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Abstract.  21 

The Multi-Angle Imager for Aerosols (MAIA) satellite mission, to be jointly implemented by 22 

NASA and the Italian Space Agency with an expected 2026 launch, aims to study how different 23 

types of particulate matter (PM) pollution affect human health. The investigation will primarily 24 

focus on a discrete set of globally distributed Primary Target Areas (PTAs) containing major 25 

metropolitan cities, and will integrate satellite observations, ground observations, and chemical 26 

transport model (CTM) outputs (meteorology variables and PM concentrations) to generate maps 27 

of near-surface total and speciated PM within the PTAs. In addition, the MAIA investigation will 28 

provide satellite measurements of aerosols over a set of Secondary Target Areas (STAs), which 29 

are useful for studying air quality more broadly. For the CTM, we have developed a Unified Inputs 30 

(of initial and boundary conditions) for WRF-Chem (UI-WRF-Chem) modeling framework to 31 

support the MAIA satellite mission, building upon the standard WRF-Chem model. The 32 

framework includes newly developed modules and major enhancements that aim to improve model 33 

simulated meteorology variables, total and speciated PM concentrations as well as AOD. These 34 

developments include: (1) application of NASA GEOS FP and MERRA-2 data to provide both 35 

meteorological and chemical initial and boundary conditions for performing WRF-Chem 36 

simulations at a fine spatial resolution for both forecast and reanalysis modes; (2) application of 37 

GLDAS and NLDAS data to constrain surface soil properties such as soil moisture; (3) application 38 

of recent available MODIS land data to improve land surface properties such as land cover type; 39 

(4) development of a new soil NOx emission scheme – the Berkeley Dalhousie Iowa Soil NO 40 

Parameterization (BDISNP); (5) development of a stand-alone emission preprocessor that ingests 41 

both global and regional anthropogenic emission inventories as well as fire emissions. 42 
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 43 

Here, we illustrate the model improvements enabled by these developments over four target areas: 44 

Beijing in China, CHN-Beijing (STA); Rome in Italy, ITA-Rome (PTA); Los Angeles in the U.S., 45 

USA-Angeles (PTA), and Atlanta in the U.S., USA-Atlanta (PTA). UI-WRF-Chem is configured 46 

as 2 nested domains using an outer domain (D1) and inner domain (D2) with 12 km and 4 km 47 

spatial resolution, respectively. For each target area, we first run a suite of simulations to test the 48 

model sensitivity to different physics schemes and then select the optimal combination based on 49 

evaluation of model simulated meteorology with ground observations. For the inner domain (D2), 50 

we have chosen to turn off the traditional Grell 3D ensemble (G3D) cumulus scheme. We 51 

conducted a case study over USA-Atlanta for June 2022 to demonstrate the impacts of the cumulus 52 

scheme on precipitation and subsequent total and speciated PM2.5 concentrations. Our results show 53 

that keeping the G3D cumulus scheme turned on results in higher precipitation and lower total and 54 

speciated PM2.5 than the simulation with the G3D cumulus scheme turned off. Compared with 55 

surface observations of precipitation and PM2.5 concentration, the simulation with the G3D scheme 56 

off shows better performance. We focus on two dust intrusion events over CHN-Beijing and ITA-57 

Rome, which occurred in March 2018 and June 2023, respectively. We carried out a suite of 58 

sensitivity simulations using UI-WRF-Chem by excluding chemical boundary conditions or 59 

including MERRA-2 chemical boundary conditions. Our results show that using MERRA-2 data 60 

to provide chemical boundary conditions can help improve model simulation of surface PM 61 

concentrations and AOD. Some of the target areas have also experienced significant changes in 62 

land cover and land use over the past decade. Our case study over CHN-Beijing in July 2018 63 

investigates the impacts of improved land surface properties with recent available MODIS land 64 

data for capturing the urban heat island phenomenon. Model-simulated surface skin temperature 65 

shows better agreement with MODIS observed land surface temperature. The updated soil NOx 66 

emission scheme in July 2018 also leads to higher NO2 vertical column density (VCD) in rural 67 

areas within the CHN-Beijing target area, which matches better with TROPOMI observed NO2 68 

VCD. This in turn affects the simulation of surface nitrate concentration. Lastly, we conducted a 69 

case study over USA-LosAngeles to tune dust emissions. These examples illustrate the fine-tuning 70 

work conducted over each target area for the purpose of evaluating and improving model 71 

performance.  72 

1. Introduction  73 

Ambient particulate matter (PM) pollution has been ranked as the top environmental risk factor 74 

for premature deaths (Forouzanfar et al., 2016). The integrated use of satellite and chemical 75 

transport model (CTM) outputs have shed light on the impacts of PM2.5 (PM with aerodynamic 76 

diameter less than 2.5m) on public health in the past decade (Cohen et al., 2017; Wang et al., 77 

2021a). Satellite-retrieved aerosol data products such as aerosol optical depth (AOD) have been 78 

widely used to estimate ground-level PM2.5 concentration over the past two decades (e.g., Shin et 79 

al., 2020; Van Donkelaar et al., 2006; Wang and Christopher, 2003) due to the wide spatial 80 

coverage achievable from spaceborne observations. Because of uncertainties in remote sensing 81 

retrievals and the complex AOD-PM2.5 relationship (Wang and Christopher, 2003), satellite- 82 

derived ground-level PM2.5 have been combined with ground observations of PM2.5 and/or CTM 83 

simulated PM2.5 to form a hybrid method of providing a new data source for epidemiological health 84 

studies (e.g., Van Donkelaar et al., 2010; Holloway et al., 2021; Diao et al., 2019). This hybrid 85 

method has also been used for estimating PM2.5 component concentration and its application in 86 
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health-related studies (Philip et al., 2014; Li et al., 2021; Hu et al., 2019; Wei et al., 2023). The 87 

association between exposure to PM and mortality has been well established. However, since 88 

ambient PM is a complex mixture of particles that vary in size, shape and chemical composition, 89 

there remains uncertainty in understanding the relative toxicity of different PM types to human 90 

health (Sangkham et al., 2024; Weichenthal et al., 2024).  91 

 92 

The Multi-Angle Imager for Aerosols (MAIA) satellite mission to be jointly implemented by the 93 

National Aeronautics and Space Administration (NASA) (Diner et al., 2018) and the Italian Space 94 

Agency (ASI) has a key objective to map PM composition and study the impacts of different types 95 

of PM on human health (Liu and Diner, 2017). The MAIA instrument builds upon the work of the 96 

Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard NASA’s Terra spacecraft, 97 

which has been retrieving aerosol properties including aerosol type since February 2000 (Diner et 98 

al., 1998; Kahn et al., 2005). MISR has also been one of the commonly used satellite instruments 99 

for mapping global PM concentration for studying air quality and public health (Liu et al., 2009; 100 

Holloway et al., 2021; Meng et al., 2018). The MAIA instrument contains a pointable 14-101 

wavelength pushroom camera, spanning the ultraviolet (UV), visible and near-infrared (VNIR) 102 

and shortwave infrared (SWIR) regions of the electromagnetic spectrum to measure the spectral 103 

radiance of sunlight scattered by the Earth’s atmosphere and surface. Three of the bands are 104 

polarimetric to further help constrain aerosol particle properties. The MAIA investigation will 105 

focus on a globally distributed set of primary target areas (PTAs) 106 

(https://maia.jpl.nasa.gov/mission/#target_areas) for PM health studies, which include 107 

metropolitan cities. For each PTA, it will employ Geostatistical Regression Models (GRMs), to 108 

generate maps of surface total PM2.5, PM10 and speciated PM including sulfate, nitrate, dust, 109 

organic carbon (OC) and elemental carbon (EC). The GRMs use satellite retrieved aerosol 110 

parameters, CTM outputs (meteorological variables along with total and speciated PM mass 111 

concentrations) and other ancillary information such as population density data as predictors. 112 

Surface observations of total and speciated PM are used to train the GRMs (i.e., determine the 113 

coefficients of the model predictors) (Jin et al., 2024).  114 

 115 

Our work here introduces the development of the Unified Inputs (of initial and boundary 116 

conditions) for WRF-Chem (UI-WRF-Chem) as the CTM for supporting the MAIA satellite 117 

mission, based on the standard WRF-Chem model (Fast et al., 2006; Grell et al., 2005). Since 118 

metrological variables as well as total and speciated PM mass concentrations from UI-WRF-Chem 119 

outputs are used in the GRMs to derive the total and speciated PM maps, we have implemented 120 

major updates in UI-WRF-Chem that aim to improve model simulated meteorology variables or 121 

PM concentration through the integrated use of satellite and ground-based observations. Because 122 

WRF-Chem is an online coupled chemical transport model, the improvement of aerosol 123 

concentration simulation could also enhance the simulation of meteorology through the 124 

incorporation of aerosol radiation feedback, especially in polluted regions such as Delhi, India 125 

(Chutia et al., 2024).  126 

 127 

The UI-WRF-Chem modeling framework builds upon the standard WRF-Chem model with newly 128 

developed modules and major enhancements that enable integration of NASA Goddard Earth 129 

Observing System (GEOS) data for unified meteorology and chemistry inputs, updates of land 130 

surface properties with recent available Moderate Resolution Imaging Spectroradiometer 131 

(MODIS) land data, and expanded emission processing capabilities:  132 

https://maia.jpl.nasa.gov/mission/#target_areas
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• First, we use the NASA GEOS products including both GEOS Forward Processing (FP) and Modern-Era 133 

Retrospective Analysis for Research and Application, version 2 (MERRA-2) data to provide both 134 

meteorological and chemical initial and boundary conditions for performing WRF-Chem simulation with a 135 

finer spatial resolution in forecasting and reanalysis modes, which allows for consistency between 136 

meteorology and chemistry. The NASA GEOS system assimilates satellite observations of aerosol products 137 

(Randles et al., 2017). Using these assimilated data to provide chemical initial and boundary conditions for 138 

WRF-Chem simulations over MAIA target areas would be computationally efficient for capturing long-range 139 

or regional transport without enlarging the model domain to include the emission sources. A number of 140 

studies have demonstrated the influence of chemical boundary conditions on regional air pollution in the 141 

domain of interests, when running WRF-Chem (e.g., Mo et al., 2021; Ukhov et al., 2020; Roozitalab et al., 142 

2021; Wang et al., 2004).  143 

 144 
• Second, we employ data from the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) or 145 

the North American Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) to constrain soil 146 

properties such as soil moisture in WRF-Chem. Soil properties are critical for weather forecasts, biogenic 147 

emission estimates and dust storm simulation (Han et al., 2021), and ultimately, air quality prediction 148 

(Thomas et al., 2019; Jenkins and Diokhane, 2017; De Rosnay et al., 2014). Both GLDAS and NLDAS 149 

provide optimized initial soil conditions with a high spatial and temporal resolution for numerical weather 150 

forecasting (Dillon et al., 2016; Xia et al., 2014). Better estimates of soil properties also enhance the 151 

simulation of soil NOx emissions, serving as an important part of the total global NOx budget (Jaeglé et al., 152 

2005), and subsequently improve the simuatlion of nitrate aerosols.  153 

 154 
• Third, we use recent available MODIS land data to update static land surface properties such as land cover 155 

type in WRF-Chem. Some of the default land surface properties used in WRF-Chem are out of date. Using 156 

recent available MODIS land data to update land surface properties would help improve mesoscale model 157 

performances (Li et al., 2014; Li et al., 2017a; Aegerter et al., 2017; Wang et al., 2023). 158 

 159 
• Fourth, we develop the Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP) scheme for simulating 160 

soil NOx (NO + NO2) emissions, building upon the Berkeley Dalhousie Soil NO Parameterization (BDSNP) 161 

scheme (Hudman et al., 2012). Previous study showed that the default soil NOx emissions in WRF-Chem 162 

could be underestimated by a factor of 10 in some regions (Oikawa et al., 2015). Since soil NOx emissions 163 

play a critical role in the formation of ozone (O3) and nitrate aerosols (Sha et al., 2021; Lin et al., 2021), their 164 

accurate representation in the model is essential.  165 

 166 
• Finally, we develop a stand-alone WRF-Chem Emission Preprocessing System (WEPS) that ingests both 167 

global and regional anthropogenic emission inventories as well as fire emissions. Because anthropogenic and 168 

fire emissions are important for aerosol simulations in the model, building our own emission preprocessor 169 
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allows us the opportunities to optimize existing emission inventories and add new ones, including those from 170 

top-down estimates (Wang et al., 2020b; Wang et al., 2020c).  171 

 172 

In this paper, we present the developments of the UI-WRF-Chem modeling framework and 173 

illustrate the resulting model improvements. We focus on four target areas, three of which are 174 

MAIA PTAs: Rome, Italy (ITA-Rome), Los Angeles, California (USA-LosAngeles) and Atlanta, 175 

Georgia (USA-Atlanta). We also include Beijing, China (CHN-Beijing), which is MAIA 176 

secondary target areas (STAs). STAs are regions that will be observed by the MAIA satellite 177 

instrument but not necessarily processed to the same level as PTAs. These four target areas 178 

together provide a good representation of the range of PM pollution levels from low (Los Angeles 179 

and Atlanta), to high (Beijing) with Rome in the middle. Some of our previous studies have focused 180 

on other MAIA PTAs using the UI-WRF-Chem modeling framework. Li et al. (2024) developed 181 

an inverse modeling method to improve the diurnal profile of anthropogenic emissions in the Addis 182 

Ababa, Ethiopia PTA, using surface-based PM observations from both U.S. Embassy sites and 183 

PurpleAir sensors. Chutia et al. (2024) investigated the impacts of aerosol-radiation interaction on 184 

air quality in the Delhi, India PTA. Overall, current work along with previous work can provide a 185 

good picture of the model performance for different applications. This paper is organized as 186 

follows: Section 2 focuses on the description of the UI-WRF-Chem model development; Section 187 

3 provides the model configuration used in the target areas; Section 4 analyzes the Case studies 188 

for different target areas; and Section 5 presents Conclusions and discussion.  189 

2. UI-WRF-Chem development  190 

In this section, we first provide a brief overview of the MAIA PM products to illustrate the role of 191 

UI-WRF-Chem. We then describe the development of the UI-WRF-Chem modelling framework, 192 

emphasizing the major updates and key components designed to address the needs of the MAIA 193 

satellite mission.  194 

2.1 Overview of MAIA PM products 195 

The MAIA PM products to be generated in the PTAs include a Level 2 (L2) PM product and a 196 

Level 4 (L4) Gap-Filled PM (GFPM) product. Both L2 and L4 PM products include 24-hr 197 

averaged total and speciated PM mass concentration with a spatial resolution of 1 km within 198 

bounding boxes measuring 360 km x 480 km (east-west x north-south) size. The L2 PM data are 199 

only available for days corresponding to MAIA satellite overpasses (typically 3–4 times per week 200 

in the PTAs) at locations with valid MAIA aerosol retrievals. The L4 PM data merge L2 satellite-201 

derived PM concentration with bias-corrected PM concentrations from UI-WRF-Chem outputs 202 

and are therefore spatially (covering the whole target area) and temporally (daily) “complete”. The 203 

L2 PM product is derived using GRMs which take the satellite retrieved aerosol parameters, 204 

meteorological variables and total and speciated PM concentrations from UI-WRF-Chem and 205 

other ancillary information such as population density data as predictors and surface observations 206 

of total and speciated PM concentrations as target variables. GRMs are trained for each PM type 207 

and each PTA. For the launch-ready version of the GRMs, four meteorological variables from UI-208 

WRF-Chem are used: 2 m air temperature, 10 m wind speed, surface relative humidity (RH) and 209 

planetary boundary layer height (PBLH). To generate the L4 GFPM product, separately trained 210 
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GRMs are employed to generate a bias-corrected, CTM-based PM product where the primary 211 

predictor is the CTM-generated PM concentration, rather than the satellite-retrieved aerosol optical 212 

depth. Other predictors and target variables are the same as those used in the generation of L2 PM 213 

product. For areas where both satellite-derived L2 PM and CTM-based PM products are available, 214 

these two products are then combined using weights derived from a Bayesian Ensemble Averaging 215 

model to generate the final L4 GFPM product. More detailed information can be found in Jin et 216 

al. (2024).  217 

 218 

Two versions of the MAIA L2 PM and L4 GFPM products will be generated as part of the routine 219 

processing: the “forecast” and the “reanalysis” version. For the forecast product version, GEOS 220 

FP meteorology is used for model initial and boundary conditions and GEOS FP fields of aerosols 221 

and aerosol precursors will also be used to specify boundary conditions of atmospheric 222 

composition. The reanalysis versions replace GEOS FP variables with outputs from MERRA-2 223 

data. Due to the ~ 6 month latency of speciated PM2.5 data from surface monitors, the forecast 224 

versions will rely on previously available measurements. Generation of the reanalysis products 225 

will nominally occur on an annual basis and will benefit from more complete surface monitor 226 

datasets. More detailed information about the PM products can be found at 227 

https://maia.jpl.nasa.gov/resources/data-and-applications/. 228 

2.2 Overview of UI-WRF-Chem modeling framework  229 

To meet these needs, UI-WRF-Chem is designed to operate in both forecasting (or near real time, 230 

NRT) and reanalysis modes. We use the NASA GEOS model data: GEOS FP in forecasting or 231 

NRT mode and MERRA-2 in reanalysis mode to drive WRF-Chem simulations by providing self-232 

consistent and unified meteorological and chemical initial and boundary conditions, referred to as 233 

the Unified Inputs (of initial and boundary conditions) for meteorology and chemistry. Figure 1 234 

presents the flowchart of the UI-WRF-Chem modeling framework. Here, we provide a brief 235 

description of the UI-WRF-Chem framework, outline the components included in the standard 236 

WRF-Chem model and highlight the major updates we have introduced.  237 

 238 
Figure 1. Flowchart of UI-WRF-Chem modeling framework. Pink parallelogram represent input datasets used, including 239 
meteorological, land surface and emission data. Rounded rectangles represent different modules and processes within the UI-WRF-240 
Chem framework. Blue rounded rectangles denote standard WRF-Chem components without any changes, except for GEOS2WRF, 241 
which is from NASA’s NU-WRF framework. Yellow round rectangles represent modified modules based on standard WRF-Chem 242 
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components, except for LDAS2WRF, which is adapted from GEOS2WRF. Orange rounded rectangles indicate new modules 243 
developed in this work. The input datasets and modules enclosed within the dashed box corresponds to the WPS in the standard 244 
WRF-Chem model, where meteorological files (met_em.d*.nc) are generated. The conv_geo process converts MODIS land data 245 
into binary files, for the geogrid process. Both GEOS2WRF and LDAS2WRF convert input data in the NetCDF file format to an 246 
intermediate file format, equivalent to the ungrib process. GEOSBC is adapted from the mozbc module, where GEOS FP and 247 
MERRA-2 data are used to update chemical initial and boundary conditions. The bio_emiss module reads MEGAN emission input 248 
datasets (e.g., isoprene emission factor) and generates files (wrfbiochemi_d0*) for WRF-Chem to calculate biogenic emissions. 249 
The add_fert module is used to add the BDISNP input datasets (e.g., fertilizer data) into the wrfbiochemi_d0* files for the real 250 
process. WEPS processes both anthropogenic and fire emission datasets and converts them into WRF-Chem-ready emission files 251 
(*wrfichemi*). Dashed lines from real to bio_emiss and WEPS indicate that real needs to be executed once before running the full 252 
flow to generate wrfinput_d0* files, which provide domain information to these two modules.  253 

Compared with the standard WRF-Chem model, the UI-WRF-Chem modeling framework 254 

incorporates new modules and significant modifications to enable the seamless use of NASA 255 

GEOS data, updates of land surface properties with recent available MODIS land data and 256 

expanded emission capabilities. First, we incorporate the GEOS2WRF module from NASA’S 257 

Unified-Weather Research and Forecasting model (NU-WRF) (Peters-Lidard et al., 2015), which 258 

functions similarly to the standard ungrib process, by converting GEOS FP or MERRA-2 data to 259 

an intermediate file format. We also develop the LDAS2WRF module, adapted from the 260 

GEOS2WRF module to convert the GLDAS or NLDAS data into the same intermediate file 261 

format. The standard metgrid process then converts these intermediate files into meteorological 262 

files in the NetCDF format (met_em.d*.nc), respectively. These two NetCDF files are 263 

subsequently merged to generate the final meteorological files for the real process. Second, to 264 

integrate the MODIS land data into the static geographical datasets, we develop the conv_geo 265 

Python-based module, where we convert the MODIS land data into the standard binary file formats 266 

required by the geogrid process. This enables updates of land surface properties with recent 267 

available MODIS land data, not available in the standard WRF-Chem model. Additionally, we 268 

develop the GEOSBC module, by modifying the standard mozbc module to use GEOS FP or 269 

MERRA-2 data for updating both chemical initial and boundary conditions, which improves the 270 

consistency between meteorology and chemistry inputs. Additionally, we modify WRF-Chem’s 271 

chemistry scheme to ensure compatibility between dust fields from GEOS FP or MERRA-2 and 272 

the dust representation in the chemistry scheme itself (see Sect 2.7 for more information). 273 

 274 

For emissions, we develop the BDISNP scheme for soil NOx emissions by extending the workflow 275 

of the standard MEGAN-based biogenic VOC calculation. Same as the MEGAN process, we first 276 

use the standard bio_emiss module to read the MEGAN emission input datasets (e.g., isoprene 277 

emission factor) and then convert them into the wrfbiochemi_d0* files for the real process. We 278 

then apply the add_fert module that we have developed here to incorporate emission input datasets 279 

(e.g., fertilizer data), specific to the BDISNP scheme into wrfbiochemi_d0* files. Additionally, we 280 

modify WRF-Chem codes to calculate soil NOx emissions. We also develop the WEPS module to 281 

process both anthropogenic and fire emissions, adopting some functionalities from the widely used 282 

anthro_emiss and EPA_ANTHRO_EMISS utilities in the WRF-Chem community. This provides 283 

flexibility for incorporating additional emission inventories into the WEPS. Lastly, we develop a 284 

Python-based postprocessing module to calculate selected WRF-Chem variables and compile 285 

hourly WRF-Chem output files into daily files in the formats required by the GRMs.  286 
 287 
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2.3 Updates of meteorological and chemical initial and boundary conditions as well as soil properties  288 

Here, we have adopted the functionality of the NASA’s NU-WRF to drive WRF-Chem by 289 

providing unified meteorological and chemical initial and boundary conditions using GEOS FP 290 

and MERRA-2 data. Both GEOS FP and MERRA-2 data are generated within the GEOS 291 

atmospheric and data assimilation system (Rienecker et al., 2008), in which meteorological and 292 

aerosol observations are jointly assimilated. GEOS FP uses the most recent GEOS system to 293 

produce the real-time forecasting data while MERRA-2 uses a frozen version of the GEOS system 294 

to conduct the long-term atmospheric reanalysis since 1980. The GEOS native model is on a cubed 295 

sphere grid with 72 hybrid-eta layers from surface to 0.01 hPa. Products are saved on a 0.5º x 296 

0.625º latitude by longitude grid for MERRA-2 and 0.25º x 0.3125º latitude by longitude for GEOS 297 

FP (Gelaro et al., 2017).  298 

 299 

MERRA-2 assimilates multiple streams of aerosol products including bias corrected AOD 300 

calculated from observed radiances measured by the Advanced Very High Resolution Radiometer 301 

(AVHRR) over ocean prior to 2002 and by MODIS on Terra and Aqua satellites over dark surfaces 302 

and ocean since 2000 and 2002, respectively; also assimilated are the MISR AOD over bright land 303 

surface and AOD measurements from Aerosol Robotic Network (AERONET) before 2014 304 

(Randles et al., 2017). In the NRT mode, GEOS FP only assimilates AOD derived from MODIS 305 

Terra and Aqua. The aerosol module used in the GEOS system is the Goddard Chemistry, Aerosol, 306 

Radiation, and Transport (GOCART) model (Colarco et al., 2010; Chin et al., 2002). The 307 

GOCART module simulates major aerosol species including sulfate, BC, OC, dust (five bins with 308 

lower and upper radius range as: 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 µm), and sea salt (five bins with 309 

lower and upper radius range as: 0.03–0.1, 0.1–0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm). These aerosol 310 

products are available in both GEOS FP and MERRA-2 products. Since 2017, nitrate aerosols 311 

have been added into the GEOS system and GEOS FP products thus include nitrate aerosols.  312 

 313 

Our work differs from the past work that uses the GEOS FP or MERRA-2 data to drive WRF-314 

Chem in several aspects. For example, Peters-Lidard et al. (2015) presented the NU-WRF model 315 

that can be driven by GEOS FP and MERRA-2, but its atmospheric chemistry process is simplified 316 

with the GOCART module (without prognostic simulation of aerosol size distribution and nitrate 317 

for example) and is designed to be an observation driven integrated modeling system that 318 

represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales (~1–25 km). 319 

Hence, its real-time application for atmospheric chemistry and aerosol composition forecast is 320 

rather limited. Nevertheless, the NU-WRF’s concept and framework (GEOS2WRF, Fig 1) of using 321 

GEOS FP and MERRA-2 to drive WRF-Chem are adopted by UI-WRF-Chem development here 322 

to provide meteorological initial and boundary conditions for WRF-Chem, using meteorological 323 

variables other than soil properties.  324 

 325 

Adopting of GEOS FP or MERRA-2 soil properties into WRF-Chem needs special treatment. In 326 

the GEOS system, the land surface model (LSM) is a catchment-based model (Koster et al., 2000), 327 

which is fundamentally different from the LSMs available in WRF-Chem. The commonly used 328 

LSMs in WRF-Chem include the Noah scheme (Chen et al., 1996; Chen and Dudhia, 2001), the 329 

Rapid Update Cycle (RUC) (Smirnova et al., 2000), and the Community Land Model (CLM) 330 

(Oleson et al., 2004), which are all column-based models with different soil layers. To resolve this 331 

issue, Peters-Lidard et al. (2015) used the Land Information System (LIS) (Kumar et al., 2006) to 332 

process GEOS outputs and provide initial conditions of soil properties such as soil temperature 333 
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and soil moisture for running WRF and NU-WRF (Kumar et al., 2008). Since land surface process 334 

is slow and usually requires years of LIS simulation to stabilize the soil properties in the model, 335 

we have here developed a module (LDAS2WRF, Fig 1) to utilize soil data products from two land 336 

data assimilation systems, GLDAS (Rodell et al., 2004) and NLDAS (Mitchell et al., 2004), which 337 

use LIS to focus on the analysis of soil properties in near real time. This way, we reduce the 338 

computational cost and complexity of running LIS within the UI-WRF-Chem. The initial 339 

conditions of soil properties can have an important impact on boundary layer processes for days 340 

to weeks (the so-called memory effect). Hence, the special treatment of soil properties by using 341 

observation-constrained GLDAS and NLDAS in UI-WRF-Chem is warranted.  342 

 343 

We have developed the capability to use GEOS FP and MERRA-2 data to provide chemical initial 344 

and boundary conditions in our UI-WRF-Chem modeling framework. Since WRF-Chem is a 345 

regional chemical transport model, time-varying chemical boundary conditions from global 346 

chemical transport models are typically used to specify concentrations of different chemical 347 

species at the domain boundaries. This is especially important for long-lived chemical species, 348 

such as O3, or capturing regional or long-range transport events. The common practice is to use 349 

global model outputs such as the Community Atmosphere Model with Chemistry, CAM-Chem 350 

(Emmons et al., 2020) for reanalysis or the Whole Atmosphere Community Climate Model 351 

(WACCM) (Gettelman et al., 2019) for forecasts. Unlike CAM-Chem or WACCM, which do not 352 

assimilate satellite aerosol observations, GEOS FP and MERRA-2 incorporate satellite-based 353 

aerosol data assimilation, which provides observational constraints for the day-to-day variations 354 

in aerosol concentrations over a given domain. To leverage this unique capability, we have 355 

modified the WRF-Chem preprocessor tool – mozbc (https://www2.acom.ucar.edu/wrf-chem/wrf-356 

chem-tools-community) to create the GEOSBC module (Fig 1), enabling direct ingestion of GEOS 357 

FP and MERRA-2 data for updating chemical initial and boundary conditions.  358 

 359 

Lastly, we have developed a method to constrain the chemical boundary condition for the 360 

allocation of dust concentration in the MERRA-2 data as a function of different dust size bins. 361 

While assimilating satellite-derived aerosol optical parameters can improve the simulation of dust 362 

in MERRA-2 data, uncertainties remain in simulating the dust size distribution from emission 363 

sources and along the transport pathway in the MERRA-2 data (Kramer et al., 2020). These 364 

uncertainties are particularly evident during long-range dust transport events, due to factors such 365 

as the deposition process and the quality of satellite data being assimilated (Zhu et al., 2025). To 366 

address this, we have developed a method to further constrain the MERRA-2 simulated dust size 367 

distribution with AERONET observation, which can be incorporated into the chemical boundary 368 

conditions for simulating the impacts of dust transport on the domain of interest. This method is 369 

applicable in regions where AERONET sites with long-term data are available. We compare the 370 

dust particle size distribution (PSD) from MERRA-2 data with AERONET observations to 371 

improve the allocation of dust concentration into different size bins in the chemical boundary 372 

conditions. A detailed description and application of this approach are provided in Sect 4.1 and 373 

4.2.  374 

2.4 Updates of land surface properties  375 

We develop capabilities within UI-WRF-Chem to update land surface properties using recent 376 

available satellite-based land data products through the WRF Preprocessing System (WPS). 377 

MODIS land products are applied here to update four key land surface properties in the Noah 378 
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LSM: land cover type on an annual basis and green vegetation fraction (GVF), leaf area index 379 

(LAI), and surface albedo on a monthly basis. These variables are among the key surface properties 380 

in the land model that regulate the exchanges of energy, water, and momentum (Mölders, 2001). 381 

The major technical development and its application to study the impacts of land use/cover 382 

changes on urban temperature in Eastern China during 2003−2019 were described in Wang et al. 383 

(2023). Below we briefly describe the updates of each land surface property.  384 

 385 

The standard WRF-Chem model provides different sources of data for land surface properties. For 386 

land cover type, one data source is from the U.S. Geological Survey (USGS) map with 24 land 387 

cover types, which is derived from the monthly AVHRR Normalized Difference Vegetation Index 388 

(NDVI) observations from April 1992 to March 1993. Another one is from the MODIS land cover 389 

data including 17 land cover types, based on the International Geosphere-Biosphere Program 390 

(IGBP) scheme (Friedl et al., 2002) and three classes of tundra (Justice et al., 2002). Historically, 391 

MODIS land cover data inputs used in WRF-Chem have been fixed to years such as 2001 or 2004, 392 

or to 2001–2010 climatology data (Broxton et al., 2014). For GVF, the default data is derived from 393 

the AVHRR NDVI observations (1985–1990). An alternative option is to use the MODIS Fraction 394 

of Absorbed Photosynthetically Active Radiation (FPAR) (early 2000s) to substitute for GVF. For 395 

LAI and surface albedo, one option is to calculate the values online using a look-up table, based 396 

on each land cover type. Another option is to use the MODIS LAI and albedo data directly (early 397 

2000s).  398 

 399 

Since these data sources are outdated, we have developed the conv_geo Python-based module (Fig 400 

1) to update all four land surface properties in UI-WRF-Chem via the WPS using recent available 401 

MODIS land data. This approach provides self-consistence among the key land surface properties 402 

used in the land model as they come from the same satellite observations and offers a flexible way 403 

to apply the data for WRF-Chem simulations across different spatial resolutions. Specifically, the 404 

land cover type is updated with the MODIS yearly land cover type product (MCD12Q1). GVF can 405 

be updated by: (1) deriving from the MODIS monthly NDVI product (MOD13A3) or (2) 406 

substituting with MODIS 8-day FPAR product (MCD15A2H). LAI is updated directly from 407 

MODIS 8-day LAI product (MCD15A2H). Surface albedo can be updated using either the 408 

MCD43A3 daily albedo product or the MODIS combined Terra and Aqua Bidirectional 409 

Reflectance Distribution Function (BRDF) and Albedo daily product (MCD43C3). For the MAIA 410 

project, MODIS land data from 2018–2020 are used as static inputs to the UI-WRF-Chem 411 

simulations, except for CHN-Beijing where only 2018 data are applied.  412 

2.5 Development of the BDISNP soil NOx emission scheme  413 

The new BDISNP soil NOx emission scheme is also integrated as part of the UI-WRF-Chem 414 

framework. The detailed development of the scheme has been described in Sha et al. (2021) and 415 

Wang et al. (2021c). Briefly, in the standard WRF-Chem model, soil NOx emissions are calculated 416 

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 417 

2006; Guenther et al., 2012), which is intended for estimating biogenic emissions of volatile 418 

organic compounds (VOCs). In the MEGAN model, emission factors are based on four global 419 

plant function types (broadleaf trees, needle-leaf trees, shrubs/bushes and herbs/crops/grasses). 420 

Previous work by Oikawa et al. (2015) has suggested that soil NOx emissions calculated from the 421 

MEGAN model using WRF-Chem can be a factor of 10 underestimated in the Imperial Valley, 422 

California, compared with ground observations. The BDSNP soil NOx emission scheme, currently 423 
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implemented in the global 3-D GEOS-Chem model (Hudman et al., 2012), was added into the UI-424 

WRF-Chem, as the BDISNP, with several of our own updates.  425 

 426 

As in BDSNP, the BDISNP includes a more physical representation of the soil NOx emission 427 

process compared with the MEGAN model. The BDISNP considers available nitrogen (N) in soils 428 

from biome specific emission factors, online dry and wet deposition of N, and fertilizer and manure 429 

N. It also includes the pulsing of soil NOx emission following soil wetting by rain and the impacts 430 

of soil temperature and moisture. Compared to BDSNP, we have made four major updates in the 431 

BDISNP: (1) updating the land cover type data with the recent available MODIS land cover type 432 

data to better reflect the land cover change; (2) using the GLDAS soil temperature data for 433 

calculating soil NOx emissions rather than using the 2 m air temperature as a proxy for soil 434 

temperature; (3) using the modelled GVF data to determine the distribution of arid and non-arid 435 

regions to replace the static climate data used in the BDSNP scheme. With these three updates, 436 

Sha et al. (2021) has shown that the WRF-Chem simulation with the BDISNP scheme leads to a 437 

better agreement with TROPOMI retrieved NO2 columns over California for July 2018, compared 438 

with using the default MEGAN scheme. The increased soil NOx emissions with the BDISNP 439 

scheme result in a 34.7% increase in monthly mean NO2 columns and 176.5% increase in surface 440 

NO2 concentration, which causes an additional 23.0% increase in surface O3 concentration in 441 

California. The work of Zhu et al. (2023) used derived soil NOx flux measurements from a field 442 

Campaign over the San Joaquin Valley in California during June 2021 to evaluate three soil NOx 443 

emission schemes: the MEGAN in the California Air Resource Board (CARB) emission inventory, 444 

the Biogenic Emission Inventory System (BEIS) and the BDISNP developed here. It was found 445 

that both MEGAN and BEIS inventories were lower than the observation by more than one order 446 

of magnitude, and the BDISNP was lower by a factor of 2.2. Even though being underestimated, 447 

the BDISNP and the observation showed a similar spatial pattern and temperature dependence.  448 

 449 

The fourth update revises the default soil temperature response function in the BDSNP scheme, as 450 

described in Wang et al. (2021c). In the default scheme, the soil temperature response follows an 451 

exponential function for soil temperature between 0 C and 30 C and stays the same as 30 C 452 

after the soil temperature is above 30 C. In the work of Oikawa et al. (2015), which found high 453 

soil NOx emissions in high-temperature agricultural soils, an observation-based soil temperature 454 

response function was developed. This function is used here to update the default soil temperature 455 

response function. Specifically, for soil temperature in the range of 20 C and 40 C, it is a cubic 456 

function of soil temperature. When soil temperature is greater than 40 C, the value of the response 457 

function is set the same as the value of soil temperature at 40 C. In addition, final soil NOx 458 

emissions are reduced by 50% following the work of Silvern et al. (2019) and Vinken et al. (2014). 459 

With this update, Wang et al. (2021c) showed that the GEOS-Chem simulated tropospheric NO2 460 

vertical column densities (VCDs) agrees better with Ozone Monitoring Instrument (OMI) 461 

observed NO2 VCDs for 2005–2019 summer in the U.S., compared with the GEOS-Chem 462 

simulation that uses the default soil temperature function. This model improvement further helps 463 

explain the slowdown of tropospheric NO2 VCD reduction during 2009–2019 observed by OMI 464 

in the U.S.  465 

2.6 Development of WRF-Chem Emission Preprocessing System (WEPS)  466 

The WEPS Fortran utility is developed to map both global and regional anthropogenic emissions 467 

as well as fire emissions for running UI-WRF-Chem simulations. WEPS builds upon a few tools 468 
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used in the WRF-Chem community (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-469 

community). For example, the anthro-emiss utility creates WRF-Chem ready emission files from 470 

global anthropogenic emission inventory datasets. There is also another Fortran program 471 

(emission_v3.F) to process the U.S. EPA National Emissions Inventory (NEI) 2005 and 2011. 472 

Recently, a new tool EPA_ANTHRO_EMIS has been developed to create WRF-Chem ready 473 

anthropogenic emission files from Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling 474 

System netcdf outputs for NEI 2014 and 2017. We have adopted some of the functionalities in 475 

these tools into the WEPS.  476 

 477 

Currently in WEPS, we can ingest the following global anthropogenic emission inventories: (1) 478 

HTAP_v2.2 (Janssens-Maenhout et al., 2015) and HTAP_v3 (Crippa et al., 2023), created under 479 

the umbrella of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), which is 480 

the compilation of different emission inventories over specific regions (North America, Europe, 481 

Asia including Japan and South Korea) with the independent Emissions Database for Global 482 

Atmospheric Research (EDGAR) inventory filling in for the rest of the world; (2) EDGARv5.0 483 

for year 2015 (Crippa et al., 2020). The HTAP_v3 includes regional emission inventories from 484 

U.S. EPA NEI, CAMS-REGv5.1 for Europe, the Regional Emission inventory in Asia 485 

(REASv3.2.1), the Clean Air Policy Support System (CAPSS-KU) inventory over South Korea, 486 

the JAPAN emission inventory (PM2.5EI and J-STREAM) in Japan and EDGARv6.1 487 

(https://data.jrc.ec.europa.eu/dataset/df521e05-6a3b-461c-965a-b703fb62313e) for the rest of the 488 

world. It consists of 0.1 ° x 0.1 ° grid maps of species: CO, SO2, NOx, non-methane volatile organic 489 

compound (NMVOC), NH3, PM10, PM2.5, BC and OC for year 2000–2018 (Crippa et al., 2023). 490 

Four sectors are included for these species: energy (mainly power industry), industry 491 

(manufacturing, mining, metal, cement, etc.), transport (ground transport such as road) and 492 

residential (heating/cooling of buildings etc.). For NH3, an additional sector – agriculture is also 493 

included. The datasets have a monthly temporal resolution, and we have interpolated them to daily 494 

data. In addition, we have added sector-based diurnal profiles, following the work of Du et al. 495 

(2020). For UI-WRF-Chem simulation over the U.S. domain or China domain, we have added the 496 

capability to use U.S. EPA NEI 2017 or the Multi-resolution Emission Inventory model for 497 

Climate and air pollution research (MEIC) (Zheng et al., 2018; Li et al., 2017b) emission inventory 498 

to replace the global emission inventory HTAP_v3, respectively.  499 

 500 

For fire emissions, the WEPS can process several emission inventories as described in Zhang et 501 

al. (2014). They include: Fire Locating and Modeling of Burning Emissions inventory (FLAMBE) 502 

(Reid et al., 2009); Fire INventory from NCAR version 1.0 (FINN v1.01) (Wiedinmyer et al., 503 

2011); Global Fire Emission Database version 3.1 (GFED v3.1) (Van Der Werf et al., 2010); Fire 504 

Energetics and Emissions Research version 1.0 using fire radiative power (FRP) measurements 505 

from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (FEER-SEVIRI 506 

v1.0) (Roberts and Wooster, 2008; Ichoku and Ellison, 2014); Global Fire Assimilation System 507 

(GFAS v1.0) (Kaiser et al., 2012); NESDIS Global Biomass Burning Emissions Product (GBBEP-508 

Geo) (Zhang et al., 2012); Quick Fire Emissions Dataset version 2.4 (QFED v2.4) (Darmenov and 509 

Da Silva, 2015). Our recent work involves developing a Visible Infrared Imaging Radiometer Suite 510 

(VIIRS) based fire emission inventory, FIre Light Detection Algorithm (FILDA-2) (Zhou et al., 511 

2023). Our past work has mainly focused on OC and BC emissions from the FLAMBE emission 512 

inventory (e.g., Ge et al., 2014; Zhang et al., 2022; Zhang et al., 2020). We have now included gas 513 

https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community
https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community
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species such as CO from FLAMBE emission inventory. The injection height by default is set to 514 

range from 500 m to 1200 m, based on our previous work (e.g., Yang et al., 2013; Wang et al., 515 

2013; Ge et al., 2017) and users have the option to specify the injection height on their own.  516 

2.7 Updates of WRF-Chem chemistry scheme 517 

The MAIA investigation not only focuses on the total PM2.5 and PM10 mass but the speciated PM2.5 518 

including sulfate, nitrate, BC or EC, OC and dust. We have therefore selected the Regional Acid 519 

Deposition Model, Version 2 (RADM2) for gas-phase chemistry (Stockwell et al., 1990) and the 520 

Modal Aerosol Dynamics model for Europe (MADE) (Ackermann et al., 1998) and the Secondary 521 

ORGanic Aerosol Model (SORGAM) (Schell et al., 2001) as the aerosol module for MAIA model 522 

simulations, using WRF-Chem Version v3.8.1. The RADM2-MADE/SORGAM chemistry 523 

mechanism in WRF-Chem simulates the above-mentioned aerosol species and has been widely 524 

used to study air quality (e.g., Georgiou et al., 2018; Zhang et al., 2020; Tuccella et al., 2012). The 525 

MADE/SORGAM aerosol module also includes ammonium, sea salt and water. The aerosol size 526 

distribution is represented by the modal approach (Binkowski and Shankar, 1995), which uses 527 

three modes (the Aitken, accumulation and coarse mode). A log-normal size distribution and 528 

internal mixing of aerosol species are assumed in each mode.  529 

 530 

In the MADE/SORGAM aerosol scheme, dust is not explicitly simulated but rather blended into 531 

other species. For smaller size bins of dust, they are represented by the unspecified PM2.5 chemical 532 

species, which have Aitken and accumulation modes. For larger size bins of dust, they are counted 533 

as the “soila”, which are used for coarse soil-derived aerosol species. To output the dust proportion 534 

of the surface PM2.5 mass concentration as required by the MAIA project, we add dust species in 535 

five size bins (same as the GOCART dust bins in MERRA-2) into the MADE/SORGAM aerosol 536 

scheme. This way, when using GEOS FP or MERRA-2 to provide chemical initial and boundary 537 

conditions, dust species from the boundary file can also be consistent with the dust species in the 538 

aerosol scheme. WRF-Chem currently provides three dust emission schemes: the original 539 

GOCART dust emission scheme (Ginoux et al., 2001), GOCART dust emission with the Air Force 540 

Weather Agency (AFWA) modifications (Legrand et al., 2019), and the University of Cologne 541 

(UOC) scheme (Shao et al., 2011). Both GOCART and GOCART-AFWA emission schemes 542 

release dust in five size bins with lower and upper radius range of 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 543 

µm, same as the dust size bin used in the MERRA-2 system. The UOC dust emission scheme 544 

considers dust in four size bins with lower and upper radius range of 0–1.25, 1.25–2.5, 2.5–5, and 545 

5–10 µm. Here, we have selected the GOCART-AFWA emission scheme in the UI-WRF-Chem 546 

framework, which matches the dust size bins in the GEOS FP and MERRA-2 aerosol scheme.  547 

 548 

Subsequently, a new chemistry scheme (MADE/SORGAM-DustSS) is created in UI-WRF-Chem 549 

to include the dust in five size bins and sea salt aerosols as additional chemical tracers while all 550 

other gas and aerosol species are the same as in the MADE/SORGAM scheme. The standard WRF-551 

Chem model currently supports the GOCART sea salt emission scheme, which releases sea salt 552 

aerosol species in four bins. The lower and upper radius range of sea salt aerosols species are: 0.1–553 

0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. We have then added sea salt aerosols in these four bins into the 554 

MADE/SORGAM-DustSS scheme in the UI-WRF-Chem framework. The GOCART sea salt 555 

aerosols in MERRA-2 data have five bins with lower and upper radius range as: 0.03–0.1, 0.1–556 

0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. This way, the GOCART sea salt aerosols in the aerosol scheme 557 

would also match the aerosols in the chemical boundary file provided by MERRA-2 data. In the 558 
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newly added scheme of MADE/SORGARM-DustSS, we have followed the simple GOCART 559 

aerosol scheme in the standard WRF-Chem model to add different transport processes for dust and 560 

sea salt aerosol species such as dry deposition. We have also added a simple wet scavenging 561 

scheme for dust and sea salt aerosols, which is described more in Sect 4.2.  562 

 563 

Aerosol optical properties such as extinction and single scattering albedo are calculated based on 564 

a sectional approach (Barnard et al., 2010) with 8 bins in WRF-Chem, regardless of the aerosol 565 

scheme selected. For aerosol species in the MADE/SORGAM-DustSS aerosol scheme, the mass 566 

and number concentrations of each aerosol species in the three modes will be matched to the 8 567 

bins. For dust and sea salt aerosol species, the dust and sea salt aerosols in their original 5 and 4 568 

bins, are matched to the 8 bins. In each bin, the particles are assumed to be internally mixed and 569 

spherical. The bulk properties such as refractive index for each bin is based on volume 570 

approximation. Then, Mie theory is called to calculate the optical properties such as the absorption 571 

efficiency and asymmetry parameter for each bin. The optical properties are computed and 572 

outputted at four wavelengths (300, 400, 600 and 1000 nm). In addition, the work of Ukhov et al. 573 

(2021) has found a few inconsistencies in WRF-Chem related to dust emissions coupled with the 574 

GOCART aerosol module, which also impacts other aerosols schemes such as the 575 

MADE/SORGAM module. These inconsistencies were found in the calculation of surface PM2.5 576 

and PM10 concentration, calculation of aerosol optical properties and estimation of gravitational 577 

settling. We have incorporated the corrections of these inconsistencies made by Ukhov et al. 578 

(2021) in our UI-WRF-Chem framework.  579 

2.8 Postprocessing and evaluation codes, and repository management  580 

Python-based modules are developed in house to postprocess UI-WRF-Chem hourly outputs as 581 

part of the UI-WRF-Chem framework. They include diagnostics of some commonly used variables 582 

which are not directly outputted such as relative humidity (RH) and the capability to extract and 583 

compile hourly model output into daily output to facilitate file management. We have also created 584 

Python modules to evaluate UI-WRF-Chem model performance against ground-based and satellite 585 

observations, e.g., comparing model simulated column concentration of trace gases NO2 with 586 

satellite observed column concentration of NO2. In addition, bash scripts are developed to 587 

automatically run UI-WRF-Chem framework for both forecasting and reanalysis modes. It needs 588 

minimal work to specify the paths of the codes and data on the servers before running the UI-589 

WRF-Chem model. The UI-WRF-Chem framework uses the GitHub, a git-based version control 590 

system to manage its codes and developments. The repository stores the main codes of UI-WRF-591 

Chem. When major developments from our group and collaborators are made and validated, a new 592 

version will be released. The WRF-Chem community updates the WRF-Chem code and releases 593 

new versions periodically and we also check the major bug fixes and developments to incorporate 594 

them in our codes accordingly.  595 

3. Evaluation statistics and model configuration  596 

3.1 Evaluation statistics 597 

Several statistics are used to evaluate the model performance against ground and satellite 598 

observations, including linear correlation coefficient (R), root mean square error (RMSE), mean 599 

bias (MB), normalized mean bias (NMB), mean absolute error (MAE), normalized standard 600 
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deviation (NSD) and normalized centered root mean square error (NCRMSE). NSD is the ratio of 601 

the standard deviation of the model simulation to the standard deviation of the observation. 602 

NCRMSE is like RMSE except that the impact of the bias is removed. Some of these statistics are 603 

summarized in a Taylor Diagram (Taylor, 2001), which includes R (shown as the cosine of the 604 

polar angle), NSD (shown as the radius from the quadrant center), and NCRMSE (shown as the 605 

radius from the expected point, which is located at the point where R and NSD are unity).  606 

 607 

To determine whether the performances among model sensitivity simulations for different case 608 

studies over different target areas are statistically significant, we conduct the paired t-test on 609 

collocated model-observation samples or between model simulations. We focus on the MAE as 610 

the evaluation metric. For comparison of hourly data, we account for the temporal autocorrelation 611 

by estimating the lag-1 autocorrelation and applying the effective sample size adjustment (Wilks, 612 

2011). For cases with smaller sample size, we also apply the non-parametric Wilcoxon signed rank 613 

test (e.g., Menut et al., 2019; Tao et al., 2025) to ensure the robustness of our test. In addition, 614 

when multiple model sensitivity simulations are evaluated, we apply a Bonferroni correction 615 

procedure (SIMES, 1986) to both paired-t and Wilcoxon tests, following previous work (Crippa 616 

et al., 2017). Under this approach, the null hypothesis is rejected if 𝑝 ≤
𝛼

𝑚
 , where 𝑝 is the raw 𝑝 617 

value, 𝛼 is the significance level (0.05 in this study) and m is the number of hypothesis tests. For 618 

testing the significance over spatial maps, where a large number of tests are performed 619 

simultaneously, we instead apply the Benjamini-Hochberg false discovery rate (FDR) correction 620 

(Benjamini & Hochberg, 1995). We hence report adjusted 𝑝-value throughout this work unless 621 

noted otherwise. 622 

3.2 Model configuration 623 

All the UI-WRF-Chem model simulations for MAIA target areas are set up as 2 nested domains 624 

(Fig 2) with a 4 km x 4 km horizontal spatial resolution for the inner domain (D2) focusing on the 625 

MAIA target area and a 12 km x 12 km horizontal spatial resolution for a larger outer domain 626 

(D1). The inner and outer domain have nominal dimension of ~360 km (east-west) x 480 km 627 

(north-south) and ~1080 km (east-west) x 1000 km (north-south), respectively. Both domains have 628 

48 vertical levels extending from the surface to 50 hPa. For the inner domain (D2), we have turned 629 

off the cumulus scheme to let the model fully resolve the convective process while all other model 630 

configurations are kept the same for both domains. A summary of model configurations regarding 631 

different schemes used for the four targets areas is provided in Table 1. For each target area, we 632 

first run a suite of sensitivity simulations to test the model sensitivity to different physics schemes 633 

by evaluating model simulated meteorology variables with ground observations and then select 634 

the optimal combination of physics schemes based on evaluation results. A description of the 635 

satellite and ground observation datasets used are provided in Text S1 of the supporting 636 

information (SI).  637 

 638 
Table 1. A summary of model physics, chemistry and emissions configurations for CHN-Beijing, ITA-Rome, USA-LosAngeles, 639 
and USA-Atlanta target areas. 640 

Category Model component CHN-Beijing ITA-Rome 
USA-Los 

Angeles 
USA-Atlanta 

Physics Microphysics Lin Morrison Lin Lin 

Cumulus G3D G3D G3D G3D 

Longwave radiation RRTMG RRTMG RRTMG RRTMG 
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Shortwave radiation RRTMG RRTMG RRTMG RRTMG 

Planetary boundary 

layer 
YSU YSU YSU YSU 

Surface layer Revised MM5 

Land surface model NOAH NOAH NOAH NOAH 

Chemistry Gas-phase RADM2 RADM2 RADM2 RADM2 

Aerosols MADE/SORAGM-DustSS 

Photolysis Madronich F-TUV 

Emissions Anthropogenic 

emissions 
MEIC 2016 HTAP v3 (2018) NEI 2017 NEI 2017 

Dust emissions GOCART with AFWA modifications 

Biogenic emissions 

of VOCs 
MEGAN MEGAN MEGAN MEGAN 

Soil NOx emissions BDISNP BDISNP BDISNP BDISNP 

Wildfire emissions FLAMBE FLAMBE FLAMBE FLAMBE 

 641 

There are many physics schemes that can be used in WRF-Chem. We select the commonly used 642 

schemes for each target area based on literature review and our previous work (e.g., Yang et al., 643 

2013; Sha et al., 2021; Zhang et al., 2022). We also consider a few other factors as described 644 

below. For the cumulus scheme, we consider the Grell 3D ensemble (G3D, (Grell and Dévényi, 645 

2002)) scheme, which also accounts for cloud radiation feedback. For model spatial grids greater 646 

than 10 km, they usually rely on the cumulus parameterization to determine the subgrid convective 647 

processes. For model spatial grids smaller than 10 km, it is generally considered as the convective 648 

gray zone, where the use of convective parameterization or explicit resolving treatment of the 649 

convective process remains to be an ongoing question (Jeworrek et al., 2019). Typically, for model 650 

spatial grids larger than 5 km, convective parameterization has been used in regional model studies 651 

(e.g., Zhang and Mcfarlane, 1995; Clark et al., 2009; Dudhia, 2014). For model spatial grids 652 

smaller than 5 km, generally considered convection-permitting scale, numerous regional model 653 

studies have suggested to turn off the cumulus scheme (e.g., Prein et al., 2015; Wang et al., 2021b; 654 

Weisman et al., 1997; Weisman et al., 2008; Done et al., 2004; Gao et al., 2017), especially if the 655 

cumulus scheme is not scale-aware (Wagner et al., 2018). Therefore, we have chosen to turn off 656 

the cumulus scheme here for the inner domain (D2) with the 4 km spatial resolution.  657 

 658 
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 659 
Figure 2. Terrain height for (a) CHN-Beijing, (b) ITA-Rome, (c) USA-LosAngeles and (d) USA-Atlanta target areas of the 2 nested 660 
domains: the outer domain (D1) and the inner domain (D2) shown as the white box. For (a), the orange filled triangles represent 661 
the ground observation sites of PM2.5 and PM10 mass concentration. Both open magenta squares and stars represent the AERONET 662 
ground observation sites. The sites denoted by the stars are used to constrain the dust particle size distribution as described in Sect 663 
4.1, while the sites denoted by squares are used to evaluate model simulated AOD. (b) is same as (a), except that the orange open 664 
circles represent ground observations of PM10 mass concentration, and orange filled triangles are the ground observations sites of 665 
PM2.5 mass concentration. (c) is the same as (b) except that the orange box is defined as the dust-prone region, which is used to 666 
tune dust emissions. For (d), orange filled triangles represent the ground observation sites of PM2.5 mass concentration.  667 
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 668 
Figure 3. Taylor Diagrams for evaluating UI-WRF-Chem model simulated (a) meteorological variables (t2, dewt2 or RH, wspd10 669 
and pres) with ground observations for CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas, and (b) surface 670 
skin temperature (TSK) with MODIS observed land surface temperature (LST) for CHN-Beijing during July 2018. In (a), 671 
evaluation results of daily meteorology variables are based on the model final configuration for each target area (Table 1). Color 672 
bar represents the ratio between model results and ground observations. In (b), USGS and updated refer to the UI-WRF-Chem 673 
sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd 674 
(updated land cover type, GVF, LAI and albedo with MODIS land data) in Table 2, respectively. UI-WRF-Chem simulated TSK 675 
averaged over the Terra and Aqua overpass time during daytime (TD and AD) and nighttime (TN and AN), respectively are 676 
compared to the corresponding Terra and Aqua observations. Color bar represents the normalized mean bias (NMB) between model 677 
results and satellite observations.  678 

 679 

With the current version (WRF-Chem v3.8.1) of the code, chemical species are transported using 680 

the G3D scheme, regardless of which cumulus scheme is used, while other scalars are transported 681 

with the selected cumulus scheme. Therefore, the G3D scheme is used to ensure the consistency 682 

between chemistry and physics. Additionally, WRF-Chem v3.8.1 was selected as the base version 683 

at the beginning of this project due to its stability. We have maintained this version over the course 684 

of the project to ensure the consistency and reproducibility of the results. Although there are 685 

several scale-aware cumulus schemes available in WRF-Chem such as the Kain-Fritsch scheme 686 

(KF, (Kain, 2004)) and the Grell-Freitas scheme (GF, (Grell and Freitas, 2014)), only the GF 687 

scheme has been updated to ensure the consistent transport of both chemical species and other 688 

scalars, as described by Li et al. (2018, 2019). We acknowledge the limitation of using only the 689 

G3D scheme in this work and plan to update the UI-WRF-Chem modelling framework to a newer 690 

version to enable the use of the GF scheme and incorporate other recent improvements as well.  691 

 692 

For the microphysics scheme, an inexpensive scheme is typically sufficient for model spatial grids 693 

greater than 10 km but a more complex scheme that accounts for the prediction of the mixed phases 694 

(6-class schemes, including graupel) and number concentrations (double-moment schemes) is 695 

required (Han et al., 2019). Therefore, we consider these three schemes in the current work: the 696 

Lin scheme (Lin et al., 1983; Chen and Sun, 2002), the WRF Single-Moment 6-Class 697 
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Microphysics Scheme (WSM6) (Hong and Lim, 2006) and the Morrison scheme (Morrison et al., 698 

2009). The former two is a single-moment 6 class scheme and the latter one is a double-moment 699 

scheme, which also predicts the number concentration of the hydrometer besides the total amount. 700 

All the three schemes include the simulations of graupel which is shown to help with the simulation 701 

of convection for higher resolution simulation (Brisson et al., 2015). At convective-permitting 702 

scales, the graupel size representation could play a more important role in the precipitation 703 

prediction than the number of moments (single vs. double) in certain cases (Adams-Selin et al., 704 

2013).  705 

 706 

For the shortwave radiation scheme, we only consider the two-stream multiband Goddard scheme 707 

(Chou et al., 1998) and the Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 708 

2008), which both include the direct aerosol radiation feedback. For the longwave radiation, we 709 

select the RRTMG and the Rapid Radiative Transfer Model (RRTM) schemes (Mlawer et al., 710 

1997). RRTMG for both shortwave and longwave radiation schemes are recommended to pair 711 

together in the model by the developing team of WRF-Chem. For the planetary boundary layer 712 

(PBL) scheme and the corresponding surface layer scheme, we consider the nonlocal boundary 713 

layer scheme – the Yonsei University scheme (YSU, (Hong et al., 2006)) with the revised fifth-714 

generation Pennsylvania State University – National Center for Atmospheric Research Mesoscale 715 

Model (MM5) (Grell et al., 1994; Jiménez et al., 2012) surface layer scheme. We also consider 716 

two commonly used local boundary layer schemes: Mellor-Yamada-Janjic (MYJ, (Janjic, 2001)) 717 

with the ETA similarity surface layer scheme; Mellor-Yamada-Nakanishi-Niino level 2.5 718 

(MYNN2.5, (Nakanishi and Niino, 2004)) with the MYNN surface layer scheme. When using the 719 

YSU scheme, we also turn on the surface drag parameterization (Jiménez and Dudhia, 2012) to 720 

improve topographic effects on surface winds over a complex terrain. The land surface model is 721 

the Noah land model (Chen and Dudhia, 2001), which incorporates our updates of the land surface 722 

properties as described in Sect 2.4. Additionally, for a specific target area, other physics schemes 723 

not mentioned here but commonly used in that area will also be tested.  724 

 725 

Details regarding the selection and evaluation results of the physics scheme for the four target 726 

areas are available in Text S2 of the SI. Here, we provide a summary of the evaluation results. 727 

Sensitivity simulations performed for each target area are listed in Table S1 and we focus on testing 728 

the following schemes: microphysics, shortwave and longwave radiation and PBL. We evaluate 729 

four UI-WRF-Chem simulated meteorology variables with surface observations: air temperature 730 

at 2m (t2), dew temperature at 2m (dewt2) or relative humidity (RH), wind speed at 10m (wspd10) 731 

and sea level pressure (pres). Results of the hourly or 3-hourly evaluation of the meteorology 732 

variables are summarized in Table S2 and Fig S1. Overall, all the sensitivity simulations of t2 and 733 

pres for all the target areas show the highest correlation (> 0.8). Dewt2 or RH also show good 734 

correlation (0.59 – 0.84) with ITA-Rome showing the lowest correlation. The case study of ITA-735 

Rome is conducted over June 2023, where some regions in Italy experienced rainfall events about 736 

one third of the month. Uncertainties of UI-WRF-Chem capturing the rainfall events (discussed in 737 

Sect 4.2) could result in the lower correlation of RH. Comparatively, wspd10 shows lower 738 

correlation (0.22 – 0.52) over USA-Atlanta. Across the target areas, we find that wspd10 is most 739 

sensitive to the PBL scheme compared with other schemes tested, which is also found in previous 740 

studies (e.g., Yu et al., 2022). It is found that no single combination of the physics scheme will 741 

result in the best performance for each meteorology variable evaluated. The interaction of these 742 

different parametrized processes mentioned above (e.g., convection, boundary layer mixing, 743 
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microphysics and radiation) are complex (Prein et al., 2015) and it is region, case and variable 744 

specific. Therefore, model performance can vary from region to region or case to case.  745 

 746 

Based on the evaluation results, we select the optimal combination of various physics schemes 747 

tested as the final configuration for each target area (Table S1 and Table 1). We summarize the 748 

statistics of the evaluation of the daily meteorology variables for the four target areas in Fig 3(a), 749 

for the final configuration only. We find that UI-WRF-Chem simulated daily t2, dewt2 and pres 750 

all show high correlation (> 0.7) and low NMB ((–10%) – (+ 10%)) across the target areas. For 751 

evaluation of daily wspd10, correlation increases, and bias decreases compared with hourly 752 

evaluation. For USA-Atlanta, the daily wspd10 still shows lower correlation (~0.25) compared 753 

with other target areas. The sensitivity simulation over USA-Atlanta is conducted over June 2022 754 

and majority of the wspd10 are under 5 m s-1. It can be challenging for the model to capture this 755 

stable condition very well. Future work could focus on trying nudging with ground observation to 756 

improve the model performance over this area. We also recognize that our sensitivity tests are 757 

limited to one month for each target area. We are not able to test the performance for different 758 

seasons. Nevertheless, it provides values for understanding the model sensitivity to different 759 

schemes at different locations.  760 

 761 

Biogenic emissions for VOCs are from the MEGAN scheme and soil NOx emissions are from the 762 

BDISNP scheme. Fire emissions are from the FLAMBE emission inventory and dust emissions 763 

use the GOCART with AFWA modification. Here, we use MEIC 2016 as the anthropogenic 764 

emission for CHN-Beijing and NEI 2017 emission inventory for USA-LosAngeles and USA-765 

Atlanta. The HTAP_v3 2018 is used for ITA-Rome. The gas-phase chemistry is the RADM2, and 766 

the aerosol module is the newly added scheme MADE/SORGAM-DustSS: the MADE/SORGAM 767 

scheme with the addition of dust and sea salt aerosol species as described in Sect 2.7. Lastly, we 768 

use the Madronich Fast Tropospheric UV and Visible Radiation Model (F-TUV) as the photolysis 769 

scheme (Madronich, 1987; Tie et al., 2003).  770 

4. Case studies for different target areas  771 

4.1 Case study – CHN-Beijing  772 

Beijing and its surrounding area in China, are affected by both local and regional emissions as well 773 

as long-range transport (Wu et al., 2021; Zhang et al., 2018). In recent decades, the North China 774 

Plain including the Beijing area has experienced severe PM pollution problems as a result of the 775 

rapid economic growth and urbanization (Zhang et al., 2016). In addition to the impacts of 776 

anthropogenic emission on surface PM levels, strong dust storms from the Taklamakan Desert and 777 

the Gobi Desert sometimes can be transported downwind to the Beijing area and affect local air 778 

quality in the springtime. Here for the CHN-Beijing target area (Fig 2(a)), we first focus on a dust 779 

intrusion event during 24–31 March 2018, to study the impacts of chemical boundary conditions 780 

on surface PM. Figure 4 shows the MODIS Aqua observed AOD over part of China for the period 781 

of this event. The dust storm can be seen on 26 March 2018, at both Taklamakan and Gobi Deserts 782 

and by 28 March, strong dust clouds have been transported to Beijing and its surrounding areas. 783 

Figure S2 displays the movement of surface observations of daily PM10 mass concentration across 784 

China from 24 March to 31 March 2018. On 27 March and 28 March 2018, high surface PM10 785 

concentration were observed in Beijing, Tianjin and Hebei province with hourly concentration 786 
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exceeding 1000 µg m-3 (not shown here). Then, we focus on July 2018 to study the impacts of 787 

updating land surface properties and soil NOx emission scheme on model performances.  788 

 789 

 790 
Figure 4. (a)–(h) MODIS Aqua Deep Blue (DB) AOD from 24–31 March 2018. The white boxes represent the UI-WRF-Chem 2 791 
nested domains for outer (D1) and inner domain (D2) over CHN-Beijing, respectively. The white diagonal lines indicate the 792 
CALIOP tracks. The magenta contour lines represent the boundaries of Taklamakan and Gobi Deserts.  793 

4.1.1 Sensitivity experiment design  794 

For CHN-Beijing target area, we carry out a suite of sensitivity simulations using the UI-WRF-795 

Chem framework as shown in Table 2 to investigate the impacts of chemical boundary conditions, 796 

updated land surface properties and soil NOx emission scheme on model performance. First, three 797 

simulations are conducted during March 2018 to study the impacts of using MERRA-2 data to 798 

provide chemical boundary conditions on model performance. Additionally, four simulations are 799 
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carried out for July 2018 to investigate the impacts of updating land surface properties as well as 800 

surface soil NOx emission scheme. The simulation with “2N_def” uses the default USGS land 801 

cover type and subsequently derived GVF, LAI and albedo, using a predefined look-up table. The 802 

simulations with “2N_upd” uses the corresponding updated land cover type, GVF, LAI and albedo, 803 

based on the MODIS land data products for the simulation period, as described in Sect 2.4. The 804 

simulations with “2N_*_snox*” use our newly developed BDISNP soil NOx emission scheme.  805 

 806 
Table 2. A suite of UI-WRF-Chem sensitivity simulations with different chemical boundary conditions, land data and soil NOx 807 
emission schemes for CHN-Beijing.  808 

simulation namea land datab soil NOx 

emissionc 

species considered in 

the chemical 

boundaryd 

 simulation 

timee 

2N_upd_snox-none updated BDISNP none  03/2018 

2N_upd_snox-dust updated BDISNP dust + other aerosols  03/2018 

2N_upd_snox-dust PSD updated BDISNP dust PSD + other 

aerosols  

 03/2018 

      

2N_def USGS Guenther dust + other aerosols  07/2028 

2N_upd updated Guenther dust + other aerosols  07/2018 

2N_upd_MEGAN updated MEGAN dust + other aerosols  07/2018 

2N_upd_BDISNP  updated BDISNP dust + other aerosols  07/2018 
aThe simulation name starting with “2N*” refers to the 2 nested domains used for CHN-Beijing as shown in Fig 2(a). The 2 nested 809 
domains have a horizontal spatial resolution of 4 km x 4 km and 12 km x 12 km for the inner and outer domain, respectively.  810 

bWe test different land surface properties used for the UI-WRF-Chem static input data. The simulation name with “*def*” refers 811 
to the use of USGS land cover type data and subsequently derived GVF, LAI and albedo, with a predefined look-up table. The 812 
simulation name with “*upd*” refers to the use of updated land cover type, GVF, LAI and albedo data with MODIS land data 813 
products.  814 

cWe test different soil NOx emission schemes. The Guenther scheme calculates biogenic emissions including soil NOx emissions, 815 
without any external input datasets needed. The MEGAN scheme requires external input files to calculate biogenic emissions 816 
including soil NOx emissions. The BDISNP is our newly developed scheme. Since the USGS land data is only compatible with the 817 
Guenther scheme, we conduct sensitivity simulations “2N_def” and “2N_upd” to evaluate the impacts of updating land surface 818 
properties. The simulation name with “*snox*” means that the BDISNP soil NOx emission scheme is used.  819 

dWe test different scenarios of chemical species used in MERRA-2 data for updating UI-WRF-Chem chemical boundary 820 
conditions. “None” (simulation name with “*none*”) means that chemical boundary conditions from MERRA-2 data are not used 821 
but instead the model default chemical boundary conditions are used. They represent a clean North American summer day, which 822 
includes a limited number of chemical species and most of them are gas species. For aerosol species, the concentrations are close 823 
to zero values. “dust + other aerosols” (simulation name with “*dust*”) means that dust and other aerosols including sulfate, BC 824 
and OC are considered in the chemical boundary conditions from MERRA-2 data. “dust particle size distribution (PSD) + other 825 
aerosols” (simulation name with “*dust PSD*”) is the same as “dust + other aerosols” except that we use the ratio of averaged PSD 826 
from AERONET observations and MERRA-2 data over 2000–2020 to scale the dust concentration for each size bin in the MERRA-827 
2 data. More details can be found in Sect 4.1.1. 828 

eWe conduct the sensitivity simulations in two different time periods: March and July 2018, respectively. The simulations in March 829 
focus on evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions on model performance while 830 
the simulations in July focus on the impacts of updating land surface properties with MODIS data and soil NOx emission scheme.  831 

The impacts of chemical boundary conditions are evaluated from several sensitivity experiments. 832 

In the simulation “2N_upd_snox-none”, no chemical species from MERRA-2 data are transported 833 

into the domain. In the simulation “2N_upd_snox-dust”, dust and other aerosols including sulfate, 834 

BC and OC are considered in the chemical boundary condition from MERRA-2 data. Furthermore, 835 

to constrain the chemical boundary condition for the allocation of dust concentration as a function 836 

of different size bins, we analyze the AERONET measured aerosol volume size distribution 837 
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(AVSD) data from 2000 to 2020. If the fine mode fraction (FMF) of AOD at 500 nm is less than 838 

0.3 (Lee et al., 2017), it is considered as a dust event. Figure 5(a) shows the averaged dust particle 839 

size distribution (PSD) over the AERONET sites (Fig 2(a)) between 2000–2020 from both 840 

AERONET and MERRA-2 data for all the dust events that occurred in CHN-Beijing. The ratio 841 

between the mean of the AERONET PSD and MERRA-2 PSD for each of the five dust size bins 842 

is then used as a constraint to scale the dust concentration in each bin in the MERRA-2 chemical 843 

boundary data. The sensitivity run “2N_upd_snox-dust PSD” in Table 2 is based on this result.  844 

 845 

 846 
Figure 5. Averaged particle size distribution (PSD) from AERONET observations (blue line) and MERRA-2 data (the 5 colored 847 
bins) for (a) CHN-Beijing and (b) ITA_Rome over 2000–2020 and 2000–2023, respectively. The AERONET sites used are shown 848 
as stars in Fig 2(a) and (b), respectively. The dark gray areas represent the AERONET variability. AERO-mean and MERRA-2 849 
mean represent the fraction of the PSD from each bin over the sum of the 5 bins. Ratio-mean is the ratio of the total PSD of 850 
AERONET over MERRA-2 for each bin.  851 

Three UI-WRF-Chem sensitivity simulations in Table 2 are run from 18 March to 31 March 2018, 852 

for evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions. The 853 

simulation results with the first 6 days are used as initialization. Model output from 24 March to 854 

31 March 2018, are used for analysis, unless noted otherwise. The rest of the four simulations are 855 

used for evaluating the impacts of updating land surface properties and soil NOx emission scheme 856 

on model performance. They are carried out from 24 June to 31 July 2018, and model outputs from 857 

1 July to 31 July are used for data analysis. We mainly use model output from the inner domain 858 

(D2) for data analysis unless noted otherwise.  859 
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4.1.2 Impacts of chemical boundary conditions on surface PM and AOD  860 

 861 
Figure 6. Scatter plot of hourly surface PM2.5 concentration between model (y axis) and ground observation (x axis) for surface 862 
sites in the inner domain (D2) of CHN-Beijing for 24–31 March 2018. (a)–(c) refer to the UI-WRF-Chem sensitivity simulations 863 
with different chemical boundary conditions being considered using MERRA-2 data (Table 2). (a) no chemical species, (b) dust 864 
and other aerosols and (c) same as (b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD data 865 
with AERONET PSD climatology data. (d) is from MERRA-2 simulated surface PM2.5 concentration. Also shown on the scatter 866 
plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard 867 
deviation for observed (x) and model-simulated surface PM2.5 (y), the number of collocated data points (N), the density of points 868 
(the color bar), the best fit linear regression line (the solid black line) and the 1:1 line (the dashed black line). WRF-Chem PM data 869 
are regridded onto the MERRA-2 grid, and when multiple surface sites fall within the same MERRA-2 grid, the observations are 870 
then averaged to represent a single collocated site.  871 
 872 

First, we evaluate the effectiveness of using MERRA-2 data to provide chemical boundary 873 

conditions in capturing this dust long-range transport event in spring 2018. Figure 6 shows the 874 

overall evaluation of model simulated hourly surface PM2.5 mass concentration against ground 875 

observations over PTA-Beijing during 24−31 March 2018. Results are presented for three 876 

sensitivity experiments, as described in section 4.1.1. WRF-Chem PM data are regridded onto the 877 
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MERRA-2 grid to ensure a fair comparison. Without considering any chemical species in the 878 

boundary, the UI-WRF-Chem simulated PM2.5 concentration (2N_upd_snox_none) substantially 879 

underestimates ground observations with a MB of − g m-3. After including dust and other 880 

aerosols in the boundary conditions, the UI-WRF-Chem simulated PM2.5 concentration 881 

(2N_upd_snox_dust) increases from 18.7 g m-3 to 35.5 g m-3 and thus reduces the MB to −9.6 882 

g m-3. The correlation (R) increases from 0.19 to 0.51 and MAE decreases from 66.7 to 50.2 g 883 

m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). By constraining the dust PSD in the 884 

MERRA-2 data with the AERONET climatology data, the UI-WRF-Chem simulated PM2.5 885 

(2N_upd_snox_dust PSD) further improves the model performance with MB of −24 g m-3, R of 886 

0.54 and MAE of 37.0 g m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). This 887 

sensitivity simulation also outperforms the MERRA-2 simulated surface PM2.5 concentration with 888 

MB of −33.7 g m-3, R of 0.39 and MAE of 41.7 g m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni 889 

correction).  890 

 891 

Figure 7(a) and Figure S3 show the time series of hourly surface PM2.5 and PM10 concentration 892 

from 24–31 March 2018 for both model simulations and ground observations. During 27–28 893 

March, when the dust front intruded PTA-Beijing, hourly observations of surface PM2.5 and PM10 894 

concentration averaged over all the sites could reach approximately 150 and 900 g m-3, 895 

respectively. The UI-WRF-Chem simulation without chemical boundary conditions 896 

(2N_upd_snox_none) misses this peak for both PM2.5 and PM10 while both the UI-WRF-Chem 897 

simulation with chemical boundary condition (2N_upd_snox_dust) and MERRA-2 data capture 898 

this peak for PM2.5 but miss the peak for PM10. The UI-WRF-Chem simulation with dust PSD 899 

constrained (2N_upd_snox_dust PSD) capture the peaks of both PM2.5 and PM10. Compared with 900 

the simulation without boundary conditions (2N_upd_snox_none), adding chemical boundary 901 

conditions (2N_upd_snox_dust) improves model performance with increased correlation for both 902 

PM2.5 (0.41 to 0.72) and PM10 (0.06 to 0.23). The simulation with dust PSD constrained 903 

(2N_upd_snox_dust PSD) does not improve the correlation of PM2.5 (0.65) but does for PM10 904 

(0.28), compared with the simulation using dust in the chemical boundary (2N_upd_snox_dust). 905 

Time series of UI-WRF-Chem simulated hourly speciated PM2.5 (e.g., OC, EC, sulfate, nitrate) 906 

and dust components in both PM2.5 and PM10 from the two sensitivity simulations 907 

(2N_upd_snox_dust and 2N_upd_snox_dust PSD) (not shown here) indicate that only the dust 908 

components exhibit similar peaks as in the total PM2.5 and PM10, while other speciated PM2.5 909 

components do not follow the same temporal pattern. This demonstrates that the observed peaks 910 

in both PM2.5 and PM10 are primarily driven by the dust intrusion event. Moreover, the magnitude 911 

of the peak from the sensitivity simulation – 2N_upd_snox_dust PSD is larger and matches better 912 

with surface observations, especially for PM10, than that of the 2N_upd_snox_dust. This further 913 

highlights the effectiveness of our method in improving the representation of dust size distribution 914 

in MERRA-2 data.  915 

 916 

Not only does considering chemical boundary conditions improve surface PM mass concentration, 917 

it also enhances the total aerosol column amount and vertical distribution. Figure 7(b)–(d) shows 918 

the AOD evaluation between model simulations and AERONET observations. Without 919 

considering boundary conditions, the UI-WRF-Chem simulation (2N_upd_snox_none) 920 

significantly underestimates the AERONET observed AOD (0.05 vs. 0.73) and shows poor 921 

correlation (0.02). Including dust and other aerosols (2N_upd_snox_dust) increases UI-WRF-922 

Chem simulated AOD (0.29), improves correlation (0.29) and reduces MAE from 0.67 to 0.44 923 
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(paired t-test, adjusted 𝑝 > 0.05; Wilcoxon, adjusted 𝑝 < 0.05; Bonferroni correction). Further 924 

constraining the dust in the boundary (2N_upd_snox_dust PSD) yields the best model performance 925 

with simulated AOD of 0.93 and correlation of 0.83, reducing MAE from 0.44 to 0.31 (paired t-926 

test, adjusted 𝑝 > 0.05; Wilcoxon, adjusted 𝑝 < 0.05; Bonferroni correction). The paired t-test does 927 

not find statistically significant changes in the MAE, likely due to the smaller sample size, whereas 928 

the Wilcoxon test shows that changes in the MAE are statistically significant.  929 

 930 

 931 
Figure 7. (a) time series of hourly surface PM2.5 concentration averaged over surface sites in the inner domain (D2) of CHN-Beijing 932 
for 24–31 March 2018, from model simulations and ground observations. 2N_upd_snox-none/dust/dust PSD refer to the UI-WRF-933 
Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data (Table 2): no 934 
chemical species; dust and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD data with 935 
AERONET PSD climatology data. Also shown on the plot is the mean ± standard deviation of surface PM2.5 for model simulations 936 
or observations as well as the correlation coefficient (R). (b)–(d): scatter plot of hourly AOD between model (y axis) and AERONET 937 
observation (x axis) for 24–31 March 2018. Also shown on the scatter plot is R, the root-mean-square error (RMSE), the mean 938 
absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated AOD (y), the number of collocated 939 
data points (N), the best fit linear regression line (the solid black line) and the 1:1 line (the dashed black line).  940 

We then compare the UI-WRF-Chem simulated vertical aerosol profile with the Cloud-Aerosol 941 

Lidar with Orthogonal Polarization (CALIOP) data for the outer domain (D1) during 26–28 942 

March, when dust reaches the PTA-Beijing domain. Figure 8 shows the CALIOP derived aerosol 943 

extinction coefficient, aerosol type as well as UI-WRF-Chem simulated extinction coefficient. The 944 

CALIOP ground tracks are located within the UI-WRF-Chem outer domain (D1) (Fig 4) and 945 

model grids that overlap with the tracks are selected. From both the CALIOP aerosol extinction  946 
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 947 
Figure 8. Comparison of CALIOP–derived vertical profile of aerosol extinction coefficient (532 nm, (a)–(c)) and aerosol type ((d)–948 
(f)) with UI-WRF-Chem simulated extinction coefficient for CHN-Beijing over 26–28 March 2018. UI-WRF-Chem outputs are 949 
from the outer domain (D1) that overlap with CALIOP tracks (Fig 4). (g)–(i) are the extinction coefficients from the UI-WRF-950 
Chem sensitivity simulation 2N_upd_snox-dust, where dust and other aerosols are considered in the MERRA-2 chemical boundary 951 
conditions. (j)–(l) are the extinction coefficients from UI-WRF-Chem sensitivity simulation 2N_upd_snox-dust PSD where dust 952 
concentration is scaled in the MERRA-2 chemical boundary conditions, based on constraining MERRA-2 dust PSD data with 953 
AERONET PSD climatology data. In (a)–(f), the gray areas represent cloud. In (d)–(f), different aerosol types are classified: d mari 954 
for dusty marine, p dust for polluted dust, c cont for clean continental, p cont for polluted continental and c mari for clean marine. 955 
ND includes areas that have clean air and aerosol type not being determined. 956 
 957 

coefficient and aerosol type, we can see that dust is dominating the vertical distribution above ~3–958 

4 km and mixed with marine and anthropogenic aerosols in the boundary layer. Without 959 

considering aerosols in the chemical boundary conditions, the UI-WRF-Chem simulated 960 

extinction coefficient is negligible above the boundary layer (not shown here). After considering 961 

dust and other aerosols in the chemical boundary, we can see the increase in the extinction 962 

coefficient in the vertical distribution (Fig 8(g)–(i)). Constraining the dust PSD in the boundary 963 

(2N_upd_snox_dust PSD, Fig 8(j)–(l)) further enhances the vertical distribution of the aerosol 964 

extinction coefficient, which matches better with the CALIOP observations. This reflects the 965 

effectiveness of including dust and other aerosols in the chemical boundary condition to better 966 

capture the vertical distribution of aerosol properties in this dust intrusion event. We note that 967 
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CALIOP data is also subject to uncertainties of the lidar ratio used in deriving the extinction, and 968 

so is the extinction modeled by UI-WRF-Chem (Yang et al., 2013). Hence, CALIOP data is used 969 

as a relative reference to assess the model improvement. 970 

 971 

Since PTA-Being is located downwind of the dust source regions in this case, there could be 972 

uncertainties in simulating the transport of different dust size bins in MERRA-2 data from source 973 

regions. Thus, our constraining method could provide an effective way to improve the dust size 974 

distribution in the boundary conditions and subsequently improve model simulated surface PM 975 

concentration as well as vertical distribution of aerosols. This method could also benefit other 976 

PTAs such as ITA-Rome, that can be affected by dust transport events, which will be discussed in 977 

Sect 4.2.  978 

4.1.3 Impacts of updated land surface properties on model performance   979 

The UI-WRF-Chem model simulated surface skin temperature (TSK) is evaluated with satellite 980 

observations of land surface temperature (LST) from MODIS onboard Terra and Aqua for July 981 

2018. We first regrid the MODIS daily LST data onto the WRF-Chem model grid, and then mask 982 

the WRF-Chem output based on the spatial and temporal availability of MODIS data to ensure a 983 

fair comparison. The Beijing-Tian-Hebei region is one of the highly urbanized clusters in the world 984 

and has experienced intense urban heat island (UHI) effects in the past decade (Wang et al., 2016; 985 

Clinton and Gong, 2013). First, by comparing the default and updated land cover type (Fig 9(a) 986 

and Fig 9(f)), we can see that the updated land cover type captures the urban growth over the 987 

region. The corresponding land surface properties including LAI, GVF and albedo also show 988 

changes with the updated data (Fig S4). Both daytime (~10:30 am and ~1:30 pm LT) (Fig 9(b) and 989 

Fig S5(a)) and nighttime (~10:30 pm and ~1:30 am LT) (Fig 9(g) and Fig S5(e)) LST from MODIS 990 

Terra and Aqua show the UHI phenomenon over the region. Our UI-WRF-Chem model simulated 991 

TSK with updated land surface properties using MODIS data can capture the UHI spatial pattern 992 

with higher temperature in urban areas than rural areas for both daytime and nighttime. It matches 993 

the spatial pattern of satellite observed LST UHI better than the UI-WRF-Chem simulation with 994 

the use of the default USGS land cover type and other surface properties, which is consistent with 995 

our previous work (Wang et al., 2023). Figure 3(b) shows the Taylor Diagram of comparing UI-996 

WRF-Chem simulated LST with MODIS Terra and Aqua daytime and nighttime, respectively. We 997 

find that the UI-WRF-Chem simulated TSK with updated land surface properties decreases the 998 

relative bias for both Terra and Aqua daytime and nighttime, compared with the UI-WRF-Chem 999 

simulation using the default USGS land surface properties. The model simulated TSK with 1000 

updated land surface properties also results in an increase in correlation for the Aqua daytime 1001 

period compared with the model simulation using the USGS land surface properties.  1002 

 1003 
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 1004 
Figure 9. Comparison of UI-WRF-Chem simulated monthly mean surface skin temperature (TSK) with MODIS Terra observed 1005 
land surface temperature (LST) over the inner domain (D2) of CHN-Beijing for July 2018. (a) and (f) are the land cover type 1006 
from the default USGS data and updated MODIS land data. (b) and (g) are the MODIS Terra LST during daytime (D) and 1007 
nighttime (N), respectively. (c) and (d) are model simulated TSK averaged over Terra overpass time during daytime from UI-1008 
WRF-Chem sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 1009 
2N_upd (updated land cover type, GVF, LAI and albedo with MODIS land data) in Table 2, respectively. (e) is the ratio between 1010 
(d) and (c), expressed as the geometric mean of daily ratio, with stippling indicating model grids where the difference is 1011 
statistically significant (Wilcoxon test, adjusted p < 0.05; FDR correction). (h)–(j) are the same as (c)–(e) but averaged over Terra 1012 
overpass time during nighttime. Oceans are masked as gray colors.  1013 

Figure S6 shows the potential impacts of updated land surface properties on model simulated 1014 

planetary boundary layer height (PBLH) and subsequently on surface PM2.5 concentration. We 1015 

find that the PBLH mainly increases in the urban areas where the land surface temperature 1016 

increases, which in turn leads to a decrease in surface PM2.5. Our work shows the promising use 1017 

of updated land surface properties with timely satellite data to better capture the land cover type 1018 

and other land surface properties for regions with fast urban development. To better study the 1019 

impacts of UHI in the region, an urban canopy model could be used to include more details about 1020 

the underlying urban surface feature and better simulate the physical processes in the boundary 1021 

layer (He et al., 2019; Liang et al., 2021) with a finer spatial resolution, which is beyond the scope 1022 

of the current work.  1023 

4.1.4 Impacts of updated soil NOx emission scheme on model performance 1024 

Our previous work (Sha et al., 2021) has shown the improvement of model simulated NO2 VCD, 1025 

when evaluated against TROPOMI NO2 VCD over croplands in California, using the BDISNP 1026 

soil NOx emission scheme. Here, we also use TROPOMI NO2 VCD to evaluate UI-WRF-Chem 1027 

simulated NO2 VCD over croplands in the outer domain (D1) of CHN-Beijing for July 2018. Daily 1028 

TROPOMI NO2 data are regridded to UI-WRF-Chem grids with averaging kernels being applied. 1029 

Hourly data from UI-WRF-Chem output, close to the TROPOMI overpass time (~1:30 PM LT) 1030 

are averaged to compare with TROPOMI data. First, Figure S7 shows the UI-WRF-Chem 1031 

simulated monthly mean soil NOx emissions using the default emission scheme – MEGAN 1032 
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(2N_upd_MEGAN in Table 2) and the updated scheme – BDISNP (2N_upd_BDISNP in Table 1033 

2), respectively. The MEGAN scheme (Fig S7(a)) simulates low soil NOx emissions over the 1034 

whole domain and the BDISNP (Fig S7(b)) instead simulates higher soil NOx emissions in non-1035 

urban areas. Croplands show the largest soil NOx emissions due to the use of fertilizer.  1036 

 1037 

 1038 
Figure 10. Monthly mean NO2 tropospheric vertical column density (VCD) over the outer domain (D1) of CHN-Beijing for July 1039 
2018 from TROPOMI observation and model sensitivity simulations. Only model grids identified as croplands are shown on the 1040 
plots and the rest are marked as gray colors. (a) TROPOMI observations; (b) UI-WRF-Chem sensitivity simulation 1041 
2N_upd_MEGAN (Table 2) using the MEGAN scheme to calculate soil NOx emissions; (c) UI-WRF-Chem sensitivity simulation 1042 
2N_upd_BDISNP (Table 2) using the BDISNP scheme to calculate soil NOx emissions. The white box represents the inner domain 1043 
(D2). 1044 

We compare the model simulated tropospheric NO2 VCD with TROPOMI NO2 VCD for July 2018 1045 

(Fig 10 and Fig 11). We can find that both simulations underestimate TROPOMI NO2 VCD (2.2 1046 

x 1015 molecules cm-2) by 1.4 x 1015 and 1.3 x 1015 molecules cm-2 for the MEGAN and BDISNP 1047 

respectively (Fig 11(a) and (b)) over the whole domain. The model simulated NO2 VCD increases 1048 

from 1.4 x 1015 using the MEGAN scheme to 1.7 x 1015 molecules cm-2 using the BDISNP scheme. 1049 

The BDISNP decreases MAE from 1.59 x 1015 molecules cm-2 to 1.53 x 1015 molecules cm-2 1050 

(paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction) over the whole domain mainly due to the 1051 

improvement over croplands. Over croplands, we can see the enhancement in the model simulated 1052 

NO2 VCD (Fig 10(c)). MAE for croplands decreases from 1.88 x 1015 molecules cm-2 to 1.77 x 1053 

1015 molecules cm-2 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). Both reductions in 1054 

MAE are statistically significant, underscoring that the improvements are robust, though moderate 1055 

in magnitude. The increase in soil NOx emissions has potential impacts on surface nitrate. Figure 1056 

S8 shows that the increase in surface soil NOx emissions leads to the increase in surface nitrate up 1057 

to 30% in rural areas. Due to the lack of surface observation of nitrate, we are limited to quantify 1058 

the impacts of the improvement of soil NOx emissions on surface nitrate. The MAIA satellite 1059 

mission coupled with the Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et 1060 

al., 2020) satellite mission could provide a synergetic opportunity to evaluate both gas and aerosol 1061 

chemistry.  1062 

 1063 
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 1064 
Figure 11. Scatter plot of daily tropospheric NO2 VCD between model (y axis) and TROPOMI observation (x axis) over the outer 1065 
domain (D1) of CHN-Beijing for July 2018. (a) and (c) refer to the UI-WRF-Chem sensitivity simulation using the MEGAN 1066 
scheme (2N_upd_MEGAN in Table 2) and (b) and (d) refer to the sensitivity simulation using the BDISNP scheme 1067 
(2N_upd_BDISNP in Table 2) to calculate soil NOx emissions, respectively. (a) and (b) are for model grids over the whole domain 1068 
while (c) and (d) are for model grids that are identified as croplands. Also shown on the scatter plot is the correlation coefficient 1069 
(R), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model simulated tropospheric NO2 VCD 1070 
(y), the number of collocated data points (N), the density of points (the color bar), the best fit linear regression line (the solid black 1071 
line) and the 1:1 line (the dashed black line).  1072 

4.2 Case study – ITA-Rome 1073 

Our case study over CHN-Beijing target area has demonstrated the benefits of using MERRA-2 1074 

data to provide chemical boundary conditions for capturing long-range transport events such as 1075 

dust intrusion. Some of the other target areas including ITA-Rome are also impacted by dust 1076 

transport. Saharan dust transport poses a significant concern on air quality in Europe and the 1077 

Mediterranean Basin. Previous studies have shown that Saharan dust outbreaks are more frequent 1078 

in southern Europe including Italy than northern Europe (Querol et al., 2009; Viana et al., 2014; 1079 
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Pey et al., 2013; Wang et al., 2020a). For example, Pey et al. (2013) showed that across the 1080 

Mediterranean Basin, African dust outbreaks occurred from 30% to 37% of the annual days in the 1081 

southern sites and less than 20% of the days in the northern sites. The work of Barnaba et al. (2022) 1082 

investigated the impacts of African dust on surface PM10 concentrations in Italy using surface 1083 

monitoring sites in Italy from 2006−2012 and found that African dust affected surface PM10 levels 1084 

in Northern and Southern Italy for about 10% and 30% of dates in a year, respectively.  1085 

 1086 

Here, we focus on June 2023, where Saharan dust affected PM concentrations in ITA-Rome, and 1087 

investigate the benefits of using MERRA-2 data to provide chemical boundary conditions for 1088 

driving UI-WRF-Chem. For example, one Saharan dust intrusion into Italy occurred from 19–22 1089 

June 2023 as seen from the VIIRS AOD (Fig S9) and MERRA-2 simulated dust AOD (not shown 1090 

here) also captures this dust intrusion event. We conduct three UI-WRF-Chem model sensitivity 1091 

simulations with different chemical boundary conditions to evaluate model simulated surface PM 1092 

concentrations and AOD: (1) simulation “2N-none”: no chemical species from MERRA-2 data are 1093 

transported into the domain; (2) simulation “2N-dust”: dust and other aerosols including sulfate, 1094 

BC and OC are considered in the MERRA-2 chemical boundary condition; (3) simulation “2N-1095 

dust PSD”: dust concentration of different size bins in the MERRA-2 boundary conditions is 1096 

constrained using the AERONET PSD climatology data from 2000–2023. AERONET sites close 1097 

to the Saharan dust source region are used for constraining MERRA-2 PSD (Fig 2(b)). Figure 5(b) 1098 

shows the averaged PSD over the AERONET sites between 2000–2023 from both MERRA-2 and 1099 

AERONET data. The ratio between the mean of the AERONET PSD and MERRA-2 PSD for each 1100 

of the five dust size bins is then used as a constraint to scale the dust concentration in each bin in 1101 

the MERRA-2 chemical boundary data in the simulation “2N-dust PSD”.  1102 

 1103 

Like the case study in CHN-Beijing, using MERRA-2 data to provide chemical boundary 1104 

conditions for UI-WRF-Chem over ITA-Rome also improves both model simulated surface PM 1105 

concentration and AOD (Fig 12). WRF-Chem PM data are regridded onto the MERRA-2 grid for 1106 

a fair comparison. Compared with the sensitivity simulation 2N-none, the correlation (R) from the 1107 

sensitivity simulation 2N-dust increases from 0.12 to 0.54, 0.38 to 0.70, and 0.15 to 0.62 for surface 1108 

PM2.5, surface PM10 and AOD, respectively, for the whole month of June. The MB decreases from 1109 

–6.8 to –2.1 g m-3, –13.8 to –2.3 g m-3, and –0.23 to –0.13 for surface PM2.5, PM10 and AOD 1110 

respectively. The MAE decreases significantly from 6.9 to 3.8 g m-3, 13.7 to 9.1 g m-3, and 0.23 1111 

to 0.13 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction) for surface PM2.5, PM10 and AOD 1112 

respectively. Using constrained dust concentration in the MERRA-2 data (2N-dust PSD) further 1113 

reduces the MB for surface PM2.5 and AOD and slightly overestimates surface PM10, compared 1114 

with simulation 2N-dust. In contrast, Both MERRA-2 simulated surface PM2.5 and PM10 1115 

overestimates surface observations with MB of 6.4 g m-3 and 21.8 g m-3, respectively. Both 1116 

simulations (2N-dust and 2N-dust PSD) show higher correlation than MERRA-2 (0.70 vs. 0.66) 1117 

when evaluating surface PM10 concentration against ground observations, while simulation 2N-1118 

dust PSD shows slightly lower correlation than MERRA-2 for surface PM2.5 (0.52 vs. 0.54). MAEs 1119 

from both simulations are also improved significantly (paired t-test, adjusted 𝑝 < 0.05; Bonferroni 1120 

correction), compared to those of MERRA-2 for both surface PM2.5 (3.8 vs 6.7 g m-3; 4.1 vs 1121 

6.7 g m-3) and PM10 (9.1 vs. 22.0 g m-3; 10.3 vs. 22.0 g m-3). Compared with simulation 2N-1122 

dust, simulation 2N-dust PSD improves model simulated AOD with MB decreasing from 0.13 to 1123 

0.09 and MAE decreases from 0.13 to 0.11 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). 1124 

MERRA-2 data has the best AOD performance as expected since it assimilates satellite AOD.  1125 
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During June 2023, some parts of the ITA-Rome domain experienced precipitation events (Fig 1126 

S10), which occurred mostly during the first half of the month. Compared to the Global 1127 

Precipitation Measurement Missions (GPM) observed precipitation and MERRA-2 simulated 1128 

precipitation (Fig S10), UI-WRF-Chem simulates higher precipitation, which could result in 1129 

higher wet deposition of aerosols and lower concentration. Figure S11 shows the comparison of 1130 

model simulated surface daily PM2.5 and PM10 with ground observations for the first and second 1131 

half of the month in June 2023, respectively. We can see that UI-WRF-Chem simulation 2N-dust 1132 

underestimates both surface PM2.5 and PM10 during the first half of the month (Fig S11(a)–(h)) 1133 

with MB of –3.1 and –5.7 g m-3, respectively, while MERRA-2 overestimates surface PM2.5 and 1134 

PM10 with MB of 5.1 and 15.7 g m-3, respectively. During the second half of the month (Fig 1135 

S11(i)–(p)), UI-WRF-Chem simulation 2N-dust underestimates surface PM2.5 with MB of –1.3 g 1136 

m-3 but slightly overestimates surface PM10 with MB of 1.3 g m-3. MERRA-2 still overestimates 1137 

surface PM2.5 and PM10 with MB of 7.4 and 28.4 g m-3, respectively. Due to the coarse spatial 1138 

resolution of MERRA-2 data, it may not resolve the localized convective processes well, which 1139 

could affect the subsequent wet deposition. There are also uncertainties associated with the dust 1140 

size distribution in MERRA-2 data, which could also affect the wet deposition.  1141 

 1142 

Additionally, uncertainty in UI-WRF-Chem model simulated wet deposition of aerosols could also 1143 

play a role in the model results discussed above. Previous studies have mostly focused on dry dust 1144 

events (e.g., Zeng et al., 2020), and less has focused on wet dust events, especially dust wet 1145 

deposition. Jung and Shao (2006) implemented a below-cloud dust wet deposition scheme for the 1146 

UOC dust emission scheme in WRF-Chem. Currently, no dust wet scavenging scheme is 1147 

implemented for the original GOCART or GOCART AFWA dust scheme in WRF-Chem. As in 1148 

previous work (Su and Fung, 2015), we have implemented a simple scheme to allow dust wet 1149 

scavenging by large scale and convective precipitation by assigning a scavenging efficiency for 1150 

different dust size bins in the model. Future work will focus on implementing a more complex dust 1151 

wet deposition scheme to better account for the scavenging process that consider the dust particle 1152 

size distribution etc., such as the work of Tsarpalis et al. (2018) and Zhao et al. (2003). 1153 

Nevertheless, the case study over ITA-Rome again demonstrates the benefits of using MERRA-2 1154 

data to drive UI-WRF-Chem for capturing dust transport events.  1155 

 1156 
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 1157 
Figure 12. Scatter plot of daily PM2.5 concentration ((a)–(d)), PM10 concentration ((e)–(h)), and AOD ((i)–(l)), between model (y 1158 
axis) and ground observation (x axis) over the inner domain (D2) of ITA-Rome for June 2023. (a)–(c), (e)–(g), and (i)–(k) refer to 1159 
the UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data. 1160 
2N-none: no chemical species; 2N-dust: dust and other aerosols; 2N-dust PSD: same as 2N-dust except that the dust concentration 1161 
is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. (d), (h) and (l) show the MERRA-1162 
2 simulated daily PM2.5, PM10 and AOD, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-1163 
mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated 1164 
PM2.5/PM10/AOD (y), the number of collocated data points (N), the best fit linear regression line (the solid black line) and the 1:1 1165 
line (the dashed black line). WRF-Chem PM data are regridded onto the MERRA-2 grid, and when multiple surface PM sites fall 1166 
within the same MERRA-2 grid, the observations are then averaged to represent a single collocated site. 1167 

4.3 Case study – USA-LosAngeles  1168 

Each target area has its unique feature of aerosol composition and various factors that affect the 1169 

aerosol concentration, we have demonstrated the impacts of dust transport on surface PM 1170 

concentration and AOD over CHN-Beijing and ITA-Rome target areas. Here, we focus on some 1171 

fine tuning over USA-Los Angeles target area to improve the model simulation of surface PM 1172 

concentration and AOD.  1173 

 1174 

For the USA-LosAngeles target area (Fig 2(c)), we investigate the impacts of dust emissions on 1175 

surface PM concentration and AOD. Part of the outer domain (D1) over the USA-LosAngeles 1176 
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target area (here defined as the dust-prone region, the orange box in Fig S12), located in the 1177 

southwestern U.S., are desert regions with higher soil erodibility than other parts of the domain. It 1178 

is common in WRF-Chem to tune some of the parameters in the dust emission scheme including 1179 

the soil erodibility to better match model simulated PM10 concentration and AOD with satellite- 1180 

and ground-based observations (e.g., Su and Fung, 2015). This approach has been mainly focusing 1181 

on the total atmospheric dust load instead of an individual dust event and it is sufficient to capture 1182 

the general magnitude of dust aerosol patterns. We have adopted this simple approach here to do 1183 

some dust parameter tuning to improve model simulated surface PM10 concentration and AOD 1184 

with a focus on the overall magnitude.  1185 

 1186 

 1187 
Figure 13. Scatter plot of daily surface PM10 concentration and hourly AOD between model (y axis) and ground observation (x 1188 
axis) over the dust-prone region of USA-LosAngeles for July 2018. (a)−(i) are for surface daily PM10 and (j)−(r) are for hourly 1189 
AOD from two groups of sensitivity simulations: (1) gamma = 1, 1.5, 2, 2.5, 3 while alpha stays as 1; (2) alpha = 0.2, 0.3, 0.4, 0.5 1190 
while gamma stays as 1, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error 1191 
(RMSE), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated surface 1192 
PM10/AOD (y), the number of collocated data points (N), the best fit linear regression line (the solid black line) and the 1:1 line 1193 
(the dashed black line).  1194 
 1195 

There are several parameters that can be used to tune dust emissions in the WRF-Chem model. 1196 

One is the dust_gamma (gamma for short here), which tunes the soil erodibility in an exponential 1197 

manner. Soil erodibility serves as an important factor for identifying dust source and estimating 1198 

dust emission flux in the model. The other one is the dust_alpha (alpha for short here), which 1199 

linearly tunes the total dust emissions. If we use the default setting (gamma=1, alpha = 1), both 1200 

model simulated surface daily PM10 concentration and hourly AOD overestimate surface 1201 

measurements of PM10 and AOD in the dust-prone region (Fig 13(a) and (j), Fig S13 and S14). 1202 

Model simulated surface PM2.5 concentration also overestimates surface measurements of PM2.5 1203 

(Fig S13 (a)). We conduct two groups of sensitivity simulations to test the responses of model 1204 

simulated PM10 and AOD to a range of gamma and alpha values, respectively. For the first group 1205 

test, we set the gamma with 1.5, 2, 2.5 and 3 respectively, while keeping the alpha value as 1. For 1206 

the second group test, we set the alpha with 0.2, 0.3, 0.4, and 0.5 respectively, while keeping the 1207 

gamma value as 1. As gamma increases from 1 to 3 with the constant alpha value of 1, correlation 1208 
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increases for AOD and decreases for surface PM10 (Fig 13). MB and RMSE also decreases with 1209 

increasing gamma value until when gamma value reaches 2.5 for both AOD and PM10. MAE also 1210 

decreases significantly for both AOD (0.08 to 0.04) and PM10 (46.7 to 21.5 g m-3) (paired t-test, 1211 

adjusted 𝑝 < 0.05; Bonferroni correction) when gamma increases from 1 to 2.5. As alpha value 1212 

decreases from 1 to 0.5 with the constant gamma of 1, both MB and RMSE for surface PM10 and 1213 

AOD decrease until alpha value drops to 0.3. The correlation almost stays the same or slightly 1214 

increases for both PM10 and AOD with decreasing alpha value. MAE also decreases significantly 1215 

for both AOD (0.08 to 0.04) and PM10 (46.7 to 17.9 g m-3) (paired t-test, adjusted 𝑝 < 0.05; 1216 

Bonferroni correction) when alpha decreases from 1 to 0.3. Furthermore, the sensitivity simulation 1217 

(gamma = 1, alpha = 0.3) outperforms the sensitivity simulation (gamma = 2.5, alpha = 1) with 1218 

enhanced correlation (0.48 vs. 0.37) and statistically significant decrease in MAE (17.9 vs. 21.5, 1219 

paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). Therefore, we choose gamma of 1 and 1220 

alpha of 0.3 as the final configuration to account for the model performance of both PM10 and 1221 

AOD.  1222 

 1223 

Here, we use one month of data to tune the dust emissions by focusing on the magnitude of the 1224 

total dust load. It is challenging to fine tune each individual dust event and acquire consistent 1225 

results. The work of Hyde et al. (2018) simulated nine dust storms in south-central Arizona with 1226 

WRF-Chem using the GOCART AFWA dust emission scheme and the model unevenly 1227 

reproduced the dust-storm events with some cases overestimating surface PM10 and some cases 1228 

underestimating surface PM10. Our evaluation of AOD with AERONET observation is rather 1229 

limited spatially as we only have one AERONET site available over the dust-prone region. We 1230 

also conduct the same set of sensitivity simulations for July 2019 (results not shown here) and the 1231 

sensitivities to the tuned parameters are comparable to results shown here in general, which further 1232 

confirms the validity of the simple approach we have used. Additionally, more recent work has 1233 

incorporated the albedo-based drag partition (Chappell and Webb, 2016) from satellite data into 1234 

the GOCART AFWA dust emission scheme to better represent the impacts of roughness features 1235 

from vegetation and non-vegetation such as soil and rocks, which demonstrated improved model 1236 

performance in capturing individual dust event over the Southwestern U.S. (Legrand et al., 2023; 1237 

Dhital et al., 2024). It is beyond the scope of this work to implement this method, but future work 1238 

could explore the use of this advanced method and focus on longer periods of model simulation to 1239 

further evaluate model performances.  1240 

 1241 

4.4 Case study – USA-Atlanta  1242 

As described in Sect 3, for the standard PTA nested domain setup, we have chosen to turn off the 1243 

cumulus parameterization in the inner domain (D2) with the spatial resolution of 4 km and allow 1244 

the microphysics scheme to explicitly resolve the convection. Here, we use PTA-Atlanta as an 1245 

example to examine the impacts of different setups of microphysics and cumulus schemes on 1246 

model simulated precipitation and surface total and speciated PM2.5. Since the MAIA satellite 1247 

mission focuses on speciated PM, we also use PTA-Atlanta here to demonstrate how UI-WRF-1248 

Chem simulates speciated PM2.5 mass concentrations in addition to total PM2.5.  1249 
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4.4.1 Impacts of microphysics and cumulus schemes on precipitation and surface total PM2.5 1250 

Southeastern U.S. including the PTA-Atlanta (Fig 2(d)) target area experiences pulse-type summer 1251 

convective precipitation due to the interplay of land-sea breezes, outflow boundaries and complex 1252 

terrain etc. (Case et al., 2011). Here, we focus on June 2022 over PTA-Atlanta to demonstrate the 1253 

impacts of different setups of microphysics and cumulus schemes on model simulated precipitation 1254 

and subsequent surface total PM2.5 concentration. We perform six UI-WRF-Chem sensitivity 1255 

simulations with different setups of microphysics and cumulus schemes while keeping other 1256 

schemes the same as shown in Table 3: (1) mp2cu5: both domain 1 and domain 2 have the Lin 1257 

microphysics scheme on. Domain 1 and domain 2 have the G3D cumulus scheme on and off, 1258 

respectively; (2) mp2cu5bothon: same as (1) except that both domain and 1 and domain 2 have the 1259 

G3D cumulus scheme on; (3) mp2cu3bothon: same as (2) except that both domain 1 and domain 1260 

2 have the GF cumulus scheme on; (4) mp10cu5; (5) mp10cu5bothon; and (6) mp10cu3bothon. 1261 

(4)−(6) are the same as (1)−(3) except that both domain 1 and domain 2 have the Morrison 1262 

microphysics scheme on. Here, the difference between (1) and (2) illustrates the impacts of turning 1263 

on/off the cumulus scheme at the 4 km resolution. The difference between (1), (2) and (1), (3) 1264 

evaluates the impacts of using a traditional cumulus scheme vs. a scale-aware cumulus scheme. 1265 

Corresponding difference between (1), (3) and (4) (6) represents the impacts of the microphysics 1266 

scheme.  1267 

 1268 
Table 3. A suite of UI-WRF-Chem sensitivity simulations performed over PTA-Atlanta with different setups of microphysics and 1269 
cumulus schemes for the outer domain (D1) and inner domain (D2), respectively.  1270 

 mp2cu5 mp2cu5bothon mp2cu3bothon mp10cu5 mp10cu5bothon mp10cu3bothon 

Microphysics-

D1 

Lin Lin Lin Morrison Morrison Morrison 

Microphysics-

D2 

Lin Lin Lin Morrison Morrison Morrison 

Cumulus-D1 G3D G3D GF G3D G3D GF 
Cumulus-D2 off G3D GF off G3D GF 

 1271 

We first focus on the evaluation of daily precipitation. Although, hourly precipitation rate can be 1272 

important to tell the intensity of the precipitation event, verification of the hourly precipitation can 1273 

raise double-penalty issues at the finer resolution (Rossa et al., 2008; Gilleland et al., 2009), where 1274 

a slight shift in the prediction of the timing or location of the precipitation event compared with 1275 

the ground truth could result in the verification penalties in both space-time. Here, we accumulate 1276 

the hourly precipitation into daily precipitation to help offset the errors associated with the timing 1277 

of the event. Figure S15 shows the monthly averaged daily precipitation from UI-WRF-Chem 1278 

model sensitivity simulations (1)−(6) with surface observations. In general, all the sensitivity runs 1279 

overestimate the precipitation. Turning on the cumulus scheme in domain 2 when using the 1280 

traditional G3D scheme results in larger bias compared to the results of turning the G3D scheme 1281 

off. The work of Zhang et al. (2021) also found that the WRF model had better prediction of 1282 

precipitation in the central Great Plains in the U.S. when turning off the G3D cumulus scheme 1283 

with the spatial resolution of 4 km, compared to the sensitivity run of turning on the G3D cumulus 1284 

scheme. Turning off the cumulus scheme in domain 2 when using the G3D scheme is comparable 1285 

to the results of the simulation using the scale-aware GF cumulus scheme.  1286 

 1287 
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We then investigate the impacts on surface total PM2.5 concentration. Figure S16 shows the spatial 1288 

map of surface total PM2.5 concentration for June 2022 and Fig 14 compares model simulated daily 1289 

total PM2.5 concentration with ground observation. Both sensitivity simulations (2) and (4) with 1290 

the G3D scheme on for the inner domain (D2) simulate higher precipitation than other simulations, 1291 

which leads to lower surface PM2.5 concentrations (Fig S16(b) and (e)). Overall, the surface PM2.5 1292 

concentrations from sensitivity simulations (2) and (4) have the lowest correlation (0.34 and 0.49) 1293 

compared to other simulations (0.52–0.61) (Fig 14). They also have higher MB (–5.1 g m-3 and 1294 

–5.9 g m-3) compared with other simulations (–4.7 to –3.2 g m-3) (Fig 14). Sensitivity 1295 

simulations over CHN-Beijing also show similar results related to surface PM2.5 concentration 1296 

when contrasting the sensitivity simulation with or without the G3D cumulus on for the inner 1297 

domain (not shown here). This validates our choice of turning the cumulus scheme off for the inner 1298 

domain (D2) when using the traditional cumulus scheme such as G3D. When only using the Lin 1299 

microphysics scheme (mp2), the MAE from simulation (1) mp2cu5 improves on both simulation 1300 

(2) mp2cu5on and simulation (3) mp2cu3bothon (3.7 vs. 5.7; 3.7 vs. 651g m-3) (paired t-test, 1301 

adjusted 𝑝 < 0.05; Bonferroni correction). When only considering using the Morrison 1302 

microphysics scheme (mp10), simulation (4) mp10cu5 shows statistically lower MAE than that of 1303 

simulation (5) mp10cu5bothon (5.0 vs. 6.2 g m-3), while simulation (6) mp10cu3bothon shows 1304 

statistically reduced MAE than simulation (4) (4.8 vs. 5.0 g m-3) (paired t-test, adjusted 𝑝 < 0.05; 1305 

Bonferroni correction). Furthermore, simulation (1) outperforms simulation (6) with reduced 1306 

RMSE (4.6 vs. 5.6 g m-3) and statistically significant lower MAE (3.7 vs. 4.8 g m-3) (paired t-1307 

test, adjusted 𝑝 < 0.05; Bonferroni correction). Therefore, we have selected simulation (1) as the 1308 

final configuration for PTA-Atlanta. It also indicates that surface PM2.5 concentrations from 1309 

sensitivity simulations, which turn off the G3D cumulus scheme ((1) and (4)) are comparable to 1310 

or even better than the results from the sensitivity simulations (3) and (6), which turn on the scale-1311 

aware cumulus scheme GF, although further tests using the GF are needed.  1312 

 1313 

There are some uncertainties in this case study. First, our evaluation is limited in time. A longer 1314 

dataset would be more helpful to reveal model performances in other seasons too (Jeworrek et al., 1315 

2021). Also, we have only considered a limited number of model configurations. Previous studies 1316 

have shown that the prediction of precipitation is also sensitive to other schemes in the model such 1317 

as the PBL scheme (Klein et al., 2015; Argüeso et al., 2011). Most previous work have focused on 1318 

the impacts of microphysics and cumulus schemes on precipitation and less have focused on the 1319 

coupling with the aerosol fields. The process of handling aerosol-cloud interactions would be 1320 

another source of uncertainty here. Lastly, deficiencies in MERRA-2 meteorology boundary 1321 

conditions could also introduce uncertainties or biases in the WRF-Chem simulation (Zhang et al., 1322 

2021).  1323 

 1324 

4.4.2 Evaluation of model simulated speciated PM2.5  1325 

Surface measurements of total and speciated PM2.5 mass concentration from the Interagency 1326 

Monitoring of Protected Visual Environments (IMPROVE) (Malm et al., 1994; Solomon et al., 1327 

2014) and the Chemical Speciation Network (CSN) (Solomon et al., 2014) networks (see Fig S17 1328 

for sites location information) are used to evaluate model performance. We compare UI-WRF-1329 

Chem simulated speciated PM2.5 (OC, EC, Sulfate + Nitrate, Dust) and total PM2.5 against these 1330 

observations. Figure S18 shows the comparison of daily speciated PM2.5 between the model and 1331 
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ground observations for the six different sensitivity simulations (Table 3), while Fig S17 shows 1332 

the spatial distribution of total and speciated PM2.5 for the “mp2cu5” sensitivity simulation only.  1333 

 1334 

 1335 
Figure 14. Scatter plot of daily surface PM2.5 concentration between model (y axis) and ground observation (x axis) over the inner 1336 
domain (D2) of USA-Atlanta for June 2022. (a)−(f) are the UI-WRF-Chem sensitivity simulations with different setups of 1337 
microphysics and cumulus schemes. (a)–(c) all have the Lin microphysics scheme on for domain 1. (a) has the Lin microphysics 1338 
scheme on for domain 2 and no cumulus scheme is used for domain 2. (b) is the same as (a) except that the G3D cumulus scheme 1339 
is turned on for domain 2. (c) is same as (b) except that the GF cumulus scheme is used for domain 2. (d)–(f) are the same as (a)–1340 
(c) except that the Morrison microphysics scheme is used for both domain 1 and domain 2. Also shown on the scatter plot is the 1341 
correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard deviation 1342 
for observed (x) and model-simulated surface PM2.5 (y), the number of collocated data points (N), the best fit linear regression 1343 
line (the solid black line) and the 1:1 line (the dashed black line).  1344 
 1345 

During this month of June, both surface observations and model simulations indicate that OC, 1346 

sulfate and dust are the dominate components of total PM2.5, consistent with previous studies, 1347 

which show that OC and sulfate are the primary contributors to total PM2.5 in the Southeastern 1348 

U.S. (Hand et al., 2024; Zhu et al., 2024). Prescribed burns in the Southeastern U.S. including the 1349 

states of Alabama and Georgia are a major source of OC emissions in this region (Li et al., 2023; 1350 

Cummins et al., 2023), some of which are represented by the FLAMBE emission inventory in this 1351 

work. All the model sensitivity simulations for OC show good correlation (0.45–0.60, Fig S18) 1352 

but underestimate ground observations with MB from –1.78 to –1.36 g m-3. Model simulated EC 1353 

concentrations also show good correlation (0.45–0.72, Fig S18) but underestimate ground 1354 

observations with MB from –0.28 to –0.21 g m-3. For the dust component, correlation ranges 1355 

from 0.42–0.72 (Fig S18) but all the model sensitivity simulations overestimate ground 1356 

observations with MB from 0.35–1.53 g m-3. In contrast, the combined sulfate + nitrate for all 1357 
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the sensitivity simulations show relatively lower correlation (–0.03 to 0.23) and underestimate 1358 

ground observations with MB from –0.71 to –0.35 g m-3. The nitrate concentration from ground 1359 

observations is low in this region with an average value of 0.198 g m-3 for this month, which 1360 

makes it challenging for the model to reproduce such a low level. Also due to limited samples used 1361 

for comparison here, sulfate and nitrate are combined for evaluation. Overall, the “mp2cu5” 1362 

sensitivity simulation (Table 3) yields the best performance.  1363 

 1364 

 1365 
Figure 15. Box-whisker plots of (a) total and speciated PM2.5 concentrations from UI-WRF-Chem simulation (mp2cu5 in Table 3) 1366 
and surface observations from IMPROVE and CSN sites over the inner domain (D2) of PTA-Atlanta for June 2022, and (b) the 1367 
ratio of model simulated to observed PM2.5. Speciated PM2.5 include OC, EC, dust and the combined sulfate + nitrate. Also Shown 1368 
on the boxer plot are the 5th and 95th percentiles (the whiskers), the interquartile range (the boxes), the median (the black lines) and 1369 
the mean (the filled circles). Note on (b), the y-axis is truncated between 3.6–5.0 for improved visualization.  1370 
 1371 

Figure 15 shows the variability in total and speciated PM2.5 mass concentration from model 1372 

simulation mp2cu5 (Table 3) compared with surface observations as well as the ratio of model 1373 

simulation to observation. The simulated-to-observed ratio for dust (1–5.8) exhibits much larger 1374 

variability than other PM2.5 components (0–2), with model simulation consistently overestimating 1375 

dust. During this month, PTA-Atlanta may have been affected by long-range transport of Sahara 1376 
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dust in the model simulation. These biases are likely due to uncertainties in the MERRA-2 1377 

simulated dust particle size distribution, as also demonstrated by the case studies over CHN-1378 

Beijing and ITA-Rome, motivating future work to tune the dust particle size distribution of 1379 

MERRA-2 data for this region. Ratios for other components mostly remain below 2. Both sulfate 1380 

and nitrate aerosols are predominantly secondary aerosols in the atmosphere, formed through 1381 

chemical reactions and are also highly water-soluble, making them sensitive to uncertainties in the 1382 

aerosol chemistry and wet deposition schemes. As discussed earlier, this month experiences some 1383 

convective precipitation events, which likely contributes to the uncertainty and large variability in 1384 

the simulated speciated PM2.5 concentration.  1385 

 1386 

Although our analysis here is limited to one month and one PTA, it provides a valuable case study 1387 

of how the UI-WRF-Chem modeling framework simulates speciated PM2.5. Moreover, previous 1388 

work by Jin et al. (2024) using the same UI-WRF-Chem framework demonstrated its broader 1389 

robustness over the Boston PTA. It illustrated the feasibility of the MAIA modeling framework 1390 

for generating L2 and L4 PM products with a full year (2018) of UI-WRF-Chem outputs of total 1391 

and speciated PM2.5 mass concentrations and showed the correlation of evaluating model total and 1392 

speciated PM2.5 mass concentrations against ground observations ranging from 0.40 to 0.73 (Table 1393 

S1 therein). Together, these results suggest that while the single-month evaluation such as the case 1394 

study here only provides a partial picture of model performance, the framework has been shown 1395 

to produce reliable and robust results for longer time periods. Future work will therefore focus on 1396 

a more comprehensive assessment of model performance with respect to the PM composition using 1397 

longer datasets across different PTAs.  1398 

5. Conclusions and discussion 1399 

We have developed the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-1400 

WRF-Chem) modeling framework as the CTM, to support the MAIA satellite mission, which aims 1401 

to study how different types of PM air pollution affect human health. The UI-WRF-Chem outputs 1402 

including meteorology variables as well as total and speciated PM concentrations will be integrated 1403 

together with satellite and ground-based observations data to generate surface total and speciated 1404 

PM maps. Building upon the standard WRF-Chem model, we have developed new modules and 1405 

included major enhancements in the UI-WRF-Chem framework to improve model simulated 1406 

meteorology variables, PM concentration and AOD. These major developments include: (1) using 1407 

NASA GEOS data including GEOS FP and MERRA-2 data to provide both meteorological and 1408 

chemical initial and boundary conditions to drive WRF-Chem simulations at a finer spatial 1409 

resolution for both forecasting and reanalysis modes; (2) using a global or regional land data 1410 

assimilation system (GLDAS or NLDAS) to constrain soil properties (e.g., soil moisture); (3) 1411 

updating land surface properties (land cover type, LAI, GVF and albedo) with recent available 1412 

MODIS land data products; (4) developing a new soil NOx emission scheme – BDISNP; (5) 1413 

developing the WEPS stand-alone module to process both global and regional anthropogenic 1414 

emissions as well as fire emissions.  1415 

 1416 

In this work, we focus on four target areas to demonstrate the application of the UI-WRF-Chem 1417 

modeling framework: CHN-Beijing, ITA-Rome, USA-LosAngeles, and USA-Atlanta. Each target 1418 

area is set up with 2 nested domains with a 12 km and 4 km spatial resolution for the outer domain 1419 

(D1) and inner domain (D2), respectively. First, we conduct a suite of sensitivity simulations over 1420 
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each target area to select the optimal combination of physics schemes used in the model. We have 1421 

chosen to turn off the cumulus scheme for the inner domain (D2), since we are using the traditional 1422 

G3D cumulus scheme, which is not a scale-aware scheme. We investigate the impacts of cumulus 1423 

and microphysics schemes on model performance over the USA-Atlanta target area for June 2022. 1424 

Our case study shows that turning on the G3D cumulus scheme in the inner domain (D2) produces 1425 

higher precipitation than the sensitivity simulation with the G3D scheme off, which in turn leads 1426 

to lower surface total and speciated PM2.5 concentrations. Compared with surface observations of 1427 

precipitation and PM2.5 concentration, the sensitivity simulation with the G3D scheme off shows 1428 

better performance than keeping it on. Due to the problem with the scale-aware GF cumulus 1429 

scheme in the model (not coupled to the chemistry), we are not able to fully investigate the impact 1430 

of a scale-aware scheme on model performance in the current work. Future work will explore the 1431 

use of this scale-aware scheme with longer periods of simulation or across different target areas.  1432 

  1433 

Both CHN-Beijing and ITA-Rome target areas are affected by dust long-range transport events. 1434 

We select two dust intrusion events that impacted these two target areas. A dust storm originated 1435 

from the Taklamakan and Gobi Deserts around 24 March 2018 and moved downwind to CHN-1436 

Beijing from 27 to 28 March 2018. For ITA-Rome, we focus on June 2023, where Saharan dust 1437 

transported to the target area. For both target areas, we conduct UI-WRF-Chem sensitivity 1438 

simulations with different chemical boundary conditions from MERRA-2 data being considered: 1439 

no chemical species; including dust and other aerosols. Here, we develop a method to constrain 1440 

the dust concentration for each size bin in the MERRA-2 data using AERONET data. We compare 1441 

the dust PSD from MERRA-2 data with AERONET observations to better distribute the dust 1442 

concentration in different size bins in the MERRA-2 chemical boundary conditions, based on long-1443 

term datasets. Our results show that including the dust and other aerosols in the boundary improve 1444 

model simulated surface PM concentration and AOD during dust intrusion events for both target 1445 

areas, compared to the model run without using MERRA-2 chemical boundary conditions. Using 1446 

the constrained dust concentration in the MERRA-2 data further improves model performance. 1447 

This method helps reduce the computational cost when long-range transport or regional transport 1448 

affects a target area. Otherwise, we would need to add a third nested domain with expanded domain 1449 

size to cover the pollution sources such as the dust source region. Since our work mainly focuses 1450 

on improving the representation of the dust size distribution in MERRA-2 data, we recognize that 1451 

other global models such as CAM-Chem may also provide useful information for chemical 1452 

boundary conditions in different applications. While a comprehensive understanding of how 1453 

different global models affect WRF-Chem simulations of special events such as the dust long-1454 

range transport, would provide valuable insights to the community, our work here demonstrates 1455 

an efficient way for improving the simulation of dust transport using WRF-Chem.  1456 

 1457 

Updating land surface properties (land cover type, LAI, GVF and surface albedo) with recent 1458 

available MODIS land data improves model simulated TSK compared with MODIS LST, which 1459 

is demonstrated over the CHN-Beijing target area for July 2018. This could help better capture the 1460 

UHI phenomenon, which leads to better simulation of processes that are important for surface PM 1461 

simulation. For other PTAs, which have experienced rapid urbanization, updating land cover type 1462 

and other land surface properties with recent MODIS land data can be important since the default 1463 

datasets used in the standard WRF-Chem model are outdated. We also recognize that we have not 1464 

investigated the use of an urban canopy model to simulate the UHI effect in the UI-WRF-Chem 1465 

framework. The newly updated BDISNP soil NOx emission scheme improves the simulation of 1466 



 

 

43 

NO2, which subsequently affects surface nitrate. Evaluated against TROPOMI NO2 VCD, the 1467 

updated BDISNP soil NOx emission scheme increases NO2 VCD, mainly over croplands in CHN-1468 

Beijing target area than the simulation using the default MEGAN soil NOx emission scheme, which 1469 

is mainly due to the application of fertilizer use. Since ground observations of surface NO2, O3, 1470 

and PM2.5 concentrations are mostly located in urban areas, we acknowledge that our current work 1471 

is limited in scope, and additional efforts will be needed to further evaluate the impacts of this 1472 

updated BDISNP scheme in rural areas. Nevertheless, the launch of the GEMS and the 1473 

Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman et al., 2017) satellites will 1474 

provide good opportunities to further refine the BDISNP scheme. The synergy between MAIA 1475 

and GEMS/TEMPO will also provide opportunities to evaluate both gas and aerosol composition 1476 

simultaneously.  1477 

 1478 

We perform a case study over the USA-LosAngeles target area, where we tune dust emissions 1479 

inside the target area. Southwestern U.S., covering part of the USA-LosAngeles target area are 1480 

desert regions, which experience dust outbreaks. If we use the default dust emission scheme, the 1481 

model simulated surface PM and AOD overestimate ground observations. We conduct sensitivity 1482 

simulations to fine tune the parameters in the dust emission scheme as commonly done in the 1483 

literature to find the optimal parameter. The case study over USA-LosAngeles together with other 1484 

case studies give an example of the fine-tuning work we are doing as we continue evaluating and 1485 

improving model performance.  1486 

 1487 

We also use PTA-Atlanta as an example to demonstrate how UI-WRF-Chem simulates speciated 1488 

PM2.5. Overall, model simulated daily OC, EC and dust show higher correlation (0.5, 0.71 and 1489 

0.72) while the combined sulfate +nitrate aerosol concentration shows relatively lower correlation 1490 

(0.23), when evaluated against measurements from IMPROVE and CSN networks. Since our work 1491 

is based on only one month of data with precipitation events, the simulated total and speciated 1492 

PM2.5 concentrations are subject to large uncertainty and variability, particularly due to chemistry 1493 

and wet deposition schemes associated with precipitation. As a result, this analysis only provides 1494 

a partial picture of the model performance. Nevertheless, previous work by Jin et al. (2024) 1495 

demonstrated the robustness of the UI-WRF-Chem framework over the Boston PTA, showing its 1496 

feasibility for generating MAIA L2 and L4 PM products. Using a full year (2018) of UI-WRF-1497 

Chem outputs, they reported correlations of 0.40–0.73 between simulated and observed total and 1498 

speciated PM2.5 (Table S1 therein). 1499 

 1500 

The MAIA project leverages existing PM monitoring networks where available and has deployed 1501 

additional PM speciation monitors in PTAs where such data were otherwise unavailable, including 1502 

through the Surface Particulate Matter Network (SPARTAN) (Snider et al., 2015). At the time of 1503 

writing, long-term datasets of speciated PM2.5 from observations are only available for some PTAs 1504 

and extended model outputs are not yet available for all PTAs. We have since generated extended 1505 

UI-WRF-Chem model outputs for each PTA and longer observations of speciated PM2.5 are being 1506 

collected. As part of the MAIA satellite mission, these expanded UI-WRF-Chem model outputs 1507 

will enable a more comprehensive assessment of UI-WRF-Chem model performance, especially 1508 

for speciated PM2.5 across diverse PTAs. Such evaluation will enhance the robustness of UI-WRF-1509 

Chem for its role in the MAIA satellite mission and provide valuable insights for simulating PM 1510 

composition in support of air quality and publica health studies.  1511 
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Code and data availability 1512 

The codes used in this work are available at:  https://zenodo.org/records/15074108 (Zhang, 2025a). 1513 

WRF-Chem is an open-access model, which is available at: https://github.com/wrf-1514 

model/WRF/releases. The WRF-Chem preprocessor tools including mozbc, bio_emiss, 1515 

anthro_emiss and  EPA_ANTHRO_EMIS are available at: https://www2.acom.ucar.edu/wrf-1516 

chem/wrf-chem-tools-community. Input files for bio_emiss and U.S. EPA NEI 2017 data can also 1517 

be acquired from this website. EDGAR-HTAP global anthropogenic emission data are available 1518 

at: https://edgar.jrc.ec.europa.eu/dataset_htap_v3. MEIC anthropogenic emission data for China 1519 

are available at: http://meicmodel.org.cn/?page_id=1772&lang=en. MODIS and VIIRS data are 1520 

available at: https://ladsweb.modaps.eosdis.nasa.gov/; CALIOP data are downloaded from 1521 

https://asdc.larc.nasa.gov/project/CALIPSO; MERRA-2, GLDAS, NLDAS, TROPOIMI and 1522 

GPM data can be acquired from https://disc.gsfc.nasa.gov/. Both ground observations of 1523 

meteorology and PM data for Beijing are available at: https://quotsoft.net/air/. Ground 1524 

observations of meteorology and PM data for Los Angeles as well as PM data for Atlanta are from 1525 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. Ground observations of meteorology 1526 

data for Rome and Atlanta are from https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/. Speciated 1527 

PM2.5 data from both IMPROVE and CSN networks are available at 1528 

https://views.cira.colostate.edu/fed/Membership/Login.aspx?ReturnUrl=%2ffed%2fQueryWizar1529 

d. Ground observations of PM data for Rome are available from 1530 

https://search.earthdata.nasa.gov/search (use key words MAIA PM data). AERONET data can be 1531 

downloaded at: https://aeronet.gsfc.nasa.gov/. Other datasets that are used and created in this work 1532 

are available at: https://zenodo.org/records/15239059 (Zhang, 2025b).  1533 
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