Reply to Reviewer #1:

This manuscript presents a significant methodological advancement in weather normalization techniques by
rigorously identifying and quantifying the underestimation bias inherent in traditional ML-WN approaches when
assessing short-term air quality interventions. This work is well-motivated, with clear relevance to air quality
policy assessment, and the methodological framework (e.g. synthetic intervention scenarios and COVID-19
lockdown case study) is innovative. Overall, | find the work valuable and recommend it for publication after the
following concerns are addressed:

Thank you for taking the time to review our work and for your encouraging feedback. We appreciate your
positive assessment and will address the minor clarifications promptly.

1. The resampling methodology (Eq. 4-6) needs more detailed explanation. What is the statistical
justification for the number of resamples (n=300)? Was convergence tested?

Thank you for your suggestions. We have expanded the explanation of the resampling method
(Equations 3—6). For additional clarification, please refer to Question 2.

In practice our choice of n = 300 resamples is based on literature precedent and to make our results
comparable to other works. For example, in rmweather R package, the de-facto implementation of
Grange etal.’s meteorological-normalisation method uses n_samples = 300 as its default and
recommended setting (https://cran.r-project.org/web/packages/rmweather/index.html); early

applications of the technique likewise adopt 250-350 draws (e.g., Vu et al., 2019 for Beijing air-quality
trends https://doi.org/10.5194/acp-19-11303-2019), establishing this range as a community
benchmark, as they found good convergency after 300. We added related references into the revised

manuscript to support the choice of resampling number.

2. The description of how MacLeWN removes temporal variation correlated with emissions could be
expanded. Currently, equations (3)-(6) are concise but lack an intuitive explanation of how MacLeWN
differentiates policy-driven from meteorology-driven variability.

Thank you for very helpful suggestions. We broadened the description of the MacLeWN approach in
the Methods section of the revised manuscript.

“The rationale behind the ML-WN approach is to construct a reliable machine learning model to capture
pollutant concentrations under all possible weather conditions based on historical records. By
repeatedly resampling the meteorological inputs and averaging the resulting predictions, ideally the
method approximates the conditional expectation of concentration with meteorological variance
removed; the residual signal is then interpreted as arising from changes in emissions.” and section 2.2
for MacLeWN approach.

3. The claim that MacLeWN "explicitly accounts for intervention timing" needs elaboration. How does the
model distinguish abrupt policy signals from stochastic noise?

We thank the reviewer for this request for clarification. We found the above statement potentially
confusing, and we amended the sentence in the abstract.

MacLeWN separates policy signals from random noise through a two-stage filter. First, it averages out
all diurnal- and weekly-emission proxies (hour, weekday, season), producing a “neutral-emission”
baseline that retains only long-term trends and cuts the high-frequency variability normally linked to
anthropogenic cycles (e.g. traffic). Second, it computes an hour-specific meteorological factor by
contrasting observed concentrations with this baseline. When that factor is removed from the raw
observations, any remaining step-like deviation is the part that cannot be explained by the stochastic
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spread of meteorology and should be attributed to emissions. For additional clarification, please refer
to Question 2.

The synthetic intervention approach is creative but raises questions about ecological validity. How well
do these idealized scenarios represent real-world policy implementations where emission changes may
be more gradual or heterogeneous?

We appreciate this important point and have added clarifying text. In brief,

1) Range of temporal profiles. Besides the one-week “step” scenario, our test matrix contains
phased-out (S6,S7) and cyclic (S8) patterns that mimic staggered or variable real-world
controls. MacLeWN shows the same advantage over ML-WN across all three profiles,
indicating that its benefit is not limited to an instantaneous step change.

2) We added more sentences accordingly to make this clear. Specifical, In Section 2.1, “Although
those sustained one-week to six-month cases are idealised “step” emission reductions, we also
include phase-out and cyclic patterns specifically to emulate more gradual or heterogeneous
real-world responses (e.g., staggered traffic bans or variable industrial curtailments), thereby
spanning the continuum from abrupt to progressive interventions.” In Section 3.1,
“Importantly, the same qualitative pattern (i.e., MacLeWN > ML-WN) holds also for both
phase-out and cyclic scenarios, showing robustness even when the rebound signal after the
intervention is not instantaneous.”

The policy implications of these findings should be expanded. For instance, how should air quality
managers choose between methods when evaluating interventions of different durations?

Thank you for your suggestions. We added relative content in the discussion section. “From a
regulatory aspect, the foregoing analysis indicates that for brief measures (less than 4—-6 weeks),
MacLeWN scheme should be the preferred approach; for longer programmes (more than 3 months),
ML-WN bias falls below 5 %, well within normal error bounds. Policies of intermediate length merit
dual reporting with both approaches, giving policymakers a clear span of likely outcomes and sharper
grounds for action.”

The manuscript indicates that ML-WN has “black-box” challenge, whether MacLeWN has this kind of
challenge. | recommend the authors include SHAP (SHapley Additive exPlanations) or partial
dependence plots for key variables to quantify variable contributions or interactions in MacLeWN.

Thank you for very helpful suggestions. Because both ML-WN and the MacLeWN employ machine
learning models to normalise meteorological influences from pollutant trends, they face the same
“black box” interpretability challenge. In fact, the underlying ML model for both approaches is the same.
To enhance transparency for the model, we have now computed partial dependence plots (PDPs) for
meteorological predictors to the revised Supplementary Information (Figures S13-514).

This study only focuses on NOx at two London sites, please discuss whether MacLeWN'’s improvements
would hold for other pollutants (e.g., PM2.5, 03) where meteorological influences and emission sources
differ. Discuss potential limitations when applying MacLeWN in regions with different climatology (e.g,
tropical or arid zones) and complex terrain.

Thank you for your suggestions. We limited our proof-of-concept to NOx concentrations at London sites
because (1) NOx can be considered as a passive scalar without involving chemistry; and (2) London
Marylebone Road site has significant traffic volume and could see the biggest impact from COVID-19
lockdown. We discussed the above limitations in the discussion section. “It is also important to
acknowledge that even the MacLeWN approach may not entirely capture all high-frequency, weather-
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like variability of air quality. The validity of any weather-normalised scheme ultimately depends on the
reliability of the underlying learning model. Reliance on temporal variables as proxies for emissions,
rather than direct emission factors, means some meteorological effects correlated with time (e.g.,
temperature variations throughout the day) may still confound the model; when addressing secondary
pollutants such as PM2.5 or 03, the predictor set must include proxies for precursor abundance so that
the algorithm can disentangle chemistry—meteorology coupling rather than mis-assign chemical
production to “weather” effects. Model performance also remains context-dependent. In tropical or
arid areas, the weak seasonality, deep convection, and episodic dust plumes can shorten
meteorological autocorrelation and undermine resampling stability, while mountainous terrain
introduces local circulations that are seldom captured by single-station inputs.”

Line 81-84: The 3-hour threshold for linear interpolation of missing data seems arbitrary. Please justify
or reference established practices in similar studies.

Thank you for your suggestion. There are several recent peer reviewed papers that explicitly apply the
same missing-data strategy (i.e., linear interpolation for very short gaps <3h), including:

1) Betancourt, C., Li, C.W., Kleinert, F. and Schultz, M.G., 2023. Graph machine learning for
improved imputation of missing tropospheric ozone data. Environmental science & technology,
57(46), pp.18246-18258.

2) Woolley, G.J., Rutter, N., Wake, L., Vionnet, V., Derksen, C., Essery, R., Marsh, P., Tutton, R.,
Walker, B., Lafaysse, M. and Pritchard, D., 2024. Multi-physics ensemble modelling of Arctic
tundra snowpack properties. The Cryosphere, 18(12), pp.5685-5711.

We added the related references at the end of original sentence accordingly.

Line 370: “unproper” = “improper”

Thank you for pointing this out. This typo has been corrected.

In Figure 2, the image resolution is insufficient, making axis labels and annotations difficult to read.
There is visible overlap between panel labels (a-d) the actual figure content, requiring layout
adjustment. Consider adding error bars to quantify variability in the “actua
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vs estimated effects.

Thank you for drawing our attention to the presentation quality of Figure 2. The figure has been
regenerated and the (a—d) identifiers moved outside the plotting area to eliminate overlap.

|II

In the synthetic-scenario experiment the “actual” series is analytically prescribed and the
MacLeWN/ML-WN estimates are deterministic point outputs of the trained models; hence
conventional sampling error bars are not applicable. The only stochastic component is the Monte-Carlo
resampling error, with a sufficiently large number of resamples (as noted in Q1), this error becomes

negligible.

In Figure 3, could the authors please clarify why the observed NOx concentrations show a larger
percentage reduction (-53.7%) than ML-WN (-51.3%), despite exhibiting smaller absolute decreases
(58.1 vs. 71.9 ug/m?)? This apparent contradiction warrants explanation, particularly regarding how the
different baseline concentrations influence these percentage comparisons. Additionally, could you
comment on whether this phenomenon affects the interpretation of model performance differences,
especially for longer intervention periods?

Thank you for your comments. The apparent inconsistency is mainly because a baseline effect driven
by weather. During the three-month policy window, the observed pre-lockdown NOx was about
108 ug/m?3, wheras the ML-WN “deweathered” value was about 140 pg/m?3. This gap shows that, over



the entire intervention period, meteorological conditions improved pollution dispersion processes in
London, which has also been reported in previous studies (https://doi.org/10.5194/acp-20-15743-2020;
https://doi.org/10.1002/met.2061; DOI: 10.1126/sciadv.abd6696).

The baseline discrepancy does not alter our appraisal of model skill. Because the weather-normalised
series starts from a higher pre-lockdown level, a given absolute fall is divided by a larger denominator,
yielding a smaller percentage change; once that scaling is recognised, the absolute—percentage
divergence disappears. Importantly, for longer interventions the ML-WN bias we quantify (<5 % beyond
three months) is already so small that the choice of absolute versus relative metrics leaves the ranking
of the two methods unchanged. Hence the baseline effect is a matter of presentation, not of
substantive model-performance difference.

12. In Table 3, footnote should specify if uncertainties represent 1 or 95% CI.

Thank you for pointing this out. We have updated Table 3 footnote to specify that the reported
uncertainties correspond to one standard error. “Note: In each case, the data are detrended
following the method in Sect. 2.3.2; the uncertainties are expressed as the standard error.”

Reply to Reviewer #2:

This manuscript presents a thoughtful re-evaluation of machine learning-based weather normalization (ML-WN)
methods in the context of short-term air quality interventions. It reveals a critical shortcoming in traditional ML-
WN, which underestimates emission reductions following abrupt measures. The authors propose a refined
method (MacLeWN), supported by synthetic experiments and real-world application during the COVID-19
lockdown in London, which improves estimation accuracy. The work is timely and policy-relevant, offering an
improved framework for assessing short-term regulatory impacts. | find the methodological innovation and
policy implications and recommend publication after minor clarification.

Thank you for taking the time to review our work and for your encouraging feedback. We appreciate your
positive assessment and will address the minor clarifications promptly.

L101, the dataset is split into 80% for model training and 20% for evaluation at each site. Is this split performed
randomly? Given the temporal continuity in meteorological conditions and emissions, data correlation may
affect the validity of this approach.

Thank you for your comments. For machine learning research, data solutions can be divided into 90/10, 80/20,
and 70/30 approaches. The choice of 80/20 split was followed the “80/20 hold-out rule” (often traced back to
the Pareto principle and formalised for model evaluation in standard ML references such as (Goodfellow et al.
2016; Nguyen et al. 2021). This split is also widely adopted in air-quality ML studies, including (Grange et al.
2018) and (Vu et al. 2019), because it leaves a sufficiently large, unseen subset for honest skill assessment while
retaining enough data for stable training. We added the related literatures for that sentence in the revised
manuscript.

L223, this underestimation occurs because the ML-WN method may not fully capture abrupt changes in emission
patterns “due to the smoothing effects inherent in machine learning models”. What are the smoothing effects
mentioned? Since the proposed MacLeWN method is also based on machine learning, doesn't it also exhibit
similar smoothing effects?

Thank you for highlighting the need for precision. In the revised manuscript we now amend the sentence to
make it clear. “This underestimation occurs because the ML-WN method averages each time-step over
meteorological samples drawn from the whole historical record; such averaging sometimes could be unrealistic
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that “blurs” the sharp drop introduced by the intervention, which will be discussed further in the discussion.”.
One main source of ML-WN's bias is that it resamples weather conditions from the entire historical record and
splices them into the intervention window, combining genuinely reduced emissions with weather conditions
that never occurred and thus smoothing the step change. MacLeWN avoids this issue by first quantifying the
meteorological contribution for each hour from the emission normalised condition and then subtracting that
influence from observations. We have inserted additional sentences in the Discussion to make this reasoning
explicit in the revised manuscript “Instead of resampling historical weather conditions while keeping the original
emission proxies, MacLeWN estimates the influence from weather for each hour by comparing observations
relative to pollutant neutral, “normalised emission” baseline, and then it subtracts weather impacts from
observations.”

Figure 3 in Sec 3.2, in the three-month lockdown scenario, both methods appear to perform similarly, and
neither seems to compare with the observed trends particularly well. Is this interpretation correct?

Thank you for your comments. In Figure 3, the blue bears (observed NOy concentration changes) capture both
the emission reductions from the COV-19 lockdown and the concurrent meteorological effects. Because these
bars are consistently higher than the corresponding weather-normalised estimates from ML-WN and MacLeWN,
it indicates that the lockdown period benefited from meteorological conditions that promoted pollutant
dispersion.

When we compare the two weather-normalised method directly, their estimates diverge by about 17% for a
one-week lockdown effects, decrease to 10% when the lockdown is extended to one month, and fall to 6% over
three months. This progressive convergence aligns with the idealised scenario analysis in Section 3.1, and we
have expanded Discussion section to emphasise this point.

“... Contrary to the uniform emission cuts assumed in the idealised scenarios, the lockdown produced reductions
that were highly variable in both space and time. The observed concentration changes represent a convolution
of emission abatement and concurrent meteorological influences. Because percentile NOx reductions from raw
observations consistently exceed those of the weather-normalised estimates generated by ML-WN and
MacLeWN, it indicates that the lockdown period coincided with meteorological conditions conducive to pollutant
dispersion. A direct comparison of the two weather-normalised methods shows that their estimates differ by
roughly 17 % for a one-week lockdown, narrowing to 10 % for a one-month lockdown and 6 % for a three-month
lockdown. These results are consistent with our simulations under idealised conditions (Fig. 2), where ML-WN'’s
smoothing of transient signals could lead to systematic underestimation and MacLeWN shows clear larger policy
intervention effects under this real-world policy implementations....”
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