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Abstract. Forested peatlands cover a land area of 7  105 km2 and store ~77 Pg C in Canada. However, the carbon (C) cycling 

of forested peatlands, particularly swamps, has been understudied. Few modelling studies have been done on temperate swamp 

C cycle partly because of the scarcity of field measurements in this ecosystem. These gaps create uncertainties in mode lling 

the C dynamics of temperate swamps and consequently limit our understanding of this ecosystem. To improve our 10 

understanding of the processes, interactions and feedbacks that mediate temperate swamp C cycling, we simulated the long-

term (40 years) plant processes, energy, water and C fluxes of Beverly Swamp, a well-preserved swamp in Southern Ontario 

using a process-based model (CoupModel). CoupModel v6 was systematically calibrated for Beverly Swamp using the 

Generalized Likelihood Uncertainty Estimate (GLUE) method and validated with field measurements. The GLUE approach 

and its multicriteria constraints reduced the uncertainties associated with the modelling process and reasonably improved some 15 

of the simulation outcomes when compared to the initial single run and prior uniform distribution. Global sensitivity analysis 

of the parameters identified the important parameters that greatly influence temperate swamp C flux simulations and the 

interconnections that exist between simulated variables and parameters. Plant-related processes and hydrological variables 

exerted the strongest control on soil respiration simulation. However, these dynamics may be altered as climate continues to 

warm in coming decades. Results from this study provide valuable knowledge for predicting the fate of swamp C cycle in the 20 

region under a changing climate. 

1 Introduction 

Temperate swamps are known to contribute substantially to the peatland C cycle even though the coverage of this ecosystem 

is largely underestimated and understudied (Davidson et al., 2022; Kendall et al., 2020). A recent modelling study indicated 

that many aspects of a swamp’s thermal, hydrological and biogeochemical conditions could be adequately modelled, gaining 25 

insight into the ecosystem’s response to disturbance (Afolabi et al., 2025); however, parameter estimation remained difficult 

given the scarcity of previous studies in swamps. Process-based models have been widely applied to diverse ecosystems 

because of their ability to simulate important interactions and feedbacks between biophysical processes and biogeochemical 

cycles (He et al., 2016; Wang et al., 2022). This model class heavily relies on forcing variables and exact boundary conditions 
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to simulate important processes in forested ecosystems that may be difficult to delineate because of measurement limitations 30 

(Munro et al., 2000; Svensson et al., 2008; Yuan et al., 2023). Process-based models also require well-defined parameter values 

(Silva et al., 2024) but the course of assigning parameter values to important processes in data sparse ecosystems such as 

temperate swamps can be challenging, thus creating parameter uncertainty when simulating temperate swamp C fluxes and its 

controlling conditions. Uncertainty in swamp C flux modelling is also introduced from field observations that are used for 

calibration and validation processes. Large spatial variability across temperate swamps, scaling of instantaneous measurements 35 

to daily resolution, varying measurement techniques for different study periods, and overall scarcity of measurements  

(Davidson et al., 2019; Kendall et al., 2020) influence C flux modelling. Furthermore, observation sparsity and limited 

modelling studies on swamps to date may also create uncertainties when selecting the appropriate model structure for 

simulating swamp C balance. Consequently, these uncertainties that are linked to parameterization, field measurement error 

and model structure all affect the C modelling process of this ecosystem. 40 

Modelling studies have shown that there are interrelationships between biogeochemical and biophysical processes in peatlands. 

Metzger et al. (2016b, 2016a) reported that simulated C flux variables (e.g., ecosystem respiration and gross primary 

productivity) are linked to diverse ecohydrological processes (e.g., soil moisture content, soil heat flow, and phenological 

changes). These interconnections and feedbacks were reflected in the sensitivities of simulated water, energy and C fluxes to 

diverse process categories such as plant growth and development, soil hydrology, organic matter decomposition, and soil 45 

thermal processes.  In a similar manner, Yuan et al. (2023) also noted in their modelling study on tropical swamps that plant-

related parameters significantly influenced the energy and C fluxes of their studied area. Understanding the interrelationships 

and feedbacks that exist within and between biophysical and biogeochemical processes and their parameters through sensitivity 

analysis is important for model calibration (especially parameter specification) (Muleta & Nicklow, 2005). However, these 

interactions are not well studied in temperate swamp peatlands with unique hydroperiods, vegetation cover and other 50 

biophysical conditions (Davidson et al., 2022; Kendall et al., 2020). Instead, existing modelling studies (e.g., He et al., 2021; 

Metzger et al., 2015 & 2016a) focused on the interactions in other peatland categories (e.g., bogs and fens) and climatic regions. 

The modelling study of Afolabi et al. (2025) attempted to fill some of these knowledge gaps by highlighting the relationships 

between soil respiration and biophysical controls over four decades in a temperate swamp. However, their study did not 

quantify the uncertainties associated with the measurements used as driving variables and for defining boundary conditions. 55 

For instance, they relied on proxy gauging station data to quantify the lateral water influx of a nearby dam and creeks into the 

studied swamp. This data source may have introduced uncertainties in the swamp’s boundary conditions. In addition, because 

their study relied on local sensitivity analysis (one-at-a-time) approach, some of the non-linear and multi-process interactions 

may not have been captured. These interactions are important in swamps where a single parameter can influence multiple 

processes (Yuan et al., 2023). To improve on the limitations of local sensitivity analysis, the global sensitivity analysis (GSA) 60 

approach has been adopted by many modelling studies (KC et al., 2021; Wu et al., 2019). Instead of varying just an input or 

parameter and holding others constant, GSA simultaneously varies all the selected parameters and inputs of a model to help 

study all plausible interactions between parameters and processes (Hamby, 1994). This procedure assists in identifying 
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sensitive and important parameters that are required for calibration and also the assignment of uncertainty level to individual 

model inputs and parameters, as uncertainty analysis is an essential aspect of any modelling process.  65 

Uncertainty analysis accounts for all the sources of uncertainty and their influence on modelling outcomes that consequently 

determine the usefulness of model predictions (Muleta & Nicklow, 2005). This analysis may also assist with ranking important 

processes for field measurement campaigns (Metzger et al., 2016a; Wu et al., 2019) and the parameterization of swamp 

category in large scale models (e.g., CLASSIC and CAMP) (Bona et al., 2020; Melton et al., 2020). However, no uncertainty 

analysis has been completed for temperate swamp modelling studies. Therefore, this study undertook an uncertainty analysis 70 

of simulated swamp C flux and controls by CoupModel using the Generalized Likelihood Uncertainty Estimation (GLUE) 

approach to improve our understanding of the dynamic interactions that occur in temperate swamp C cycle. The GLUE method 

is a systematic approach that captures all sources of uncertainties (Yang et al., 2018) and it is based on the principles of 

equifinality that finds the plausible combinations of models, parameters and variables that are acceptable for reproducing C 

flux processes and controlling conditions (Beven, 2006; Beven & Freer, 2001). Consequently, the objectives of this study were 75 

to: i) complete a global sensitivity analysis and model calibration with multiple variables (e.g., soil respiration, water table 

level and leaf area index, ii) present acceptable model structure and parameter distribution for simulating temperate swamp C, 

which would be an important foundation for predicting future climate change impacts on this ecosystem, iii) identify parameter 

equifinality and the influence of these parameters on simulated variables, iv) evaluate GLUE performance for simulated 

variables and suggest measurement variables that will improve our understanding of the soil respiration process in temperate 80 

swamps, and v) analyze the sensitivity of swamp C fluxes to changes in lateral water inputs.  

Based on literature, we hypothesize that the application of GLUE methodology will improve the initial simulations of Afolabi 

et al. (2025). We expect that the parameters related to soil organic C decomposition, soil thermal conditions, hydrology, and 

plant processes will significantly affect soil respiration simulations as suggested by existing studies (e.g., Metzger et al., 2016) 

that are focused on similar ecosystems (e.g., bogs and fens). We also hypothesize that the swamp’s C flux will be responsive 85 

to variation in lateral water fluxes.  

2 Materials and methods  

2.1 Brief description of study location 

Beverly Swamp is a minerotrophic forested wetland situated in Southwest Ontario, Canada (43.366N, 80.12W) with an 

elevation range of 265 to 270 m. The 2000 ha swamp is a product of an underlying impermeable marl layer that is situated in 90 

a double dolomite bedrock depression (Woo, 1987). This unique formation supports a perched water table and the accumulation 

of ~85 cm peat layer as vegetative productivity exceeded the rate of decomposition (Munro, 1979; Woo & Valverde, 1981). 

Beverly Swamp is located within the humid continental climate zone with an annual average temperature of 7.6 oC and 

precipitation of 973 mm (Canadian Climate Normals 1980-2010, 2024), Millgrove station). The swamp has a heterogenous 

canopy cover of both deciduous (e.g., red maple and birch) and coniferous vegetation (e.g., white cedar), and it is mainly 95 
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drained by two streams, namely Spencer and Fletcher located in the northwest and northeast portions of the swamp, 

respectively (Woo & Valverde, 1981; Woo, 1987). Detailed description of the site can be found in Appendix A (Table A.1); 

(Afolabi et al., 2025); (Woo & Valverde, 1981) and other publications cited therein. 

2.2 Field measurements used for study 

2.2.1 Forcing variables and initializing measurements  100 

Forty years of daily meteorological measurements (Jan 1983 - May 2023), including, precipitation, air temperature, wind 

speed, relative humidity, and global radiation were collected from weather stations located within 25 km radius of the swamp 

(e.g. Valens, Christie Conservation, HamiltonRBG CS and Hamilton A) (see Table 1). Additional observation data sourced 

from (Munro, 1987, 1989; Munro et al., 2000) were also employed for gap-filling during 1983 - 1986. Other suitable 

meteorological products such as Ontario in-filled climate data (1983 - 2005) (Ontario Government, 2019), NASA Power 105 

Project (1986-2023) (Sparks, 2018) and CWEEDS (1986-2023) solar radiation product of Environment Canada were used to 

support precipitation and global radiation datasets, respectively as shown in Table 1. 

 

Table 1 Forcing and initialization variables for CoupModel 

Variable Period Temporal 

resolution 

Data source Remarks 

 

Air 

temperature 

Jan 1983-May 

2023 

Daily Weather station 

Munro 1987, 1989 

and Munro et al., 

2000 

Details of collection method are 

available on Environment Canada’s 

website 

<https://climate.weather.gc.ca/histor

ical_data/search_historic_data_e.ht

ml>. Additional collection approach 

for support data are described in 

Munro 1987, 1989 & Munro et al., 

2000 
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Precipitation Jan 1983-May 

2023 

Daily Weather station 

Munro 1987, 1989 

and Munro et al., 

2000 

 

As described above 

Wind speed Jan 1983-May 

2023 

Daily Weather station 

Munro 1987, 1989 

and Munro et al., 

2000 

 

As described above 

Relative 

humidity 

Jan 1983-May 

2023 

Daily Weather station 

Munro 1987, 1989 

and Munro et al., 

2000 

 

As described above 

Global 

radiation 

Jan 1983-May 

2023 

Daily NASA Power & 

CWEEDS 

Environment 

Canada product 

Munro 1987, 1989 

and Munro et al., 

2000 

Approach adopted by NASA Power 

(Sparks, 2018) and Environment 

Canada 

(https://climate.weather.gc.ca/prods

_servs/engineering_e.html). 

Addition data collection approach is 

described in Munro 1987, 1989 and 

Munro et al., 2000 
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Volumetric 

discharge 

(flow) 

Jan 1983-May 

2023 

Daily Westover gauging 

station 

Details of collection method are 

available on Water Survey Canada 

<

https://wateroffice.ec.gc.ca/mainm

enu/historical_data_index_e.html

> 

C content per 

soil layer 

1998-2000 One time  McCarter et al., 

2024 

Analysed with loss on ignition 

approach 

 110 

The climatic variables described were used as dynamic driving variables for CoupModel, while a streamflow dataset from 

Westover gauging station at the exit of swamp was used as proxy for lateral flow input into the swamp because of the 

unavailability of this information. To quantify the inconsistencies associated with the lateral flow proxy data assumption, an 

uncertainty analysis was undertaken for this input variable, which was introduced into the model as average flow input defined 

by the parameter of Gwsourceflow, qsof (see section 2.4.2 for details). For the initialization process, soil organic carbon (SOC) 115 

measurements of depths 0–150 cm that were analysed with loss on ignition approach (McCarter et al., 2024) was used in the 

model. Details of other site characteristics used for the initialization process are included in Appendix A (Table A.1) and 

supplementary material (S2). 

 2.2.2 Measurements used for calibration and validation process 

Hourly soil temperature measurements obtained by thermocouples (Type E) at depths (0 – 40 cm); groundwater table level 120 

data (barometrically corrected) collected by pressure transducer (Solinst levelogger); and volumetric moisture contents (0-30 

cm) of the soil measured by installed Campbell Scientific (CS616) probes across the swamp were used as calibration and 

validation datasets. Details of compiled calibration and validation datasets are presented in Table 2  

 

Table 2 Observational datasets for calibration (cal) and validation (val)  125 

Variable Period Time scale Mean ±Std Data source Remarks on approach 

Soil 

temperature 

1983-1987 (cal);                       

2022 - 2023 (val) 

Daily Cal: 5.9±6 oC              

Val (5cm): 

9.0±7.6 oC                         

Field 

measurement   

Obtained with thermocouple 

installation. See Munro 

1987, Munro 1989; Munro 
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Val (30cm): 

9.0±6.9 oC 

et al., 2000; Afolabi et al. 

(2025)for details 

Water Table 

Level 

1983-1987 (cal);                      

2022 - 2023 (cal) 

Daily Cal:-2±19cm               

Val: 22±21cm 

Field 

measurement  

Obtained with pressure 

transducer (water level 

loggers). See Munro 1987, 

Munro 1989; Munro et al., 

2000; Afolabi et al. (2025) 

for details 

Volumetric 

Moisture 

Content 

2022- 2023 (cal) Daily VMC5:69±9.5%      

VMC 30:78±15% 

Field 

measurement  

Obtained with corrected 

time-domain measurement 

method. See Afolabi et al. 

Afolabi et al. (2025) for 

details 

Soil 

respiration 

1998-2000 (cal);                           

2022-2023 (val) 

Bi-weekly Cal:10.3±7.6  

gC m-2 d-1                 

val:4.4±5.4  

gC m-2 d-1 

(Davidson et 

al., 2019; 

Schmidt & 

Strack, 2026) 

Obtained with closed 

opaque chamber method. 

Spatial variability of same 

day measurements are ±3.7 

gC m-2 d-1 for cal and ±1.8 

gC m-2 d-1 for val period 

Net radiation 1983 – 1987 (cal) Daily 7.7 ± 5.7  

MJ m-2 d-1 

Munro 1987, 

Munro 1989 

and Munro et 

al., 2000 

Obtained with Bowen ratio 

approach 

Latent Heat 1983 – 1987 (cal) Daily 4.7 ± 4  

MJ m-2 d-1 

Munro 1987, 

Munro 1989 

and Munro et 

al., 2000 

Obtained with Bowen ratio 

approach 

Sensible 

Heat 

1983 – 1987 (cal) Daily 2.5 ± 1.6 

MJ m-2 d-1 

Munro 1987, 

Munro 1989 

and Munro et 

al., 2000 

Obtained with Bowen ratio 

approach 
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LAI 1998 (cal) seasonally 3.9±1.9 Thambipillai 

1998 

Obtained with ground-based 

measurements and 

hemispherical photography  

Snow Depth 1983 – 1987 (cal) seasonally 24±16 cm Munro 1987, 

Munro 1989 

and Munro et 

al., 2000 

Obtained during snow 

survey 

 

Additional datasets were sourced from existing studies as compiled in Table 2. Bi-weekly soil CO2 flux measurements were 

obtained by closed opaque chamber method and analyzed with gas chromatograph (1998-2000) or measured directly (2022-

2023) with LI-COR portable greenhouse gas analyzer (LI-7810) (Davidson et al., 2019; Schmidt & Strack, 2026). Historic 

hourly measurements of net radiation, ground heat, sensible heat, latent heat fluxes derived by Bowen ratio surface energy and 130 

additional measurements of water table level, soil temperature (0–5 cm) and snow depth were sourced from (Munro, 1987, 

1989; Munro et al., 2000). Compilation of measured Leaf Area Index (1998) by direct measurement and hemispherical 

photography were sourced from Thambipillai (1998). Detailed measurement methodologies are published in the papers 

compiled in Table 2. 

2.3 Modelling approach  135 

2.3.1 CoupModel description  

CoupModel (coupled model), a one-dimensional coupled heat and mass transfer model that simulates thermal and hydrological 

conditions of ecosystems and the adjoining biological processes that mediates C exchange between the atmosphere, vegetation 

and soil environment (Jansson & Moon, 2001; Jansson & Karlberg, 2004), was adopted for this study. In particular, the 

CoupModel version 6 (CoupModel v6) (He et al., 2021) which is an upgrade of the previous versions used for existing studies 140 

such as Metzger et al. (2016a) was adopted for this research. The estimation of heat and water flow processes in CoupModel 

are based on the laws of conservation of energy and mass and flows of thermal energy (Fourier’s law) and water (Richard’s 

equation) created by gradient differences in temperature and water potential. C balance simulations and plant development in 

the model are products of the interactions between plants and forcing hydroclimatic variables (Svensson et al., 2008). 

CoupModel consists of many biotic and abiotic sub-modules for radiation and precipitation interception, evaporation and 145 

transpiration, snow and surface water pools, soil temperature and heat fluxes, plant growth and maintenance, soil hydraulics,  

and soil organic C decomposition (Jansson & Moon, 2001; Jansson & Karlberg, 2004; Metzger et al., 2016b, 2016a; Jansson, 

2012) (see eqs. A1- A52 of Supplementary Materials (S1 & S3) for details of functions used to simulate the processes). Detailed 

description of the model can be accessed in (Jansson & Karlberg, 2004; Jansson, 2012) and other publications referenced 

therein. 150 
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2.3.2 Model design and setup for Beverly Swamp  

The model set-up and parameterization for this study is based on the previous use of CoupModel at Beverly Swamp as 

described in Afolabi et al. (2025). Parameter assignment was informed by field measurements, lab experiments, literature 

values, experience from single runs and default model values (See Table 4 and S2). In particular, Simulations were started five 

years (1978–1982) prior to study period (1983) with repeated forcing variables of first 5 years (1983–1987) to allow the system 155 

adapt to site conditions and make it less dependent on initial values as adopted by Metzger et al. (2016a, 2016b). The soil 

profile for Beverly Swamp was divided into thirteen layers varying in thickness between 5 cm (0 -30 cm depth), 10 cm (30-50 

cm), 15 cm (50-80 cm), 20 cm (80-120cm) and 30 cm (120 -150cm) intervals. We simulated ~1 m peat depth because the 

topmost layer of the swamp has an average peat layer of 85 cm (50-100 cm thick) that is underlined by an almost impermeable 

marl layer (Munro et al., 2000). Sub-modules of global radiation and precipitation interception, surface pool formulation and 160 

snowmelt were used to define the swamp’s soil surface boundary conditions (Jansson & Karlberg, 2004; Metzger et al., 2016a). 

Energy fluxes (net radiation, sensible and latent) of the swamp were simulated by an iterative solution of the energy balance 

that captures the feedback between moisture availability and temperature (eqs. A1-A4 in S1). However, for soil surface 

temperature, convection was switched off because previous research (Smith & Woo, 1986) has shown that vertical conduction 

is the dominant heat flow mechanism in Beverly Swamp. Annual average air temperature and amplitude of 7.64 oC and 12 oC, 165 

respectively were adopted for estimating the bottom boundary conditions for heat conduction in Beverly Swamp (eqs. A9 -A11 

in S1). This heat conduction, energy flux and air temperature also interacted with other simulated processes (e.g., snow pack). 

Details of the specific equations and parameters used can be found in supplementary material (S1 & S3). 

2.3.2.1 Soil hydraulic and lateral water flow at Beverly swamp 

The van Genutchen Model (vGM) soil water retention curve (van Genuchten, 1980) (eq. A14 in S1) was used to represent the 170 

soil water potential and soil moisture content relationships of the swamp’s 13 soil layers, while the Mualem equation (Mualem, 

1976) (eq. A15 in S1) defined the unsaturated hydraulic conductivity of the swamp’s soil (eqs. A12 -A22 in S1). These two 

functions were used to simulate vertical water movement through the swamp’s soil matrix as it conforms with Darcy’s law 

(Richards, 1931).  Values of van Genutchen’s empirical parameters used for the simulation were estimated with pedotransfer 

functions (Letts et al., 2000; Liu & Lennartz, 2019) using dry bulk density measurements  (Czerneda, 1985; Munro, 1982). 175 

Residual water content and wilting point parameters were estimated from literature (Dimitrov et al., 2010; Letts et al., 2000; 

Menberu et al., 2021). 

The perched nature of the swamp supports water accumulation, and the point of soil saturation (water table level, WTL) as it 

rises above the drainage datum is marked by continuous saturation from the WTL to the marl layer which signifies the bottom 

of the soil profile. Hydraulic conductivity at the marl layer is as low as 0.86 mm/day (McCarter et al., 2024; Warren et al., 180 

2001) with no significant interaction with regional groundwater flow (Macrae et al., 2011; Valverde, 1978). As the simulated 

WTL rises over the marked drainage datum (e.g., WL in draining Fletcher and Spencer streams), water efflux of the saturated 
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peat layers above the marked level was linearly simulated (eq. A22 in S1) (Metzger et al., 2016a). The addition and loss of 

water from adjacent soil layer was used to maintain saturation level in simulation similar to ground water field measurements  

(Metzger, 2015).  The swamp’s runoff was driven by the generated water pool at soil surface that accumulates when water in 185 

the surface layer of the soil is transmitted upwards during completely saturated condition and when throughfall exceeds the 

rate of infiltration. Ultimately, runoff was a function of the water produced in the surface pool and the estimation of the 

swamp’s soil moisture depended on water storage and temperature (Metzger et al., 2015, 2016a; Wu et al., 2011). In addition 

to the simulations above, a two-domain approach (not ordinary Darcy’s flow) that takes into consideration a bypass of the 

micropore soil matrix flow system (Jansson et al., 2005) was also tested for the flow process at Beverly swamp (eqs. A19 – 190 

A21 in S1). 

2.3.2.2 Vegetation and soil organic carbon of the swamp 

In CoupModel, vegetation was represented by an "explicitly bigleaf” model (5-10 m height) with a single representative canopy 

layer characterized by the closed canopy structure (LAI of ~5-6) in the swamp with a root depth of ~30 cm (Table A1).  No 

understory vegetation was simulated since cover was low and thus insignificant for the simulated C and hydrology fluxes. The 195 

plants represented in the model are divided into different parts of leaf, stem, root, grain and mobile pools but for this simulation, 

grain allocation was excluded because of its insignificant contribution in non-agricultural settings (Metzger et al., 2016b). The 

initial vegetation conditions used for the simulation were based on the field measurements computed in Table A1. The light-

use efficiency sub-model, which considers the proportionality between plant growth and global radiation and the limitations 

imposed by moisture availability, temperature and nitrogen supply was used to simulate the swamp’s photosynthetic rate and 200 

C assimilation of the swamp’s vegetation (eqs. A23 – A26 & A39 – A43 in S1) (Jansson & Karlberg, 2004; Wu et al., 2011). 

A fixed N approach was used, which means that the nutrient limitation for the plant growth was implicitly included in the 

specified light use efficiency parameter. The model simulated leaf area index, surface albedo, root depth and other plant 

characteristics dynamically (eq 41). These properties feedbacks to micrometeorological conditions that consequently alter local 

climate and hydrology. Plant respiration simulation for the swamp is assumed to be a function of both maintenance and growth 205 

and was estimated from the functional trait coefficients (Amthor, 1984; Amthor & Baldocchi, 2001; Cannell & Thornley, 

2000; Jansson & Karlberg, 2004) of the swamp species and was further regulated by air temperature. See eq. A23-A24 in S1 

& S3 for model equations and parameters that are related to plant processes.  

The SOC initialization process for Beverly Swamp was based on methods adopted by several previous studies that define 

conditions in the soil layer (Dangal et al., 2022; He et al., 2023; Metzger et al., 2015, 2016a)  and not the common “spin-up” 210 

approach. Spin-ups will not produce realistic results for this simulation because “equilibrium” may not be achieved in disturbed 

(i.e., known peat extraction, road and transmission line construction) peat soils like Beverly swamp where the humified pool 

will take multiple decades to restabilize (Byun et al., 2018; Woo, 1979; Woo, 1987), thus affecting SOC pool and fluxes (Nemo 

et al., 2017). To account for this in CoupModel, the swamp’s SOC was partitioned into 13 layers  (see S2). The initial C and 

nitrogen content per layer were assigned by measurements and partitioned into two SOC pools (litter and slow turn over / 215 
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recalcitrant) for each of the layers based on their C:N ration and extent of decomposition  (DeSimone, 2009; Schmidt & Strack, 

2026; Wang et al., 2015; Webster et al., 2014). This was to ensure that the specified initial conditions fulfilled the measured 

total C per layer. Beverly Swamp’s measured total C storage of ~ 98 kg/m2  (McCarter et al., 2024) were separated by reported 

soil C:N values into active and passive pools to represent the fast and slow turnover rates, respectively. Consequently, high  or 

low C:N for a given soil layer means more fast or slow cycling SOC pool will be initialized, respectively. The swamp’s SOC 220 

at different depths were partitioned into the two major pools in a manner that is almost at equilibrium for defined parameters 

coalescence,  which eventually generates a realistic fit to soil respiration  (Dangal et al., 2022; He, et al., 2023; Metzger et al., 

2015, 2016a). For the simulation, decomposition of fast and slow turnover pools were estimated by first-order rate process that 

is limited by substrate quality, moisture availability and temperature (Jansson et al., 2008; Metzger et al., 2015; Wu et al., 

2011) (See eqs. A44 – A52). Temperature sensitivity of microbial decomposition was described by the Q10 response function 225 

given in eq. A46, while that of moisture was controlled by different moisture limits that constraints microbial decomposition 

when soil is either too dry or wet (eq. A47 in S1) (Metzger et al., 2016b). Therefore, as the swamp litter decomposes, CO2 is 

emitted, and soil organic matter is formed. Further decomposition of humus under oxic and more favorable condition (e.g. 

increased WTD) produces only CO2. Also at deeper soil layers, moisture saturated conditions, lower soil temperature and less 

labile organic matter lower the decomposition rate. Because a static displacement of organic matter between layers was used 230 

for this study, there was no downward displacement of C at deeper layers. This means the model structure did not account for 

vertical peat C movement (He  et al., 2023; Jansson & Karlberg, 2004). See eqs. A44 -A52 in S1 and S3 for sub-model 

functions and parameter values used in SOC simulation. 

2.4 Sensitivity analysis and calibration process using the GLUE Approach 

Field measurements of 1983–1986 and 1998–2000 were used for parameter sensitivity analysis and calibration, while those of 235 

2022–2023 were adopted for validation. The single run of the initialized model for the swamp (Afolabi et al., 2025) provided 

the foundation for this study. To select the parameters for the multiple run analysis, an initial screening (sensitivity analysis) 

of 90 identified parameters (see S4) representing diverse processes related to plant growth and development, water, energy 

and C flux processes was completed with the one-factor-at-a-time (OAT) approach described by (Lenhart et al., 2002) (See 

also figure 1). The process thereafter reduced the final number of selected parameters for calibration to 38 based on their 240 

importance and sensitivity to C flux processes, while the remaining ones were held static for the runs (see Table 3 for detai ls). 

The prior range of parameters presented for GLUE analysis were defined in such a manner to cover anticipated posterior value 

(Svensson et al., 2008). Thereafter, a total of 35,000 Monte Carlo simulations of random uniform sampling were implemented 

for the study to generate both prior and posterior distributions covering a broad range of C balance conditions in the swamp.  

The process assisted in locating possible sets of models, parameters and variables that generate ensemble simulations that 245 

match observations (Wu et al., 2013). The ensembles were split into behavioural and non-behavioural simulations (Metzger et 

al., 2016a) based on their consistent performance as acceptable solutions that fit well with the multiple observed variables 

described in section 2.2. Consequently, those that fall below set threshold (see section 2.4.1 below) were discarded while the 
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ones above were accepted as behavioural simulations. Posterior parameter intervals of between 5 th to 95th percentile of the 

distribution of parameter values of accepted runs were considered for the study. These posterior distributions generated after 250 

applying the acceptance thresholds were compared to the prior distribution to identify sensitive parameters.  

 

 

Figure 1. Schematic diagram of the GLUE (GSA and calibration) processes for the study 

2.4.1 Performance indices, set thresholds and interrelationships 255 

Simulations produced above were constrained to field measurements through the setting of multiple acceptance criteria in the 

form of performance indices, namely, coefficient of determination (R2) and Mean Error (ME).  These two indices have been 

shown by previous uncertainty studies with the GLUE approach in CoupModel (Metzger et al., 2016a; Wang et al., 2022; Wu 

et al., 2019) to be effective in capturing all the seasonality and interannual variabilities embedded in simulated and observed 

datasets with strong influence on the overall process of sensitivity analysis and calibration. R2 describes the strength of the 260 

relationship that exists between simulated and field measurements by estimating the extent that the variability in simulated 

data explains that of observations using a regression line (Kalantari et al., 2012). R2 is particularly independent of the data 

scale being considered and the value produced by this statistical index falls with the range of 0 and 1. ME, which tests the bias 

of the simulation, is the average of all errors generated from the difference between simulated and observed variables as it 

represents the magnitude of the difference.  265 

For the selection of behavioral models and for the calibration process, measured soil temperature, hydrological measurements 

(water table level and volumetric moisture content), C fluxes (soil respiration), energy fluxes (net radiation, latent heat and 

sensible heat), plant properties (LAI), and snow depth were used to constrain the simulations. The setting of the constraining 

thresholds was inspired by the uncertainty estimated from field measurements (see Table 2) and previous single run experience 

Initial screening of 90 
parameters (parameter selection 

and value assignment)

Multi-run (35,000) with 38 
parameters

Stepwise multi-criteria constraint

Selection of behavioural models
Identification of sensitive and 

important parameters
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described in Afolabi et al. (2025). In particular, thresholds of R2>0.80 for soil temperature, R2>0.7 for LAI, R2>0.5 for net 270 

radiation flux, R2>0.4 for VMC and soil respiration, R2>0.3 water table level and latent heat flux, R2>0.1 for sensible heat 

flux, snow depth and surface pool were set as criteria to constrain the selection of acceptable runs. In addition, estimated 

uncertainty measurement of soil respiration was considered in assigning ME constraint for the simulation. Wh ere ME of ± 0.5 

and ±3 g C/m2/d were used to constrain the model for both the validation and calibration periods, respectively. Additional ME 

constraint was only applied to soil respiration because it is the only C flux that was validated for the study and the main C flux 275 

variable in the study with much interest for improvement. Furthermore, the simultaneous R2 and ME constraints on all the 

variables led to the rejection of the 35,000 runs. 

The constraining process was achieved in multiple steps. The above described R2 and ME thresholds were applied to soil 

respiration and each of the variables (controls) in a stepwise manner to test the level of constraint each of the variables has on 

behavioural model selection and soil respiration in particular. Thereafter, all the multiple constraints of the measurement were 280 

simultaneously applied. In addition, equifinality (Eq jk, equation 1) between the calibrated parameters of diverse process 

categories was determined by summing their covariance (R2) as presented in equation 1a (Metzger et al., 2016a; Wu et al., 

2019). Only cases where correlation ≥0.4 were considered for the analysis. 

𝐸𝑞𝑗𝑘= ∑ 2 ×
2
10×𝑅𝑗𝑘

2 𝑗≠𝑘

10
    Equation 1 

Where Eqjk, is the equifinality index, Rjk is the correlation between the parameters j and k that are estimated from acceptable 285 

models 

For initial identification of sensitive parameters, Wilcoxon signed rank and Kolmogorov-Smirnov tests were applied to detect 

the difference between prior and posterior parameters distribution and to also identify the posterior parameters that have been 

transformed from uniform distribution. In addition, a range ratio index of posterior to prior distribution was also computed 

after calibration (Wu et al., 2019). After the identification of sensitive parameters, the contribution (importance) of sensitive 290 

parameters to the performance of selected simulated variables outputs was quantified using the Lindeman, Merenda and Gold 

(LMG) approach (Johnson, 2000; Lindeman et al., 1980; Wu et al., 2019). LMG method is an averaging over ordering method 

that quantifies the proportion of total variance (R2) explained by each dependent variable (i.e., model parameters in this case). 

In this study, the relative weight of the sensitive parameters in the form of proportion of averaged R2 across the orderings are 

predictors of studied variables (Equation 2).  295 

                     𝐿𝑀𝐺(𝑥𝑘) =
1

𝑝
∑ (∑

𝑠𝑒𝑞𝑅2({𝑥𝑘}|𝑆)

(𝑝−1
𝑖
)𝑆⊆{𝑥1,…,𝑥𝑝}∖{𝑥𝑘}

𝑛(𝑆)=𝑗

)𝑝−1
𝑗=0    Equation 2 

Where seqR2 ({Xk}|S) represents R2 summation when regressor {Xk} is being added to regression model with the set of 

regressors S. The implementation of the LMG approach was done with the R package “relaimpo” (Groemping, 2006). 

Consequently, the completion of the process helped identify and rank sensitive parameters.  
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2.4.2 Lateral input variation 300 

To quantify the uncertainty associated with lateral water flow, which is largely influenced by Valens dam and the two creeks 

draining Beverly swamp, measurements from Westover gauging station were used to specify the prior parameter range 

representing this variable in CoupModel. This parameter (Gwsourceflow, qsof) was calibrated as part of the GLUE process and 

further varied at different sensitivities (±10%, ±25%, ±50%) as a separate experiment in the study to test the response of C 

flux variables to these changes. Selection of sensitivity range for testing was informed by existing hydrological studies in the 305 

swamp area (McCarter et al., 2024; Sultana & Coulibaly, 2011). 

2.4.3 Comparison of Beverly swamp modelling set-up and the previous studies 

Even though similar biophysical conditions and biogeochemical cycles of diverse ecosystems were simulated by prior studies 

using the CoupModel (see Table 3 for comparison), the modelling set-up described above is unique to the Beverly Swamp 

(temperate swamp peatland ecosystem) in Southern Ontario, and it is one of the first attempt to evaluate the performance of 310 

CoupModel in a temperate peatland where the hydroperiods, vegetation cover and other biophysical conditions are distinct. 

Our experience from Afolabi et al (2025) informed the selection and evaluation of important hydrological components (e.g. 

surface pool and lateral flow) for the swamp set-up in CoupModel that were not the focus of previous experiments (see Table 

3). Initial single model run of the swamp suggested that the surface pool generated when the infiltration capacity of the swamp’s 

top peat layer is exceeded, affected the water table level and partitioning of energy fluxes. These hydrological processes are 315 

critical to simulating the swamp ecosystem’s water balance, and not those of previous studies because of the difference in their 

ecosystem (e.g. bogs and fens). 

 

Table 3 Comparison of prior CoupModel set-up  

CoupModel version 
Ecosystem/ 

location 

Study 

period 

Calibration/evaluation 

variable 

Calibration/ 

uncertainty 

method 

Evaluation 

metrics 
Reproducibility 

CoupModel first 
generation (Svensson 

et al 2008) 

Spruce forest, 
Sweden 

2001-2004 
SH, LH, NR, ST, LAI, 

NEP, Biomass and 
Litter  

Bayesian-

Markov Chain 
Monte Carlo 

(104 - 105 runs) 

ME 
See Svensson et 

al 2008 

CoupModel 4.0 

(Metzger et al., 2015) 

Treeless 

peatlands 
(Finland, UK, 
Netherlands, 

Germany 

2006-2010 
NEE, GPP, Reco, ST, 

SD, LAI, Biomass 

Monte-Carlo 

(105 runs) 
R2, ME 

See Metzger et 

al., 2015 

CoupModel 5.0 
(Metzger et al., 2016) 

Oligotrophic, 
minerogenic 

mire, Sweden 

1991-2013 
WTL, LAI, NEE, SH, 

LH, NR, ST, SD 
Monte-Carlo 

(104 runs) 
R2, RMSE 

See Metzger et 
al., 2016 
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CoupModel 6.0 
(Coup-CNP) (He et. 

al, 2021) 

Upland forest, 

Sweden 
1961-2081 

C: N, N:P, C:P, 

biomass, DOC 

Monte-Carlo 
(103 runs for 2 

regions) 
R2, ME 

See He et. al, 

2021 

CoupModel 6.0 

(Svensson et al 2025) 

Agricultural 

site, Sweden 
1984-2019 

Water drainage, soil 

nitrate, SON 

Monte-Carlo 

(104 runs) 

R2, ME, 

RMSE 

See Svensson et 

al 2025 

CoupModel 6.0 (This 
study) 

Swamp, 
Canada 

1983- 2023 

ST, WTL (saturation 

level and surface pool), 
VMC, Rs, NR, LH, SH, 

LAI, SD 

Monte-Carlo 

(GLUE 
Approach, 104 

runs) 

R2, RMSE 
See details in 

Data availability 
section 

Note that SH, LH, NR, ST, LAI, NEP, NEE, GPP, Reco, Rs, SD, LAI, WTL, C:N, N:P, C:P, DOC and SON are acronyms for 320 

sensible heat flux, latent heat flux, net radiation flux, soil temperature, leaf area index, net ecosystem production, gross primary 

production, ecosystem respiration, soil respiration, snow depth, leaf area index, water table level, carbon to nitrogen, ni trogen 

to phosphorus ratio, carbon to phosphorus, dissolved organic carbon and soil organic nitrogen respectively.  

 

3 Results  325 

3.1 Calibrated parameters and sensitivities  

The GLUE Calibration process transformed most of the uniform parameter distribution of the prior to other distributions (e.g. 

normal and log normal) in the posterior. Out of the 38 parameters selected for calibration, 17 showed a very significant 

difference (p <0.05) between prior uniform distribution and posterior distribution before multicriteria constraint. However, 

this number increased to 24 after selection of behavioural models as shown in Table 4. The sensitive parameters resulting from 330 

the calibration procedure were linked to diverse biotic and abiotic categories controlling plant properties, soil organic 

processes, soil thermal dynamics, soil water storage and transport, land surface energy exchanges, and other physical processes. 

In particular, all the parameters in the soil organic matter category showed significant sensitivity with reduced posterior mean 

for litter (Kl) and humus (Kh) decomposition rates but an increase for surface litter decomposition (L l) after calibration. 

Comparing the ratio of mean posterior distribution to prior (range ratio) in Table 4, RateCoefHumus (Kh, 0.37, decomposition 335 

rate of humus), RateCoefLitter (Kl, 0.44, decomposition rate of litter), LeafRate1 (lLc1, 0.60, leaf litter fall), MobileAlloCoef 

(mretain, 0.60, mobile allocation of the vegetation) and AlbedoV (aveg, 0.69, albedo of the vegetation) showed the largest 

changes. This result is not unprecedented because Kl and Kh parameters are important to the decomposition of labile C and the 

recalcitrant humus layer of peat soil, respectively, thus influencing soil C efflux. Conversely, a decrease was observed in the 

posterior distribution value of lLc1 parameter after calibration.  lLc1 constrains the leaf litter fall process during non-autumnal 340 

period with strong influence on litter abundance and the rate at which it disappears or is transferred to humus. Posterior 

distribution value of mretain parameter increased after calibration with more allocation to mobile C pool. m retain influences the 

storage of non-structural carbohydrates and its allocation during the non-growing season or under extreme conditions (Jansson 
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& Karlberg, 2004). This parameter therefore has a strong relationship with forest gross primary productivity. The calibration 

process produced a lower posterior mean value for aveg parameter, which affects the amount of shortwave radiation that is 345 

reflected from the heterogenous canopy structure of Beverly Swamp.  aveg is a major driver of energy flux partitioning of land-

surface energy exchange, which eventually affects thermal conditions and evapotranspiration mechanisms in forested 

ecosystems. Overall, the presented results of the global sensitivity analysis (GSA) and calibration process assisted in 

identifying sensitive parameters and the parameter distribution for modelling water, energy and C fluxes in temperate swamp 

ecosystems. It is noteworthy that the adoption of the Global Sensitivity Analysis (GSA) approach for this study assisted in 350 

mapping sensitive and important parameters for simulating the swamp’s C fluxes and controlling conditions, identifying 

essential parameter interactions and their equifinality. These unique findings were not identified by previous studies (e.g. 

Afolabi et al., 2025) because they utilized the typical local / OAT analysis which inherently focuses on linear interactions. 

 

 355 
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3.1.1 Equifinality of parameters 

Parameter equifinality is at the core of the GLUE approach in identifying parameter sets and interactions that reasonably 360 

describe important processes in the modelled system. Summation of R2 generated from the correlation matrix of calibrated 

parameters (see S4 for matrix) described in section 2.4 was used to compute the equifinality of this modelling experiment. The 

overall equifinality of the parameters was categorized into five process groups namely, plant properties, soil organic matter  

processes, energy balance drivers, soil water processes and soil thermal and other abiotic processes as presented in Figure 2. 

 365 

Figure 2. Mean equifinality of calibrated parameter-process categories. Note that chart does not have unit 

Considering the average of each category highlighted above, parameters related to soil water processes ranked highest with 

average equifinality value of 3.96. Within this category, SurfacPoolMax (Wpmax10.5) accounted for the most equifinality. The 

category linked to plant processes ranked the next with had mean equifinality value of 3.7, and aveg (8.9) had the highest 

equifinality in this group.  Parameters in the soil organic matter class were estimated to have an average equifinality of 3.3 370 

with the combination of kl (4.33) and ll1 (3.3) accounting for almost 80 percent of the total equifinality in the group. Energy 

balance category (2.9) and soil thermal and other abiotic group (2.5) had the lowest mean equifinality for the computed 

correlation matrix. Generally, more equifinality was observed between parameters of the same process category than those of 

other categories.  

3.1.2 Parameter influence on variable simulation 375 

In determining the influence of sensitive parameters on simulated variables, the normalized relative weight (R2 average) of the 

parameters derived from the LMG method (described in section 2.4) and their contribution to model performance are presented 

in Figure 3. 
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Figure 3. Parameter contribution to variable performance (R2), where cal & val represents calibration and validation 380 

periods, respectively. See also S5 for details and also the definition of parameters 

The simulated variables showed sensitivities to parameters of different categories but the parameters representing plant growth 

(Growthcoef, kgresp), soil water drainage/input (GWSourceFlow, qsof) processes and snow melt (MeltCoefAirTemp, mT) exerted 

the strongest influence on all the simulated variables.  Soil respiration simulations were most sensitive to plant growth ( kgresp), 

soil moisture response function (saturation activity, pqSatact) and  soil water drainage (qsof) parameters but with some variations 385 

between the calibration (1998-2000) and validation (2022-2023) period. The calibration period showed high sensitivity to both 

pqSatact and kgresp parameters, while qsof and kgresp parameters were the highest for the validation period. For the simulation of 

hydrological variables (saturation level, volumetric moisture content and surface pool), plant related coefficients 

(McoefCoarseRoot, kmrespcoarseroot; kgresp; MobileAlloCoef, mretain), snow melt (mT) and soil water drainage (qsof) parameters 

contributed the most to explaining the variability in these simulated variables. However, the parameter sensitivity differed for 390 

both the calibration and validation periods for both the saturation level and surface pool simulations. The variability in ne t 

radiation, latent heat and sensible heat flux simulations were most explained by parameters representing radiation properties  

(albedo wet, awet) and soil moisture response (pqSatact, thetapowercoef, pθp). Respiration response function of temperature (tQ10), 

respiration parameter of coarse root (kmrespcoarseroot) and snowmelt related coefficient (mT) parameters ranked top in explaining 

the variabilities in soil temperature and snow depth simulations, while plant related parameters (LAIenhcoef and kmrespcoarseroot) 395 

ranked the most in explaining the variability in LAI. Overall, parameters of diverse process categories exerted influence on C, 

water and energy flux modelling performance at Beverly Swamp. This influence was more prominent in situations where 

parameters and variables shared the same process category. 
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3.2. Evaluation of model performance following the GLUE approach to parameter estimation 

The systematic GLUE approach assisted in identifying the ensemble sets of parameters with the highest likelihood to match 400 

measurement data in section 2.2. Out of the 35,000 prior simulations that were completed, only 30 ensembles were accepted 

as behavioural simulations for the posterior distribution after applying all the stringent multicriteria thresholds adopted for the 

experiment. The ensemble mean of the posterior models performed better than that of the simulations generated by the prior 

distribution as represented by Table 5.  

Table 5 Performance (R2) of prior and posterior models 405 

Variable N Distribution prior selection 

=35000 

Distribution post selection =30 

Mean CV Range Mean CV Range 

Soil temperature (5cm) cal 707 0.86 0.20 0.93 0.89 0.01 0.05 

Soil temperature (5cm) val 343 0.92 0.20 0.97 0.93 0.02 0.07 

Soil temperature (30cm) val 344 0.88 0.20 0.94 0.90 0.02 0.07 

Saturation level (cal) 1066 0.48 0.37 0.73 0.55 0.25 0.53 

Saturation level (val) 348 0.35 0.74 0.78 0.65 0.04 0.15 

VMC (5cm)  346 0.45 0.59 0.94 0.78 0.09 0.27 

VMC (30cm)  346 0.16 1.28 0.74 0.52 0.12 0.27 

Soil respiration (cal) 88 0.25 0.41 0.63 0.30 0.16 0.32 

Soil respiration (val) 10 0.43 0.49 0.98 0.72 0.18 0.45 

Net radiation 840 0.70 0.20 0.76 0.73 0.01 0.05 

Latent heat flux 840 0.41 0.36 0.71 0.50 0.18 0.45 

Sensible heat flux 840 0.20 0.38 0.50 0.24 0.17 0.41 

Leaf area index 57 0.50 0.47 0.93 0.74 0.06 0.13 

Snow depth 36 0.54 0.23 0.71 0.52 0.13 0.40 

Surface pool (cal) 1067 0.09 0.96 0.48 0.24 0.38 0.54 

Surface pool (val) 347 0.42 0.34 0.84 0.54 0.27 0.49 

*CV represents coefficient of variation while cal and val denote calibration and validation periods  
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3.2.1 Soil respiration 

The GLUE approach reduced the uncertainty of posterior soil respiration simulations (Table 5). Soil respiration simulations 

showed significant improvement as represented by the changes in mean R2 (0.43 to 0.72) and ME (-2 to 0 gC m-2 d-1) in prior 

and posterior models, respectively during the validation period. In fact, soil respiration showed the greatest observed 410 

improvement after multiple constraints compared to the other studied variables, and when compared to the result of the single 

run (See Table B1 in Appendix). This is an indicator of higher uncertainties in simulating soil respiration. The accepted models 

were mostly able to represent the seasonality in soil respiration of both the calibration and validation periods (Figure 4). 

However, some of the peaks in soil respiration rate in late spring and early summer were not well captured by the posterior 

model ensemble when compared to field measurement. This mismatch is not unexpected because soil respiration is highly 415 

influenced by plant processes, hydrology, and thermal conditions, so the inadequacies from the simulation of these controls 

will cascade into soil respiration and other C flux simulations.  

 

Figure 4. Plot of observation against ensemble mean of simulated soil respiration for calibration (1998 – 2000) and 

validation (2022 – 2023) periods. Error bars in black reflect the standard deviation of measured soil respiration (black), 420 

while those in red represent the standard deviation of the acceptable models  

Compared to the calibration period, soil respiration was better simulated in the validation period with less uncertainty than  the 

calibrated period (R2 of 0.3 and ME: -1.1 gCm-2d-1). This may be linked to measurement error, difference in collection approach 

and spatial variability during this period and the uncertainties that also cascaded from controlling variables. The magnitude of 

uncertainty related to measurements was also reflected by the spatial variability of soil respiration data across the installed soil 425 

fluxing sampling locations with standard deviation values of 3.7 gCm-2d-1for calibration (1998 – 2000) and 1.8 gCm-2d-1 (2022 

– 2023) for the validation periods.   
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3.2.2 Hydrological simulations of the swamp 

The calibration process significantly improved the simulation performance of the hydrological variables (i.e., water table level 

and volumetric moisture content) and to a greater extent than soil temperature. This is an indication that the simulation of the 430 

hydrological variables is more uncertain than that of soil temperature. In comparison to the prior models, saturation level and 

surface pool (water table level) simulations showed higher mean R2 (0.65; 0.54) and reduced ME (0.02m; -5 mm) in the 

posterior model ensemble, respectively for the validation period as shown in Table 5. However, the partitioning of WTL shows 

that saturation level was better simulated than surface pool (see Table 4 and Figure 5). For the saturation level and surface pool 

simulations, the validation period was better simulated than calibration period. Peak drought generated during very dry summer 435 

and autumn years (1985 and 2022) were not well captured in the saturation level simulations. These, and other inaccurate 

representations in the system’s behaviour, cumulatively made simulated saturated level slightly lower than that of observation. 

Similar underestimation was also observed in the surface pool simulation when compared to the observed data. Some of these 

inadequacies may be linked to that the fact the model was mostly trained with wet years during the calibration period (1983 – 

1986), so it was unable to fully capture the extremely dry conditions presented in the validation period (e.g., 2022)  440 

 

Figure 5. Observation versus ensemble mean of saturation and surface pool simulations for calibration (a) and 

validation (b) periods 

For the posterior model, R2 value of simulated VMC at 5 cm (0.45 to 0.78) and 30 cm (0.16 to 0.52) increased but ME values 

also increased. The 5 cm VMC matched better with observation than that of 30 cm with mean R2 of ≥.63 and ≥0.41, 445 

respectively. However, more moisture deficit was simulated for the topsoil than that of middle layer as presented in Figure B1. 
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3.2.3 Soil temperature and snow simulation 

Overall, posterior simulation of soil temperature ranked highest when compared to measured data with 90 –93 % of the 

variability in measured soil temperature explained by those of the simulated (see Table 5). This is an improvement from the 

initial R2 range of 0.88-0.92 in the prior distribution with middle layer (30 cm) showing more evident improvement than the 450 

surface layer (5 cm). For the accepted simulations, soil temperature at the two layers were overestimated during the summer 

seasons, while the lowest temperatures in winter were not perfectly captured (See  Figure B1).  The overestimation in summer 

may be linked to moisture underestimation during this period, which results in more partitioning into sensible heat than latent 

heat.  Also, the pattern of snow disappearance may not be well represented in the model so this  may have affected model-

observation fit during winter. Unlike soil temperature simulation, the GLUE approach did not result in a significant difference 455 

in snow depth simulation. Instead, a slight reduction in fit to measured data (R2 from 0.54 to 0.52) was observed in the posterior. 

This reduction may be associated with the overestimation of snow accumulation in the first year of the simulated period and 

the seasonal mismatch that results from snow accumulation and disappearance during the winter season. Despite the slight 

reduction in fit to measured data for the GLUE calibrated snow depth simulation, the R2 (0.54) value was still higher than the 

result of the single run in Table B1 (Appendix). 460 

3.2.4 Energy balance performance 

The performance of all the simulated energy flux components, namely net radiation latent heat and sensible heat fluxes 

improved after calibration as shown by their R2 values. However, latent heat flux experienced the most improvement from 

mean R2 of 0.4 to 0.5 and reduction in mean error from -0.8 MJ m-2 d-1 to -0.5 MJ m-2 d-1 (see Table 5).  Most of the measured 

seasons were captured well by the posterior model except for the underestimation during the spring season of the calibration 465 

period (See Figure B2). This underestimation in spring led to the partitioning of more energy to sensible heat flux. Generally, 

sensible heat flux simulation did not perform as well as latent heat flux, with overestimation in summer and autumn and 

underestimation in spring when compared to measured data. This cumulatively contributed to the mismatch between observed 

and simulated sensible heat flux with mean R2 and ME values of 0.24 and 0.12MJ m-2 d-1, respectively. Net radiation had the 

highest mean R2 (0.73) and ME (1.21 MJ m-2 d-1) among the three simulated energy fluxes. The high R2 value can be linked to 470 

the good fit between simulated and observed data for most of the calibrated period. However, there was some underestimation 

and overestimation of net radiation during spring and summer seasons, respectively in some of the studied years (e.g., spring 

1984). This seasonal mismatch was then also reflected in simulated latent and sensible heat fluxes.  

3.2.5 Evaluating the results of prior single run and GLUE calibration results 

Compared to the single run of Afolabi et al. (2025), the GLUE approach improved some of the simulated variables but did not 475 

affect others, and in some cases, the calibration process diminished their performance (see Table B1 and Figure B4). For 

instance, the R2 (0.72) and ME (-0.02 gC m-2 d-1) of GLUE simulated (mean of behavioural models) soil respiration improved 
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from the initial single run values of 0.58 and 0.45 gC m-2 d-1 respectively (see Figure B4). This confirmed that the stringent 

performance constraint of the GLUE set-up on this variable reduced the mean error by over 100%. Also, the R2 (0.65) and ME 

(1.7 cm) of GLUE simulated saturation level improved from the initial single run values of 0.58 (R2) and 21cm (ME) 480 

respectively. However, the R2 (0.35) and ME (2.4 MJ m-2 d-1) of GLUE simulated sensible heat flux diminished from the initial 

single run values of 0.35 (R2) and 2.4 MJ m-2 d-1 (ME). The compared results should be interpreted with caution because the 

performance range of the GLUE calibrated results is dependent on the selection threshold outlined in section 2.4.1. for 

constraining the simulations. For example, R2>0.80 was set as the constraining threshold for soil temperature in the GLUE 

experiment, which is lower than the R2 (0.95) value of the single run. Furthermore, ME constraint was only applied to soil 485 

respiration and not the other variables, so this may greatly affect the GLUE calibrated results.  It is also possible that the 

stringent multicriteria constraint of the GLUE calibration improved some of the simulated variables at the expense of others. 

See Table B1 in the Appendix section for the comparison of other variables. 

3.3 Experiment of constraining variables on soil respiration flux 

When the R2 constraints described in section 2.4 were applied to only soil respiration, ~53% of the prior simulations were 490 

rejected (Figure 6). The stepwise addition of soil thermal, hydrological, and plant variable constraints to soil respiration led to 

model rejection rates of 53% (constrained for soil temperature in addition to soil respiration), 53% (snow depth), 91% (WTL),  

92% (VMC) and 85% (LAI). Although VMC showed the strongest individual constraint on acceptance rate, the combination 

of soil water related variables (WTL and VMC) produced a stronger model rejection value of 96%.  

 495 

Figure 6. Number of rejected runs after R2 constraint on simulated variables  
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For the energy flux variables, combining soil respiration constraints with these variables produced rejection rates of 53% (net 

radiation), 59% (latent heat) and 57% (sensible heat flux). This shows that latent heat flux produced the strongest constrain t 

on the acceptance rate of the behavioral models for energy fluxes. This may be linked to the uniqueness of latent heat flux in  

representing the energy flux component of evapotranspiration that couples both energy and water balance. A similar result was  500 

observed for all the variables when ME constraint was added to the R2 constraint of soil respiration as presented in Figure B3. 

However, LAI ranked higher than VMC or WTL in constraining the prior simulations.  

3.4 Importance of lateral water flux 

Lateral flow is an important variable for defining boundary conditions for modelling energy, water and carbon fluxes in Beverly 

Swamp. The variation experiment of lateral water input (±10%, ±25% and ±50%) showed that gross primary productivity, 505 

ecosystem respiration and net ecosystem exchange simulations were responsive to lateral water flux changes as shown in 

Figure 7. One-tenth and one-quarter increase in lateral input resulted in ≤1% increase in GPP and Reco and 1% increase in 

NEE, while one-half increase raised GPP, Reco and NEE values by 2.5%, 2% and 4%, respectively. For the reverse experiment, 

one-tenth reduction in the lateral input led to less than 1% decline in GPP, Reco and NEE, while one -quarter and one-half 

reduction in water flux further declined GPP by 2%-5%, Reco by 2%-4% and NEE by 4% -6% respectively. This experiment 510 

shows that the swamp’s C flux displayed minimal sensitivity to changes in lateral water input.  

 

 

Figure 7. Response of Accumulated GPP (a), ecosystem respiration (b), soil respiration (c) and NEE (d) to lateral water 

input variation over 40 years (1983 – 2023) 515 
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4 Discussion 

The adoption of the GLUE approach for this study reduced some of the uncertainties associated with temperate swamp C 

modelling as highlighted in Section 3.2. This confirms part of the hypothesis presented in the introduction section of this study 

that GLUE will help achieve this. Global sensitivity analysis and calibration process of GLUE assisted in mapping parameter 

distribution, constraining boundary conditions and identifying sensitive and important parameters for simulating water, energy 520 

and C fluxes in a temperate swamp peatland. The approach reduced the margin of parameter uncertainty in this ecosystem, 

where parameter values required for modelling C flux and relevant controls are not readily available (Yuan et al., 2023). 

Critical boundary conditions such as later water flux was better constrained by the process than when parameterization was 

done one-at-a-time (e.g., Afolabi et al., 2025). In addition to the GLUE results, the sensitivity analysis experiments of 

constraining variables for soil respiration and C flux response to lateral flow variation (Sections 3.3 and 3.4) also confirmed 525 

our other hypotheses on the interconnections that exist between the different ecohydrological processes within this temperate 

swamp ecosystem. However, the extent of the interactions and the contribution of each process category to C flux and 

biophysical conditions simulation varied.  

4.1 Parameter-process influence on soil respiration simulation 

As described in the Results (Section 3.1), soil respiration simulations were mostly sensitive to plant growth respiration (kgresp), 530 

soil moisture response function (pqSatact) and soil water drainage (qsof) parameters. kgresp coefficient, which represents the 

concentration of C efflux per C assimilated as structural dry matter, constraints autotrophic respiration in the model (Jansson 

& Karlberg, 2004; Lavigne & Ryan, 1997). kgresp is dependent on plant functional traits, canopy age and size (Schmiege et al., 

2023) and is linked to many critical processes such as plant productivity, tissue nitrogen content, root respiration and 

rhizosphere (Litton et al., 2007; Ryan, 1990) that control soil respiration processes in swamps. This finding is consistent with 535 

other studies that reported the strong influence of this parameter on C flux variables (Hanson et al., 2000; Metzger et al., 

2016b). The other two parameters that soil respiration responded to with strong sensitivity were hydrology related. Numerous 

studies have shown that hydrology is a strong mediator of soil respiration as it exerts control on almost all the processes r elated 

to soil respiration in temperate swamps (Davidson et al., 2019; Kendall et al., 2020). In particular, the parameter soil water 

drainage (qsof), which represents later water flow input into the swamp, displayed strong influence on soil respiration. The 540 

importance of this parameter corroborates the results of other modelling studies (Ju et al., 2006; Tonkin et al., 2018) and the 

findings of the lateral flow variation experiment in section 3.4.  Lateral water flux is an important part of the soil water balance 

of Beverly Swamp with water sources from Fletcher and Spencer creeks that drain the swamp, and the influence of re gulated 

flow supplies from Valens dam upstream of the swamp (McCarter et al., 2024; Woo & Valverde, 1981).  Flow variation of 

this water flux showed that soil respiration and other C flux components are sensitive to lateral flow variation even though at 545 

a reduced magnitude. Nevertheless, the 3% increase in soil respiration rates when lateral flow was increased from 0 to 50% 

can be attributed to soil moisture abundance that was initially limiting. Moisture deficit impedes plant productivity, substrate 
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availability, microbial activities and other mechanisms constraining soil respiration process (Blodau, 2002; Limpens et al., 

2008). Therefore, future disturbances from dam operations and climate change that alter lateral flow regimes of the swamp is 

also expected to offset its C dynamics. Furthermore, while the lateral flow experiment presented here represents shifts in plant 550 

and microbial activity in response to resulting soil moisture change, persistent shifts to lateral flow regimes could result in 

succession of the plant community (Tonkin et al., 2018) that would have consequent impacts on swamp C cycling. 

Even though the simulation performance of soil respiration was influenced by plant and hydrology related parameters, there 

were variations in the parameter influence for the calibration (1998-2000) and validation (2022-2023) periods. The greater 

sensitivity of the calibration period to soil moisture response function (pqSatact) and plant growth respiration (kgresp), and that of 555 

validation to soil water drainage (qsof) and plant growth respiration kgresp parameters may be linked to the spatial variability 

that exist in swamps. The different sections of Beverly Swamp have distinct hydrogeomorphic settings that influence the 

hydrology and vegetation distribution of the swamp (Davidson et al., 2019; McCarter et al., 2024; Woo & Valverde, 1981). 

Therefore, the collection of soil respiration measurements at different points in the swamp with distinct local ecohydrological 

characteristics may have introduced the variability in soil respiration data used for calibration and validation. In addition, inter-560 

annual variability may also have affected the water availability of the study periods and its effect on soil respiration process. 

Consequently, this finding possibly explains the origin of the spatial variability in field measurements, which cascaded into  

the model assessment process. 

4.2 Parameter equifinality in swamp C flux model 

In addition to parameters’ influence on model performance, the result of parameter equifinality described in section 3.1.1 was 565 

also used to understand the interactions between plant processes, soil organic matter cycling, hydrological processes, energy  

flux drivers, soil thermal conditions, and other abiotic processes in Bevely Swamp. Substantial parameter equifinality was 

observed in the modelling of the swamp’s water fluxes, energy balance and C flux components. Some of the parameters showed 

single interconnection, while others showed high equifinality. Parameters related to soil water (SPMaxCover, pmaxt;  

SurfPoolMax, Wpmax) and plant (LeafRate1, lLc1) process categories ranked highest in equifinality. This result is in line with 570 

the findings of Yuan et al. (2023) where they observed that swamp C flux variables were sensitive to plant (phenology) 

parameters. Also, the posterior distribution of some calibrated parameters of this study (e.g.,RateCoefLitter1) are similar to 

those presented by other studies (Metzger et al., 2016), even though the experiments were undertaken in other peatlands (e.g., 

fens). Despite the similarities, the equifinality analysis confirms that the interactions between sets of parameters take priority 

over individual parameters when modelling swamp C flux and its controls. The set of parameters presented in the Results 575 

section will be relevant to the calibration of other temperate swamp C models. However, the high equifinality of this modelling 

exercise may reduce the chance of isolating specific C flux-related parameter values for modelling experiments in other 

temperate swamps (Sierra et al., 2015). In the event where a single parameter is selected for calibration, the parameter range 

of others that share the same equifinality may be affected (Wang et al., 2022; Wu et al., 2019). Also, because the selection of 

constraining criteria is somewhat subjective, the adoption of different sets of indices aside from R2 and ME may affect the 580 
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outcome of the calibration and sensitivity analysis process (Metzger et al., 2016a). Therefore, caution should be taken when 

transferring single parameter value of Beverly Swamp to other temperate swamps. Nevertheless, the parameter ranges of the 

posterior distributions are applicable to the modelling of other temperate swamp systems.   

4.3 Simulation evaluation and constraining variables for soil respiration 

The GLUE calibration process moderately improved the performance of most simulated variables when validated with field 585 

measurements and compared to the previous results of  Afolabi et al. (2025) (see Table B1 in Appendix) and prior distribution 

(Table 4) before multi-criteria constraint. Behavioural models of soil respiration were able to reasonably capture the seasonality 

of both the calibration and validation periods. However, some of the uncertainties in other simulated variables (e.g., 

hydrological variables) may have affected soil respiration estimates. This hypothesis was confirmed by the stepwise constraint 

experiment on soil respiration (section 3.3) that showed that associated biophysical conditions strongly affected the acceptance 590 

or rejection rate of soil respiration simulations. LAI and hydrological variables (WTL and VMC) displayed the strongest 

influence on soil respiration simulations. This finding is consistent with field measurement studies that have shown that plant 

properties and hydrological conditions have very strong interconnections with soil respiration processes in temperate peatlands 

(Juszczak et al., 2013; Kendall et al., 2020; Sleeter et al., 2017) . LAI is an important plant parameter in regional and global 

biogeochemical models because it reflects important biological conditions and processes of forested ecosystems such as 595 

canopy type, canopy structure and phenological changes (Bréda, 2003; Malone et al., 2015). LAI is a major input for estimating 

radiation interception and energy balance (Munro et al., 2000), canopy C assimilation (Barclay, 1998), scaling between leaf 

resistance for water use efficiency and CO2 absorption (McWilliam et al., 1993) and the simulation of evapotranspiration 

(Malone et al., 2015), which is an important component of water and energy balance.  

Hydrological variables (saturation level, surface pool & VMC) have also been reported by many studies to have strong 600 

influence on soil respiration processes in peatlands (e.g., Davidson et al., 2019; Kendall et al., 2020;  Waddington et al., 2015). 

Hydrological conditions moderate microbial abundance and activities, plant distribution, root growth, nutrient availability and 

other mechanisms that control soil respiration in wetlands (Harper et al., 2022; Mitsch et al., 1991; Nunes et al., 2015; Pezeshki, 

1991). Moisture abundance partitions swamp soils into oxic and anoxic zones and this determines the rate of peat 

decomposition and ultimate CO2 efflux into the atmosphere through soil respiration (Blodau, 2002; Limpens et al., 2008; 605 

Middleton, 2020). In particular, the evaluation of the surface pool component (Figure 5 and Table 4) was important for this 

experiment because of their influence on the swamp’s water table level and energy flux partitioning. The underestimation of 

the surface pool component during the calibration and validation periods greatly reflected in the swamp’s WTL and the 

simulation of its sensible heat flux. This mostly explained why the sensible heat flux at Beverly Swamp was poorly simulated, 

compared to other CoupModel studies (See Table 4), and only improved moderately for the posterior model. Consequently, 610 

the finding of this experiment will inform both modelling studies on important biophysical and biogeochemical interactions, 

and field measurement campaigns on the relevant variables that should be measured alongside C flux. Furthermore, the adopted 
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behavioural models with reduced uncertainty; high simulation performance will be an important tool for understanding future 

interactions and feedbacks of biophysical and biogeochemical processes in temperate swamps.  

5 Conclusion 615 

This research is an important uncertainty modelling studies on temperate swamp peatland C dynamics, where large knowledge 

gaps have cumulated into substantial uncertainties in estimating the water, energy and C fluxes of this ecosystem. The adoption 

of the GLUE approach for uncertainty analysis assisted in achieving multiple objectives of identifying important 

ecohydrological processes in temperate swamp, systematically calibrating CoupModel for Beverly Swamp, improving the 

model performance in simulating C flux and its associated controls, and ultimately reducing the uncertainties of the modelling 620 

process. Uncertainty analysis is an important aspect of modelling experiments because it determines the usefulness of the 

modelling outcomes and the transferability of the modelling components (e.g., structure and parameters) to other temperate 

swamps. Therefore, the results of this study will inform model structure selection and parameterization of large-scale 

ecological models (e.g., CLASSIC and CaMP) when simulating swamp C flux at regional and global scales. Some of the 

important parameters and soil respiration constraining variables (e.g., WTL, VMC and LAI) that were identified in this study 625 

will help inform the choice of variables to be measured in the field for C related studies. Furthermore, the lateral flow var iation 

experiment may also guide relevant authorities (e.g., conservation authorities) on the best approach for managing flow 

regulation into Beverly Swamp and similar systems towards preserving the swamp’s C stocks. This is important for future 

planning where climate change risk may affect the hydrological and thermal conditions of the swamp, and its C balance. In 

addition, the behavioural models generated by the GLUE approach will be useful tools for estimating the effects of climate 630 

change on the swamp’s C flux and controlling variables. 

5.1 Study limitations and recommendations 

Although the GLUE approach assisted in reducing some of the uncertainty associated with the C flux modelling experiment 

at Beverly Swamp, the study is not without limitations. The rejection of all the 35,000 runs when R2 and ME constraints were 

simultaneously applied to all the simulated variables (see section 2.4) may be an indicator of a defect in the model structure 635 

adopted for this study that does not fully capture processes relevant for temperate swamp C cycling. Therefore, there is the 

need for future studies to test alternative model structures that may capture better the biophysical conditions and C flux 

dynamics of the studied swamp, especially for the C flux and hydrological components (WTL a nd VMC). The uncertainty 

approach adopted for this study is heavily dependent on multiple variable constraints, therefore shortage of long-term field 

measurements for calibration and validation in some of the variables may have affected the analysis. In particular, the inclusion 640 

of high resolution multi-decadal long-term field measurements of Reco, GPP & NEE for additional variable constraint may 

have improved the modelling process. These measurements will help reduce the high equifinality observed for Beverly Swamp, 

as high equifinality can be an indication of using insufficient data for calibration (Sierra et al., 2015). Furthermore, the 
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installation of a gauging station at the entrance of the swamp may improve the estimation of lateral influx and the effect of  

Valens dam and the two creeks on the swamp. Additional measurements to support estimation of important parameters such 645 

as growth respiration of swamp vegetation and decomposition rates of litter and humus may further reduce parameter 

uncertainty in the modelling process. 

The posterior parameter distribution generated from the calibration process is dependent on the variables used for constraining 

the model, adopted performance thresholds, and other parameters selected for calibration. Therefore, the outcome of this 

uncertainty analysis may change if these conditions are altered. Also, because the model structure selected for the simulation 650 

of water fluxes, energy balance and C flux components in CoupModel is based on theoretical knowledge of swamp biophysical 

processes and experience from existing studies, there is some level of subjectiveness in selecting the appropriate model 

structure for the study (Metzger et al., 2016a; Wang et al., 2022). However, increased understanding of swamp processes and 

availability of additional measurements for testing the model’s structure will assist in reducing the uncertainty associated with 

this modelling component. 655 
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Appendix A: Important study site properties 905 

Table A.1 Beverly swamp site characteristics 

 
Location and Meteorological 

variables 

Value Source 

Lat, Lon 43.36N, 80.11W (Munro, 1979) 

Swamp size ~20 km2 (Hamilton Conservation Authority, 2020; 
Munro, 1979) 

Altitude 265-270 m (McCarter et al., 2024) 

Mean Annual temp 7.6oC (Environment Canada, 2024) 

Mean Annual Precipitation 973 mm (Environment Canada, 2024) 

Mean Annual Evaporation 554-752 mm (Valverde, 1978; M. Woo & Valverde, 1981) 

Plant characteristics 
  

Major tree species (mixed forest) silver maple (Acer 

saccharinum), red maple 
(Acer rubrum) white cedar 
(Cedar occidentalis), birch 
(Betula papyrifera), black 
ash (Fraxinus nigra), aspen 
(Populus tremuloides), elm 

(Ulmus americana), alder 
(Alnus rugosa) 

(Hamilton Conservation Authority, 2020; 

Thambipillai, 1998; Welch, 1985) 

Ground understory vegetation Fens and Sedges  (Welch, 1985) 

Average stand age in 1980 40-52 yrs (Hamilton Conservation Authority, 2020; 
Welch, 1985) 

Average-Max canopy height  5.22-10 m (Hamilton Conservation Authority, 2020; 
Munro et al., 2000; Thambipillai, 1998) 

Root depth  0.3 – 0.4 m (Hamilton Conservation Authority, 2020; 
Munro et al., 2000; Thambipillai, 1998) 

Leaf Area Index (LAI) 5 to 6 (Hamilton Conservation Authority, 2020; 
Thambipillai, 1998) 

Stand density  6317-8125 trees/ha (Hamilton Conservation Authority, 2020; 
Thambipillai, 1998; Welch, 1985) 

Basal area  25-52 m2/ha Welch, 1985; HCA (2021) 

Average litter C/N ratio 30-93 Santia et al. (2023) & Wang et al. (2015)  

Average veg C/N ratio 45.6 Wang et al. (2015) 

Microbe C/N ration 6-7 Wang et al. (2015) 

Plant C (1979- 1987)  ~ 9009 gC m-2 Welch (1985); Munro (1989); Munro et al 
(2000) 

Foliage C   1171.17 gC m-2 Welch (1985) 

Stem C  6936.93 gCm-2 Welch (1985) 

Root C  900.9 gC m-2 yr-1  Welch (1985) 
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Net Primary Productivity  ~1145 gC m-2 yr-1 Welch (1985) 

Litter production  250-350 g m-2 yr-1 Welch (1985) 

Leaf longevity  0.45-8.9 years Kanda et al (1996) & Withington et al (2006)  

Phenology 
  

Leaf emergence day 145 Thambipillai (1998) 

Leaf emergence temp  5 oC Thambipillai (1998) 

Optimum day number  167  Thambipillai (1998) 

Litterfall commencement  270 Thambipillai (1998) 

Canopy extinction value 0.33-0.7 Thambipillai (1998) 

Soil variables 
  

Soil type  Sapric peat Munro et al (2000) 

peat depth ~85 (cm) Munro et al (2000); Valverde (1978); Woo & 
Valverde (1981) 

Soil pH 6.0 - 7.7 Spencer (1991) 

Soil pore volume  80-85 vol% Czerneda (1985); Munro (1982); Munro, 1984 
& Munro et al., 2000 

Soil bulk density  0.18-0.22 g cm 3 Czerneda (1985); Munro (1982); Munro (1984) 

Total soil C content in upper 50 
cm  

37894 ± 14854 gC m 2 McCarter et al. (2024) 

Total soil C content in top 150 

cm  

16600 ± 6400 gC m 2 

            to 
106800 ± 2800 gC m 2 

 McCarter et al. (2024) 

Soil C/N ratio 18-26 DeSimone (2009); Cools et al (2014)*; Webster 
al at. (2014); Wang et al. (2015) 

Soil nitrate  0.43-7.41 g NO3-N gsoil−1 DeSimone (2009) 
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Appendix B: Additional result and charts 

Table B1 Comparison of the results of initial single run and GLUE calibrated outputs  

 920 

Variable Single run This paper 

R2 RMSE ME R2 ME 

Soil respiration (gCm-2d1) 0.58 2.90 0.45 0.72 -0.02 

SL (cm) 0.58 32.00 21.00 0.65 1.70 

Snow depth (cm) 0.49 0.15 -0.21 0.52 1.00 

Soil temp 5cm 0.95 2.19 1.20 0.89 3.20 

Soil temp 30cm 0.92 2.02 0.46 0.92 1.60 

VMC (%) 5cm 0.79 6.40 2.73 0.78 15.00 

VMC (%) 30 cm 0.50 11.60 -7.71 0.52 3.00 

Net radiation flux (MJ m-2 d-1) 0.75 3.74 1.80 0.73 1.20 

Latent heat flux (MJ m-2 d-1) 0.64 2.80 0.60 0.50 -0.46 

Sensible heat flux (MJ m-2 d-1) 0.35 2.40 0.10 0.24 -0.12 

LAI 0.80 1.00 0.61 0.74 -2.00 

Surface pool (mm) 0.56 1.49 38.80 0.54 -5.40 
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Figure B1: observation vs ensemble mean of volumetric moisture contents (5 cm & 30cm) and soil temperature simulations  
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 940 

Figure B2: observation vs ensemble mean of net radiation, latent and sensible heat fluxes   
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Figure B3: Influence of constraining variables on soil respiration flux  

 945 

 

 

Figure B4: Results of prior single run vs GLUE result for soil respiration and saturation level  
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