Criegee + HONO reaction: a bimolecular sink of Criegee, and the missing non-photolytic source of OH•

Pradeep Kumar¹, Vishva Jeet Anand¹, and Philips Kumar Rai¹

¹Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India

Correspondence: Pradeep Kumar (pradeep.chy@mnit.ac.in)

- 1 **Abstract.** One of the most important puzzles in atmospheric chemistry is a mismatch between observed and modelled con-
- 2 centrations of OH[•]/HO[•] in the presence of high concentration of volatile organic compounds. It is now well established that
- 3 to fulfill this gap, one needs a reaction that is not only capable of producing OH^{\bullet} but also able to act as a sink of HO_{\bullet}^{\bullet} . In the
- 4 present work, we are proposing the Criegee + HONO reaction as a possible solution of this puzzle. Our quantum chemical and
- 5 kinetic calculations clearly suggest that this reaction can not only be an important source of OH radical but can also act as a sink
- 6 of HO₂ radical. Our study also suggests that HONO has the potential to act as a bimolecular sink of Criegee intermediates, and
- 7 for some Criegee intermediates under certain atmospheric condition it can even surpass the traditionally known bimolecular
- 8 sinks such as SO₂ and water dimer, even in high humid conditions.

9 1 Introduction

It is well-known that the atmospheric chemistry is mainly dominated by the radicals (Anderson, 1987; Monks, 2005). Particu-10 larly in the troposphere, these radicals are key in degrading various pollutants, a phenomenon as important as the ozone layer 11 for the existence of life (Weinstock, 1969; Lelieveld et al., 2004). The primary radicals responsible for the oxidative power of 12 troposphere come from the HO_X (OH $^{\bullet}$, HO_2^{\bullet} , RO $_2^{\bullet}$ etc.) family (Prinn, 2003; Ehhalt, 1987; Khan et al., 2018). Among 14 them, OH• is considered as the most important oxidant in the troposphere (Lelieveld et al., 2002, 2016). Although OH• is the most studied radical in the atmosphere, there are still open questions regarding its sources in the atmosphere (Heald and Kroll, 15 16 2021; Yang et al., 2024). For a long time, it was believed that OH radicals are mainly formed in daytime via photolysis of tropospheric ozone (O₃), and nitrous acid (HONO) (Calvert et al., 1994; Alicke et al., 2003; Griffith et al., 2016; Aumont et al., 17 18 2003). But now, with various on-field measurements (Geyer et al., 2003; Ren et al., 2003; Emmerson and Carslaw, 2009), it is well established that OH radicals are also present at night in sufficient amounts. In fact, average nighttime concentration of OH^{\bullet} ($\sim 2.6 \times 10^5$ molecule cm $^{-3}$) is only one order of magnitude lower than its average daytime concentration ($\sim 1.9 \times 10^6$ 20 molecule cm $^{-3}$) (Emmerson and Carslaw, 2009). As the lifetime of OH $^{\bullet}$ is only ~ 1 second, this much concentration of 21 OH[•] during night indicates its in situ generation via non-photolytic sources. The major non-photolytic source of OH[•] is the 22 recycling of HO^o radicals (Whalley et al., 2011; Stone et al., 2012; Hofzumahaus et al., 2009; Smith et al., 2006; Hens et al., 23 2013). Specifically, during the daytime, the primary reaction contributing to this recycling process is $NO^{\bullet} + HO_{2}^{\bullet}$, whereas at night, the key reaction is NO₃ + HO₂ (Hall et al., 1988; Mellouki et al., 1988, 1993; Rai and Kumar, 2024). However, 25 compared to photolytic sources, non-photolytic sources of OH• remain less understood in atmospheric chemistry (Brown and Stutz, 2012; Emmerson and Carslaw, 2009). This is evidenced by the fact that, in the atmosphere with a high concentration

of volatile organic compounds (VOCs), atmospheric models consistently under-predict the concentration of OH• compared to 28 the observed value (Emmerson and Carslaw, 2009; Stone et al., 2012). This discrepancy is especially pronounced in winter 29 30 (Harrison et al., 2006; Heard et al., 2004; Slater et al., 2020) and indoor environments (Østerstrøm et al., 2025; Gomez Alvarez et al., 2013; Reidy et al., 2023), where light plays a minimal role. In addition, the discrepancy between measured and observed 31 value of OH• was also found to depend upon NO_X concentration. Both under low NO_X (Carslaw et al., 2001; Tan et al., 2001; 32 33 Lelieveld et al., 2008; Tan et al., 2017) as well as high NO_X (above 6 ppbv) (Slater et al., 2020), the discrepancy was found to be quite significant. As the primary recycling of HO_2^{\bullet} to OH^{\bullet} occurs via NO_X , the under-prediction of OH^{\bullet} by models under 34 35 low NO_X conditions suggests either the presence of another route for recycling or some new non-photolytic source of OH $^{\bullet}$. This hypothesis is further strengthened by a few combined experimental and modelling studies. For example, Lu et al.(Lu 36 et al., 2012) have to introduce an artificial source of $OH^{\bullet} \leftrightarrow HO_{\bullet}^{\bullet}$ inter-conversion ($RO_{\bullet}^{\bullet} + X \longrightarrow HO_{\bullet}^{\bullet}$, $HO_{\bullet}^{\bullet} + X \longrightarrow OH^{\bullet}$) in their atmospheric model to match the experimental concentration profile. In an another study, to match the experimental OH 38 39 concentration with models, Whalley et al. (Whalley et al., 2011) increased the concentration of VOCs in their model. Although 40 their computed OH[•] concentration becomes closer to experimental value, the mismatch between observed and measured concentration of HO^{\(\frac{1}{2}\)</sub> becomes worse. There have been various attempts to identify the missing source of OH^{\(\frac{1}{2}\)} in the atmosphere} 41 (Paulot et al., 2009; Peeters et al., 2014; Sander et al., 2019). For example, Peeters et al. (Peeters et al., 2009; Peeters and 42 Mu'ller, 2010; Peeters et al., 2014) suggested that the oxidation of isoprene can regenerate HO_X radicals in the presence of 43 light via isoprene-peroxy radical interconversion and isomerisation pathways (Leuven Isoprene Mechanism (LIM)). Although 44 45 the introduction of LIM into chemical models were found to improve the value of modelled OH[•] concentration, the modelled 46 values still remain under-predicted (Crounse et al., 2011; Teng et al., 2017; Berndt et al., 2019; Novelli et al., 2020; J. Medeiros et al., 2022). Particularly, the LIM is more effective in regions where biogenic volatile organic compounds (BVOCs) dominate 47 48 and NO_X concentration is ultra low, e.g. rain forest regions (Whalley et al., 2011; Feiner et al., 2016; Lew et al., 2020). In contrast, in regions where sufficient anthropogenic sources of VOCs are present, e.g. in polluted areas, LIM is not effective. 49 50 In addition, LIM is not fundamentally a HO^o₂ to OH^o interconversion process, rather it is the recycling of VOCs to OH^o. In a 51 recent study, Yang et al. (Yang et al., 2024) suggested that aldehyde could be an additional source of OH. Authors proposed 52 that the autoxidation of carbonyl organic peroxy radicals (R(CO)O₂) derived from higher aldehydes, can produce OH• through photolysis (RAM mechanism). Though RAM mechanism efficiently predicts OH^{\bullet} production at low NO_X concentrations, it 53 still under-predicts the same at high NO_X concentrations. Interestingly, when both LIM and RAM are incorporated into a base 54 model in the presence of moderate concentration of NO_X , OH^{\bullet} concentration improves significantly, but the discrepancy in the 55 modelled and observed HO^o remains unresolved. It is also worth mentioning that photolysis is an important part of both, LIM 56 57 and RAM, and hence, both of these mechanism do not offer any help in improving the model OH[•] concentration in nocturnal 58 environment. Furthermore, both LIM and RAM are also not directly involved in recycling of HO₂ to OH². The discrepancy in 59 the model occurs during both day and night (Faloona et al., 2001; Hens et al., 2013; Geyer et al., 2003), and is associated with HO₂ to OH conversion (Whalley et al., 2011; Hofzumahaus et al., 2009). In light of these studies, we believe that the puzzle 60 of missing OH^{\bullet} source is very much alive and the key to this puzzle may be a non-photolytic source capable of $HO_2^{\bullet} \leftrightarrow OH^{\bullet}$ 61 recycling. 62

In the present work, we are proposing reaction of Criegee intermediate with HONO as a source of OH[•]. Criegee Intermediates 63 (CIs) are formed during the ozonolysis of alkenes (Criegee, 1975; Johnson and Marston, 2008; Taaties, 2017). In fact, alkene 64 ozonolysis is a highly exothermic reaction produces energized CIs. Some of the energized CIs readily convert into OH• via 65 unimolecular decomposition, while the remaining CIs get collisionally stabilized (sCI) (Horie and Moortgat, 1991; Donahue 66 et al., 2011; Novelli et al., 2014; Alam et al., 2011). sCIs can undergo either a thermal unimolecular dissociation or a bimolec-67 68 ular reaction. Depending upon concentration of the co-reactant and rate constant of such bimolecular reaction, the bimolecular reaction paths can be the main sink of sCI (Osborn and Taaties, 2015; Lin et al., 2015; Sheps et al., 2014; Vereecken and 70 Francisco, 2012). There are several studies in the literature that suggest CI reacts rapidly with the trace gases present in the 71 atmosphere (Cox et al., 2020; Mallick and Kumar, 2020; Vereecken et al., 2015; Long et al., 2016, 2021). In this work, we are suggesting HONO as a new partner for the bimolecular reaction of Criegee intermediates that is capable of producing OH radicals. The concentration of CI ($\sim 10^4 - 10^5$ molecule cm $^{-3}$) in the atmosphere is comparable with CI $^{\bullet}$ ($\sim 5.0 \times 10^4 - 3.0 \times 10^5$ 73 molecule cm $^{-3}$) and OH $^{\bullet}$ ($\sim 1.0 \times 10^5 - 4.0 \times 10^6$ molecule cm $^{-3}$) (Khan et al., 2018; Novelli et al., 2017). Similarly, nitrous 74 acid (HONO) is also an important trace gas present in the nighttime atmosphere in a considerable amount (Li et al., 2021; Song 75 et al., 2023). The average concentration of HONO is $\sim 8.9 \times 10^{10}$ molecule cm⁻³, which can reach as high as $\sim 6.9 \times 10^{11}$ 76 molecule cm⁻³ during the fog event (Pawar et al., 2024). Although a general wisdom about HONO is, its concentration builds 77 up in nighttime, and in daytime, it decomposes via photolysis to give OH[•], HONO itself is a highly reactive molecule and can 78 79 participate in various bimolecular chemical reactions during night (Anglada and Sole, 2017; Lu et al., 2000; Wallington and Japar, 1989). Moreover, in indoor environments, high concentrations of OH• have been found to strongly correlate with high 80 81 concentrations of HONO (Gomez Alvarez et al., 2013). It is important to mention that, the reaction of HONO with the simple Criegee intermediate (CH₂OO) has already been investigated theoretically (Kumar et al., 2022). In that investigation, the major 82 83 product was predicted to be hydroperoxymethyl nitrite (HPMN). We will show in the present work that the main product of this reaction is OH• and this newly found path is the dominant path of the title reaction. 84

85 2 Methodology

86

2.1 Electronic structure theory

87 There are two parts of electronic structure theory; optimization and subsequent single-point energy calculations. The criteria 88 behind choosing a method for optimization is; it should be computationally not very demanding and at the same time, it should 89 accurately predict the geometries and frequencies of the species involved in the reaction. Based on these criteria, in the present work, the CCSD(T)/CBS//M062X/aug-cc-pVTZ level of theory was chosen, which is known to give reasonable results in 90 various previous studies (Kumar et al., 2022; Vereecken et al., 2017, 2014; Vereecken, 2017) for reactions involving Criegee 91 intermediates. Gaussian 16 software package (Frisch et al., 2016) has been used to carry out all the optimization and single-92 point energy calculations. To estimate energies at CCSD(T)/CBS level of theory, first, we calculated the single point energies 93 at CCSD(T)/aug-cc-pVDZ, and CCSD(T)/aug-cc-pVTZ level of theory, and then extrapolated these energies to corresponding CBS limit using the method of Varandas and Pansini (Varandas and Pansini, 2014; Pansini et al., 2016) (see ESI for the details).

2.2 Kinetics

96

- 97 Energetics calculations shed light only on enthalpic requirement of the reaction, for a barrierless process, entropy is an equally
- 98 important factor. Therefore, to account for both, enthalpy and entropy, we have estimated the rate constant for CH₂OO +
- 99 HONO reaction within a temperature range of 213–320 K.
- 100 The mechanism of CH₂OO + HONO reaction can be represented by following reaction:

101
$$CH_2OO + HONO \xrightarrow{k_f} RC1 \xrightarrow{K_{uni}} PC1 \longrightarrow CH_2O + OH^{\bullet} + NO_2$$
 (R1)

To calculate the overall rate constant of the title reaction, we have used the master equation approach as implemented in 102 103 the MESMER software package. The reaction R1 proceeds in three steps. In the first step, the formation of RC occurs via a barrierless association of isolated reactants. MESMER uses the inverse-Laplace-transform (ILT) method to estimate the 104 105 energy-dependent rate constant, k(E), for this step. This, in turn, requires fitted Arrhenius parameters as input to MESMER. 106 which are obtained using KTOOLS code as implemented in the MultiWell suite of programs (Barker et al., 2021). KTOOLS uses variational transition state theory (VTST) for the barrierless reaction. The inputs for KTOOLS are energies and frequen-107 cies calculated on potential energy surface (PES) scans along the coordinate describing the dissociation of RC into isolated 108 reactants. Each point on the PES serves as a trial transition state; KTOOLS searches for the transition state for which the 109 reaction flux is minimized. In the present work, we have obtained this PES scan at CCSD(T)/CBS//M062X/aug-cc-pVTZ level 110 111 of theory (Table S9 of the ESI contains the energy as well as frequencies at each scan points). In the next step, RC undergoes unimolecular dissociation to PC via a transition state. MESMER uses Rice-Ramsperger-Kassel-Marcus (RRKM) theory, in-112 cluding tunneling contributions via an unsymmetrical Eckart barrier to compute the unimolecular reaction rate. In the final step, 113 PC spontaneously dissociates to form isolated products. It is important to mention that we do not find any tight transition state 114 115 for product formation from PC; therefore, we have treated this step also using ILT assuming that rate constants are independent 116 of temperature. The obtained rate constants within 213–320 K were then fitted with Arrhenius equation and supplied to the 117 MESMER. It is worth noting that the reactant complex (RC) and the transition state (TS) exhibit hindered rotational motions, and multiple conformations may exist due to different torsional angles. To account for this, we have used the HinderedRo-118 torQM1D model in MESMER to compute rate constants. Specifically, we performed a one-dimensional potential energy scan 119 120 of OH torsion along the N-O bond in both RC and TS at CCSD(T)/CBS//M062X/aug-cc-pVTZ level of theory, that covers the full 0° to 360° range. The resulting energy profiles are used to calculate the hindered rotor partition functions. During this 121 122 scan, we found local minima in both RC and TS, suggesting that our originally optimized structures correspond to the global minimum conformers. To verify this, we also manually searched for other possible minimum conformers and again found 123 that our original structures are global minimum conformers. The Lennard-Jones (L-J) model is used to calculate the collision 124 frequency between reactants and the bath gas. Air is used as the bath gas, with L-J parameters $\sigma = 3.68$ Å and $\epsilon/kT = 86.2$ K. 125 To obtain the L-J parameters for RC, we performed a PES scan along the reaction coordinate separating bath gas from RC, and 126 127 fitted the obtained PES with the 12-6 L-J potential expression. The fitted L-J parameters for RC turn out to be, $\sigma = 2.62$ and ϵ = 1381.5 K. A single-exponential down model is used to describe the collisional energy transfer probability with a maximum 128 energy grain size of 100 cm⁻¹ and $\Delta E_{down} = 150$ cm⁻¹. 129

3 Results and discussion

130

131 In the present work, we have investigated the reactions of Criegee intermediates (CIs) with nitrous acid (HONO). It is known that the reactivity of CI is greatly influenced by the substitution group present on carbon center of the CI. Therefore, to account 132 for it, we have studied two types of CIs; the simplest Criegee intermediate (CH₂OO) and the dimethyl-substituted Criegee in-133 termediate ((CH₃)₂COO). Another motivation for choosing (CH₃)₂COO comes from the fact that in contrast to simple Criegee 134 135 which is formed only from the ozonolysis of ethene, the dimethyl-substituted Criegee intermediate can be generated from the 136 ozonolysis of many highly abundant alkenes, such as terpenes and mycrene, and hence, the concentration of (CH₃)₂COO is 137 significantly higher in the atmosphere. In this section, we will first discuss the energetics and kinetics of CH₂OO + HONO 138 reaction, followed by (CH₃)₂COO + HONO reaction. The potential energy surface for CH₂OO + HONO reaction is depicted in Figure 1. It is evident from Figure 1 that reaction 139 occurs in three steps; in the first step, CH₂OO interacts with H atom of HONO via hydrogen bonding and forms a stable 140 reactant-complex (RC1), which is ~ 10.1 kcal mol⁻¹ stable than isolated reactants. In the next step, RC1 undergoes a uni-141 molecular transformation to form product-complex (PC1) which has stabilization energy of \sim -44.7 kcal mol⁻¹ with respect to 142 the isolated reactants. This happens via a transition-state (TS1) that is effectively ~ 8.0 kcal mol⁻¹ below the isolated reactants. 143 In the last step, PC1 undergoes unimolecular dissociation to form final products, i.e., CH₂O, OH[•], and NO₂. Gibbs free energy 144 at 298 K associated with this conversion of PC1 to isolated products is \sim -2.5 kcal mol⁻¹ (shown in Figure S2 of ESI), which 145 suggests that the formation of OH[•] via CH₂OO + HONO reaction is a spontaneous process. The overall reaction was found 146 to be exothermic by ~ 17.3 kcal mol⁻¹ that lies close to the experimental value of ~ 16.9 kcal mol⁻¹ (Ruscic and Bross, 147 2021), again confirming the adequacy of the methodology used. The computed bimolecular rate constant values ($k_{bi}^{CH_2OO}$) for 148 CH₂OO + HONO reaction in the temperature range 213–320 K are given in Table 1. It is evident from Table 1 that the values 149 of $k_{bi}^{CH_2OO}$ slightly decrease with increasing temperature, a typical character of a barrierless process. For example, at 213 K, 150 values of $k_L^{CH_2OO}$ is $\sim 1.17 \times 10^{-11}$ cm³ molecule⁻¹ sec⁻¹ which becomes $\sim 6.3 \times 10^{-12}$ cm³ molecule⁻¹ sec⁻¹ at 320 K. 151 Figure 2 depicts the potential energy surface of (CH₃)₂COO + HONO reaction. It is evident from Figure 2 that (CH₃)₂COO 152 153 + HONO reaction also proceeds in three steps; in the first step, (CH₃)₂COO associates with HONO to form a stable reactantcomplex (RC2) that is ~ 14.2 kcal mol⁻¹ more stable than isolated reactants. Next, RC2 transforms into product-complex 154 (PC2) having stabilization energy of \sim -36.2 kcal mol⁻¹ with respect to isolated reactants. This transformation occurs through 155 a transition state that lies ~ 10.1 kcal mol⁻¹ below the isolated reactants. At last, PC2 undergoes unimolecular dissociation to 156 157 form final products, i.e., (CH₃)₂CO, OH[•], and NO₂. Here also, the Gibbs free energy at 298 K associated with the conversion of PC2 to isolated products is \sim -6.3 kcal mol⁻¹ (Figure S2 of the ESI), making the overall product formation spontaneous. 158 Using the energetics, we have also computed the rate constant for (CH₃)₂COO + HONO reaction employing master equation 159 in the same 213–320 K temperature range. The calculated bimolecular rate constants $(k_{bi}^{(CH_3)_2COO})$ are listed in Table 1. It 160 is evident from Table 1 that similar to $CH_2OO + HONO$ reaction, here also the values of $k_{bi}^{(CH_3)_2COO}$ slightly decrease with 161 increasing temperature across the whole range of temperature. But the bimolecular rate constant of (CH₃)₂COO + HONO re-162 action becomes ~ 2.6 to 3.6 times higher compared to the same for CH₂COO + HONO reaction at all temperatures considered 163

in the present work. For example, at 298 K, the value of $k_{bi}^{(CH_3)_2COO}$ is $\sim 2.03 \times 10^{-11}$ cm³ molecule⁻¹ sec⁻¹, whereas the 164 value of $k_{LL}^{CH_2OO}$ is only $\sim 7.2 \times 10^{-12}$ cm³ molecule⁻¹ sec⁻¹. It is worth noticing that, while computing the bimolecular rate 165 constant, the capture rates of both the reactions are almost same (Table S3 of the ESI). The difference in the rate values of 166 the two reactions depends on whether the reactant complex will proceed forward or backward, which further depends on the 167 forward and backward Gibbs free energy barriers of the reactant complex. The Gibbs free energy profile at 298 K is shown 168 in Figure S2 of the ESI. It is evident from Figure S2 that due to the higher stabilization of RC2 (corresponding to dimethyl-169 substituted CI), its reverse free energy barrier is high ($\sim 2.9 \text{ kcal mol}^{-1}$), while the same is very low for RC1 (corresponding 170 to simplest CI) (\sim -1.3 kcal mol⁻¹). Consequently, the relative yields of product are higher for the (CH₃)₂COO + HONO 171 reaction compared to CH₂COO + HONO reaction. 172 173 Lastly, it is important to discuss the uncertainties associated with the computed rate constant due to limitations in the methodology (Fernández-Ramos et al., 2006). For example, a major source of uncertainty can originate from the fact that Criegee 174 175 intermediates are known to possess moderate multireference character, and CCSD(T)/CBS sometimes fails in accurately pre-176 dicting the energetics of such reactions (Rai and Kumar, 2022; Mallick et al., 2019; Mallick and Kumar, 2018). It is worth mentioning that for multireference systems, incorporating higher-level excitations at the coupled-cluster level yield energet-177 ics within chemical accuracy (Tajti et al., 2004; Misiewicz et al., 2018; Nguyen et al., 2013; Anand and Kumar, 2023; Rai 178 and Kumar, 2023). To assess the uncertainty in the energetics arising from the multireference character, we have carried out 179 CCSDT(O)/CBS calculations for the smaller Criegee intermediate reaction, i.e., CH₂OO + HONO. We focused on key station-180 181 ary points; the reactant complex (RC) and the transition state (TS). The various components of the post-CCSD(T) corrections $(\delta_T \text{ and } \delta_{T(Q)})$ are provided in Table S7 of the ESI. It is evident from Table S7 that post-CCSD(T) corrections lead to only mi-182 nor changes in the calculated energetics of CH₂OO + HONO reaction. Quantitatively, these corrections reduce the stabilization 183 184 energy of RC by ~ 0.54 kcal mol⁻¹, while increasing the barrier height by a similar ~ 0.67 kcal mol⁻¹. Both variations fall well within the range of chemical accuracy. Furthermore, we have also estimated the capture and bimolecular rate constants 185 186 using post-CCSD(T) energetics (see Table S8 of ESI), which suggest that at 298 K, the bimolecular rate constants calculated at post-CCSD(T) and CCSD(T)/CBS levels are almost similar $(5.53 \times 10^{-12} \text{ and } 7.21 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$, 187 respectively). This supports the reliability and computational efficiency of our chosen level of theory, CCSD(T)/CBS//M06-188 2X/aug-cc-pVTZ, for studying the title reaction. Another source of uncertainty in the computed rate constant may arise from 189 the error in estimation of frequency. Such errors in frequency estimation may lead to 2σ (\pm 2 kcal mol⁻¹) uncertainties in 190 the computed barrier heights. To account for this, we have assumed an uncertainty of ± 2 kcal mol⁻¹ in both well depths and 191 reaction barriers. Using this assumption, we estimated the resulting uncertainty in the rate constants at 213 K and 298 K for the 192 model reaction CH₂OO + HONO. Due to \pm 2 kcal mol⁻¹ uncertainty in the reaction barriers and well depths, the deviation in 193 the rate constant at 213 K is $\sim 1.17^{+1.8}_{-0.84} \times 10^{-11}$ cm³ molecule⁻¹ sec⁻¹ (± 2 kcal mol⁻¹ reaction barriers) and $\sim 1.17^{+0.08}_{-0.08} \times 10^{-11}$ 194 $10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1} \ (\pm 2 \text{ kcal mol}^{-1} \text{ well depths})$, respectively. At 298 K, the same becomes $\sim 7.21^{+11.04}_{-5.12} \times 10^{-12}$ 195 cm³ molecule⁻¹ sec⁻¹ (\pm 2 kcal mol⁻¹ reaction barriers) and $\sim 7.21^{+0.72}_{-0.72} \times 10^{-12}$ cm³ molecule⁻¹ sec⁻¹ (\pm 2 kcal mol⁻¹ 196 well depths), respectively. This study suggests due to 2σ error in the barrier height, there can be an error of a \sim factor-of-two 197 198 in the estimated rate constant values. Our analysis also suggests that the uncertainty in the rate constant estimation is much

lower at low temperature region compare to high temperature regions. In addition, in the estimation of the partition function, the rigid rotor harmonic oscillator (RRHO) approximation is employed, which again can introduce some error in the final rate constant. For a typical 2σ error, the uncertainty arising from the RRHO approximation can also contribute approximately a factor-of-two uncertainty in the evaluated partition function ratios.

4 Atmospheric implications

203

204 After estimating the energetics and kinetics of title reaction, it is important to discuss the impact of title reaction in the atmospheric chemistry. The importance of title reaction in the atmosphere critically depends on how it competes with other known 205 206 sinks of Criegee intermediate, i.e., H₂O, (H₂O)₂, NO₂, NO, CO, and SO₂. The efficiency of a chemical reaction in the atmosphere depends upon two factors; rate of reaction and concentration of co-reactants. The effective rate constant (k_{eff}) captures 207 both of these factors as it is defined as the multiplication of bimolecular rate and concentration of co-reactants. Therefore, 208 we have used k_{eff} to compare the effectiveness of title reaction compared to other sinks of Criegee intermediates. A list of 209 effective rates for the reaction of CI with H₂O, (H₂O)₂, NO₂, NO, CO, and SO₂ at 298 K are provided in Table S4 of the 210 ESI. To compute k_{eff} , the average concentrations of all the sinks have been taken from polluted urban environments. The 211 corresponding rate coefficients of all the sinks are taken from experimental measurements. One can see from Table S4, the 212 213 effective rate coefficients (k_{eff}) of CO, NO, and NO₂ are lower compared to those of SO₂, H₂O, and (H₂O)₂. For example, k_{eff} for the reaction of CI with SO₂ is 3.35 sec⁻¹, while that for NO₂ is only 0.9 sec⁻¹. Therefore, in the present work, we 214 have focused our attention on a detailed comparison of the title reaction with SO₂, H₂O, and (H₂O)₂. As far as abundance of 215 HONO is concerned, it is found in both regions; forested as well as polluted in significant amounts (Kim et al., 2015; Acker 216 et al., 2006; Ren et al., 2010; Zhang et al., 2012; He et al., 2006; Su et al., 2008; Ren et al., 2006; Rondon and Sanhueza, 1989; 217 218 Zhou et al., 2011; Pawar et al., 2024; Vereecken et al., 2012). Among the two, HONO concentrations are comparatively higher 219 in polluted urban areas, such as megacities. Therefore, we expect HONO to play a more effective role as a sink for Criegee intermediates in such regions. Hence, we have used representative concentrations of HONO and SO₂ in urban areas for the 220 221 primary comparison. The concentration of water varies greatly in the atmosphere depending upon saturation vapour pressure and relative humidity (RH) (Anglada et al., 2013; Rai and Kumar, 2025). Therefore, in the case of H₂O and (H₂O)₂, we have 222 223 taken two concentrations; one calculated at 20% RH, and the other calculated at 100% RH. The former serves as lower limits 224 of H_2O and $(H_2O)_2$ concentrations, whereas the latter serves as the upper limits of H_2O and $(H_2O)_2$ concentrations. For comparison, we have taken the rate constants reported by Lin et al., (Lin et al., 2016) for H₂O and (H₂O)₂, and by Onel 225 et al. (Onel et al., 2021) for SO₂. In Figure 3, we have compared the k_{eff} of CH₂OO + HONO with the k_{eff} of CH₂OO 226 + H₂O/(H₂O)₂/SO₂ reactions. Figure 3 shows that HONO is a minor sink of simplest Criegee intermediate (CH₂OO) com-227 pare to SO_2 , H_2O and $(H_2O)_2$. In fact, at 100% RH, k_{eff} of $CH_2OO + (H_2O)_2$ is the dominant reaction across the entire 228 temperature range (213-320 K). At 20% RH, k_{eff} for CH₂OO + (H₂O)₂ and CH₂OO + H₂O remain dominant at higher 229 230 temperatures, specifically within 235–320 K and 260–320 K, respectively. However, at lower temperatures, k_{eff} of CH₂OO + HONO becomes dominant, surpassing both, CH₂OO + (H₂O)₂ and CH₂OO + H₂O in the range of 213–235 K and 213–260 231

ture and low humidity, it remains only a minor contributor compared to CH₂OO + SO₂ reaction at the same conditions. For 233 example, k_{eff} values of CH₂OO + SO₂ reaction are ~ 5 times higher than that of CH₂OO + HONO reaction within the whole 234 235 temperature range, indicating that CH₂OO + HONO reaction is never a dominant sink of CH₂OO intermediate. Similarly, we have compared our dimethyl substituted Criegee reaction ((CH₃)₂COO + HONO) with other known bimolec-236 237 ular reactions of $(CH_3)_2COO$. Here also, we have computed k_{eff} for the comparison (see Figure 4). The rate constants of $(CH_3)_2COO + SO_2$ reaction (Smith et al., 2016) is known in the range of 283–303 K, and hence, we have compared its k_{eff} 238 239 in this temperature range with (CH₃)₂COO + HONO reaction. Figure 4 shows that unlike CH₂OO + HONO reaction, here 240 k_{eff} of (CH₃)₂COO + HONO is \sim 2 times higher than the same for (CH₃)₂COO + SO₂ reaction within 283–303 K. In addition, it is worth mentioning that under certain atmospheric conditions, concentration of HONO can be quite high compared 241 to SO₂. For example, during fog events, it is well known that concentration of SO₂ drops significantly (Zhang et al., 2013) 242 while concentration of HONO increases (Pawar et al., 2024), making HONO a potentially major bimolecular sink of Criegee 243 244 intermediates in fog-like environments. In addition, as SO₂ mainly comes from human activities, its concentrations are high in polluted areas and become quite very low in tropical forests and rural areas. In fact, its concentrations fall below detection 245 limits in tropical forest regions (Vereecken et al., 2012). In contrast, although HONO concentration is high in polluted regions 246 compared to a clean environment, due to the various in situ sources, HONO is present in reasonable amounts even in tropi-247 cal forest areas (Zhang et al., 2012). Therefore, in this region also, HONO is a more effective sink of CI compared to SO₂. 248 Moreover, CI + HONO reaction is a hydrogen atom transfer (HAT) process, and hence, the presence of water can effectively 249 250 catalyze this reaction (Buszek et al., 2012; Viegas and Varandas, 2012; Rai and Kumar, 2025). In contrast, the presence of water, particularly droplets and aerosols, can act as a sink for SO₂ (Zhang et al., 2013), and hence, in the presence of wa-251 252 ter, Criegee + SO₂ reaction should be less important compared to CI + HONO reaction. After establishing that compared to SO₂, HONO is a more effective sink for (CH₃)₂COO under most of the conditions, at last, it is important to compare it with 253 254 $(CH_3)_2COO + H_2O/(H_2O)_2$ reactions (Vereecken et al., 2017). It can be seen from Figure 4 that even at 100% RH, k_{eff} of $(CH_3)_2COO + HONO$ can dominate over k_{eff} of $(CH_3)_2COO + H_2O$ and $(CH_3)_2COO + (H_2O)_2$ for a relatively wider range 255 256 of temperatures. For example, the dominant temperature range of $(CH_3)_2COO + HONO$ is, 213–275 K for $(CH_3)_2COO +$ $(H_2O)_2$ and 213–290 K for $(CH_3)_2COO + H_2O$. At 20% RH, k_{eff} of $(CH_3)_2COO + HONO$ becomes dominant over k_{eff} of 257 both, (CH₃)₂COO + H₂O and (CH₃)₂COO + (H₂O)₂ in almost whole temperature range (213–310 K). For example, at 298 K, 258 k_{eff} of (CH₃)₂COO + HONO is $\sim 1.8 \text{ sec}^{-1}$, which is 1.6 times and 2.2 times higher than the same for (CH₃)₂COO + H₂O 259 and $(CH_3)_2COO + (H_2O)_2$, respectively. This suggests that the major bimolecular sink of substituted CI can be its reaction 260 with HONO in the atmosphere even in the presence of high humidity and SO_2 . At last, it is important to compare the k_{eff} of 261 (CH₃)₂COO + HONO reaction with the unimolecular dissociation rate of (CH₃)₂COO. Figure 4 also contains the unimolecu-262 263 lar dissociation rate of (CH₃)₂COO. It is evident from Figure 4 that unimolecular dissociation remains the dominant removal path of (CH₃)₂COO above 225 K temperature. Only below 225 K temperature, the bimolecular reaction of (CH₃)₂COO + 264 265 HONO becomes dominant. To conclude, although HONO is a dominant bimolecular sink for (CH₃)₂COO, it is still primarily removed by its unimolecular dissociation, particularly at room temperature. For example, the unimolecular dissociation rate of 266

K, respectively. Although CH₂OO + HONO reaction dominates over CH₂OO + (H₂O)₂ and CH₂OO + H₂O at low tempera-

232

 $(CH_3)_2COO$ is ~ 276 sec⁻¹ at room temperature (Fang et al., 2017) whereas the k_{eff} of $(CH_3)_2COO + HONO$ is only ~ 1.8 267 sec⁻¹. Interestingly, the unimolecular rate increases rapidly with temperature, while for the bimolecular reaction (CH₃)₂COO 268 269 + HONO, k_{eff} increases only slightly. As a result, at lower temperatures, k_{eff} may become comparable to the unimolecular 270 dissociation rate of $(CH_3)_2COO$. For example, at 213 K, k_{eff} and the unimolecular rate constants are 3.80 sec⁻¹ and 1.82 \sec^{-1} , respectively. A comparison between k_{eff} and the unimolecular dissociation rate constant of (CH₃)₂COO within 213– 271 272 320 K is provided in Table S6 of the ESI. It is evident from Table S6 that under conditions of high HONO concentration and low temperature, the bimolecular reaction of (CH₃)₂COO with HONO can compete with its unimolecular dissociation. 273 274 Finally, it is important to assess the extent to which the title reaction can contribute in resolving the puzzle of mismatch be-275 tween measured and modelled OH*/HO* concentrations. It is important to mention that during daytime, HONO undergoes rapid photolysis; therefore, its concentration is higher in the absence of light, e.g. at night, indoors, in winter, etc. For example, 276 the photolysis rate of HONO is known to be $\sim 10^{-3}~{\rm sec}^{-1}$, which is several orders of magnitude higher than the effective rate 277 constant of its reaction with Criegee intermediates ($\sim 10^{-7} - 10^{-6} \text{ sec}^{-1}$, computed using maximum Criegee concentration 278 of $\sim 10^5$ molecule cm⁻³) (Shabin et al., 2023). Therefore, during the peak of daytime, title reaction does not contribute much 279 280 to OH[•] production; rather, it can play a key role in nocturnal atmospheric chemistry, specifically at times when both, concentrations of HONO and CI are high, and, at the same time, the presence of light is minimal. To understand the efficiency of the 281 title reaction in affecting OH[•] concentration in a nocturnal environment, we can compare it with NO₃ + HO₂ reaction, which 282 is a well-known source of OH $^{\bullet}$ at nighttime. The rate constants for CH₂OO + HONO reaction are ~ 2 times higher compared 283 to NO $_3^{\bullet}$ + HO $_2^{\bullet}$. For example, at 298 K, the rate value for CH $_2$ OO + HONO is $\sim 7.21 \times 10^{-12}$ cm 3 molecule $^{-1}$ sec $^{-1}$, which is 284 almost double compared to the rate value (Rai and Kumar, 2024) for $NO_3^{\bullet} + HO_2^{\bullet}$, i.e., $\sim 3.36 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$. 285 In the atmosphere, average concentration of both NO₃ and HO₂ are $\sim 10^8$ molecule cm⁻³(Bottorff et al., 2023; Brown and 286 Stutz, 2012), thus combined concentration turns out to be $\sim 10^{16}$ molecule² cm⁻⁶. Similarly, the combined concentration will 287 be $\sim 10^{15}$ molecule² cm⁻⁶ for CH₂OO + HONO under high concentrations of CI ($\sim 10^5$ molecule cm⁻³)(Khan et al., 2018) 288 and HONO ($\sim 10^{10}$ molecule cm⁻³) (Pawar et al., 2024). It suggests that CH₂OO + HONO reaction may be somewhat slower 289 in producing OH[•]. However, since the rate of (CH₃)₂COO + HONO reaction is one order of magnitude higher compared to 290 291 $NO_0^{\bullet} + HO_2^{\bullet}$, we believe both $NO_0^{\bullet} + HO_2^{\bullet}$ and title reactions should be of similar importance as far as the production of nighttime OH• is concerned. In other words, title reaction has the potential to serve as a significant contributor to OH• production 292 in nighttime atmospheric chemistry. 293 Another factor worth noting is, besides OH[•], the title reaction produces HCHO/(CH₃)₂CO, and NO[•]₂ as products. It is well 294 known that both HCHO/(CH₃)₂CO (Gao et al., 2024; Long et al., 2022; Hermans et al., 2004) and NO₂ (Christensen et al., 295 2004) can act as sinks for HO₂ radicals (corresponding reactions are listed in the box below). It suggests that title reaction has 296 the potential for recycling of $HO_2^{\bullet} \leftrightarrow OH^{\bullet}$ process. To illustrate the ability of title reaction in recycling $HO_2^{\bullet} \leftrightarrow OH^{\bullet}$ process, 297

we have developed a kinetic model consisting of the following reactions (see ESI for the details):

298

$$\begin{array}{c} \hline \\ CH_2OO/(CH_3)_2COO + HONO \xrightarrow{k_{CH_2OO}/} OH^{\bullet} + HCHO/(CH_3)_2CO + NO_2^{\bullet} \\ \\ HCHO/(CH_3)_2CO + HO_2^{\bullet} \xrightarrow{k_{HCHO}/} HOCH_2OO/(CH_3)_2C(OH)OO \\ \\ NO_2^{\bullet} + HO_2^{\bullet} \xrightarrow{k_{NO_2^{\bullet}}} HO_2NO_2 \\ \hline \end{array}$$

299

300 This model requires two key components: first, the rate coefficients of the relevant reactions, which have been taken from the recommended literature values (Gao et al., 2024; Hermans et al., 2004; Long et al., 2022; Christensen et al., 2004), and 301 second, a list of realistic initial concentrations of the reactive species involved in $HO_0^{\bullet} \leftrightarrow OH^{\bullet}$ recycling process (Table S5 302 of the ESI). We first tracked the change in concentration of OH[•] and HO[•] using the first kinetic model consisting of CH₂OO 303 + HONO reaction, followed by second model consisting of (CH₃)₂COO + HONO reaction. Initial concentrations of relevant 304 species (HCHO, HONO, (CH₃)₂CO, and HO₂) are chosen based on literature values representing polluted urban conditions 305 (Vereecken et al., 2012; Pawar et al., 2024). Although the average concentration of OH $^{\bullet}$ can vary within $\sim 10^4 - 10^6$ molecules 306 cm⁻³ in the atmosphere, we have used a modelled value of it in the present work. In CH₂OO + HONO reaction model, 307 the initial OH $^{\bullet}$ concentration was set to $\sim 10^4$ molecules cm $^{-3}$, while in (CH₃)₂COO + HONO model, it was set to $\sim 10^5$ 308 309 molecules cm⁻³. This difference was chosen based on how much OH each reaction is expected to produce when no *in situ* reactions are taking place from the byproducts of the title reaction. Since (CH₃)₂COO + HONO reaction can generate more 310 OH, starting with a higher initial concentration helps one observe a noticeable change in OH* levels during the simulation. 311 This makes it easier to observe and compare the effect of OH[•] production between the two reactions. It is important to mention 312 that the maximum concentration of OH $^{\bullet}$ can be taken as $\sim 10^5$ molecules cm $^{-3}$ in the kinetic model. This is because the 313 production of OH $^{\bullet}$ is limited by the available concentration of CI which can be as high as $\sim 10^5$ molecules cm $^{-3}$. Therefore, 314 taking OH^{\bullet} concentration more than $\sim 10^5$ molecules cm⁻³ would produce no effect on the concentration of OH^{\bullet} . This also 315 reveals the fact that the title reaction is capable of producing OH• in regions where the concentration of OH• is already low. 316 Similarly, the concentration of NO_2 can vary within $\sim 10^{10}$ – 10^{12} molecules cm⁻³ in polluted urban regions. However, in the 317 present model, we have kept it at $\sim 10^{10}$ molecules cm⁻³ in order to observe a clear numerical change in the values of HO₂. 318 Taking a high concentration of NO₂ ($\sim 10^{12}$ molecules cm⁻³) would drastically consume HO₂, and a gradual change would 319 320 not be observed. We have divided the simulation results into two parts; first we will discuss $CH_2OO + HONO$ reaction followed by $(CH_3)_2COO$ 321 + HONO. The model results have been shown in Figure 5. It is evident from Figure 5 that CH₂OO + HONO reaction increases 322 OH[•] concentration while simultaneously reducing HO[•] concentration. Quantitatively, this reaction increases OH[•] production 323 by five times its initial value while decreasing HO₂ production by more than one order of magnitude. Furthermore, when 324 325 we consider dimethyl-substituted Criegee intermediate reaction ((CH₃)₂COO + HONO), OH• production has been found to 326 increase by only a factor of two compared to its initial concentration, while HO₂ production again decreases by the same one order of magnitude (Figure 5). The difference in OH[•] production can be attributed to the fact that, in case of (CH₃)₂COO + 327

HONO, the initial OH $^{\bullet}$ concentration was taken to be $\sim 10^5$ molecules cm $^{-3}$ compared to $\sim 10^4$ molecules cm $^{-3}$ in case of 328 CH₂OO + HONO. This further strengthens the fact that the effect of title reaction on OH[•] production will be more pronounced 329 330 in the conditions where OH[•] concentration is lower in the atmosphere, e.g., at night. The overall simulation results suggest that incorporating title reaction into atmospheric models can improve their accuracy in predicting OH• and HO• concentrations. 331 It is important to note that the kinetics model used in the present work is priliminary. However, a more realistic impact of the 332 333 title reaction on the budget of both OH[•] and HO[•], requires a more complete modeling. In order to do so, one needs accurate estimation of the rate constants for the reaction of HONO with various important Criegee intermediates. For bigger Criegee 334 335 intermediates, computation will be more costly and require a separate study. In addition, being a HAT reaction, the effect of humidity on the title reaction is also important to build a complete model. 336

5 Conclusions

337

354

338 In this work, we have studied the energetics and kinetics of bimolecular reaction of simple and dimethyl-substituted Criegee 339 with HONO using high-level electronic structure theory and chemical kinetics. Our quantum chemical calculations suggest that both of the reactions are barrierless and kinetic calculations reveal that reaction of substituted Criegee with HONO is $\sim 2.6-3.6$ 340 times faster than simple Criegee + HONO reaction. By comparing it with other known sinks of CI, we have shown that HONO 341 can serve as a major bimolecular sink for bigger Criegee intermediate ((CH₃)₂COO) and minor contributor at low humidity and 342 low temperature for simple CH₂OO. In addition, we have also shown that title reaction can be an important source of OH• in 343 nocturnal atmosphere. In addition, the products of CI + HONO reaction can be a sink for HO₂ radicals, and hence this reaction 344 is capable of $HO_0^{\bullet} \leftrightarrow OH^{\bullet}$ recycling. Consequently, this reaction can be key in fulfilling the gap between the observed OH 345 radicals and modelled values. Although in urban areas, HONO can be the dominant sink of certain CIs, it is important to notice 346 347 that larger Criegee intermediates predominantly originate from biogenic volatile organic compounds (BVOCs). On the other hand, HONO concentrations in forested regions are also found to be moderate ($\sim 10^8$ to 10^{10} molecules cm⁻³). Therefore, we 348 believe a separate study is required to understand the fate of larger Criegee intermediates in the presence of HONO. At last, we 349 350 look forward to the experimental verification of our results.

Author contributions. VJA: Conducted the investigation, Writing—original draft, Formal analysis, curated the data. PKR: Contributed to partial formal analysis, writing, reviewing, and editing the manuscript. PK: Provided supervision, resources, and methodology; conceptualized the study; acquired funding; and contributed to the review and editing of the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

- 355 Acknowledgements. V.J.A. and P.K.R acknowledge MNIT Jaipur for financial assistance. P.K. acknowledges DST, Govt. of India, for the
- 356 financial support through the sanctioned project No. EEQ/2023/000351.

357 References

- 358 Acker, K., Möller, D., Wieprecht, W., Meixner, F. X., Bohn, B., Gilge, S., Plass-Dülmer, C., and Berresheim, H.: Strong daytime production
- of OH from HNO₂ at a rural mountain site, Geophys. Res. Lett., 33, 2006.
- 360 Alam, M. S., Camredon, M., Rickard, A. R., Carr, T., Wyche, K. P., Hornsby, K. E., Monks, P. S., and Bloss, W. J.: Total radical yields from
- tropospheric ethene ozonolysis, Phys. Chem. Chem. Phys., 13, 11 002–11 015, 2011.
- 362 Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Pätz, H., Schäfer, J., Stutz, J., Volz-Thomas, A., and Platt, U.: OH formation
- by HONO photolysis during the BERLIOZ experiment, J. Geophys. Res., 108, PHO-3, 2003.
- Anand, V. J. and Kumar, P.: Mechanistic insight into the N₂O + O(¹D, ³P) reaction: role of post-CCSD (T) corrections and non-adiabatic
- 365 effects, Phys. Chem. Chem. Phys., 25, 33 119–33 129, 2023.
- 366 Anderson, J. G.: Free Radicals in the Earth's Atmosphere: Their Measurement and Interpretation, Annu. Rev. Phys. Chem., 38, 489–520,
- 367 1987.
- 368 Anglada, J. M. and Sole, A.: The atmospheric oxidation of HONO by OH, Cl, and ClO radicals, J. Phys. Chem. A, 121, 9698–9707, 2017.
- 369 Anglada, J. M., Hoffman, G. J., Slipchenko, L. V., M. Costa, M., Ruiz-Lopez, M. F., and Francisco, J. S.: Atmospheric significance of water
- 370 clusters and ozone–water complexes, J. Phys. Chem. A, 117, 10381–10396, 2013.
- 371 Aumont, B., Chervier, F., and Laval, S.: Contribution of HONO sources to the NO_X/HO_X/O₃ chemistry in the polluted boundary layer,
- 372 Atmos. Environ., 37, 487–498, 2003.
- Barker, J., Nguyen, T., Stanton, J., Aieta, C., Ceotto, M., Gabas, F., Kumar, T., Li, C., Lohr, L., Maranzana, A., et al.: MultiWell-2021 Software
- 374 Suite; J. R. Barker, University of Michigan, Ann Arbor, Michigan, USA, http://claspresearch.engin.umich.edu/multiwell/ (accessed march
- 375 5, 2025), 2021.
- 376 Berndt, T., Hyttinen, N., Herrmann, H., and Hansel, A.: First oxidation products from the reaction of hydroxyl radicals with isoprene for
- pristine environmental conditions, Commun. Chem., 2, 21, 2019.
- Bottorff, B., Lew, M. M., Woo, Y., Rickly, P., Rollings, M. D., Deming, B., Anderson, D. C., Wood, E., Alwe, H. D., Millet, D. B., et al.: OH,
- 379 HO 2, and RO 2 radical chemistry in a rural forest environment: measurements, model comparisons, and evidence of a missing radical
- 380 sink, Atmos. Chem. Phys., 23, 10 287–10 311, 2023.
- 381 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405–6447, 2012.
- 382 Buszek, R. J., Barker, J. R., and Francisco, J. S.: Water effect on the OH + HCl reaction, J. Phys. Chem. A, 116, 4712–4719, 2012.
- 383 Calvert, J., Yarwood, G., and Dunker, A.: An evaluation of the mechanism of nitrous acid formation in the urban atmosphere, Res. Chem.
- 384 Intermed., 20, 463–502, 1994.
- 385 Carslaw, N., Creasey, D., Harrison, D., Heard, D., Hunter, M., Jacobs, P., Jenkin, M., Lee, J., Lewis, A., Pilling, M., et al.: OH and HO₂
- radical chemistry in a forested region of north-western Greece, Atmos, Environ., 35, 4725–4737, 2001.
- 387 Christensen, L. E., Okumura, M., Sander, S. P., Friedl, R. R., Miller, C. E., and Sloan, J. J.: Measurements of the Rate Constant of HO₂ +
- 388 NO₂ + N₂ \longrightarrow HO₂NO₂ + N₂ Using Near-Infrared Wavelength-Modulation Spectroscopy and UV- Visible Absorption Spectroscopy, J.
- 389 Phys. Chem. A, 108, 80–91, 2004.
- 390 Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A., Troe, J., and Wallington, T. J.: Evaluated
- 391 kinetic and photochemical data for atmospheric chemistry: Volume VII–Criegee intermediates, Atmos. Chem. Phys., 20, 13497–13519,
- 392 2020.
- 393 Criegee, R.: Mechanism of ozonolysis, Angew. Chem. internat. Edit., 14, 745–752, 1975.

- 394 Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical isomerization in the oxidation of isoprene, Phys. Chem.
- 395 Chem. Phys., 13, 13 607–13 613, 2011.
- 396 Donahue, N. M., Drozd, G. T., Epstein, S. A., Presto, A. A., and Kroll, J. H.: Adventures in ozoneland: down the rabbit-hole, Phys. Chem.
- 397 Chem. Phys., 13, 10848–10857, 2011.
- 398 Ehhalt, D.: Free Radicals in the Atmosphere, Free Radic. Res. Commun., 3, 153–164, 1987.
- 399 Emmerson, K. and Carslaw, N.: Night-time radical chemistry during the TORCH campaign, Atmos. Environ., 43, 3220–3226, 2009.
- 400 Faloona, I., Tan, D., Brune, W., Hurst, J., Barket Jr, D., Couch, T. L., Shepson, P., Apel, E., Riemer, D., Thornberry, T., et al.: Nighttime
- 401 observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy, J. Geophys. Res. Atmos., 106, 24315–
- 402 24 333, 2001.
- 403 Fang, Y., Barber, V. P., Klippenstein, S. J., McCoy, A. B., and Lester, M. I.: Tunneling Effects in the Unimolecular Decay of (CH₃)₂COO
- 404 Criegee Intermediates to OH Radical Products, J. Chem. Phys., 146, 134 307, 2017.
- 405 Feiner, P. A., Brune, W. H., Miller, D. O., Zhang, L., Cohen, R. C., Romer, P. S., Goldstein, A. H., Keutsch, F. N., Skog, K. M., Wennberg,
- 406 P. O., et al.: Testing atmospheric oxidation in an Alabama forest, J. Atmos. Sci., 73, 4699–4710, 2016.
- 407 Fernández-Ramos, A., Miller, J. A., Klippenstein, S. J., and Truhlar, D. G.: Modeling the kinetics of bimolecular reactions, Chem. Rev., 106,
- 408 4518–4584, 2006.
- 409 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A.,
- 410 Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V.,
- 411 Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson,
- 412 T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa,
- 413 J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F.,
- 414 Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari,
- 415 K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W.,
- 416 Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., and Fox, D. J.: Gaussian ~ 16 Revision C.01, gaussian Inc. Wallingford CT,
- 417 2016.
- 418 Gao, Q., Shen, C., Zhang, H., Long, B., and Truhlar, D. G.: Quantitative kinetics reveal that reactions of HO₂ are a significant sink for
- 419 aldehydes in the atmosphere and may initiate the formation of highly oxygenated molecules via autoxidation, Phys. Chem. Phys.,
- 420 26, 16 160–16 174, 2024.
- 421 Geyer, A., Bächmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klüpfel, T., Pätz, H.-W., Perner, D., Mihelcic, D., Schäfer, H.-J., et al.:
- 422 Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies, J. Geophys.
- 423 Res. Atmos., 108, 2003.
- 424 Gomez Alvarez, E., Amedro, D., Afif, C., Gligorovski, S., Schoemaecker, C., Fittschen, C., Doussin, J.-F., and Wortham, H.: Unexpectedly
- 425 high indoor hydroxyl radical concentrations associated with nitrous acid, Proc. Natl. Acad. Sci., 110, 13 294–13 299, 2013.
- 426 Griffith, S. M., Hansen, R., Dusanter, S., Michoud, V., Gilman, J., Kuster, W., Veres, P., Graus, M., De Gouw, J., Roberts, J., et al.: Mea-
- 427 surements of hydroxyl and hydroperoxy radicals during CalNex-LA: Model comparisons and radical budgets, J. Geophys. Res., 121,
- 428 4211–4232, 2016.
- 429 Hall, I. W., Wayne, R. P., Cox, R. A., Jenkin, M. E., and Hayman, G. D.: Kinetics of the reaction of nitrate radical with hydroperoxo, J. Phys.
- 430 Chem., 92, 5049–5054, 1988.

- 431 Harrison, R., Yin, J., Tilling, R., Cai, X., Seakins, P., Hopkins, J., Lansley, D., Lewis, A., Hunter, M., Heard, D., et al.: Measurement and
- 432 modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: Overview of the PUMA Consortium project,
- 433 Sci. Total Environ., 360, 5–25, 2006.
- 434 He, Y., Zhou, X., Hou, J., Gao, H., and Bertman, S. B.: Importance of dew in controlling the air-surface exchange of HONO in rural forested
- environments, Geophys. Res. Lett., 33, 2006.
- 436 Heald, C. L. and Kroll, J. H.: A radical shift in air pollution, Science, 374, 688–689, 2021.
- 437 Heard, D., Carpenter, L., Creasey, D., Hopkins, J., Lee, J., Lewis, A., Pilling, M., Seakins, P., Carslaw, N., and Emmerson, K.: High levels of
- 438 the hydroxyl radical in the winter urban troposphere, Geophys, Res. Lett., 31, 2004.
- 439 Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H., Keronen, P., Kubistin, D., Nölscher, A., et al.: Observation
- 440 and modelling of HO_X radicals in a boreal forest., Atmos. Chem. Phys. Discuss., 13, 2013.
- 441 Hermans, I., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Tropopause chemistry revisited: HO₂-initiated oxidation as an efficient acetone
- sink, J. Am. Chem. Soc., 126, 9908–9909, 2004.
- 443 Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., et al.: Amplified trace
- 444 gas removal in the troposphere, science, 324, 1702–1704, 2009.
- 445 Horie, O. and Moortgat, G.: Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes, Atmos.
- 446 Environ., 25A, 1881–1896, 1991.
- 447 J. Medeiros, D., Blitz, M. A., Seakins, P. W., and Whalley, L. K.: Direct measurements of isoprene autoxidation: Pinpointing atmospheric
- oxidation in tropical forests, JACS Au, 2, 809–818, 2022.
- Johnson, D. and Marston, G.: The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere, Chem. Soc. Rev., 37,
- 450 699–716, 2008.
- 451 Khan, M., Percival, C., Caravan, R., Taatjes, C., and Shallcross, D.: Criegee intermediates and their impacts on the troposphere, Environ.
- 452 Sci.: Process. Impacts, 20, 437–453, 2018.
- 453 Kim, S., Kim, S.-Y., Lee, M., Shim, H., Wolfe, G., Guenther, A. B., He, A., Hong, Y., and Han, J.: Impact of isoprene and HONO chemistry
- on ozone and OVOC formation in a semirural South Korean forest, Atmos. Chem. Phys., 15, 4357–4371, 2015.
- 455 Kumar, A., Mallick, S., and Kumar, P.: Nitrous acid (HONO) as a sink of the simplest Criegee intermediate in the atmosphere, Phys. Chem.
- 456 Chem. Phys., 24, 7458–7465, 2022.
- 457 Lelieveld, J., Peters, W., Dentener, F., and Krol, M.: Stability of tropospheric hydroxyl chemistry, J. Geophys. Res., 107, ACH-17, 2002.
- 458 Lelieveld, J., Dentener, F., Peters, W., and Krol, M.: On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere, Atmos.
- 459 Chem. Phys., 4, 2337–2344, 2004.
- 460 Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem.
- 461 Phys., 16, 12477–12493, 2016.
- 462 Lelieveld, J. a., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli,
- D., et al.: Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452, 737–740, 2008.
- 464 Lew, M. M., Rickly, P. S., Bottorff, B. P., Reidy, E., Sklaveniti, S., Léonardis, T., Locoge, N., Dusanter, S., Kundu, S., Wood, E., et al.: OH
- and HO₂ radical chemistry in a midlatitude forest: measurements and model comparisons, Atmos. Chem. Phys., 20, 9209–9230, 2020.
- 466 Li, Y., Wang, X., Wu, Z., Li, L., Wang, C., Li, H., Zhang, X., Zhang, Y., Li, J., Gao, R., et al.: Atmospheric nitrous acid (HONO) in an alternate
- 467 process of haze pollution and ozone pollution in urban Beijing in summertime: Variations, sources and contribution to atmospheric
- 468 photochemistry, Atmos. Res., 260, 105 689, 2021.

- 469 Lin, H.-Y., Huang, Y.-H., Wang, X., Bowman, J. M., Nishimura, Y., Witek, H. A., and Lee, Y.-P.: Infrared identification of the Criegee
- 470 intermediates syn-and anti-CH₃CHOO, and their distinct conformation-dependent reactivity, Nat. Commun., 6, 7012, 2015.
- 471 Lin, L.-C., Chang, H.-T., Chang, C.-H., Chao, W., Smith, M. C., Chang, C.-H., Takahashi, K., et al.: Competition between H₂O and (H₂O)₂
- 472 reactions with CH₂OO/CH₃CHOO, Phys. Chem. Chem. Phys., 18, 4557–4568, 2016.
- 473 Long, B., Bao, J. L., and Truhlar, D. G.: Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with
- 474 Water, J. Am. Chem. Soc., 138, 14409–14422, 2016.
- 475 Long, B., Wang, Y., Xia, Y., He, X., Bao, J. L., and Truhlar, D. G.: Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a
- 476 Triple-Level Strategy, J. Am. Chem. Soc., 143, 8402–8413, 2021.
- 477 Long, B., Xia, Y., and Truhlar, D. G.: Quantitative kinetics of HO₂ reactions with aldehydes in the atmosphere: High-order dynamic corre-
- 478 lation, anharmonicity, and falloff effects are all important, J. Am. Chem. Soc., 144, 19910–19920, 2022.
- 479 Lu, K., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C., Häseler, R., Hu, M., Kita, K., et al.: Observation and modelling
- of OH and HO₂ concentrations in the Pearl River Delta 2006; a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12,
- 481 1541–1569, 2012.
- 482 Lu, X., Park, J., and Lin, M.-C.: Gas phase reactions of HONO with NO₂, O₃, and HCl: Ab initio and TST study, J. Phys. Chem. A, 104,
- 483 8730–8738, 2000.
- 484 Mallick, S. and Kumar, P.: Impact of Post-CCSD(T) Corrections on Reaction Energetics and Rate Constants of the OH* + HCl Reaction, J.
- 485 Phys. Chem. A, 122, 7151–7159, 2018.
- 486 Mallick, S. and Kumar, P.: The reaction of N₂O with the Criegee intermediate: A theoretical study, Comput. Theor. Chem., 1191, 113 023,
- 487 2020.
- 488 Mallick, S., Kumar, A., and Kumar, P.: Revisiting the reaction energetics of the $CH_3O^{\bullet} + O_2$ ($^3\Sigma^-$) reaction: the crucial role of post-
- 489 CCSD(T) corrections, Phys. Chem. Chem. Phys., 21, 6559–6565, 2019.
- 490 Mellouki, A., Le Bras, G., and Poulet, G.: Kinetics of the reactions of nitrate radical with hydroxyl and hydroperoxo, J. Phys. Chem. A, 92,
- 491 2229-2234, 1988.
- 492 Mellouki, A., Talukdar, R., Bopegedera, A., and Howard, C. J.: Study of the kinetics of the reactions of NO₃ with HO₂ and OH, Int. J. Chem.
- 493 Kinet., 25, 25–39, 1993.
- 494 Misiewicz, J. P., Elliott, S. N., Moore, K. B., and Schaefer, H. F.: Re-examining ammonia addition to the Criegee intermediate: converging
- 495 to chemical accuracy, Phys. Chem. Chem. Phys., 20, 7479–7491, 2018.
- 496 Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc. Rev., 34, 376–395, 2005.
- 497 Nguyen, T. L., Li, J., Dawes, R., Stanton, J. F., and Guo, H.: Accurate determination of barrier height and kinetics for the F + $H_2 \rightarrow HF$ +
- 498 OH reaction, J. Phys. Chem. A, 117, 8864–8872, 2013.
- 499 Novelli, A., Vereecken, L., Lelieveld, J., and Harder, H.: Direct observation of OH formation from stabilised Criegee intermediates, Phys.
- 500 Chem. Chem. Phys., 16, 19 941–19 951, 2014.
- 501 Novelli, A., Hens, K., Tatum Ernest, C., Martinez, M., Nölscher, A. C., Sinha, V., Paasonen, P., Petäjä, T., Sipilä, M., Elste, T., et al.:
- 502 Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument, Atmos.
- 503 Chem. Phys., 17, 7807–7826, 2017.
- 504 Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Reimer, D., Rohrer, F., Rosanka, S., et al.:
- 505 Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric
- simulation chamber SAPHIR, Atmos. Chem. Phys., 20, 3333–3355, 2020.

- 507 Onel, L., Lade, R., Mortiboy, J., Blitz, M. A., Seakins, P. W., Heard, D. E., and Stone, D.: Kinetics of the gas phase reaction of the Criegee
- intermediate CH₂OO with SO₂ as a function of temperature, Phys. Chem. Chem. Phys., 23, 19415–19423, 2021.
- 509 Osborn, D. L. and Taatjes, C. A.: The physical chemistry of Criegee intermediates in the gas phase, Int. Rev. Phys. Chem., 34, 309–360,
- 510 2015.
- 511 Østerstrøm, F. F., Carter, T. J., Shaw, D. R., Abbatt, J. P., Abeleira, A., Arata, C., Bottorff, B. P., Cardoso-Saldaña, F. J., DeCarlo, P. F.,
- Farmer, D. K., et al.: Modelling indoor radical chemistry during the HOMEChem campaign, Environ. Sci.: Process. Impacts, 2025.
- 513 Pansini, F., Neto, A., and Varandas, A.: Extrapolation of Hartree-Fock and multiconfiguration self-consistent-field energies to the complete
- 514 basis set limit, Theor. Chem. Acc., 135, 1–6, 2016.
- 515 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation
- in the gas-phase photooxidation of isoprene, science, 325, 730–733, 2009.
- 517 Pawar, P. V., Mahajan, A. S., and Ghude, S. D.: HONO chemistry and its impact on the atmospheric oxidizing capacity over the Indo-Gangetic
- 518 Plain, Sci. Total Environ., p. 174604, 2024.
- Peeters, J. and Mu"ller, J.-F.: HO_X radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: experimental evidence
- 520 and global impact, Phys. Chem. Chem. Phys., 12, 14 227–14 235, 2010.
- 521 Peeters, J., Nguyen, T. L., and Vereecken, L.: HO_X radical regeneration in the oxidation of isoprene, Phys. Chem. Chem. Phys., 11, 5935–
- 522 5939, 2009.
- 523 Peeters, J., Muller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and
- 524 hydrogen tunneling: The upgraded LIM1 mechanism, J. Phys. Chem. A, 118, 8625–8643, 2014.
- 525 Prinn, R. G.: The Cleansing Capacity of the Atmosphere, Annu. Rev. Environ. Resour., 28, 29–57, 2003.
- 526 Rai, P. K. and Kumar, P.: Role of post-CCSD (T) corrections in predicting the energetics and kinetics of the OH• + O₃ reaction, Phys. Chem.
- 527 Chem. Phys., 24, 13 026–13 032, 2022.
- 528 Rai, P. K. and Kumar, P.: Accurate determination of reaction energetics and kinetics of HO[♠] +O₃ → OH[♠] +2O₂ reaction, Phys. Chem. Chem.
- 529 Phys., 25, 8153–8160, 2023.
- Fig. 70 Rai, P. K. and Kumar, P.: Mechanistic Inside into the Gas-Phase NO₃ + HO₂ Reaction, J. Phys. Chem. A, 128, 7907–7913, 2024.
- 531 Rai, P. K. and Kumar, P.: Influence of Water on the NO₃ + HO₂ Reaction, J. Phys. Chem. A, 129, 2067–2076, 2025.
- 532 Reidy, E., Bottorff, B. P., Rosales, C. M. F., Cardoso-Saldaña, F. J., Arata, C., Zhou, S., Wang, C., Abeleira, A., Hildebrandt Ruiz, L.,
- 533 Goldstein, A. H., et al.: Measurements of hydroxyl radical concentrations during indoor cooking events: Evidence of an unmeasured
- photolytic source of radicals, Environ. Sci. Technol., 57, 896–908, 2023.
- 535 Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H.: HO_X concentrations
- and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ., 37, 3627–3637, 2003.
- 537 Ren, X., Brune, W. H., Oliger, A., Metcalf, A. R., Simpas, J. B., Shirley, T., Schwab, J. J., Bai, C., Roychowdhury, U., Li, Y., et al.: OH,
- HO₂, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002 campaign: Observations and model comparison, J. Geophys.
- 539 Res. Atmos., 111, 2006.
- Ren, X., Gao, H., Zhou, X., Crounse, J., Wennberg, P., Browne, E., LaFranchi, B., Cohen, R., McKay, M., Goldstein, A., et al.: Measurement
- of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007, Atmos. Chem. Phys., 10, 6283–6294, 2010.
- 542 Rondon, A. and Sanhueza, E.: High HONO atmospheric concentrations during vegetation burning in the tropical savannah, Tellus B, 41,
- 543 474–477, 1989.

- 544 Ruscic, B. and Bross, D. H.: Active Thermochemical Tables (ATcT) Thermochemical Values ver. 1.122v,
- 545 https://doi.org/10.17038/CSE/1885921, 2021.
- 546 Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A.,
- et al.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, 2019.
- 548 Shabin, M., Kumar, A., Hakkim, H., Rudich, Y., and Sinha, V.: Sources, sinks, and chemistry of stabilized Criegee intermediates in the
- indo-gangetic plain, Sci. Total Environ., 896, 165 281, 2023.
- 550 Sheps, L., Scully, A. M., and Au, K.: UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH₃CHOO,
- 551 Phys. Chem. Chem. Phys., 16, 26701–26706, 2014.
- 552 Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F.,
- et al.: Elevated levels of OH observed in haze events during wintertime in central Beijing, Atmos. Chem. Phys., 20, 14 847–14 871, 2020.
- 554 Smith, M. C., Chao, W., Takahashi, K., Boering, K. A., and Lin, J. J.-M.: Unimolecular decomposition rate of the Criegee intermediate
- 555 (CH₃)₂COO measured directly with UV absorption spectroscopy, J. Phys. Chem. A, 120, 4789–4798, 2016.
- 556 Smith, S., Lee, J., Bloss, W., Johnson, G., Ingham, T., and Heard, D.: Concentrations of OH and HO₂ radicals during NAMBLEX: measure-
- ments and steady state analysis, Atmos. Chem. Phys., 6, 1435–1453, 2006.
- 558 Song, M., Zhao, X., Liu, P., Mu, J., He, G., Zhang, C., Tong, S., Xue, C., Zhao, X., Ge, M., et al.: Atmospheric NO_X oxidation as major
- sources for nitrous acid (HONO), npj clim. atmos. sci., 6, 30, 2023.
- 560 Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO₂ radicals: field measurements and model comparisons, Chem. Soc.
- 561 Rev., 41, 6348–6404, 2012.
- 562 Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, Y. H., and Wiedensohler, A.: Nitrous acid (HONO) and
- its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China, J. Geophys. Res. Atmos., 113, 2008.
- 564 Taatjes, C. A.: Criegee intermediates: What direct production and detection can teach us about reactions of carbonyl oxides, Annu. Rev.
- 565 Phys. Chem., 68, 183–207, 2017.
- 566 Tajti, A., Szalay, P. G., Császár, A. G., Kállay, M., Gauss, J., Valeev, E. F., Flowers, B. A., Vázquez, J., and Stanton, J. F.: HEAT: High
- accuracy extrapolated ab initio thermochemistry, J. Chem. Phys., 121, 11599–11613, 2004.
- 568 Tan, D., Faloona, I., Simpas, J., Brune, W., Shepson, P., Couch, T., Sumner, A., Carroll, M., Thornberry, T., Apel, E., et al.: HO_X budgets in
- a deciduous forest: Results from the PROPHET summer 1998 campaign, J. Geophys. Res. Atmos., 106, 24407–24427, 2001.
- 570 Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., et al.: Radical chemistry at a
- rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO₂ and RO₂ radicals, Atmos. Chem. Phys., 17,
- 572 663–690, 2017.
- 573 Teng, A. P., Crounse, J. D., and Wennberg, P. O.: Isoprene peroxy radical dynamics, J. Am. Chem. Soc., 139, 5367–5377, 2017.
- 574 Varandas, A. and Pansini, F.: Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified
- singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems, J. Chem. Phys., 141, 224 113, 2014.
- 576 Vereecken, L.: The reaction of Criegee intermediates with acids and enols, Phys. Chem. Chem. Phys., 19, 28 630–28 640, 2017.
- 577 Vereecken, L. and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms in the troposphere, Chem. Soc. Rev., 41, 6259–
- 578 6293, 2012.
- 579 Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere,
- 580 Phys. Chem. Chem. Phys., 14, 14682–14695, 2012.

- 581 Vereecken, L., Harder, H., and Novelli, A.: The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides, Phys. Chem.
- 582 Chem. Phys., 16, 4039–4049, 2014.
- 583 Vereecken, L., Rickard, A., Newland, M., and Bloss, W.: Theoretical study of the reactions of Criegee intermediates with ozone, alkylhy-
- droperoxides, and carbon monoxide, Phys. Chem. Phys., 17, 23 847–23 858, 2015.
- 585 Vereecken, L., Novelli, A., and Taraborrelli, D.: Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates, Phys.
- 586 Chem. Chem. Phys., 19, 31 599–31 612, 2017.
- 587 Viegas, L. P. and Varandas, A. J.: Can water be a catalyst on the HO₂ + H₂O + O₃ reactive cluster?, Chem. Phys., 399, 17–22, 2012.
- Wallington, T. J. and Japar, S. M.: Fourier transform infrared kinetic studies of the reaction of HONO with HNO₃, NO₃ and N₂O₅ at 295 K,
- 589 J. Atmos. Chem., 9, 399–409, 1989.
- 590 Weinstock, B.: Carbon monoxide: Residence time in the atmosphere, Science, 166, 224–225, 1969.
- 591 Whalley, L., Edwards, P., Furneaux, K., Goddard, A., Ingham, T., Evans, M. J., Stone, D., Hopkins, J., Jones, C. E., Karunaharan, A., et al.:
- Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest, Atmos. Chem. Phys., 11, 7223–7233, 2011.
- 593 Yang, X., Wang, H., Lu, K., Ma, X., Tan, Z., Long, B., Chen, X., Li, C., Zhai, T., Li, Y., et al.: Reactive aldehyde chemistry explains the
- missing source of hydroxyl radicals, Nat. Commun., 15, 1648, 2024.
- 595 Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P., and Carroll, M.: Measurements of ambient HONO concentrations
- and vertical HONO flux above a northern Michigan forest canopy, Atmos. Chem. Phys., 12, 8285–8296, 2012.
- 597 Zhang, Q., Tie, X., Lin, W., Cao, J., Quan, J., Ran, L., and Xu, W.: Variability of SO₂ in an intensive fog in North China Plain: Evidence of
- high solubility of SO₂, Particuology, 11, 41–47, 2013.
- 599 Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shepson, P. B., Carroll, M. A., Griffith, S., et al.: Nitric
- acid photolysis on forest canopy surface as a source for tropospheric nitrous acid, Nat. Geosci., 4, 440–443, 2011.

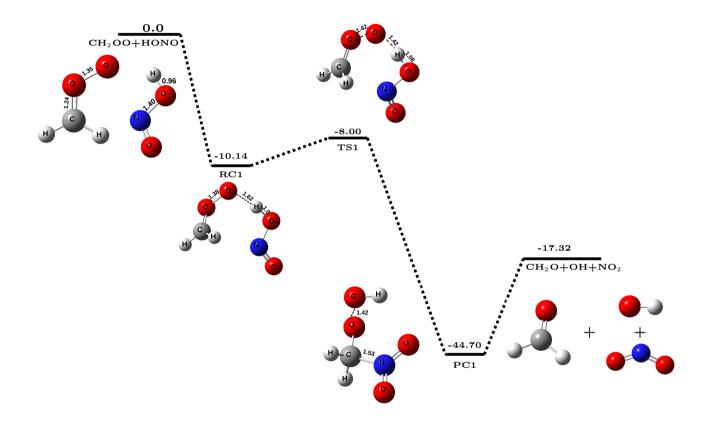


Figure 1. The potential energy surface for $CH_2OO + HONO$ reaction (in kcal mol^{-1}) obtained at CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory along with optimized geometries of species involved in the reaction.

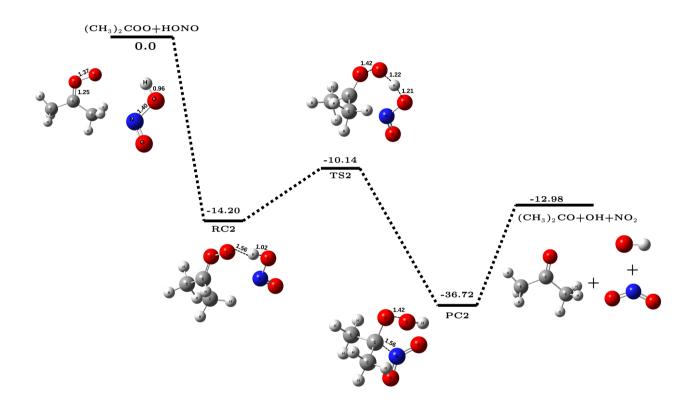


Figure 2. The potential energy surface for $(CH_3)_2COO + HONO$ reaction (in kcal mol⁻¹) obtained at CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory along with optimized geometries of species involved in the reaction.

Table 1. Bimolecular rate constants $(k_{bi}$, in cm³ molecule⁻¹ sec⁻¹) for CH₂OO/(CH₃)₂COO + HONO reaction within the temperature range of 213–320 K.

T (K)	$\mathbf{k}_{bi}^{CH_2OO}$	$\mathbf{k}_{bi}^{(CH_3)_2COO}$
213	1.17×10^{-11}	4.28×10^{-11}
216	1.15×10^{-11}	4.18×10^{-11}
219	1.13×10^{-11}	4.09×10^{-11}
224	1.11×10^{-11}	3.94×10^{-11}
235	1.04×10^{-11}	3.61×10^{-11}
250	9.58×10^{-12}	3.18×10^{-11}
259	9.10×10^{-12}	2.94×10^{-11}
265	8.79×10^{-12}	2.78×10^{-11}
278	8.14×10^{-12}	2.47×10^{-11}
280	8.04×10^{-12}	2.42×10^{-11}
290	7.57×10^{-12}	2.20×10^{-11}
298	7.21×10^{-12}	2.03×10^{-11}
300	7.13×10^{-12}	1.99×10^{-11}
310	6.70×10^{-12}	1.80×10^{-11}
320	6.30×10^{-12}	1.63×10^{-11}

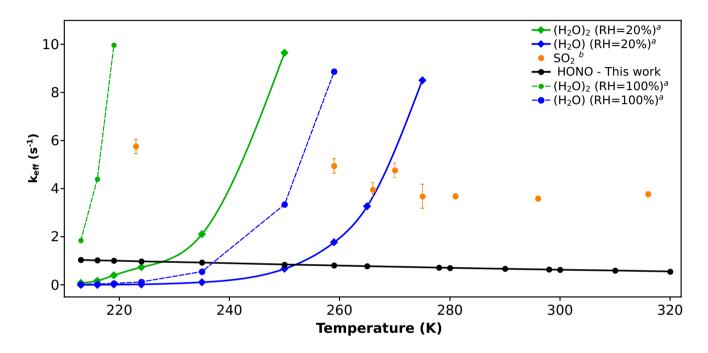
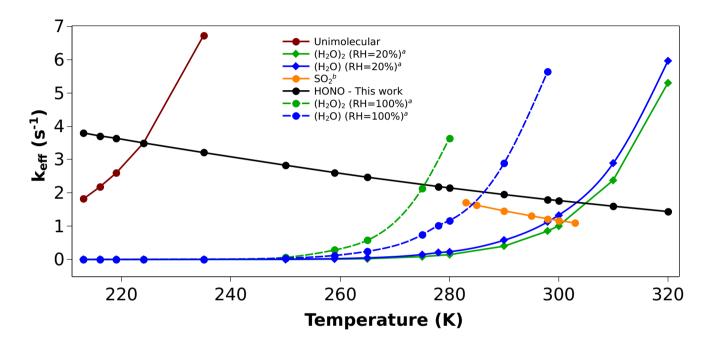



Figure 3. Effective rate constant comparison (k_{eff} , in sec⁻¹) of CH₂OO + HONO with the k_{eff} of previously known sinks of CH₂OO. a. Values are taken from reference (Lin et al., 2016)

b. Values are taken from reference (Onel et al., 2021)

Figure 4. Effective rate constant comparison $(k_{eff}, \text{ in } \sec^{-1})$ of $(CH_3)_2COO + HONO$ with the k_{eff} of previously known sinks of $(CH_3)_2COO$.

- a. Values are taken from reference (Vereecken et al., 2017)
- b. Values are taken from reference (Smith et al., 2016)

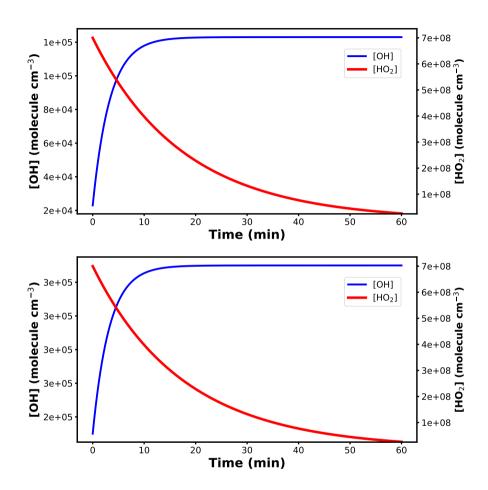


Figure 5. Top panel: Concentration profiles of HO_2^{\bullet} and OH^{\bullet} using $CH_2OO + HONO$ reaction into the model. Bottom panel: Concentration profiles of HO_2^{\bullet} and OH^{\bullet} using $(CH_3)_2COO + HONO$ reaction into the model.