model performance using the KGESS metric across the continental United States. The 

station-based visualization (Figs. 8a-c) reveals distinct spatial patterns in model performance for each parameterization scheme. 

The Simple VICSimpleVIC parameterization demonstrates superior performance across most regions, particularly in areas 545 

with complex hydrological processes. In contrast, the XinAnJiang scheme exhibits notable strengths in simulating discharge 

patterns within arid and semi-arid regions, suggesting its particular effectiveness in water-limited environments. 

To further elucidate the statistical characteristics of these parameterizations, we employed a ridgeline plot analysis (Fig. 8d). 

This visualization technique effectively captures the distribution of performance metrics across different schemes, with the 

dashed lines and accompanying numbers indicating median values for each parameterization. The analysis confirms that the 550 

Simple VICSimpleVIC parameterization achieves the highest overall performance metrics, though each scheme shows specific 

regional strengths. 

OpenBench's capability to handle multiple reference datasets is demonstrated through a detailed evaluation of latent heat 

simulations. Figure 9 illustrates this multi-reference analysis framework, comparing CoLMCoLM2024 simulations against 
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four distinct reference sources: satellite-derived products (CLASS), machine learning outputs (FLUXCOM), in-situ 555 

measurements (PLUMBER2), and reanalysis data (ERA5Land).) (Ukkola et al., 2022), and reanalysis data (ERA5Land). This 

comparison was conducted at a monthly temporal resolution and 0.5° spatial resolution for the period 2002-2006. The resulting 

heat map visualization reveals strong model-data agreement across all reference datasets, with correlation coefficients 

consistently exceeding 0.90. 

This comprehensive evaluation approach validates the model's performance against multiple independent data sources, as well 560 

as provides insights into the structural uncertainties inherent in different observational datasets. Such multi-reference validation 

is particularly valuable for variables where direct measurements are sparse and each observational approach has its own 

uncertainties and biases. The consistently high correlation values across different reference datasets enhance confidence in the 

model's ability to capture fundamental physical processes while also highlighting areas where uncertainties in observational 

data may impact validation efforts. 565 
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Figure 9: Evaluation of latent heat flux simulated by CoLM2024 using various metrics with different reference 

datasets. 

4.2.3 CMIP styles comparison 570 
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Figure 10: The Taylor (a) and target diagram (b) for comparing evapotranspiration among the six models in 

LS3MIP. 

 575 

Figure 11: The ridgeline plot comparing evapotranspiration for the six models in LS3MIP Land-hist experiment. 

OpenBench's evaluation framework incorporates robust capabilities for analyzing CMIP-styledstyle datasets, with particular 

emphasis on experimental outputs from initiatives such as ISIMIP and LS3MIP. The system's architecture includes specialized 

data processing modules designed to handle the standardized conventions of CMIP outputs, including variable naming 

conventions, temporal frequencies, and grid structures, ensuring seamless integration with the evaluation framework. 580 
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Figure 10 demonstrates this capability through a comprehensive analysis of evapotranspiration simulations from the LS3MIP 

experiment. The analysis employs both Taylor and target diagrams to provide complementary perspectives on model 

performance. The Taylor diagram (Fig. 10a) effectively visualizes the relationship between correlation coefficients, 

normalized standard deviations, and centered root mean square differences.Centralized Root Mean Square Error. This multi-

metric representation enables immediate identification of models that achieve optimal balance across these key performance 585 

indicators. The target diagram (Fig. 10b) supplements this analysis by providing additional insight into bias components and 

pattern variations, with distinct symbols differentiating between the various LS3MIP simulations. 

To further elucidate the performance distribution across different models, Figure 11 presents a ridgeline plot analysis of the 

KGESS metric. This visualization technique reveals the full spectrum of model performance, highlighting both central 

tendencies and variations in simulation quality. The analysis demonstrates that while certain models consistently achieve 590 

higher performance metrics, considerable variation in simulation quality exists across the ensemble. This variation provides 

valuable insights into the structural uncertainties inherent in current land surface modeling approaches. 

The integration of CMIP-style evaluation capabilities within OpenBench serves multiple critical functions in the broader 

context of Earth system modeling. First, it enables systematic assessment of land surface processes within coupled climate 

models, providing essential feedback for model development and improvement. Second, it facilitates direct comparisons 595 

between offline land surface model simulations and their behavior within coupled frameworks, helping to identify potential 

interactions and feedback that may affect model performance. Finally, this capability supports comprehensive model 

intercomparison studies, contributing to our understanding of model uncertainties and their implications for future climate 

projections. 

This robust framework for evaluating CMIP-style outputs positions OpenBench as a valuable tool for both model development 600 

and climate change research. By providing standardized, comprehensive evaluation metrics for these complex datasets, 

OpenBench supports the ongoing effort to improve our understanding and prediction of land surface processes in the context 

of global climate change. 

5 Extensibility and Customization 

OpenBench is engineered with extensibility and customization as core design principles, enabling the system to evolve 605 

alongside the rapidly advancing field of land surface science. This flexible architecture accommodates the integration of new 

models, variables, datasets, measurement units, evaluation metrics, and scoring systems while maintaining operational 

consistency and scientific rigor. The system's modular design facilitates seamless incorporation of new reference datasets 

through a streamlined configuration process. Researchers can integrate additional observational or reanalysis data by creating 

appropriate entries in the reference configuration file, specifying dataset locations and characteristics. This process involves 610 

defining dataset properties, including directory structures, temporal and spatial resolutions, and variable-specific parameters. 
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For datasets with unique characteristics, users can develop custom processing scripts that integrate smoothly with the existing 

evaluation framework. 

Variable integration follows a similarly structured approach. Adding new variables requires coordinated updates to both 

reference and simulation configuration files, alongside corresponding dataset configurations that define variable properties. 615 

This process may include the development of specialized evaluation metrics and visualization components to effectively 

represent and analyze the new variables within the system's analytical framework. The integration of new land surface models 

demonstrates OpenBench's architectural flexibility. Users can incorporate additional models by creating model-specific 

namelist files that establish straightforward mappings between model outputs and OpenBench's standardized variables. This 

integration is supported by updates to the simulation configuration and, where necessary, the development of custom variable 620 

filtering scripts to handle model-specific output characteristics. OpenBench's unit conversion system exemplifies its 

sophisticated approach to extensibility. The unit processing module employs a flexible design that readily accommodates new 

measurement units for existing and new variables. Users can implement additional unit conversions by creating methods within 

the designated class, following established naming conventions. The system's dynamic method calling architecture ensures 

that new unit conversions integrate seamlessly into the evaluation workflow without requiring modifications to other system 625 

components. The system's evaluation framework maintains equal flexibility in incorporating new metrics and scoring 

methodologies. Users can implement additional evaluation metrics by creating new methods within the metrics class, properly 

handling missing data, and maintaining comprehensive documentation. Similarly, new scoring systems can be integrated into 

the scores class within Mod_Scores.py, with appropriate attention to normalization procedures and interpretation guidelines. 

This comprehensive approach to extensibility guarantees that OpenBench stays at the forefront of land surface model 630 

evaluation capabilities. As new scientific questions emerge, new models are developed, and new observational datasets become 

available, the system can readily adapt to incorporate these advances. This flexibility is essential for maintaining a state-of-

the-art evaluation framework that effectively serves the evolving needs of the land surface modeling community while ensuring 

consistent, high-quality analysis across various applications and research contexts. 

6 Conclusions 635 

Our newly developed OpenBench represents a significant advancement in land surface model evaluation methodology, 

addressing critical gaps in existing evaluation frameworks while introducing innovative capabilities for comprehensive model 

assessment. By integrating high-resolution benchmark datasets, sophisticated evaluation metrics, and efficient data handling 

mechanisms, OpenBench provides users with a powerful tool for enhancing the understanding and performance of land surface 

models. The system's key strengths lie in several areas. First, its ability to handle diverse data types and formats, from station-640 

based measurements to gridded products, enables comprehensive evaluation across multiple spatial and temporal scales. 

Second, incorporating human activity impacts into the evaluation framework fills a crucial gap in current assessment tools, 

allowing for a more realistic evaluation of model performance in anthropogenically modified landscapes. Third, the system's 
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robust computational architecture, built on efficient parallel processing and standardized data handling protocols, ensures 

scalability and reliability in processing large-scale datasets. The case studies presented demonstrate OpenBench's practical 645 

utility across various applications. The system has proven effective in identifying model strengths and areas requiring 

improvement, from evaluating hydrological processes and urban heat fluxes to assessing agricultural modeling capabilities. 

The multi-reference approach to model evaluation provides particularly valuable insights, helping distinguish between model 

deficiencies and observational uncertainties. OpenBench's extensible architecture ensures its continued relevance as the field 

evolves. The system's ability to incorporate new models, variables, datasets, and evaluation metrics allows it to adapt to 650 

emerging research needs and technological advances. This flexibility, combined with its comprehensive evaluation capabilities, 

positions OpenBench as a valuable resource for both model development and operational applications. Looking forward, 

OpenBench's role in advancing land surface modeling extends beyond technical evaluation. By providing standardized and 

reproducible evaluation methods, OpenBench facilitates more effective collaboration within the modeling community and 

supports more informed decision-making in environmental management. As we face increasing environmental challenges and 655 

seek to improve our understanding of Earth system processes, tools like OpenBench will be crucial in developing more accurate 

and reliable land surface models. 
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