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Abstract. Forested peatlands cover a land area of 7 x 103 km? and store ~77 Pg C in Canada. However, the carbon (C) cycling
of forestedpeatlands, particularly swamps, has been understudied. Few modelling studies have been done on temperate swamp
C cycle partly because of the scarcity of field measurements in this ecosystem. These gaps create uncertainties in mode lling
the C dynamics of temperate swamps and consequently limit our understanding of this ecosystem. To improve our
understanding of the processes, interactions and feedbacks that mediate temperate swamp C cycling, we simulated the long-
term (40 years) plant processes, energy, water and C fluxes of Beverly Swamp, a well -preserved swamp in Southern Ontario
using a process-based model (CoupModel). CoupModel v6 was systematically calibrated for Beverly Swamp using the
Generalized Likelihood Uncertainty Estimate (GLUE) method and validated with field measurements. The GLUE approach
and its multicriteria constraints reduced the uncertainties associated with the modelling process and reasonably improved some
of the simulation outcomes when compared to the initial single run and prior uniform distribution. Global sensitivity analysis
of the parameters identified the important parameters that greatly influence temperate swamp C flux simulations and the
interconnections that exist between simulated variables and parameters. Plant-related processes and hydrological variables
exerted the strongest control on soil respiration simulation. However, these dynamics may be altered as climate continues to
warm in coming decades. Results from this study provide valuable knowledge for predicting the fate of swamp C cycle in the

region under a changing climate.

1 Introduction

Temperate swamps are known to contribute substantially to the peatland C cycle even though the coverage of this ecosystem
is largely underestimated and understudied (Davidson et al., 2022; Kendall et al., 2020). A recent modelling study indicated
that many aspects of a swamp’s thermal, hydrological and biogeochemical conditions could be adequately modelled, gaining
insight into the ecosystem’s response to disturbance (Afolabi et al.,2025); however, parameter estimation remained difficult
given the scarcity of previous studies in swamps. Process-based models have been widely applied to diverse ecosystems
because of their ability to simulate important interactions and feedbacks between biophysical processes and biogeochemical

cycles (He etal.,2016; Wanget al.,2022). This model class heavily relies on forcing variables and exact boundary conditions
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to simulate important processes in forested ecosystems that may be difficult to delineate because of measurement limitations
(Munroetal.,2000; Svensson etal.,2008; Yuanetal.,2023). Process-based models alsorequire well-defined parameter values
(Silva et al., 2024) but the course of assigning parameter values to important processes in data sparse ecosystems such as
temperate swamps can be challenging, thus creating parameter uncertainty when simulating temperate swamp C fluxes and its
controlling conditions. Uncertainty in swamp C flux modellingis also introduced from field observations that are used for
calibration and validation processes. Large spatial variability across temperate swamps, scaling of instantaneous measurements
to daily resolution, varying measurement techniques for different study periods, and overall scarcity of measurements
(Davidson et al., 2019; Kendall et al., 2020) influence C flux modelling. Furthermore, observation sparsity and limited
modelling studies on swamps to date may also create uncertainties when selecting the appropriate model structure for
simulating swamp C balance. Consequently, these uncertainties thatare linked to parameterization, field measurement error
and model structure all affect the C modelling process of this ecosystem.

Modellingstudies have shown that there are interrelationships between biogeochemical and biophysical processes in peatlands.
Metzger et al. (2016b, 2016a) reported that simulated C flux variables (e.g., ecosystem respiration and gross primary
productivity) are linked to diverse ecohydrological processes (e.g., soil moisture content, soil heat flow, and phenological
changes). These interconnections and feedbacks were reflected in the sensitivities of simulated water, energy and C fluxes to
diverse process categories such as plant growth and development, soil hydrology, organic matter decomposition, and soil
thermal processes. In a similar manner, Yuan et al. (2023) also noted in their modelling study on tropical swamps that plant-
related parameters significantly influenced the energy and C fluxes of their studied area. Understanding the interrelationships
and feedbacks that exist within andbetween biophysical andbiogeochemical processes and their parameters through sensitivity
analysis is important for model calibration (especially parameter specification) (Muleta & Nicklow, 2005). However, these
interactions are not well studied in temperate swamp peatlands with unique hydroperiods, vegetation cover and other
biophysical conditions (Davidson et al.,2022; Kendall et al., 2020). Instead, existing modelling studies (e.g., He etal., 2021;
Metzgeretal.,2015 &2016a) focused on theinteractions in other peatland categories (e.g.,bogs and fens) and climatic regions.
The modelling study of Afolabiet al. (2025) attempted to fill some of these knowledge gaps by highlighting the relationships
between soil respiration and biophysical controls over four decades in a temperate swamp. However, their study did not
quantify the uncertainties associated with the measurements used as driving variables and for defining boundary conditions.
For instance, they relied on proxy gauging station data to quantify the lateral water influx of a nearby dam and creeks into the
studied swamp. This data source may have introduced uncertainties in the swamp’s boundary conditions. In addition, because
their study relied on local sensitivity analysis (one-at-a-time) approach, some of the non-linear and multi-process interactions
may not have been captured. These interactions are important in swamps where a single parameter can influence multiple
processes (Yuanetal.,2023). To improve on the limitations of local sensitivity analysis, the global sensitivity analysis (GSA)
approach has been adopted by many modelling studies (KCetal.,2021; Wuetal., 2019). Instead of varying just an input or
parameter and holding others constant, GSA simultaneously varies all the selected parameters and inputs of a model to help

study all plausible interactions between parameters and processes (Hamby, 1994). This procedure assists in identifying
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sensitive and important parameters that are required for calibration and also the assignment of uncertainty level to individual
model inputs and parameters, as uncertainty analysis is an essential aspect of any modelling process.

Uncertainty analysis accounts for all the sources of uncertainty and their influence on modelling outcomes that consequently
determine the usefulness of model predictions (Muleta & Nicklow,2005). This analysis may also assist with ranking important
processes for field measurement campaigns (Metzger et al., 2016a; Wu et al., 2019) and the parameterization of swamp
category in large scale models (e.g., CLASSIC and CAMP) (Bona et al.,2020; Melton et al., 2020). However, no uncertainty
analysis has been completed for temperate swamp modelling studies. Therefore, this study undertook an uncertainty analysis
of simulated swamp C flux and controls by CoupModel using the Generalized Likelihood Uncertainty Estimation (GLUE)
approachto improve ourunderstanding of the dynamic interactionsthat occur in temperate swamp Ccycle. The GLUE method
is a systematic approach that captures all sources of uncertainties (Yang et al., 2018) and it is based on the principles of
equifinality that finds the plausible combinations of models, parameters and variables that are acceptable for reproducing C
flux processes and controlling conditions (Beven, 2006; Beven & Freer,2001). Consequently, the objectives of this study were
to: i) complete a global sensitivity analysis and model calibration with multiple variables (e.g., soil respiration, water table
level and leafareaindex, ii) present acceptable model structure and parameter distribution for simulating temperate swamp C,
which would be an important foundation for predicting future climate change impacts on this ecosystem, iii) identify parameter
equifinality and the influence of these parameters on simulated variables, iv) evaluate GLUE performance for simulated
variables and suggest measurement variables that will improve our understanding of the soil respiration process in temperate
swamps, and v) analyze the sensitivity of swamp C fluxes to changes in lateral water inputs.

Based on literature, we hypothesize thatthe application of GLUE methodology will improve the initial simulations of Afolabi
et al. (2025). We expect that the parameters related to soil organic C decomposition, soil thermal conditions, hydrology, and
plant processes will significantly affectsoil respiration simulations as suggested by existing studies (e.g., Metzgeret al., 2016)
that are focused on similar ecosystems (e.g., bogs and fens). We also hypothesize that the swamp’s C flux will be responsive

to variation in lateral water fluxes.

2 Materials and methods
2.1 Brief description of study location

Beverly Swamp is a minerotrophic forested wetland situated in Southwest Ontario, Canada (43.366N, 80.12W) with an
elevationrange of265to 270 m. The 2000 ha swamp is a product of an underlying impermeable marl layer that is situated in
a double dolomitebedrock depression (Woo, 1987). This unique formation supports a perched water table and the accumulation
of ~85 cm peat layer as vegetative productivity exceeded the rate of decomposition (Munro, 1979; Woo & Valverde, 1981).
Beverly Swamp is located within the humid continental climate zone with an annual average temperature of 7.6 °C and
precipitation of 973 mm (Canadian Climate Normals 1980-2010,2024), Millgrove station). The swamp has a heterogenous

canopy cover of both deciduous (e.g., red maple and birch) and coniferous vegetation (e.g., white cedar), and it is mainly
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drained by two streams, namely Spencer and Fletcher located in the northwest and northeast portions of the swamp,
respectively (Woo & Valverde, 1981; Woo, 1987). Detailed description of the site can be found in Appendix A (Table A.1);
(Afolabi et al., 2025); (Woo & Valverde, 1981) and other publications cited therein.

2.2 Field measurements used for study
2.2.1 Forcing variables and initializing measurements

Forty years of daily meteorological measurements (Jan 1983 - May 2023), including, precipitation, air temperature, wind
speed, relative humidity, and global radiation were collected from weather stations located within 25 km radius of the swamp
(e.g. Valens, Christie Conservation, HamiltonRBG CS and Hamilton A) (see Table 1). Additional observation data sourced
from (Munro, 1987, 1989; Munro et al., 2000) were also employed for gap-filling during 1983 - 1986. Other suitable
meteorological products such as Ontario in-filled climate data (1983 - 2005) (Ontario Government, 2019), NASA Power
Project (1986-2023) (Sparks, 2018) and CWEEDS (1986-2023) solar radiation product of Environment Canada were used to

support precipitation and global radiation datasets, respectively as shown in Table 1.

Table 1 Forcing and initialization variables for CoupModel

Variable Period Temporal Data source Remarks

resolution
Air Jan 1983-May | Daily Weather station Details of collection method are
temperature 2023 Munro 1987, 1989 | available on Environment Canada’s

and Munro et al., | website

2000 <https://climate.weather.gc.ca/histor

ical data/search historic_data e.ht

ml>. Additional collection approach
for support data are described in
Munro 1987, 1989 & Munro et al.,
2000
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Precipitation | Jan 1983-May | Daily Weather station
2023 Munro 1987, 1989 | As described above

and Munro et al.,
2000

Wind speed Jan 1983-May | Daily Weather station

2023 Munro 1987, 1989 | As described above

and Munro et al,,
2000

Relative Jan 1983-May | Daily Weather station

humidity 2023 Munro 1987, 1989 | As described above
and Munro et al.,,
2000

Global Jan 1983-May | Daily NASA Power & | Approachadopted by NASA Power

radiation 2023 CWEEDS (Sparks, 2018) and Environment
Environment Canada
Canada product (https://climate.weather.gc.ca/prods
Munro 1987, 1989 servs/engineering e.html).
and Munro et al., | Additiondata collection approach is
2000 described in Munro 1987, 1989 and

Munro et al., 2000
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Volumetric Jan 1983-May | Daily Westover gauging | Details of collection method are
discharge 2023 station available on Water Survey Canada
(flow) <

>

C content per | 1998-2000 One time McCarter et al., | Analysed with loss on ignition
soil layer 2024 approach

https://wateroffice.ec.gc.ca/mainm

enu/historical data_index_e.html

The climatic variables described were used as dynamic driving variables for CoupModel, while a streamflow dataset from
Westover gauging station at the exit of swamp was used as proxy for lateral flow input into the swamp because of the
unavailability of this information. To quantify the inconsistencies associated with the lateral flow proxy data assumption, an
uncertainty analysis was undertaken for this input variable, which was introduced into the model as average flow input defined
by the parameter of Gwsourceflow, qsor(see section 2.4.2 for details). For the initialization process, soil organic carbon (SOC)
measurements of depths 0—150 cm that were analysed with loss on ignition approach (McCarter et al., 2024) was used in the
model. Details of other site characteristics used for the initialization process are included in Appendix A (Table A.1) and

supplementary material (S2).

2.2.2 Measurements used for calibration and validation process

Hourly soil temperature measurements obtained by thermocouples (Type E) at depths (0 — 40 cm); groundwater table level
data (barometrically corrected) collected by pressure transducer (Solinst levelogger); and volumetric moisture contents (0-30
cm) of the soil measured by installed Campbell Scientific (CS616) probes across the swamp were used as calibration and

validation datasets. Details of compiled calibration and validation datasets are presented in Table 2

Table 2 Observational datasets for calibration (cal) and validation (val)

Variable Period Time scale | Mean +Std Data source Remarks on approach

Soil 1983-1987 (cal); | Daily Cal: 5.9+6 °C Field Obtained with thermocouple

temperature | 2022 -2023 (val) Val (5cm): measurement | installation. See Munro
9.0+£7.6 °C 1987, Munro 1989; Munro
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and Munro et
al., 2000

Val (30cm): et al., 2000; Afolabi et al.
9.0+6.9 °C (2025)for details
Water Table | 1983-1987 (cal); | Daily Cal:-2+19cm Field Obtained with pressure
Level 2022 -2023 (cal) Val: 22+21cm measurement | transducer (water level
loggers). See Munro 1987,
Munro 1989; Munro et al.,
2000; Afolabi et al. (2025)
for details
Volumetric 2022-2023 (cal) | Daily VMC5:69+9.5% | Field Obtained with corrected
Moisture VMC 30:78+15% | measurement | time-domain measurement
Content method. See Afolabi et al.
Afolabi et al. (2025) for
details
Soil 1998-2000 (cal); | Bi-weekly | Cal:10.3+£7.6 (Davidson et | Obtained with  closed
respiration 2022-2023 (val) gCm2d! al., 2019; | opaque chamber method.
val:4.445.4 Schmidt & | Spatial variability of same
gCm2d! Strack,2026) | day measurements are +3.7
gC m2 d! for cal and +1.8
gC m2 d-! for val period
Net radiation | 1983 —1987(cal) | Daily 7.7+£5.7 Munro 1987, | Obtained with Bowen ratio
MJ m2d! Munro 1989 | approach
and Munro et
al., 2000
Latent Heat | 1983—-1987(cal) | Daily 47+4 Munro 1987, | Obtained with Bowen ratio
MJ m2d-! Munro 1989 | approach
and Munro et
al., 2000
Sensible 19831987 (cal) | Daily 25+1.6 Munro 1987, | Obtained with Bowen ratio
Heat MJ m2d-! Munro 1989 | approach
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LAI 1998 (cal) seasonally | 3.9£1.9 Thambipillai | Obtained with ground-based
1998 measurements and

hemispherical photography

Snow Depth | 1983 —-1987 (cal) | seasonally | 24+16 cm Munro 1987, | Obtained during snow
Munro 1989 | survey
and Munro et

al., 2000

Additional datasets were sourced from existing studies as compiled in Table 2. Bi-weekly soil CO:z flux measurements were
obtained by closed opaque chamber method and analyzed with gas chromatograph (1998-2000) or measured directly (2022-
2023) with LI-COR portable greenhouse gas analyzer (LI-7810) (Davidsonet al., 2019; Schmidt & Strack,2026). Historic
hourly measurements of netradiation, ground heat, sensible heat, latent heat fluxes derived by Bowen ratio surface energy and
additional measurements of water table level, soil temperature (0—5 cm) and snow depth were sourced from (Munro, 1987,
1989; Munro et al., 2000). Compilation of measured Leaf Area Index (1998) by direct measurement and hemispherical
photography were sourced from Thambipillai (1998). Detailed measurement methodologies are published in the papers
compiled in Table 2.

2.3 Modelling approach
2.3.1 CoupModel description

CoupModel (coupled model), a one-dimensional coupled heat and mass transfer model that simulates thermal and hydrological
conditions of ecosystems and the adjoiningbiological processes that mediates C exchange between the atmosphere, vegetation
and soil environment (Jansson & Moon, 2001; Jansson & Karlberg, 2004), was adopted for this study. In particular, the
CoupModel version 6 (CoupModel v6) (He et al.,2021) which is an upgrade ofthe previous versions used for existing studies
such as Metzger et al. (2016a) was adopted for this research. The estimation of heat and water flow processes in CoupModel
are based on the laws of conservation of energy and mass and flows of thermal energy (Fourier’s law) and water (Richard’s
equation) created by gradient differences in temperature and water potential. C balance simulations and plant development in
the model are products of the interactions between plants and forcing hydroclimatic variables (Svensson et al., 2008).
CoupModel consists of many biotic and abiotic sub-modules for radiation and precipitation interception, evaporation and
transpiration, snow and surface water pools, soil temperature and heat fluxes, plant growth and maintenance, soil hydraulics,
and soil organic C decomposition (Jansson & Moon, 2001; Jansson & Karlberg, 2004; Metzger et al.,2016b, 2016a; Jansson,
2012)(seeeqs. Al- AS2 of Supplementary Materials (S1 & S3) for details of functions used to simulate the processes). Detailed
description of the model can be accessed in (Jansson & Karlberg, 2004; Jansson, 2012) and other publications referenced

therein.
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2.3.2 Model design and setup for Beverly Swamp

The model set-up and parameterization for this study is based on the previous use of CoupModel at Beverly Swamp as
described in Afolabi et al. (2025). Parameter assignment was informed by field measurements, lab experiments, literature
values, experience from single runs and default model values (See Table 4 and S2). In particular, Simulations were started five
years (1978-1982) prior to study period (1983) with repeated forcing variables of first 5 years (1983—1987) to allow the system
adapt to site conditions and make it less dependent on initial values as adopted by Metzger et al. (2016a,2016b). The soil
profile for Beverly Swamp was divided into thirteen layers varying in thickness between 5 cm (0-30 cm depth), 10 cm (30-50
cm), 15 cm (50-80 cm), 20 cm (80-120cm) and 30 cm (120 -150cm) intervals. We simulated ~1 m peat depth because the
topmost layer ofthe swamp has an average peat layer of 85 cm (50-100 cm thick) thatis underlined by an almost impermeable
marl layer (Munro et al.,2000). Sub-modules of global radiation and precipitation interception, surface pool formulation and
snowmelt were used to define the swamp’s soil surface boundary conditions (Jansson & Karlberg,2004; Metzgeretal.,2016a).
Energy fluxes (net radiation, sensible and latent) of the swamp were simulated by an iterative solution of the energy balance
that captures the feedback between moisture availability and temperature (eqs. A1-A4 in S1). However, for soil surface
temperature, convection was switched off because previous research (Smith & Woo, 1986) has shown that vertical conduction
is the dominant heat flow mechanism in Beverly Swamp. Annual average air temperature and amplitude of7.64 °C and 12 °C,
respectively were adopted for estimating the bottom boundary conditions for heat conduction in Beverly Swamp (eqs. A9 -Al1
in S1). This heat conduction, energy flux and air temperature also interacted with other simulated processes (e.g., snow pack).

Details of the specific equations and parameters used can be found in supplementary material (S1 & S3).

2.3.2.1 Soil hydraulic and lateral water flow at Beverly swamp

The van Genutchen Model (vGM) soil water retention curve (van Genuchten, 1980) (eq. A14 in S1) was used to represent the
soil water potential and soil moisture content relationships of the swamp’s 13 soil layers, while the Mualem equation (Mualem,
1976) (eq. A15 in S1) defined the unsaturated hydraulic conductivity of the swamp’s soil (eqs. A12-A22 in S1). These two
functions were used to simulate vertical water movement through the swamp’s soil matrix as it conforms with Darcy’s law
(Richards, 1931). Values of van Genutchen’s empirical parameters used for the simulation were estimated with pedotransfer
functions (Letts etal., 2000; Liu & Lennartz, 2019) using dry bulk density measurements (Czerneda, 1985; Munro, 1982).
Residual water content and wilting point parameters were estimated from literature (Dimitrov et al.,2010; Letts et al., 2000;
Menberu et al., 2021).

The perched nature of the swamp supports water accumulation, and the point of soil saturation (water table level, WTL) as it
rises above the drainage datumis marked by continuous saturation from the WTL to the marl layer which signifies the bottom
of the soil profile. Hydraulic conductivity at the marl layer is as low as 0.86 mm/day (McCarter etal.,2024; Warrenet al.,
2001) with no significant interaction with regional groundwater flow (Macrae et al.,2011; Valverde, 1978). As the simulated

WTL rises over the marked drainage datum (e.g., WL in draining Fletcher and Spencer streams), water efflux of the saturated
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peat layers above the marked level was linearly simulated (eq. A22 in S1) (Metzger et al., 2016a). The addition and loss of
water from adjacentsoil layer was used to maintain saturation level in simulation similar to ground water field measurements
(Metzger, 2015). The swamp’s runoff was driven by the generated water pool at soil surface that accumulates when water in
the surface layer of the soil is transmitted upwards during completely saturated condition and when throughfall exceeds the
rate of infiltration. Ultimately, runoff was a function of the water produced in the surface pool and the estimation of the
swamp’s soil moisture depended on water storage and temperature (Metzgeretal.,2015,2016a; Wuetal.,2011). In addition
to the simulations above, a two-domain approach (not ordinary Darcy’s flow) that takes into consideration a bypass of the
micropore soil matrix flow system (Jansson et al., 2005) was also tested for the flow process at Beverly swamp (eqs. A19 —

A21 in S1).

2.3.2.2 Vegetation and soil organic carbon of the swamp

In CoupModel, vegetation was represented by an"explicitly bigleaf” model (5-10mheight) with a singlerepresentative canopy
layer characterized by the closed canopy structure (LAI of ~5-6) in the swamp with a root depth of ~30 cm (Table Al). No
understory vegetation was simulated since cover was low and thus insignificant for the simulated C and hydrology fluxes. The
plants represented in the model are divided into different partsofleaf, stem, root, grain and mobile pools but for thissimulation,
grain allocation was excluded because of its insignificant contribution in non-agricultural settings (Metzger et al., 2016b). The
initial vegetation conditions used for the simulation were based on the field measurements computed in Table A1. The light-
use efficiency sub-model, which considers the proportionality between plant growth and global radiation and the limitations
imposed by moisture availability, temperature and nitrogen supply was used to simulate the swamp’s photosynthetic rate and
C assimilation of the swamp’s vegetation (eqs. A23 — A26 & A39 — A43 in S1) (Jansson & Karlberg, 2004; Wu etal., 2011).
A fixed N approach was used, which means that the nutrient limitation for the plant growth was implicitly included in the
specified light use efficiency parameter. The model simulated leaf area index, surface albedo, root depth and other plant
characteristicsdynamically (eq41). These properties feedbacks to micrometeorological conditions that consequently alterlocal
climate and hydrology. Plant respiration simulation for the swamp is assumed to be a function of both maintenance and growth
and was estimated from the functional trait coefficients (Amthor, 1984; Amthor & Baldocchi, 2001; Cannell & Thornley,
2000; Jansson & Karlberg, 2004) of the swamp species and was further regulated by air temperature. See eq. A23-A24 in S1
& S3 for model equations and parameters that are related to plant processes.

The SOC initialization process for Beverly Swamp was based on methods adopted by several previous studies that define
conditions in the soil layer (Dangal et al.,2022; He et al.,2023; Metzger etal.,2015,2016a) and not the common “spin-up”
approach. Spin-ups will not produce realistic results for thissimulation because “equilibrium” may not be achieved in disturbed
(i.e., known peat extraction, road and transmission line construction) peat soils like Beverly swamp where the humified pool
will take multiple decades to restabilize (Byunetal.,2018; Woo, 1979; Woo, 1987), thus affecting SOC pool and fluxes (Nemo
etal.,2017). To account for this in CoupModel, the swamp’s SOC was partitioned into 13 layers (see S2). The initial C and

nitrogen content per layer were assigned by measurements and partitioned into two SOC pools (litter and slow turn over/
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recalcitrant) for each of the layers based on their C:Nration and extent of decomposition (DeSimone,2009; Schmidt & Strack,
2026; Wangetal., 2015; Webster et al.,2014). This was to ensure that the specified initial conditions fulfilled the measured
total Cper layer. Beverly Swamp’s measured total C storage of ~ 98 kg/m? (McCarter et al., 2024) were separated by reported
soil C:N values into active and passive pools to represent the fast and slow turnover rates, respectively. Consequently, high or
low C:N for a given soil layer means more fast or slow cycling SOC pool will be initialized, respectively. The swamp’s SOC
at different depths were partitioned into the two major pools in a manner that is almost at equilibrium for defined parameters
coalescence, which eventually generates a realistic fitto soil respiration (Dangal etal.,2022; He, etal.,2023; Metzgeret al.,
2015,2016a). For the simulation,decomposition of fast and slow turnover pools were estimated by first-order rate process that
is limited by substrate quality, moisture availability and temperature (Jansson etal., 2008; Metzger et al., 2015; Wu et al.,
2011) (See eqs. A44 — AS52). Temperature sensitivity of microbial decomposition was described by the Q10 response function
given in eq. A46, while that of moisture was controlled by different moisture limits that constraints microbial decomposition
when soil is either too dry or wet (eq. A47 in S1) (Metzger et al., 2016b). Therefore, as the swamp litter decomposes, CO2 is
emitted, and soil organic matter is formed. Further decomposition of humus under oxic and more favorable condition (e.g.
increased WTD) produces only CO:z. Also at deeper soil layers, moisture saturated conditions, lower soil temperature and less
labile organic matter lower the decomposition rate. Because a static displacement of organic matter between layers was used
for this study, there was no downward displacement of C at deeper layers. This means the model structure did not account for
vertical peat C movement (He et al., 2023; Jansson & Karlberg, 2004). See eqs. A44 -AS52 in S1 and S3 for sub-model

functions and parameter values used in SOC simulation.

2.4 Sensitivity analysis and calibration process using the GLUE Approach

Field measurements of 1983—1986 and 1998-2000 were used for parameter sensitivity analysis and calibration, while those of
2022-2023 were adopted for validation. The single run of the initialized model for the swamp (Afolabi et al., 2025) provided
the foundation for this study. To select the parameters for the multiple run analysis, an initial screening (sensitivity anal ysis)
of 90 identified parameters (see S4) representing diverse processesrelated to plant growth and development, water, energy
and C flux processes was completed with the one-factor-at-a-time (OAT) approach described by (Lenhart et al., 2002) (See
also figure 1). The process thereafter reduced the final number of selected parameters for calibration to 38 based on their
importance and sensitivity to C flux processes, while the remaining ones were held static for the runs (see Table 3 for detai Is).
The prior range of parameters presented for GLUE analysis were defined in such a manner to cover anticipated posterior value
(Svensson et al., 2008). Thereafter, a total of 35,000 Monte Carlo simulations of random uniform sampling were implemented
for the study to generate both prior and posterior distributions covering a broad range of C balance conditions in the swamp.
The process assisted in locating possible sets of models, parameters and variables that generate ensemble simulations that
match observations (Wuet al.,2013). The ensembles were splitinto behavioural and non-behavioural simulations (Metzger et
al., 2016a) based on their consistent performance as acceptable solutions that fit well with the multiple observed variables

described in section 2.2. Consequently, those that fall below set threshold (see section 2.4.1 below) were discarded while the
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ones above were accepted as behavioural simulations. Posterior parameter intervals of between 5t to 95t percentile of the
distribution of parameter values of accepted runs were considered for the study. These posterior distributions generated after

applying the acceptance thresholds were compared to the prior distribution to identify sensitive parameters.

Initial screening of 90
parameters (parameter selection ———>
and value assignment)

Multi-run (35,000) with 38

parameters —>| Stepwise multi-criteria constraint

. . Identification of sensitive and
Selection of behavioural models F———> important parameters

Figure 1. Schematic diagram of the GLUE (GSA and calibration) processes for the study

2.4.1 Performance indices, set thresholds and interrelationships

Simulations produced above were constrained to field measurements through the setting of multiple acceptance criteria in the
form of performance indices, namely, coefficient of determination (R?) and Mean Error (ME). These two indices have been
shown by previous uncertainty studies with the GLUE approach in CoupModel (Metzger et al.,2016a; Wanget al., 2022; Wu
etal., 2019) to be effective in capturing all the seasonality and interannual variabilities embedded in simulated and observed
datasets with strong influence on the overall process of sensitivity analysis and calibration. R? describes the strength of the
relationship that exists between simulated and field measurements by estimating the extent that the variability in simulated
data explains that of observations usinga regression line (Kalantari et al., 2012). R? is particularly independent of the data
scale being considered and the value produced by this statistical index falls with the range of 0 and 1. ME, which tests the bias
of the simulation, is the average of all errors generated from the difference between simulated and observed variables as it
represents the magnitude of the difference.

For the selection of behavioral models and for the calibration process, measured soil temperature, hydrological measurements
(water table level and volumetric moisture content), C fluxes (soil respiration), energy fluxes (net radiation, latent heat and
sensible heat), plant properties (LAI), and snow depth were used to constrain the simulations. The setting of the constraining

thresholds was inspired by the uncertainty estimated from field measurements (see Table 2) and previous single run experience
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described in Afolabi et al. (2025). In particular, thresholds of R?>0.80 for soil temperature, R>>0.7 for LAI, R?>>0.5 for net
radiation flux, R?>0.4 for VMC and soil respiration, R2>0.3 water table level and latent heat flux, R>>0.1 for sensible heat
flux, snow depth and surface pool were set as criteria to constrain the selection of acceptable runs. In addition, estimated
uncertainty measurement of'soil respiration was considered in assigning ME constraint for the simulation. Where ME of £ 0.5
and £3 g C/m?/d were used to constrain the model for both the validation and calibration periods, respectively. Additional ME
constraint was only applied to soil respiration because it is the only C flux that was validated for the study and the main C flux
variable in the study with much interest for improvement. Furthermore, the simultaneous R? and ME constraints on all the
variables led to the rejection of the 35,000 runs.

The constraining process was achieved in multiple steps. The above described R? and ME thresholds were applied to soil
respiration and each of the variables (controls) in a stepwise manner to test the level of constraint each of the variables has on
behavioural model selection and soil respiration in particular. Thereafter, all the multiple constraints of the measurement were
simultaneously applied. In addition, equifinality (Eqjx equation 1) between the calibrated parameters of diverse process
categories was determined by summing their covariance (R?) as presented in equation 1a (Metzger et al., 2016a; Wu et al.,
2019). Only cases where correlation >0.4 were considered for the analysis.

210><R]2-kj¢k

Eqpp=% 2X

Where Eqj, is the equifinality index, Rixis the correlation between the parameters j and k that are estimated from acceptable

m Equation 1

models

For initial identification of sensitive parameters, Wilcoxon signed rank and Kolmogorov-Smirnov tests were applied to detect
the difference between prior and posterior parameters distribution and to also identify the posterior parameters that have been
transformed from uniform distribution. In addition, a range ratio index of posterior to prior distribution was also computed
after calibration (Wu et al., 2019). After the identification of sensitive parameters, the contribution (importance) of sensitive
parameters to the performance of selected simulated variables outputs was quantified using the Lindeman, Merenda and Gold
(LMG) approach (Johnson, 2000; Lindeman et al., 1980; Wu etal.,2019). LMG method is an averaging over ordering method
that quantifies the proportion oftotal variance (R?) explained by each dependent variable (i.e., model parameters in this case).
In this study, the relative weight of the sensitive parameters in the form of proportion of averaged R? across the orderings are

predictors of studied variables (Equation 2).

_1lgp-1 seqR*({x;31S) .
LMG(x;) = ;Z j=0 ng{xl,.(.;)cp}'\{xk} 7j—p;1 Equation 2
n =]

Where seqR? ({Xk}|S) represents R? summation when regressor {Xk} is being added to regression model with the set of
regressors S. The implementation of the LMG approach was done with the R package “relaimpo” (Groemping, 2006).

Consequently, the completion of the process helped identify and rank sensitive parameters.
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2.4.2 Lateral input variation

To quantify the uncertainty associated with lateral water flow, which is largely influenced by Valens dam and the two creeks
draining Beverly swamp, measurements from Westover gauging station were used to specify the prior parameter range
representing this variable in CoupModel. This parameter (Gwsourceflow, qsof) was calibrated as part of the GLUE process and
furthervaried at different sensitivities (+10%, £25%,£50%) as a separate experiment in the study to test the response of C
flux variables to these changes. Selection of sensitivity range for testing was informed by existing hydrological studies in the

swamp area (McCarter et al., 2024; Sultana & Coulibaly, 2011).

2.4.3 Comparison of Beverly swamp modelling set-up and the previous studies

Even though similar biophysical conditions and biogeochemical cycles of diverse ecosystems were simulated by prior studies
using the CoupModel (see Table 3 for comparison), the modelling set-up described above is unique to the Beverly Swamp
(temperate swamp peatland ecosystem) in Southern Ontario, and it is one of the first attempt to evaluate the performance of
CoupModel in a temperate peatland where the hydroperiods, vegetation cover and other biophysical conditions are distinct.
Our experience from Afolabiet al (2025) informed the selection and evaluation of important hydrological components (e.g.
surface pool and lateral flow) for the swamp set-up in CoupModel that were not the focus of previous experiments (see Table
3).Initial single model runofthe swamp suggested that the surface pool generated when the infiltration capacity of the swamp’s
top peat layer is exceeded, affected the water table level and partitioning of energy fluxes. These hydrological processes are
critical to simulatingthe swamp ecosystem’s water balance,and not those of previous studies because of the difference in their

ecosystem (e.g. bogs and fens).

Table 3 Comparison of prior CoupModel set-up

. . . Calibration/ .
CoupModel version Ecosys.tem/ Stu.d y Callbratml.l/evaluatlon uncertainty Evalua.tmn Reproducibility
location period variable metrics
method
CoupModel first SH, LH, NR, ST, LAI, Bayesian-
. Spruce forest, . Markov Chain See Svensson et
generation (Svensson 2001-2004 NEP, Biomass and ME
et al 2008) Sweden Litter Monte Carlo al 2008
(10 - 105 runs)
Treeless
tlands
CoupModel 4.0 pea NEE, GPP, Reco, ST, Monte-Carlo ) See Metzger et
(Metzger et al., 2015) (Estf:r‘li;r}éf’ 2006-2010 SD, LAI, Biomass (105 runs) R%, ME al.,, 2015
Germany
CoupModel 5.0 Oligotrophic, WTL, LAI, NEE, SH Monte-Carlo See Metzger et
. : : _ > 5 > s - 2
(Metzger ctal., 2016) | Mminerogenic | 1991-2013 LH, NR, ST, SD (10 runs) R?, RMSE al,, 2016
mire, Sweden
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CoupModel 6.0 . . . Monte-Carlo
(Coup-CNP) (He et, | UPIndforest. | 1g54 5ogy ¢:N, N:F, G, (10 runs for2 | Re,mp | Seellectal
Sweden biomass, DOC . 2021
al, 2021) regions)
CoupModel 6.0 Agricultural 1984-2019 Water drainage, soil Monte-Carlo R2, ME, See Svensson et
(Svensson et al 2025) | site, Sweden ) nitrate, SON (104 runs) RMSE al 2025
ST, WTL (saturation Monte-Carlo -
CoupModel 6.0 (This Swamp level and surface pool) (GLUE See details in
. ) _ ) 2 . e
study) Canada 1983-2023 VMC, Rs, NR, LH, SH, | Approach, 104 R RMSE | Data ava_llablllty
section
LAI SD runs)

Note that SH, LH, NR, ST, LAL NEP, NEE, GPP, Reco, Rs, SD, LA, WTL, C:N, N:P, C:P, DOC and SON are acronyms for
sensible heat flux, latent heat flux, netradiation flux, soil temperature, leafarea index, net ecosystemproduction, gross primary
production, ecosystem respiration, soil respiration, snow depth, leaf area index, water table level, carbon to nitrogen, ni trogen

to phosphorus ratio, carbon to phosphorus, dissolved organic carbon and soil organic nitrogen respectively.

3 Results
3.1 Calibrated parameters and sensitivities

The GLUE Calibration process transformed most of the uniform parameter distribution of the prior to other distributions (e.g.
normal and log normal) in the posterior. Out of the 38 parameters selected for calibration, 17 showed a very significant

difference (p <0.05) between prior uniform distribution and posterior distribution before multicriteria constraint. However,
thisnumber increased to 24 after selection of behavioural models as shown in Table 4. The sensitive parameters resulting from
the calibration procedure were linked to diverse biotic and abiotic categories controlling plant properties, soil organic

processes, soilthermaldynamics, soil water storageand transport, land surfaceenergy exchanges, and other physical processes.
In particular, all the parameters in the soil organic matter category showed significant sensitivity with reduced posterior mean
for litter (K1) and humus (Kn) decomposition rates but an increase for surface litter decomposition (L1) after calibration.
Comparing theratio of mean posterior distribution to prior (range ratio) in Table 4, RateCoefHumus (Ks, 0.37, decomposition
rate of humus), RateCoefLitter (Ki, 0.44, decomposition rate of litter), LeafRate1 (ILc1, 0.60, leaf litter fall), MobileAlloCoef
(Mretain, 0.60, mobile allocation of the vegetation) and AlbedoV (aveg, 0.69, albedo of the vegetation) showed the largest
changes. Thisresult is notunprecedented because Kiand Ki parameters are important to the decomposition of labile C and the
recalcitrant humus layer of peat soil, respectively, thus influencing soil C efflux. Conversely, a decrease was observed in the
posterior distribution value of 1.c1 parameter after calibration. 1Lc1 constrains the leaf litter fall process during non-autumnal
period with strong influence on litter abundance and the rate at which it disappears or is transferred to humus. Posterior

distribution value of mrewin parameter increased after calibration with more allocation to mobile C pool. mretin influences the
storage of non-structural carbohydrates and its allocation during the non-growing season or under extreme conditions (Jansson

15
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& Karlberg, 2004). This parameter therefore has a strong relationship with forest gross primary productivity. The calibration
process produced a lower posterior mean value for aveg parameter, which affects the amount of shortwave radiation that is
reflected fromthe heterogenous canopy structure of Beverly Swamp. avegis a major driver of energy flux partitioning of land-
surface energy exchange, which eventually affects thermal conditions and evapotranspiration mechanisms in forested
ecosystems. Overall, the presented results of the global sensitivity analysis (GSA) and calibration process assisted in
identifying sensitive parameters and the parameter distribution for modelling water, energy and C fluxes in temperate swamp
ecosystems. It is noteworthy that the adoption of the Global Sensitivity Analysis (GSA) approach for this study assisted in
mapping sensitive and important parameters for simulating the swamp’s C fluxes and controlling conditions, identifying
essential parameter interactions and their equifinality. These unique findings were not identified by previous studies (e.g.

Afolabietal.,2025) because they utilized the typical local / OAT analysis which inherently focuses on linear interactions.
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3.1.1 Equifinality of parameters

Parameter equifinality is at the core of the GLUE approach in identifying parameter sets and interactions that reasonably
describe important processes in the modelled system. Summation of R? generated from the correlation matrix of calibrated
parameters (see S4 for matrix) described in section 2.4 was used to compute the equifinality of this modelling experiment. The
overall equifinality of the parameters was categorized into five process groups namely, plant properties, soil organic matter

processes, energy balance drivers, soil water processes and soil thermal and other abiotic processes as presented in Figure 2.

soilwater 4
parameter
M =veo B o
_ - g - =
soilthermal cmax - mretain
- crain - mT
- dp - pl.sp
- gmax - pmanxt
N N - avpd - pglLow
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B« Il wvciobas
K M «i0
plant B ksat B twa
- ksatt - VWpmax
LAlenhcost [l <ot
o
energybalance

(o]

1 2 3 4

Figure 2. Mean equifinality of calibrated parameter-process categories. Note that chart does not have unit

Considering the average of each category highlighted above, parameters related to soil water processes ranked highest with
average equifinality value of 3.96. Within this category, SurfacPoolMax (Wpmax10.5) accounted for the most equifinality. The
category linked to plant processes ranked the next with had mean equifinality value of 3.7, and aveg (8.9) had the highest
equifinality in this group. Parameters in the soil organic matter class were estimated to have an average equifinality of 3.3
with the combination of ki(4.33) and In (3.3) accounting for almost 80 percent of the total equifinality in the group. Energy
balance category (2.9) and soil thermal and other abiotic group (2.5) had the lowest mean equifinality for the computed
correlation matrix. Generally, more equifinality was observed between parameters of the same process category than those of

other categories.

3.1.2 Parameter influence on variable simulation

In determining the influence of sensitive parameters on simulated variables, the normalized relative weight (R 2 average) of the
parameters derived fromthe LMGmethod (described in section 2.4) and their contributionto model performanceare presented

in Figure 3.
20
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Figure 3. Parameter contribution to variable performance (R?), where cal & val represents calibration and validation
periods, respectively. See also S5 for details and also the definition of parameters

The simulated variables showed sensitivities to parameters of different categories but the parameters representing plant growth
(Growthcoef, kgresp), soil water drainage/input (GWSourceFlow, gsof) processesand snow melt (MeltCoefAirTemp, mr) exerted
the strongest influence on all the simulated variables. Soil respiration simulations were most sensitive to plant growth ( kgesp),
soil moisture response function (saturation activity, pgsaact) and soil water drainage (qsor) parameters but with some variations
between the calibration (1998-2000) and validation (2022-2023) period. The calibration period showed high sensitivity to both
Pasatact and Kgresp parameters, while gsor and kgresp parameters were the highest for the validation period. For the simulation of
hydrological variables (saturation level, volumetric moisture content and surface pool), plant related coefficients
(McoefCoarseRoot, kmrespeoarseroot; Keresp; Mobile AlloCoef, Mretin), snow melt (mr) and soil water drainage (qsof) parameters
contributed the most to explaining the variability in these simulated variables. However, the parameter sensitivity differed for
both the calibration and validation periods for both the saturation level and surface pool simulations. The variability in net
radiation, latent heat and sensible heat flux simulations were most explained by parameters representing radiation properties
(albedo wet, awet) and soil moisture response (pgsatact, thetapowercoef, pep). Respiration response function of temperature (to1o),
respiration parameter of coarse 100t (Kumrespeoarseroot) and snowmeltrelated coefficient (mr) parameters ranked top in explaining
the variabilities in soil temperature and snow depth simulations, while plant related parameters (LAIcnhcoer and Kmrespeoarseroot)
ranked the most in explaining the variability in LAI Overall, parameters of diverse process categories exerted influence on C,
water and energy flux modelling performance at Beverly Swamp. This influence was more prominent in situations where

parameters and variables shared the same process category.
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3.2. Evaluation of model performance following the GLUE approach to parameter estimation

The systematic GLUE approach assisted in identifying the ensemble sets of parameters with the highest likelihood to match
measurement data in section 2.2. Out of the 35,000 prior simulations that were completed, only 30 ensembles were accepted
as behavioural simulations for the posterior distribution after applying all the stringent multicriteria thresholds adopted for the
experiment. The ensemble mean of the posterior models performed better than that of the simulations generated by the prior

distribution as represented by Table 5.
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Table 5 Performance (R?) of prior and posterior models

EGUsphere\

Variable N Distribution prior selection | Distribution post selection =30

=35000

Mean Ccv Range | Mean | CV Range
Soil temperature (Scm) cal 707 0.86 0.20 0.93 0.89 0.01 0.05
Soil temperature (Scm) val 343 0.92 0.20 0.97 0.93 0.02 0.07
Soil temperature (30cm) val 344 0.88 0.20 0.94 0.90 0.02 0.07
Saturation level (cal) 1066 0.48 0.37 0.73 0.55 0.25 0.53
Saturation level (val) 348 0.35 0.74 0.78 0.65 0.04 0.15
VMC (5¢m) 346 0.45 0.59 0.94 0.78 0.09 0.27
VMC (30cm) 346 0.16 1.28 0.74 0.52 0.12 0.27
Soil respiration (cal) 88 0.25 0.41 0.63 0.30 0.16 0.32
Soil respiration (val) 10 0.43 0.49 0.98 0.72 0.18 0.45
Net radiation 840 0.70 0.20 0.76 0.73 0.01 0.05
Latent heat flux 840 0.41 0.36 0.71 0.50 0.18 0.45
Sensible heat flux 840 0.20 0.38 0.50 0.24 0.17 0.41
Leaf area index 57 0.50 0.47 0.93 0.74 0.06 0.13
Snow depth 36 0.54 0.23 0.71 0.52 0.13 0.40
Surface pool (cal) 1067 0.09 0.96 048 0.24 0.38 0.54
Surface pool (val) 347 0.42 0.34 0.84 0.54 0.27 0.49

*CV represents coefficient of variation while cal and val denote calibration and validation periods
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3.2.1 Soil respiration

The GLUE approachreduced the uncertainty of posterior soil respiration simulations (Table 5). Soil respiration simulations
showed significant improvement as represented by the changes in mean R? (0.43t0 0.72)and ME (-2 to 0 g€ m2 d-!) in prior
and posterior models, respectively during the validation period. In fact, soil respiration showed the greatest observed
improvement after multiple constraints compared to the other studied variables, and when compared to the result of the single
run (See Table B1 in Appendix). Thisis anindicator of higher uncertainties in simulating soil respiration. The accepted models
were mostly able to represent the seasonality in soil respiration of both the calibration and validation periods (Figure 4).
However, some of the peaksin soil respiration rate in late spring and early summer were not well captured by the posterior
model ensemble when compared to field measurement. This mismatch is not unexpected because soil respiration is highly
influenced by plant processes, hydrology, and thermal conditions, so the inadequacies from the simulation of these controls

will cascade into soil respiration and other C flux simulations.
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Figure 4. Plot of observation against ensemble mean of simulated soil respiration for calibration (1998 —2000) and
validation (2022 —2023) periods. Error barsinblack reflect the standard deviation of measured soil respiration (black),
while those in red represent the standard deviation of the acceptable models

Compared to the calibration period, soil respiration was better simulated in the validation period with less uncertainty than the
calibrated period (R?0f0.3 andME: -1.1 gCm2d-!"). This may be linked to measurement error, difference in collection approach
and spatial variability during this period and the uncertainties that also cascaded from controlling variables. The magnitude of
uncertainty related to measurements was also reflected by the spatial variability of soil respiration data across the installed soil

fluxing sampling locations with standard deviation values of 3.7 gCm-2d-'for calibration (1998 — 2000) and 1.8 gCm-2d-! (2022
—2023) for the validation periods.
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3.2.2 Hydrological simulations of the swamp

The calibration process significantly improved the simulation performance of the hydrological variables (i.e., water table le vel
and volumetric moisture content) and to a greater extent than soil temperature. This is an indication that the simulation of the
hydrological variables is more uncertain than that of soil temperature. In comparison to the prior models, saturation level and
surface pool (water table level) simulations showed higher mean R? (0.65; 0.54) and reduced ME (0.02m; -5 mm) in the
posterior model ensemble, respectively for the validation periodas shown in Table 5. However, the partitioningof WTL shows
thatsaturation level was better simulated than surface pool (see Table 4 and Figure 5). For the saturation level and surface pool
simulations, the validation period was better simulated than calibrationperiod. Peak drought generated during very dry summer
and autumn years (1985 and 2022) were not well captured in the saturation level simulations. These, and other inaccurate
representations in the system’s behaviour, cumulatively made simulated saturated level slightly lower than that of observation.
Similar underestimation was also observed in the surface pool simulation when compared to the observed data. Some of these
inadequacies may be linked to that the fact the model was mostly trained with wet years during the calibration period (1983 —

1986), so it was unable to fully capture the extremely dry conditions presented in the validation period (e.g., 2022)
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Figure 5. Observation versus ensemble mean of saturation and surface pool simulations for calibration (a) and
validation (b) periods

For the posterior model, R? value of simulated VMC at 5 cm (0.45 to 0.78) and 30 ¢cm (0.16 to 0.52) increased but ME values
also increased. The 5 cm VMC matched better with observation than that of 30 ¢m with mean R2 of >.63 and >0.41,

respectively. However, more moisture deficit was simulated for the topsoil than that of middle layer as presented in Figure B1.
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3.2.3 Soil temperature and snow simulation

Overall, posterior simulation of soil temperature ranked highest when compared to measured data with 90-93 % of the
variability in measured soil temperature explained by those of the simulated (see Table 5). This is an improvement from the
initial R? range 0f 0.88-0.92 in the prior distribution with middle layer (30 cm) showing more evident improvement than the
surface layer (5 cm). For the accepted simulations, soil temperature at the two layers were overestimated during the summer
seasons, while the lowest temperatures in winter were not perfectly captured (See Figure B1). The overestimation in summer
may be linked to moisture underestimation during this period, which results in more partitioning into sensible heat than latent
heat. Also, the pattern of snow disappearance may not be well represented in the model so this may have affected model-
observation fit during winter. Unlike soil temperature simulation, the GLUE approach did notresultin a significant difference
insnow depth simulation. Instead, a slight reduction in fit to measured data(R? from 0.54 to 0.52) was observed in the posterior.
This reduction may be associated with the overestimation of snow accumulation in the first year of the simulated period and
the seasonal mismatch that results from snow accumulation and disappearance during the winter season. Despite the slight
reduction in fit to measured data for the GLUE calibrated snow depth simulation, the R? (0.54) value was still higher than the
result of the single run in Table B1 (Appendix).

3.2.4 Energy balance performance

The performance of all the simulated energy flux components, namely net radiation latent heat and sensible heat fluxes
improved after calibration as shown by their R? values. However, latent heat flux experienced the most improvement from
mean R? 0f 0.4 to 0.5 and reduction in mean error from -0.8 MI m2d-! to -0.5 MJ m2d-! (see Table 5). Most of the measured
seasons were captured well by the posterior model except for the underestimation during the spring season of the calibration
period (See Figure B2). This underestimation in spring led to the partitioning of more energy to sensible heat flux. Generally,
sensible heat flux simulation did not perform as well as latent heat flux, with overestimation in summer and autumn and
underestimation in spring when compared to measured data. This cumulatively contributed to the mismatch between observed
and simulated sensible heat flux with mean Rz and ME values 0of 0.24 and 0.12MJ m2d-!, respectively. Net radiation had the
highest meanR? (0.73) and ME (1.21 MJ m2d-') among the three simulated energy fluxes. The high R? value can be linked to
the good fit between simulated and observed data for most of the calibrated period. However, there was some underestimation
and overestimation of net radiation during spring and summer seasons, respectively in some of the studied years (e.g., spring

1984). This seasonal mismatch was then also reflected in simulated latent and sensible heat fluxes.

3.2.5 Evaluating the results of prior single run and GLUE calibration results

Compared to the single run of Afolabi et al. (2025), the GLUE approach improved some of the simulated variables but did not
affect others, and in some cases, the calibration process diminished their performance (see Table B1 and Figure B4). For

instance, the R? (0.72) and ME (-0.02 gC m2 d-!) of GLUE simulated (mean of behavioural models) soil respiration improved
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from the initial single run values 0of 0.58 and 0.45 gC m d-! respectively (see Figure B4). This confirmed thatthe stringent
performance constraint ofthe GLUE set-up on this variable reduced the mean error by over 100%. Also, the R? (0.65) and ME
(1.7 cm) of GLUE simulated saturation level improved from the initial single run values of 0.58 (R?) and 21cm (ME)
respectively. However,the R? (0.35) and ME (2.4 MI m? d-!) of GLUE simulated sensible heat flux diminished fromthe initial
single run values 0f 0.35 (R?) and 2.4 MJ m2d-! (ME). The compared results should be interpreted with caution because the
performance range of the GLUE calibrated results is dependent on the selection threshold outlined in section 2.4.1. for
constraining the simulations. For example, R?>0.80 was set as the constraining threshold for soil temperature in the GLUE
experiment, which is lower than the R? (0.95) value of the single run. Furthermore, ME constraint was only applied to soil
respiration and not the other variables, so this may greatly affect the GLUE calibrated results. It is also possible that the
stringent multicriteria constraint of the GLUE calibration improved some of the simulated variables at the expense of others.

See Table B1 in the Appendix section for the comparison of other variables.

3.3 Experiment of constraining variables on soil respiration flux

When the R? constraints described in section 2.4 were applied to only soil respiration, ~53% of the prior simulations were
rejected (Figure 6). The stepwise addition of soil thermal, hydrological, and plant variable constraints to soil respiration led to
model rejection rates of 53% (constrained for soil temperature in addition to soil respiration), 53% (snow depth), 91% (WTL),
92% (VMC) and 85% (LAI). Although VMC showed the strongest individual constraint on acceptance rate, the combination

of soil water related variables (WTL and VMC) produced a stronger model rejection value of 96%.

Soil Respiration (SR) only
18,510

SR & Soil temperature
18,519

SR & WTD
31,767
SR & VMC
32,322

SR & WTD & VMC
33,433

All runs
(35,000)

SR & Net radiation
18,519

SR & Latent heat
20,780

SR & Sensible heat
20,110

SR & Leaf Area Index
29,859

SR & Snow Depth
18.510

Figure 6. Number of rejected runs after R? constraint on simulated variables
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For the energy flux variables, combining soil respiration constraints with these variables produced rejection rates of 53% (net
radiation), 59% (latent heat) and 57% (sensible heat flux). This shows that latentheat flux produced the strongest constraint
on the acceptance rate of the behavioral models for energy fluxes. This may be linked to the uniqueness of latent heat flux in
representing the energy flux component of evapotranspiration that couples both energy and water balance. A similarresultwas
observed for all the variables when ME constraint was added to the R? constraint of soil respiration as presented in Figure B3.

However, LAl ranked higher than VMC or WTL in constraining the prior simulations.

3.4 Importance of lateral water flux

Lateral flowis an important variable for defining boundary conditions for modellingenergy, water and carbon fluxes in Beverly
Swamp. The variation experiment of lateral water input (£10%, £25% and +50%) showed that gross primary productivity,
ecosystem respiration and net ecosystem exchange simulations were responsive to lateral water flux changes as shown in
Figure 7. One-tenth and one-quarter increase in lateral input resulted in <1% increase in GPP and Reco and 1% increase in
NEE, while one-halfincreaseraised GPP,Reco and NEE values by2.5%,2% and 4%, respectively. For the reverse experiment,
one-tenth reduction in the lateral input led to less than 1% decline in GPP, Reco and NEE, while one -quarter and one-half
reduction in water flux further declined GPP by 2%-5%, Reco by 2%-4% and NEE by 4% -6% respectively. This experiment

shows that the swamp’s C flux displayed minimal sensitivity to changes in lateral water input.
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Figure 7. Response of Accumulated GPP (a), ecosystem respiration (b), soil respiration (¢) and NEE (d) to lateral water
input variation over 40 years (1983 —2023)
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4 Discussion

The adoption of the GLUE approach for this study reduced some of the uncertainties associated with temperate swamp C
modelling as highlighted in Section 3.2. This confirms part ofthe hypothesis presented in the introduction section of'this study
that GLUE will help achieve this. Global sensitivity analysis and calibration process of GLUE assisted in mapping parameter
distribution, constrainingboundary conditions and identifying sensitive and important parameters for simulating water, energy
and C fluxesin a temperate swamp peatland. The approach reduced the margin of parameter uncertainty in this ecosystem,
where parameter values required for modelling C flux and relevant controls are not readily available (Yuan et al., 2023).
Critical boundary conditions such as later water flux was better constrained by the process than when parameterization was
done one-at-a-time (e.g., Afolabi et al., 2025). In addition to the GLUE results, the sensitivity analysis experiments of
constraining variables for soil respiration and C flux response to lateral flow variation (Sections 3.3 and 3.4) also confirmed
our other hypotheses on the interconnections that exist between the different ecohydrological processes within this temperate
swamp ecosystem. However, the extent of the interactions and the contribution of each process category to C flux and

biophysical conditions simulation varied.

4.1 Parameter-process influence on soil respiration simulation

As described in the Results (Section 3.1), soil respiration simulations were mostly sensitive to plant growth respiration (Kgresp),
soil moisture response function (pgsawct) and soil water drainage (qsof) parameters. kgesp coefficient, which represents the
concentration of C efflux per C assimilated as structural dry matter, constraints autotrophic respiration in the model (Jansson
& Karlberg, 2004; Lavigne & Ryan, 1997). kgesp is dependent on plant functional traits, canopy age and size (Schmiege et al.,
2023) and is linked to many critical processes such as plant productivity, tissue nitrogen content, root respiration and
rhizosphere (Litton et al.,2007; Ryan, 1990) that control soil respiration processes in swamps. This finding is consistent with
other studies that reported the strong influence of this parameter on C flux variables (Hanson et al., 2000; Metzger et al.,
2016b). The other two parameters that soil respiration responded to with strong sensitivity were hydrology related. Numerous
studies have shown thathydrology is a strong mediator of soil respiration as itexerts control on almost all the processes r elated
to soil respiration in temperate swamps (Davidson et al., 2019; Kendall et al.,2020). In particular, the parameter soil water
drainage (qsof), which represents later water flow input into the swamp, displayed strong influence on soil respiration. The
importance of this parameter corroborates the results of other modelling studies (Ju et al.,2006; Tonkin et al.,2018) and the
findings ofthe lateral flow variation experimentin section 3.4. Lateral water flux is an important part of the soil water balance
of Beverly Swamp with water sources from Fletcher and Spencer creeks that drain the swamp, and the influence of re gulated
flow supplies from Valens dam upstream of the swamp (McCarter etal.,2024; Woo & Valverde, 1981). Flow variation of
this water flux showed that soil respiration and other C flux components are sensitive to lateral flow variation even though at
a reduced magnitude. Nevertheless, the 3% increase in soil respiration rates when lateral flow was increased from 0 to 50%

can be attributed to soil moisture abundance that was initially limiting. Moisture deficit impedes plant productivity, substrate
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availability, microbial activities and other mechanisms constraining soil respiration process (Blodau,2002; Limpens et al.,
2008). Therefore, future disturbances from dam operations and climate change that alter lateral flow regimes of the swamp is
also expected to offset its C dynamics. Furthermore, while the lateral flow experiment presented here represents shifts in plant
and microbial activity in response to resulting soil moisture change, persistent shifts to lateral flow regimes could result in
succession of the plant community (Tonkin et al., 2018) that would have consequent impacts on swamp C cycling.

Even though the simulation performance of soil respiration was influenced by plant and hydrology related parameters, there
were variations in the parameter influence for the calibration (1998-2000) and validation (2022-2023) periods. The greater
sensitivity of the calibration period to soil moisture response function (pqsaact) and plant growth respiration (Kgresp), and that of
validation to soil water drainage (qsof) and plant growth respiration kgesp parameters may be linked to the spatial variability
that exist in swamps. The different sections of Beverly Swamp have distinct hydrogeomorphic settings that influence the
hydrology and vegetation distribution of the swamp (Davidsonetal., 2019; McCarter et al., 2024; Woo & Valverde, 1981).
Therefore, the collection of soil respiration measurements at different points in the swamp with distinct local ecohydrological
characteristics may have introduced the variability in soil respiration data used for calibration and validation. In addition, inter-
annual variability may also have affected the water availability of the study periods and its effect on soil respiration process.
Consequently, this finding possibly explains the origin of the spatial variability in field measurements, which cascaded into

the model assessment process.

4.2 Parameter equifinality in swamp C flux model

In addition to parameters’ influence on model performance, the result of parameter equifinality described in section 3.1.1 was
also used to understand the interactions between plant processes, soil organic matter cycling, hydrological processes, energy
flux drivers, soil thermal conditions, and other abiotic processes in Bevely Swamp. Substantial parameter equifinality was
observedin the modellingofthe swamp’s water fluxes, energy balance and C flux components. Some ofthe parameters showed
single interconnection, while others showed high equifinality. Parameters related to soil water (SPMaxCover, pmaxs;
SurfPoolMax, Wpmax) and plant (LeafRate1, ILc1) process categories ranked highest in equifinality. This result is in line with
the findings of Yuan et al. (2023) where they observed that swamp C flux variables were sensitive to plant (phenology)
parameters. Also, the posterior distribution of some calibrated parameters of this study (e.g.,RateCoefLitter1) are similar to
those presented by other studies (Metzger et al., 2016), even though the experiments were undertaken in other peatlands (e.g,
fens). Despite the similarities, the equifinality analysis confirms that the interactions between sets of parameters take priority
over individual parameters when modelling swamp C flux and its controls. The set of parameters presented in the Results
section will be relevant to the calibration of other temperate swamp Cmodels. However, the high equifinality of this modelling
exercise may reduce the chance of isolating specific C flux-related parameter values for modelling experiments in other
temperate swamps (Sierra et al.,2015). In the event where a single parameter is selected for calibration, the parameter range
of others that share the same equifinality may be affected (Wangetal.,2022; Wu et al.,2019). Also, because the selection of

constraining criteria is somewhat subjective, the adoption of different sets of indices aside from R? and ME may affect the
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outcome of the calibration and sensitivity analysis process (Metzger et al., 2016a). Therefore, caution should be taken when
transferring single parameter value of Beverly Swamp to other temperate swamps. Nevertheless, the parameter ranges of the

posterior distributions are applicable to the modelling of other temperate swamp systems.

4.3 Simulation evaluation and constraining variables for soil respiration

The GLUE calibration process moderately improved the performance of most simulated variables when validated with field
measurements and compared to the previousresults of Afolabi et al. (2025) (see Table B1 in Appendix) and prior distribution
(Table 4) beforemulti-criteria constraint. Behavioural modelsofsoil respiration were able to reasonably capture the seasonality
of both the calibration and validation periods. However, some of the uncertainties in other simulated variables (e.g.,

hydrological variables) may have affected soil respiration estimates. This hypothesis was confirmed by the stepwise constraint
experiment on soil respiration (section 3.3) that showed that associated biophysical conditions strongly affected the acceptance
or rejection rate of soil respiration simulations. LAI and hydrological variables (WTL and VMC) displayed the strongest

influence on soil respiration simulations. This finding is consistent with field measurement studies that have shown that plant
properties and hydrological conditions have very stronginterconnections with soil respiration processesin temperate peatlands

(Juszczak etal., 2013; Kendall et al., 2020; Sleeter et al., 2017). LAl is an important plant parameter in regional and global
biogeochemical models because it reflects important biological conditions and processes of forested ecosystems such as

canopytype,canopy structure and phenological changes (Bréda,2003; Malone etal.,2015). LAl is a major input for estimating
radiation interception and energy balance (Munro et al., 2000), canopy C assimilation (Barclay, 1998), scaling between leaf
resistance for water use efficiency and CO2 absorption (McWilliam et al., 1993) and the simulation of evapotranspiration
(Malone et al., 2015), which is an important component of water and energy balance.

Hydrological variables (saturation level, surface pool & VMC) have also been reported by many studies to have strong
influence on soil respiration processes in peatlands (e.g., Davidson etal.,2019; Kendall et al., 2020; Waddington et al., 2015).
Hydrological conditions moderate microbial abundance and activities, plant distribution, root growth, nutrientavailability and
other mechanisms that control soil respirationin wetlands (Harperetal.,2022; Mitsch etal.,1991; Nunes etal.,2015; Pezeshki,
1991). Moisture abundance partitions swamp soils into oxic and anoxic zones and this determines the rate of peat

decomposition and ultimate CO: efflux into the atmosphere through soil respiration (Blodau, 2002; Limpens et al., 2008,

Middleton, 2020). In particular, the evaluation of the surface pool component (Figure 5 and Table 4) was important for this
experiment because of their influence on the swamp’s water table level and energy flux partitioning. The underestimation of
the surface pool component during the calibration and validation periods greatly reflected in the swamp’s WTL and the
simulation of its sensible heat flux. This mostly explained why the sensible heat flux at Beverly Swamp was poorly simulated,
compared to other CoupModel studies (See Table 4), and only improved moderately for the posterior model. Consequently,
the finding of this experiment will inform both modelling studies on important biophysical and biogeochemical interactions,

and field measurement campaigns onthe relevant variablesthat should be measuredalongside C flux. Furthermore, the adopted
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behavioural models with reduced uncertainty; high simulation performance will be an important tool for understanding future

interactions and feedbacks of biophysical and biogeochemical processes in temperate swamps.

5 Conclusion

Thisresearch is an important uncertainty modelling studies on temperate swamp peatland C dynamics, where large knowledge
gaps have cumulated into substantial uncertainties in estimating the water, energy and C fluxes of this ecosystem. The adoption
of the GLUE approach for uncertainty analysis assisted in achieving multiple objectives of identifying important
ecohydrological processes in temperate swamp, systematically calibrating CoupModel for Beverly Swamp, improving the
model performance in simulating C flux and its associated controls, and ultimately reducing the uncertainties ofthe modelling
process. Uncertainty analysis is an important aspect of modelling experiments because it determines the usefulness of the
modelling outcomes and the transferability of the modelling components (e.g., structure and parameters) to other temperate
swamps. Therefore, the results of this study will inform model structure selection and parameterization of large-scale
ecological models (e.g., CLASSIC and CaMP) when simulating swamp C flux at regional and global scales. Some of the
important parameters and soil respiration constraining variables (e.g., WTL, VMC and LAI) that were identified in this study
will help informthe choice of variables to be measured in the field for Crelated studies. Furthermore, the lateral flow var iation
experiment may also guide relevant authorities (e.g., conservation authorities) on the best approach for managing flow
regulation into Beverly Swamp and similar systems towards preserving the swamp’s C stocks. This is important for future
planning where climate change risk may affect the hydrological and thermal conditions of the swamp, and its C balance. In
addition, the behavioural models generated by the GLUE approach will be useful tools for estimating the effects of climate

change on the swamp’s C flux and controlling variables.

5.1 Study limitations and recommendations

Although the GLUE approach assisted in reducing some of the uncertainty associated with the C flux modelling experiment
at Beverly Swamp, the study is not without limitations. The rejection of all the 35,000 runs when R? and ME constraints were
simultaneously applied to all the simulated variables (see section 2.4) may be an indicator of a defectin the model structure
adopted for this study that does not fully capture processes relevant for temperate swamp C cycling. Therefore, there is the
need for future studies to test alternative model structures that may capture better the biophysical conditions and C flux
dynamics of the studied swamp, especially for the C flux and hydrological components (WTL and VMC). The uncertainty
approach adopted for this study is heavily dependent on multiple variable constraints, therefore shortage of long-term field
measurements for calibration and validation in some of the variables may have affectedthe analysis. In particular, the inclusion
of high resolution multi-decadal long-term field measurements of Reco, GPP & NEE for additional variable constraint may
have improved themodellingprocess. Thesemeasurements will help reducethe high equifinality observed for Beverly Swamp,

as high equifinality can be an indication of using insufficient data for calibration (Sierra et al., 2015). Furthermore, the
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installation of a gauging station at the entrance of the swamp may improve the estimation of lateral influx and the effect of
Valens dam and the two creeks on the swamp. Additional measurements to support estimation of important parameters such
as growth respiration of swamp vegetation and decomposition rates of litter and humus may further reduce parameter
uncertainty in the modelling process.

The posterior parameter distribution generated from the calibration process is dependent on the variables used for constraining
the model, adopted performance thresholds, and other parameters selected for calibration. Therefore, the outcome of this
uncertainty analysis may change if these conditions are altered. Also, because the model structure selected for the simulation
of'water fluxes, energy balance and C flux components in CoupModel is based on theoretical knowledge of swamp biophysical
processes and experience from existing studies, there is some level of subjectiveness in selecting the appropriate model
structure for the study (Metzgeret al.,2016a; Wangetal.,2022). However, increased understanding of swamp processes and
availability of additional measurements for testing the model’s structure will assist in reducing the uncertainty associated with

this modelling component.
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Appendix A: Important study site properties

Table A.1 Beverly swamp site characteristics

EGUsphere\

Value Source
Location and Meteorological
variables
Lat, Lon 43.36N, 80.11W (Munro, 1979)
Swamp size ~20 km? (Hamilton Conservation Authority, 2020;
Munro, 1979)
Altitude 265-270 m (McCarter et al., 2024)
Mean Annual temp 7.6°C (Environment Canada, 2024)
Mean Annual Precipitation 973 mm (Environment Canada, 2024)
Mean Annual Evaporation 554-752 mm (Valverde, 1978; M. Woo & Valverde, 1981)
Plant characteristics
Major tree species (mixed forest) silver maple (Acer (Hamilton Conservation Authority, 2020;
saccharinum), red maple Thambipillai, 1998; Welch, 1985)
(Acer rubrum) white cedar
(Cedar occidentalis), birch
(Betula papyrifera), black
ash (Fraxinus nigra), aspen
(Populus tremuloides), elm
(Ulmus americana), alder
(Alnus rugosa)
Ground understory vegetation  Fens and Sedges (Welch, 1985)
Average stand age in 1980 40-52 yrs (Hamilton Conservation Authority, 2020;
Welch, 1985)
Average-Max canopy height 5.22-10 m (Hamilton Conservation Authority, 2020;
Munro et al., 2000; Thambipillai, 1998)
Root depth 03-04m (Hamilton Conservation Authority, 2020;
Munro et al., 2000; Thambipillai, 1998)
Leaf Area Index (LAI) 5to6 (Hamilton Conservation Authority, 2020;
Thambipillai, 1998)
Stand density 6317-8125 trees/ha (Hamilton Conservation Authority, 2020;
Thambipillai, 1998; Welch, 1985)
Basal area 25-52 m?/ha Welch, 1985; HCA (2021)
Average litter C/N ratio 30-93 Santia et al. (2023) & Wang et al. (2015)
Average veg C/N ratio 45.6 Wang et al. (2015)
Microbe C/N ration 6-7 Wang et al. (2015)
Plant C (1979- 1987) ~9009 gC m? Welch (1985); Munro (1989); Munro et al

(2000)

Foliage C 1171.17 g€C m? Welch (1985)
Stem C 6936.93 gCm? Welch (1985)
Root C 900.9 gCm2 yr-1 Welch (1985)
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EGUsphere®

Net Primary Productivity ~1145 gCm? yr! Welch (1985)

Litter production 250-350 g m? yr! Welch (1985)

Leaf longevity 0.45-8.9 years Kanda et al (1996) & Withington et al (2006)

Phenology

Leaf emergence day 145 Thambipillai (1998)

Leaf emergence temp 5°C Thambipillai (1998)

Optimum day number 167 Thambipillai (1998)

Litterfall commencement 270 Thambipillai (1998)

Canopy extinction value 0.33-0.7 Thambipillai (1998)

Soil variables

Soil type Sapric peat Munro et al (2000)

peat depth ~85 (cm) Munro et al (2000); Valverde (1978); Woo &
Valverde (1981)

Soil pH 6.0-7.7 Spencer (1991)

Soil pore volume

80-85 vol%

Czerneda (1985); Munro (1982); Munro, 1984
& Munro et al., 2000

Soil bulk density 0.18-0.22 g em?3 Czerneda (1985); Munro (1982); Munro (1984)
Total soil C contentin upper 50 37894 + 14854 gC m~? McCarter et al. (2024)
cm
Total soil C content in top 150 16600 + 6400 gC m™ McCarter et al. (2024)
cm to
106800 +2800 gC m™
Soil C/N ratio 18-26 DeSimone (2009); Cools et al (2014)*; Webster

al at. (2014); Wang et al. (2015)

Soil nitrate

0.43-7.41 g NOs-N gsoil !

DeSimone (2009)
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Appendix B: Additional result and charts

Table B1 Comparison of the results of initial single run and GLUE calibrated outputs

920

Variable Single run This paper
R? RMSE ME R? ME

Soil respiration (gCm=2d") 0.58 2.90 045 0.72 -0.02
SL (cm) 0.58 32.00 21.00 0.65 1.70
Snow depth (cm) 0.49 0.15 -0.21 0.52 1.00
Soil temp Scm 0.95 2.19 1.20 0.89 3.20
Soil temp 30cm 0.92 2.02 0.46 0.92 1.60
VMC (%) S5cm 0.79 6.40 2.73 0.78 15.00
VMC (%) 30 cm 0.50 11.60 -7.71 0.52 3.00
Net radiation flux (MJ m2d-!) | 0.75 3.74 1.80 0.73 1.20
Latent heat flux MJ m2d-!) | 0.64 2.80 0.60 0.50 -0.46
Sensible heat flux (MJ m2d-!) | 0.35 2.40 0.10 0.24 -0.12
LAI 0.80 1.00 0.61 0.74 -2.00
Surface pool (mm) 0.56 1.49 38.80 0.54 -5.40
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R2 constraint ( variable) Runs # after constraint

Soil respiration only 16,490 out of 35,000

Soil respiration + soil temperature

16,481 out of 35,000

Soil respiration + Net radiation 16,490 out of 35,000

Soil respiration + latent heat flux 14,220 out of 35,000

Soil respiration + sensible heat flux

14,830 out of 35,000

Soil respiration + snow depth 16490 out of 35000

Generally, hydrological and plant productivity (LAI)
variables have stronger influence than thermal variables

R2 & ME (soil resp) constraint

Runs # after constraint

Soil respiration only

383 out of 35,000

Soil respiration + soil temperature

380 out of 35,000

Soil respiration + Net radiation

383 out of 35,000

Soil respiration + latent heat flux

314 out of 35,000

Soil respiration + sensible heat flux

Soil respiration + snow depth

383 out of 35,000

383 out of 35,000

All constraints

30 out of 35,000

Figure B3: Influence of constraining variables on soil respiration flux
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Figure B4: Results of prior single run vs GLUE result for soil respiration and saturation level
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