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Abstract.  21 

The Multi-Angle Imager for Aerosols (MAIA) satellite mission, to be jointly implemented by 22 
NASA and the Italian Space Agency with an expected 2026 launch, aims to study how different 23 
types of particulate matter (PM) pollution affect human health. The investigation will primarily 24 
focus on a discrete set of globally distributed Primary Target Areas (PTAs) containing major 25 
metropolitan cities, and will integrate satellite observations, ground observations, and chemical 26 
transport model (CTM) outputs (meteorology variables and PM concentrations) to generate maps 27 
of near-surface total and speciated PM within the PTAs. In addition, the MAIA investigation will 28 
provide satellite measurements of aerosols over a set of Secondary Target Areas (STAs), which 29 
are useful for studying air quality more broadly. For the CTM, we have developed a Unified Inputs 30 
(of initial and boundary conditions) for WRF-Chem (UI-WRF-Chem) modeling framework to 31 
support the MAIA satellite mission, building upon the standard WRF-Chem model. The 32 
framework includes newly developed modules and major enhancements that aim to improve model 33 
simulated meteorology variables, total and speciated PM concentrations as well as AOD. These 34 
developments include: (1) application of NASA GEOS FP and MERRA-2 data to provide both 35 
meteorological and chemical initial and boundary conditions for performing WRF-Chem 36 
simulations at a fine spatial resolution for both forecast and reanalysis modes; (2) application of 37 
GLDAS and NLDAS data to constrain surface soil properties such as soil moisture; (3) application 38 
of recent available MODIS land data to improve land surface properties such as land cover type; 39 
(4) development of a new soil NOx emission scheme – the Berkeley Dalhousie Iowa Soil NO 40 
Parameterization (BDISNP); (5) development of a stand-alone emission preprocessor that ingests 41 
both global and regional anthropogenic emission inventories as well as fire emissions. 42 
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 43 
Here, we illustrate the model improvements enabled by these developments over four target areas: 44 
Beijing in China, CHN-Beijing (STA); Rome in Italy, ITA-Rome (PTA); Los Angeles in the U.S., 45 
USA-Angeles (PTA), and Atlanta in the U.S., USA-Atlanta (PTA). UI-WRF-Chem is configured 46 
as 2 nested domains using an outer domain (D1) and inner domain (D2) with 12 km and 4 km 47 
spatial resolution, respectively. For each target area, we first run a suite of simulations to test the 48 
model sensitivity to different physics schemes and then select the optimal combination based on 49 
evaluation of model simulated meteorology with ground observations. For the inner domain (D2), 50 
we have chosen to turn off the traditional Grell 3D ensemble (G3D) cumulus scheme. We 51 
conducted a case study over USA-Atlanta for June 2022 to demonstrate the impacts of the cumulus 52 
scheme on precipitation and subsequent total and speciated PM2.5 concentrations. Our results show 53 
that keeping the G3D cumulus scheme turned on results in higher precipitation and lower total and 54 
speciated PM2.5 than the simulation with the G3D cumulus scheme turned off. Compared with 55 
surface observations of precipitation and PM2.5 concentration, the simulation with the G3D scheme 56 
off shows better performance. We focus on two dust intrusion events over CHN-Beijing and ITA-57 
Rome, which occurred in March 2018 and June 2023, respectively. We carried out a suite of 58 
sensitivity simulations using UI-WRF-Chem by excluding chemical boundary conditions or 59 
including MERRA-2 chemical boundary conditions. Our results show that using MERRA-2 data 60 
to provide chemical boundary conditions can help improve model simulation of surface PM 61 
concentrations and AOD. Some of the target areas have also experienced significant changes in 62 
land cover and land use over the past decade. Our case study over CHN-Beijing in July 2018 63 
investigates the impacts of improved land surface properties with recent available MODIS land 64 
data for capturing the urban heat island phenomenon. Model-simulated surface skin temperature 65 
shows better agreement with MODIS observed land surface temperature. The updated soil NOx 66 
emission scheme in July 2018 also leads to higher NO2 vertical column density (VCD) in rural 67 
areas within the CHN-Beijing target area, which matches better with TROPOMI observed NO2 68 
VCD. This in turn affects the simulation of surface nitrate concentration. Lastly, we conducted a 69 
case study over USA-LosAngeles to tune dust emissions. These examples illustrate the fine-tuning 70 
work conducted over each target area for the purpose of evaluating and improving model 71 
performance.  72 

1. Introduction  73 

Ambient particulate matter (PM) pollution has been ranked as the top environmental risk factor 74 
for premature deaths (Forouzanfar et al., 2016). The integrated use of satellite and chemical 75 
transport model (CTM) outputs have shed light on the impacts of PM2.5 (PM with aerodynamic 76 
diameter less than 2.5µm) on public health in the past decade (Cohen et al., 2017; Wang et al., 77 
2021a). Satellite-retrieved aerosol data products such as aerosol optical depth (AOD) have been 78 
widely used to estimate ground-level PM2.5 concentration over the past two decades (e.g., Shin et 79 
al., 2020; Van Donkelaar et al., 2006; Wang and Christopher, 2003) due to the wide spatial 80 
coverage achievable from spaceborne observations. Because of uncertainties in remote sensing 81 
retrievals and the complex AOD-PM2.5 relationship (Wang and Christopher, 2003), satellite- 82 
derived ground-level PM2.5 have been combined with ground observations of PM2.5 and/or CTM 83 
simulated PM2.5 to form a hybrid method of providing a new data source for epidemiological health 84 
studies (e.g., Van Donkelaar et al., 2010; Holloway et al., 2021; Diao et al., 2019). This hybrid 85 
method has also been used for estimating PM2.5 component concentration and its application in 86 
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health-related studies (Philip et al., 2014; Li et al., 2021; Hu et al., 2019; Wei et al., 2023). The 87 
association between exposure to PM and mortality has been well established. However, since 88 
ambient PM is a complex mixture of particles that vary in size, shape and chemical composition, 89 
there remains uncertainty in understanding the relative toxicity of different PM types to human 90 
health (Sangkham et al., 2024; Weichenthal et al., 2024).  91 
 92 
The Multi-Angle Imager for Aerosols (MAIA) satellite mission to be jointly implemented by the 93 
National Aeronautics and Space Administration (NASA) (Diner et al., 2018) and the Italian Space 94 
Agency (ASI) has a key objective to map PM composition and study the impacts of different types 95 
of PM on human health (Liu and Diner, 2017). The MAIA instrument builds upon the work of the 96 
Multi-angle Imaging SpectroRadiometer (MISR) instrument onboard NASA’s Terra spacecraft, 97 
which has been retrieving aerosol properties including aerosol type since February 2000 (Diner et 98 
al., 1998; Kahn et al., 2005). MISR has also been one of the commonly used satellite instruments 99 
for mapping global PM concentration for studying air quality and public health (Liu et al., 2009; 100 
Holloway et al., 2021; Meng et al., 2018). The MAIA instrument contains a pointable 14-101 
wavelength pushroom camera, spanning the ultraviolet (UV), visible and near-infrared (VNIR) 102 
and shortwave infrared (SWIR) regions of the electromagnetic spectrum to measure the spectral 103 
radiance of sunlight scattered by the Earth’s atmosphere and surface. Three of the bands are 104 
polarimetric to further help constrain aerosol particle properties. The MAIA investigation will 105 
focus on a globally distributed set of primary target areas (PTAs) 106 
(https://maia.jpl.nasa.gov/mission/#target_areas) for PM health studies, which include 107 
metropolitan cities. For each PTA, it will employ Geostatistical Regression Models (GRMs), to 108 
generate maps of surface total PM2.5, PM10 and speciated PM including sulfate, nitrate, dust, 109 
organic carbon (OC) and elemental carbon (EC). The GRMs use satellite retrieved aerosol 110 
parameters, CTM outputs (meteorological variables along with total and speciated PM mass 111 
concentrations) and other ancillary information such as population density data as predictors. 112 
Surface observations of total and speciated PM are used to train the GRMs (i.e., determine the 113 
coefficients of the model predictors) (Jin et al., 2024).  114 
 115 
Our work here introduces the development of the Unified Inputs (of initial and boundary 116 
conditions) for WRF-Chem (UI-WRF-Chem) as the CTM for supporting the MAIA satellite 117 
mission, based on the standard WRF-Chem model (Fast et al., 2006; Grell et al., 2005). Since 118 
metrological variables as well as total and speciated PM mass concentrations from UI-WRF-Chem 119 
outputs are used in the GRMs to derive the total and speciated PM maps, we have implemented 120 
major updates in UI-WRF-Chem that aim to improve model simulated meteorology variables or 121 
PM concentration through the integrated use of satellite and ground-based observations. Because 122 
WRF-Chem is an online coupled chemical transport model, the improvement of aerosol 123 
concentration simulation could also enhance the simulation of meteorology through the 124 
incorporation of aerosol radiation feedback, especially in polluted regions such as Delhi, India 125 
(Chutia et al., 2024).  126 
 127 
The UI-WRF-Chem modeling framework builds upon the standard WRF-Chem model with newly 128 
developed modules and major enhancements that enable integration of NASA Goddard Earth 129 
Observing System (GEOS) data for unified meteorology and chemistry inputs, updates of land 130 
surface properties with recent available Moderate Resolution Imaging Spectroradiometer 131 
(MODIS) land data, and expanded emission processing capabilities:  132 
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• First, we use the NASA GEOS products including both GEOS Forward Processing (FP) and Modern-Era 133 
Retrospective Analysis for Research and Application, version 2 (MERRA-2) data to provide both 134 
meteorological and chemical initial and boundary conditions for performing WRF-Chem simulation with a 135 
finer spatial resolution in forecasting and reanalysis modes, which allows for consistency between 136 
meteorology and chemistry. The NASA GEOS system assimilates satellite observations of aerosol products 137 
(Randles et al., 2017). Using these assimilated data to provide chemical initial and boundary conditions for 138 
WRF-Chem simulations over MAIA target areas would be computationally efficient for capturing long-range 139 
or regional transport without enlarging the model domain to include the emission sources. A number of 140 
studies have demonstrated the influence of chemical boundary conditions on regional air pollution in the 141 
domain of interests, when running WRF-Chem (e.g., Mo et al., 2021; Ukhov et al., 2020; Roozitalab et al., 142 
2021; Wang et al., 2004).  143 

 144 
• Second, we employ data from the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) or 145 

the North American Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) to constrain soil 146 
properties such as soil moisture in WRF-Chem. Soil properties are critical for weather forecasts, biogenic 147 
emission estimates and dust storm simulation (Han et al., 2021), and ultimately, air quality prediction 148 
(Thomas et al., 2019; Jenkins and Diokhane, 2017; De Rosnay et al., 2014). Both GLDAS and NLDAS 149 
provide optimized initial soil conditions with a high spatial and temporal resolution for numerical weather 150 
forecasting (Dillon et al., 2016; Xia et al., 2014). Better estimates of soil properties also enhance the 151 
simulation of soil NOx emissions, serving as an important part of the total global NOx budget (Jaeglé et al., 152 
2005), and subsequently improve the simuatlion of nitrate aerosols.  153 

 154 
• Third, we use recent available MODIS land data to update static land surface properties such as land cover 155 

type in WRF-Chem. Some of the default land surface properties used in WRF-Chem are out of date. Using 156 
recent available MODIS land data to update land surface properties would help improve mesoscale model 157 
performances (Li et al., 2014; Li et al., 2017a; Aegerter et al., 2017; Wang et al., 2023). 158 

 159 
• Fourth, we develop the Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP) scheme for simulating 160 

soil NOx (NO + NO2) emissions, building upon the Berkeley Dalhousie Soil NO Parameterization (BDSNP) 161 
scheme (Hudman et al., 2012). Previous study showed that the default soil NOx emissions in WRF-Chem 162 
could be underestimated by a factor of 10 in some regions (Oikawa et al., 2015). Since soil NOx emissions 163 
play a critical role in the formation of ozone (O3) and nitrate aerosols (Sha et al., 2021; Lin et al., 2021), their 164 
accurate representation in the model is essential.  165 

 166 
• Finally, we develop a stand-alone WRF-Chem Emission Preprocessing System (WEPS) that ingests both 167 

global and regional anthropogenic emission inventories as well as fire emissions. Because anthropogenic and 168 
fire emissions are important for aerosol simulations in the model, building our own emission preprocessor 169 
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allows us the opportunities to optimize existing emission inventories and add new ones, including those from 170 
top-down estimates (Wang et al., 2020b; Wang et al., 2020c).  171 

 172 
In this paper, we present the developments of the UI-WRF-Chem modeling framework and 173 
illustrate the resulting model improvements. We focus on four target areas, three of which are 174 
MAIA PTAs: Rome, Italy (ITA-Rome), Los Angeles, California (USA-LosAngeles) and Atlanta, 175 
Georgia (USA-Atlanta). We also include Beijing, China (CHN-Beijing), which is MAIA 176 
secondary target areas (STAs). STAs are regions that will be observed by the MAIA satellite 177 
instrument but not necessarily processed to the same level as PTAs. These four target areas 178 
together provide a good representation of the range of PM pollution levels from low (Los Angeles 179 
and Atlanta), to high (Beijing) with Rome in the middle. Some of our previous studies have focused 180 
on other MAIA PTAs using the UI-WRF-Chem modeling framework. Li et al. (2024) developed 181 
an inverse modeling method to improve the diurnal profile of anthropogenic emissions in the Addis 182 
Ababa, Ethiopia PTA, using surface-based PM observations from both U.S. Embassy sites and 183 
PurpleAir sensors. Chutia et al. (2024) investigated the impacts of aerosol-radiation interaction on 184 
air quality in the Delhi, India PTA. Overall, current work along with previous work can provide a 185 
good picture of the model performance for different applications. This paper is organized as 186 
follows: Section 2 focuses on the description of the UI-WRF-Chem model development; Section 187 
3 provides the model configuration used in the target areas; Section 4 analyzes the Case studies 188 
for different target areas; and Section 5 presents Conclusions and discussion.  189 

2. UI-WRF-Chem development  190 

In this section, we first provide a brief overview of the MAIA PM products to illustrate the role of 191 
UI-WRF-Chem. We then describe the development of the UI-WRF-Chem modelling framework, 192 
emphasizing the major updates and key components designed to address the needs of the MAIA 193 
satellite mission.  194 

2.1 Overview of MAIA PM products 195 

The MAIA PM products to be generated in the PTAs include a Level 2 (L2) PM product and a 196 
Level 4 (L4) Gap-Filled PM (GFPM) product. Both L2 and L4 PM products include 24-hr 197 
averaged total and speciated PM mass concentration with a spatial resolution of 1 km within 198 
bounding boxes measuring 360 km x 480 km (east-west x north-south) size. The L2 PM data are 199 
only available for days corresponding to MAIA satellite overpasses (typically 3–4 times per week 200 
in the PTAs) at locations with valid MAIA aerosol retrievals. The L4 PM data merge L2 satellite-201 
derived PM concentration with bias-corrected PM concentrations from UI-WRF-Chem outputs 202 
and are therefore spatially (covering the whole target area) and temporally (daily) “complete”. The 203 
L2 PM product is derived using GRMs which take the satellite retrieved aerosol parameters, 204 
meteorological variables and total and speciated PM concentrations from UI-WRF-Chem and 205 
other ancillary information such as population density data as predictors and surface observations 206 
of total and speciated PM concentrations as target variables. GRMs are trained for each PM type 207 
and each PTA. For the launch-ready version of the GRMs, four meteorological variables from UI-208 
WRF-Chem are used: 2 m air temperature, 10 m wind speed, surface relative humidity (RH) and 209 
planetary boundary layer height (PBLH). To generate the L4 GFPM product, separately trained 210 
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GRMs are employed to generate a bias-corrected, CTM-based PM product where the primary 211 
predictor is the CTM-generated PM concentration, rather than the satellite-retrieved aerosol optical 212 
depth. Other predictors and target variables are the same as those used in the generation of L2 PM 213 
product. For areas where both satellite-derived L2 PM and CTM-based PM products are available, 214 
these two products are then combined using weights derived from a Bayesian Ensemble Averaging 215 
model to generate the final L4 GFPM product. More detailed information can be found in Jin et 216 
al. (2024).  217 
 218 
Two versions of the MAIA L2 PM and L4 GFPM products will be generated as part of the routine 219 
processing: the “forecast” and the “reanalysis” version. For the forecast product version, GEOS 220 
FP meteorology is used for model initial and boundary conditions and GEOS FP fields of aerosols 221 
and aerosol precursors will also be used to specify boundary conditions of atmospheric 222 
composition. The reanalysis versions replace GEOS FP variables with outputs from MERRA-2 223 
data. Due to the ~ 6 month latency of speciated PM2.5 data from surface monitors, the forecast 224 
versions will rely on previously available measurements. Generation of the reanalysis products 225 
will nominally occur on an annual basis and will benefit from more complete surface monitor 226 
datasets. More detailed information about the PM products can be found at 227 
https://maia.jpl.nasa.gov/resources/data-and-applications/. 228 

2.2 Overview of UI-WRF-Chem modeling framework  229 

To meet these needs, UI-WRF-Chem is designed to operate in both forecasting (or near real time, 230 
NRT) and reanalysis modes. We use the NASA GEOS model data: GEOS FP in forecasting or 231 
NRT mode and MERRA-2 in reanalysis mode to drive WRF-Chem simulations by providing self-232 
consistent and unified meteorological and chemical initial and boundary conditions, referred to as 233 
the Unified Inputs (of initial and boundary conditions) for meteorology and chemistry. Figure 1 234 
presents the flowchart of the UI-WRF-Chem modeling framework. Here, we provide a brief 235 
description of the UI-WRF-Chem framework, outline the components included in the standard 236 
WRF-Chem model and highlight the major updates we have introduced.  237 

 238 
Figure 1. Flowchart of UI-WRF-Chem modeling framework. Pink parallelogram represent input datasets used, including 239 
meteorological, land surface and emission data. Rounded rectangles represent different modules and processes within the UI-WRF-240 
Chem framework. Blue rounded rectangles denote standard WRF-Chem components without any changes, except for GEOS2WRF, 241 
which is from NASA’s NU-WRF framework. Yellow round rectangles represent modified modules based on standard WRF-Chem 242 
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components, except for LDAS2WRF, which is adapted from GEOS2WRF. Orange rounded rectangles indicate new modules 243 
developed in this work. The input datasets and modules enclosed within the dashed box corresponds to the WPS in the standard 244 
WRF-Chem model, where meteorological files (met_em.d*.nc) are generated. The conv_geo process converts MODIS land data 245 
into binary files, for the geogrid process. Both GEOS2WRF and LDAS2WRF convert input data in the NetCDF file format to an 246 
intermediate file format, equivalent to the ungrib process. GEOSBC is adapted from the mozbc module, where GEOS FP and 247 
MERRA-2 data are used to update chemical initial and boundary conditions. The bio_emiss module reads MEGAN emission input 248 
datasets (e.g., isoprene emission factor) and generates files (wrfbiochemi_d0*) for WRF-Chem to calculate biogenic emissions. 249 
The add_fert module is used to add the BDISNP input datasets (e.g., fertilizer data) into the wrfbiochemi_d0* files for the real 250 
process. WEPS processes both anthropogenic and fire emission datasets and converts them into WRF-Chem-ready emission files 251 
(*wrfichemi*). Dashed lines from real to bio_emiss and WEPS indicate that real needs to be executed once before running the full 252 
flow to generate wrfinput_d0* files, which provide domain information to these two modules.  253 

Compared with the standard WRF-Chem model, the UI-WRF-Chem modeling framework 254 
incorporates new modules and significant modifications to enable the seamless use of NASA 255 
GEOS data, updates of land surface properties with recent available MODIS land data and 256 
expanded emission capabilities. First, we incorporate the GEOS2WRF module from NASA’S 257 
Unified-Weather Research and Forecasting model (NU-WRF) (Peters-Lidard et al., 2015), which 258 
functions similarly to the standard ungrib process, by converting GEOS FP or MERRA-2 data to 259 
an intermediate file format. We also develop the LDAS2WRF module, adapted from the 260 
GEOS2WRF module to convert the GLDAS or NLDAS data into the same intermediate file 261 
format. The standard metgrid process then converts these intermediate files into meteorological 262 
files in the NetCDF format (met_em.d*.nc), respectively. These two NetCDF files are 263 
subsequently merged to generate the final meteorological files for the real process. Second, to 264 
integrate the MODIS land data into the static geographical datasets, we develop the conv_geo 265 
Python-based module, where we convert the MODIS land data into the standard binary file formats 266 
required by the geogrid process. This enables updates of land surface properties with recent 267 
available MODIS land data, not available in the standard WRF-Chem model. Additionally, we 268 
develop the GEOSBC module, by modifying the standard mozbc module to use GEOS FP or 269 
MERRA-2 data for updating both chemical initial and boundary conditions, which improves the 270 
consistency between meteorology and chemistry inputs. Additionally, we modify WRF-Chem’s 271 
chemistry scheme to ensure compatibility between dust fields from GEOS FP or MERRA-2 and 272 
the dust representation in the chemistry scheme itself (see Sect 2.7 for more information). 273 
 274 
For emissions, we develop the BDISNP scheme for soil NOx emissions by extending the workflow 275 
of the standard MEGAN-based biogenic VOC calculation. Same as the MEGAN process, we first 276 
use the standard bio_emiss module to read the MEGAN emission input datasets (e.g., isoprene 277 
emission factor) and then convert them into the wrfbiochemi_d0* files for the real process. We 278 
then apply the add_fert module that we have developed here to incorporate emission input datasets 279 
(e.g., fertilizer data), specific to the BDISNP scheme into wrfbiochemi_d0* files. Additionally, we 280 
modify WRF-Chem codes to calculate soil NOx emissions. We also develop the WEPS module to 281 
process both anthropogenic and fire emissions, adopting some functionalities from the widely used 282 
anthro_emiss and EPA_ANTHRO_EMISS utilities in the WRF-Chem community. This provides 283 
flexibility for incorporating additional emission inventories into the WEPS. Lastly, we develop a 284 
Python-based postprocessing module to calculate selected WRF-Chem variables and compile 285 
hourly WRF-Chem output files into daily files in the formats required by the GRMs.  286 
 287 
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2.3 Updates of meteorological and chemical initial and boundary conditions as well as soil properties  288 

Here, we have adopted the functionality of the NASA’s NU-WRF to drive WRF-Chem by 289 
providing unified meteorological and chemical initial and boundary conditions using GEOS FP 290 
and MERRA-2 data. Both GEOS FP and MERRA-2 data are generated within the GEOS 291 
atmospheric and data assimilation system (Rienecker et al., 2008), in which meteorological and 292 
aerosol observations are jointly assimilated. GEOS FP uses the most recent GEOS system to 293 
produce the real-time forecasting data while MERRA-2 uses a frozen version of the GEOS system 294 
to conduct the long-term atmospheric reanalysis since 1980. The GEOS native model is on a cubed 295 
sphere grid with 72 hybrid-eta layers from surface to 0.01 hPa. Products are saved on a 0.5º x 296 
0.625º latitude by longitude grid for MERRA-2 and 0.25º x 0.3125º latitude by longitude for GEOS 297 
FP (Gelaro et al., 2017).  298 
 299 
MERRA-2 assimilates multiple streams of aerosol products including bias corrected AOD 300 
calculated from observed radiances measured by the Advanced Very High Resolution Radiometer 301 
(AVHRR) over ocean prior to 2002 and by MODIS on Terra and Aqua satellites over dark surfaces 302 
and ocean since 2000 and 2002, respectively; also assimilated are the MISR AOD over bright land 303 
surface and AOD measurements from Aerosol Robotic Network (AERONET) before 2014 304 
(Randles et al., 2017). In the NRT mode, GEOS FP only assimilates AOD derived from MODIS 305 
Terra and Aqua. The aerosol module used in the GEOS system is the Goddard Chemistry, Aerosol, 306 
Radiation, and Transport (GOCART) model (Colarco et al., 2010; Chin et al., 2002). The 307 
GOCART module simulates major aerosol species including sulfate, BC, OC, dust (five bins with 308 
lower and upper radius range as: 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 µm), and sea salt (five bins with 309 
lower and upper radius range as: 0.03–0.1, 0.1–0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm). These aerosol 310 
products are available in both GEOS FP and MERRA-2 products. Since 2017, nitrate aerosols 311 
have been added into the GEOS system and GEOS FP products thus include nitrate aerosols.  312 
 313 
Our work differs from the past work that uses the GEOS FP or MERRA-2 data to drive WRF-314 
Chem in several aspects. For example, Peters-Lidard et al. (2015) presented the NU-WRF model 315 
that can be driven by GEOS FP and MERRA-2, but its atmospheric chemistry process is simplified 316 
with the GOCART module (without prognostic simulation of aerosol size distribution and nitrate 317 
for example) and is designed to be an observation driven integrated modeling system that 318 
represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales (~1–25 km). 319 
Hence, its real-time application for atmospheric chemistry and aerosol composition forecast is 320 
rather limited. Nevertheless, the NU-WRF’s concept and framework (GEOS2WRF, Fig 1) of using 321 
GEOS FP and MERRA-2 to drive WRF-Chem are adopted by UI-WRF-Chem development here 322 
to provide meteorological initial and boundary conditions for WRF-Chem, using meteorological 323 
variables other than soil properties.  324 
 325 
Adopting of GEOS FP or MERRA-2 soil properties into WRF-Chem needs special treatment. In 326 
the GEOS system, the land surface model (LSM) is a catchment-based model (Koster et al., 2000), 327 
which is fundamentally different from the LSMs available in WRF-Chem. The commonly used 328 
LSMs in WRF-Chem include the Noah scheme (Chen et al., 1996; Chen and Dudhia, 2001), the 329 
Rapid Update Cycle (RUC) (Smirnova et al., 2000), and the Community Land Model (CLM) 330 
(Oleson et al., 2004), which are all column-based models with different soil layers. To resolve this 331 
issue, Peters-Lidard et al. (2015) used the Land Information System (LIS) (Kumar et al., 2006) to 332 
process GEOS outputs and provide initial conditions of soil properties such as soil temperature 333 
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and soil moisture for running WRF and NU-WRF (Kumar et al., 2008). Since land surface process 334 
is slow and usually requires years of LIS simulation to stabilize the soil properties in the model, 335 
we have here developed a module (LDAS2WRF, Fig 1) to utilize soil data products from two land 336 
data assimilation systems, GLDAS (Rodell et al., 2004) and NLDAS (Mitchell et al., 2004), which 337 
use LIS to focus on the analysis of soil properties in near real time. This way, we reduce the 338 
computational cost and complexity of running LIS within the UI-WRF-Chem. The initial 339 
conditions of soil properties can have an important impact on boundary layer processes for days 340 
to weeks (the so-called memory effect). Hence, the special treatment of soil properties by using 341 
observation-constrained GLDAS and NLDAS in UI-WRF-Chem is warranted.  342 
 343 
We have developed the capability to use GEOS FP and MERRA-2 data to provide chemical initial 344 
and boundary conditions in our UI-WRF-Chem modeling framework. Since WRF-Chem is a 345 
regional chemical transport model, time-varying chemical boundary conditions from global 346 
chemical transport models are typically used to specify concentrations of different chemical 347 
species at the domain boundaries. This is especially important for long-lived chemical species, 348 
such as O3, or capturing regional or long-range transport events. The common practice is to use 349 
global model outputs such as the Community Atmosphere Model with Chemistry, CAM-Chem 350 
(Emmons et al., 2020) for reanalysis or the Whole Atmosphere Community Climate Model 351 
(WACCM) (Gettelman et al., 2019) for forecasts. Unlike CAM-Chem or WACCM, which do not 352 
assimilate satellite aerosol observations, GEOS FP and MERRA-2 incorporate satellite-based 353 
aerosol data assimilation, which provides observational constraints for the day-to-day variations 354 
in aerosol concentrations over a given domain. To leverage this unique capability, we have 355 
modified the WRF-Chem preprocessor tool – mozbc (https://www2.acom.ucar.edu/wrf-chem/wrf-356 
chem-tools-community) to create the GEOSBC module (Fig 1), enabling direct ingestion of GEOS 357 
FP and MERRA-2 data for updating chemical initial and boundary conditions.  358 

Lastly, we have developed a method to constrain the chemical boundary condition for the 359 
allocation of dust concentration in the MERRA-2 data as a function of different dust size bins. 360 
While assimilating satellite-derived aerosol optical parameters can improve the simulation of dust 361 
in MERRA-2 data, uncertainties remain in simulating the dust size distribution from emission 362 
sources and along the transport pathway in the MERRA-2 data (Kramer et al., 2020). These 363 
uncertainties are particularly evident during long-range dust transport events, due to factors such 364 
as the deposition process and the quality of satellite data being assimilated (Zhu et al., 2025). To 365 
address this, we have developed a method to further constrain the MERRA-2 simulated dust size 366 
distribution with AERONET observation, which can be incorporated into the chemical boundary 367 
conditions for simulating the impacts of dust transport on the domain of interest. This method is 368 
applicable in regions where AERONET sites with long-term data are available. We compare the 369 
dust particle size distribution (PSD) from MERRA-2 data with AERONET observations to 370 
improve the allocation of dust concentration into different size bins in the chemical boundary 371 
conditions. A detailed description and application of this approach are provided in Sect 4.1 and 372 
4.2.  373 

2.4 Updates of land surface properties  374 

We develop capabilities within UI-WRF-Chem to update land surface properties using recent 375 
available satellite-based land data products through the WRF Preprocessing System (WPS). 376 
MODIS land products are applied here to update four key land surface properties in the Noah 377 
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LSM: land cover type on an annual basis and green vegetation fraction (GVF), leaf area index 378 
(LAI), and surface albedo on a monthly basis. These variables are among the key surface properties 379 
in the land model that regulate the exchanges of energy, water, and momentum (Mölders, 2001). 380 
The major technical development and its application to study the impacts of land use/cover 381 
changes on urban temperature in Eastern China during 2003-2019 were described in Wang et al. 382 
(2023). Below we briefly describe the updates of each land surface property.  383 
 384 
The standard WRF-Chem model provides different sources of data for land surface properties. For 385 
land cover type, one data source is from the U.S. Geological Survey (USGS) map with 24 land 386 
cover types, which is derived from the monthly AVHRR Normalized Difference Vegetation Index 387 
(NDVI) observations from April 1992 to March 1993. Another one is from the MODIS land cover 388 
data including 17 land cover types, based on the International Geosphere-Biosphere Program 389 
(IGBP) scheme (Friedl et al., 2002) and three classes of tundra (Justice et al., 2002). Historically, 390 
MODIS land cover data inputs used in WRF-Chem have been fixed to years such as 2001 or 2004, 391 
or to 2001–2010 climatology data (Broxton et al., 2014). For GVF, the default data is derived from 392 
the AVHRR NDVI observations (1985–1990). An alternative option is to use the MODIS Fraction 393 
of Absorbed Photosynthetically Active Radiation (FPAR) (early 2000s) to substitute for GVF. For 394 
LAI and surface albedo, one option is to calculate the values online using a look-up table, based 395 
on each land cover type. Another option is to use the MODIS LAI and albedo data directly (early 396 
2000s).  397 
 398 
Since these data sources are outdated, we have developed the conv_geo Python-based module (Fig 399 
1) to update all four land surface properties in UI-WRF-Chem via the WPS using recent available 400 
MODIS land data. This approach provides self-consistence among the key land surface properties 401 
used in the land model as they come from the same satellite observations and offers a flexible way 402 
to apply the data for WRF-Chem simulations across different spatial resolutions. Specifically, the 403 
land cover type is updated with the MODIS yearly land cover type product (MCD12Q1). GVF can 404 
be updated by: (1) deriving from the MODIS monthly NDVI product (MOD13A3) or (2) 405 
substituting with MODIS 8-day FPAR product (MCD15A2H). LAI is updated directly from 406 
MODIS 8-day LAI product (MCD15A2H). Surface albedo can be updated using either the 407 
MCD43A3 daily albedo product or the MODIS combined Terra and Aqua Bidirectional 408 
Reflectance Distribution Function (BRDF) and Albedo daily product (MCD43C3). For the MAIA 409 
project, MODIS land data from 2018–2020 are used as static inputs to the UI-WRF-Chem 410 
simulations, except for CHN-Beijing where only 2018 data are applied.  411 

2.5 Development of the BDISNP soil NOx emission scheme  412 

The new BDISNP soil NOx emission scheme is also integrated as part of the UI-WRF-Chem 413 
framework. The detailed development of the scheme has been described in Sha et al. (2021) and 414 
Wang et al. (2021c). Briefly, in the standard WRF-Chem model, soil NOx emissions are calculated 415 
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 416 
2006; Guenther et al., 2012), which is intended for estimating biogenic emissions of volatile 417 
organic compounds (VOCs). In the MEGAN model, emission factors are based on four global 418 
plant function types (broadleaf trees, needle-leaf trees, shrubs/bushes and herbs/crops/grasses). 419 
Previous work by Oikawa et al. (2015) has suggested that soil NOx emissions calculated from the 420 
MEGAN model using WRF-Chem can be a factor of 10 underestimated in the Imperial Valley, 421 
California, compared with ground observations. The BDSNP soil NOx emission scheme, currently 422 
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implemented in the global 3-D GEOS-Chem model (Hudman et al., 2012), was added into the UI-423 
WRF-Chem, as the BDISNP, with several of our own updates.  424 
 425 
As in BDSNP, the BDISNP includes a more physical representation of the soil NOx emission 426 
process compared with the MEGAN model. The BDISNP considers available nitrogen (N) in soils 427 
from biome specific emission factors, online dry and wet deposition of N, and fertilizer and manure 428 
N. It also includes the pulsing of soil NOx emission following soil wetting by rain and the impacts 429 
of soil temperature and moisture. Compared to BDSNP, we have made four major updates in the 430 
BDISNP: (1) updating the land cover type data with the recent available MODIS land cover type 431 
data to better reflect the land cover change; (2) using the GLDAS soil temperature data for 432 
calculating soil NOx emissions rather than using the 2 m air temperature as a proxy for soil 433 
temperature; (3) using the modelled GVF data to determine the distribution of arid and non-arid 434 
regions to replace the static climate data used in the BDSNP scheme. With these three updates, 435 
Sha et al. (2021) has shown that the WRF-Chem simulation with the BDISNP scheme leads to a 436 
better agreement with TROPOMI retrieved NO2 columns over California for July 2018, compared 437 
with using the default MEGAN scheme. The increased soil NOx emissions with the BDISNP 438 
scheme result in a 34.7% increase in monthly mean NO2 columns and 176.5% increase in surface 439 
NO2 concentration, which causes an additional 23.0% increase in surface O3 concentration in 440 
California. The work of Zhu et al. (2023) used derived soil NOx flux measurements from a field 441 
Campaign over the San Joaquin Valley in California during June 2021 to evaluate three soil NOx 442 
emission schemes: the MEGAN in the California Air Resource Board (CARB) emission inventory, 443 
the Biogenic Emission Inventory System (BEIS) and the BDISNP developed here. It was found 444 
that both MEGAN and BEIS inventories were lower than the observation by more than one order 445 
of magnitude, and the BDISNP was lower by a factor of 2.2. Even though being underestimated, 446 
the BDISNP and the observation showed a similar spatial pattern and temperature dependence.  447 
 448 
The fourth update revises the default soil temperature response function in the BDSNP scheme, as 449 
described in Wang et al. (2021c). In the default scheme, the soil temperature response follows an 450 
exponential function for soil temperature between 0 °C and 30 °C and stays the same as 30 °C 451 
after the soil temperature is above 30 °C. In the work of Oikawa et al. (2015), which found high 452 
soil NOx emissions in high-temperature agricultural soils, an observation-based soil temperature 453 
response function was developed. This function is used here to update the default soil temperature 454 
response function. Specifically, for soil temperature in the range of 20 °C and 40 °C, it is a cubic 455 
function of soil temperature. When soil temperature is greater than 40 °C, the value of the response 456 
function is set the same as the value of soil temperature at 40 °C. In addition, final soil NOx 457 
emissions are reduced by 50% following the work of Silvern et al. (2019) and Vinken et al. (2014). 458 
With this update, Wang et al. (2021c) showed that the GEOS-Chem simulated tropospheric NO2 459 
vertical column densities (VCDs) agrees better with Ozone Monitoring Instrument (OMI) 460 
observed NO2 VCDs for 2005–2019 summer in the U.S., compared with the GEOS-Chem 461 
simulation that uses the default soil temperature function. This model improvement further helps 462 
explain the slowdown of tropospheric NO2 VCD reduction during 2009–2019 observed by OMI 463 
in the U.S.  464 

2.6 Development of WRF-Chem Emission Preprocessing System (WEPS)  465 

The WEPS Fortran utility is developed to map both global and regional anthropogenic emissions 466 
as well as fire emissions for running UI-WRF-Chem simulations. WEPS builds upon a few tools 467 
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used in the WRF-Chem community (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-468 
community). For example, the anthro-emiss utility creates WRF-Chem ready emission files from 469 
global anthropogenic emission inventory datasets. There is also another Fortran program 470 
(emission_v3.F) to process the U.S. EPA National Emissions Inventory (NEI) 2005 and 2011. 471 
Recently, a new tool EPA_ANTHRO_EMIS has been developed to create WRF-Chem ready 472 
anthropogenic emission files from Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling 473 
System netcdf outputs for NEI 2014 and 2017. We have adopted some of the functionalities in 474 
these tools into the WEPS.  475 
 476 
Currently in WEPS, we can ingest the following global anthropogenic emission inventories: (1) 477 
HTAP_v2.2 (Janssens-Maenhout et al., 2015) and HTAP_v3 (Crippa et al., 2023), created under 478 
the umbrella of the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), which is 479 
the compilation of different emission inventories over specific regions (North America, Europe, 480 
Asia including Japan and South Korea) with the independent Emissions Database for Global 481 
Atmospheric Research (EDGAR) inventory filling in for the rest of the world; (2) EDGARv5.0 482 
for year 2015 (Crippa et al., 2020). The HTAP_v3 includes regional emission inventories from 483 
U.S. EPA NEI, CAMS-REGv5.1 for Europe, the Regional Emission inventory in Asia 484 
(REASv3.2.1), the Clean Air Policy Support System (CAPSS-KU) inventory over South Korea, 485 
the JAPAN emission inventory (PM2.5EI and J-STREAM) in Japan and EDGARv6.1 486 
(https://data.jrc.ec.europa.eu/dataset/df521e05-6a3b-461c-965a-b703fb62313e) for the rest of the 487 
world. It consists of 0.1 ° x 0.1 ° grid maps of species: CO, SO2, NOx, non-methane volatile organic 488 
compound (NMVOC), NH3, PM10, PM2.5, BC and OC for year 2000–2018 (Crippa et al., 2023). 489 
Four sectors are included for these species: energy (mainly power industry), industry 490 
(manufacturing, mining, metal, cement, etc.), transport (ground transport such as road) and 491 
residential (heating/cooling of buildings etc.). For NH3, an additional sector – agriculture is also 492 
included. The datasets have a monthly temporal resolution, and we have interpolated them to daily 493 
data. In addition, we have added sector-based diurnal profiles, following the work of Du et al. 494 
(2020). For UI-WRF-Chem simulation over the U.S. domain or China domain, we have added the 495 
capability to use U.S. EPA NEI 2017 or the Multi-resolution Emission Inventory model for 496 
Climate and air pollution research (MEIC) (Zheng et al., 2018; Li et al., 2017b) emission inventory 497 
to replace the global emission inventory HTAP_v3, respectively.  498 
 499 
For fire emissions, the WEPS can process several emission inventories as described in Zhang et 500 
al. (2014). They include: Fire Locating and Modeling of Burning Emissions inventory (FLAMBE) 501 
(Reid et al., 2009); Fire INventory from NCAR version 1.0 (FINN v1.01) (Wiedinmyer et al., 502 
2011); Global Fire Emission Database version 3.1 (GFED v3.1) (Van Der Werf et al., 2010); Fire 503 
Energetics and Emissions Research version 1.0 using fire radiative power (FRP) measurements 504 
from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (FEER-SEVIRI 505 
v1.0) (Roberts and Wooster, 2008; Ichoku and Ellison, 2014); Global Fire Assimilation System 506 
(GFAS v1.0) (Kaiser et al., 2012); NESDIS Global Biomass Burning Emissions Product (GBBEP-507 
Geo) (Zhang et al., 2012); Quick Fire Emissions Dataset version 2.4 (QFED v2.4) (Darmenov and 508 
Da Silva, 2015). Our recent work involves developing a Visible Infrared Imaging Radiometer Suite 509 
(VIIRS) based fire emission inventory, FIre Light Detection Algorithm (FILDA-2) (Zhou et al., 510 
2023). Our past work has mainly focused on OC and BC emissions from the FLAMBE emission 511 
inventory (e.g., Ge et al., 2014; Zhang et al., 2022; Zhang et al., 2020). We have now included gas 512 



 
 

13 

species such as CO from FLAMBE emission inventory. The injection height by default is set to 513 
range from 500 m to 1200 m, based on our previous work (e.g., Yang et al., 2013; Wang et al., 514 
2013; Ge et al., 2017) and users have the option to specify the injection height on their own.  515 

2.7 Updates of WRF-Chem chemistry scheme 516 

The MAIA investigation not only focuses on the total PM2.5 and PM10 mass but the speciated PM2.5 517 
including sulfate, nitrate, BC or EC, OC and dust. We have therefore selected the Regional Acid 518 
Deposition Model, Version 2 (RADM2) for gas-phase chemistry (Stockwell et al., 1990) and the 519 
Modal Aerosol Dynamics model for Europe (MADE) (Ackermann et al., 1998) and the Secondary 520 
ORGanic Aerosol Model (SORGAM) (Schell et al., 2001) as the aerosol module for MAIA model 521 
simulations, using WRF-Chem Version v3.8.1. The RADM2-MADE/SORGAM chemistry 522 
mechanism in WRF-Chem simulates the above-mentioned aerosol species and has been widely 523 
used to study air quality (e.g., Georgiou et al., 2018; Zhang et al., 2020; Tuccella et al., 2012). The 524 
MADE/SORGAM aerosol module also includes ammonium, sea salt and water. The aerosol size 525 
distribution is represented by the modal approach (Binkowski and Shankar, 1995), which uses 526 
three modes (the Aitken, accumulation and coarse mode). A log-normal size distribution and 527 
internal mixing of aerosol species are assumed in each mode.  528 
 529 
In the MADE/SORGAM aerosol scheme, dust is not explicitly simulated but rather blended into 530 
other species. For smaller size bins of dust, they are represented by the unspecified PM2.5 chemical 531 
species, which have Aitken and accumulation modes. For larger size bins of dust, they are counted 532 
as the “soila”, which are used for coarse soil-derived aerosol species. To output the dust proportion 533 
of the surface PM2.5 mass concentration as required by the MAIA project, we add dust species in 534 
five size bins (same as the GOCART dust bins in MERRA-2) into the MADE/SORGAM aerosol 535 
scheme. This way, when using GEOS FP or MERRA-2 to provide chemical initial and boundary 536 
conditions, dust species from the boundary file can also be consistent with the dust species in the 537 
aerosol scheme. WRF-Chem currently provides three dust emission schemes: the original 538 
GOCART dust emission scheme (Ginoux et al., 2001), GOCART dust emission with the Air Force 539 
Weather Agency (AFWA) modifications (Legrand et al., 2019), and the University of Cologne 540 
(UOC) scheme (Shao et al., 2011). Both GOCART and GOCART-AFWA emission schemes 541 
release dust in five size bins with lower and upper radius range of 0.1–1, 1–1.8, 1.8–3, 3–6, 6–10 542 
µm, same as the dust size bin used in the MERRA-2 system. The UOC dust emission scheme 543 
considers dust in four size bins with lower and upper radius range of 0–1.25, 1.25–2.5, 2.5–5, and 544 
5–10 µm. Here, we have selected the GOCART-AFWA emission scheme in the UI-WRF-Chem 545 
framework, which matches the dust size bins in the GEOS FP and MERRA-2 aerosol scheme.  546 
 547 
Subsequently, a new chemistry scheme (MADE/SORGAM-DustSS) is created in UI-WRF-Chem 548 
to include the dust in five size bins and sea salt aerosols as additional chemical tracers while all 549 
other gas and aerosol species are the same as in the MADE/SORGAM scheme. The standard WRF-550 
Chem model currently supports the GOCART sea salt emission scheme, which releases sea salt 551 
aerosol species in four bins. The lower and upper radius range of sea salt aerosols species are: 0.1–552 
0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. We have then added sea salt aerosols in these four bins into the 553 
MADE/SORGAM-DustSS scheme in the UI-WRF-Chem framework. The GOCART sea salt 554 
aerosols in MERRA-2 data have five bins with lower and upper radius range as: 0.03–0.1, 0.1–555 
0.5, 0.5–1.5, 1.5–5.0, 5.0–10 µm. This way, the GOCART sea salt aerosols in the aerosol scheme 556 
would also match the aerosols in the chemical boundary file provided by MERRA-2 data. In the 557 
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newly added scheme of MADE/SORGARM-DustSS, we have followed the simple GOCART 558 
aerosol scheme in the standard WRF-Chem model to add different transport processes for dust and 559 
sea salt aerosol species such as dry deposition. We have also added a simple wet scavenging 560 
scheme for dust and sea salt aerosols, which is described more in Sect 4.2.  561 
 562 
Aerosol optical properties such as extinction and single scattering albedo are calculated based on 563 
a sectional approach (Barnard et al., 2010) with 8 bins in WRF-Chem, regardless of the aerosol 564 
scheme selected. For aerosol species in the MADE/SORGAM-DustSS aerosol scheme, the mass 565 
and number concentrations of each aerosol species in the three modes will be matched to the 8 566 
bins. For dust and sea salt aerosol species, the dust and sea salt aerosols in their original 5 and 4 567 
bins, are matched to the 8 bins. In each bin, the particles are assumed to be internally mixed and 568 
spherical. The bulk properties such as refractive index for each bin is based on volume 569 
approximation. Then, Mie theory is called to calculate the optical properties such as the absorption 570 
efficiency and asymmetry parameter for each bin. The optical properties are computed and 571 
outputted at four wavelengths (300, 400, 600 and 1000 nm). In addition, the work of Ukhov et al. 572 
(2021) has found a few inconsistencies in WRF-Chem related to dust emissions coupled with the 573 
GOCART aerosol module, which also impacts other aerosols schemes such as the 574 
MADE/SORGAM module. These inconsistencies were found in the calculation of surface PM2.5 575 
and PM10 concentration, calculation of aerosol optical properties and estimation of gravitational 576 
settling. We have incorporated the corrections of these inconsistencies made by Ukhov et al. 577 
(2021) in our UI-WRF-Chem framework.  578 

2.8 Postprocessing and evaluation codes, and repository management  579 

Python-based modules are developed in house to postprocess UI-WRF-Chem hourly outputs as 580 
part of the UI-WRF-Chem framework. They include diagnostics of some commonly used variables 581 
which are not directly outputted such as relative humidity (RH) and the capability to extract and 582 
compile hourly model output into daily output to facilitate file management. We have also created 583 
Python modules to evaluate UI-WRF-Chem model performance against ground-based and satellite 584 
observations, e.g., comparing model simulated column concentration of trace gases NO2 with 585 
satellite observed column concentration of NO2. In addition, bash scripts are developed to 586 
automatically run UI-WRF-Chem framework for both forecasting and reanalysis modes. It needs 587 
minimal work to specify the paths of the codes and data on the servers before running the UI-588 
WRF-Chem model. The UI-WRF-Chem framework uses the GitHub, a git-based version control 589 
system to manage its codes and developments. The repository stores the main codes of UI-WRF-590 
Chem. When major developments from our group and collaborators are made and validated, a new 591 
version will be released. The WRF-Chem community updates the WRF-Chem code and releases 592 
new versions periodically and we also check the major bug fixes and developments to incorporate 593 
them in our codes accordingly.  594 

3. Evaluation statistics and model configuration  595 

3.1 Evaluation statistics 596 

Several statistics are used to evaluate the model performance against ground and satellite 597 
observations, including linear correlation coefficient (R), root mean square error (RMSE), mean 598 
bias (MB), normalized mean bias (NMB), mean absolute error (MAE), normalized standard 599 
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deviation (NSD) and normalized centered root mean square error (NCRMSE). NSD is the ratio of 600 
the standard deviation of the model simulation to the standard deviation of the observation. 601 
NCRMSE is like RMSE except that the impact of the bias is removed. Some of these statistics are 602 
summarized in a Taylor Diagram (Taylor, 2001), which includes R (shown as the cosine of the 603 
polar angle), NSD (shown as the radius from the quadrant center), and NCRMSE (shown as the 604 
radius from the expected point, which is located at the point where R and NSD are unity).  605 
 606 
To determine whether the performances among model sensitivity simulations for different case 607 
studies over different target areas are statistically significant, we conduct the paired t-test on 608 
collocated model-observation samples or between model simulations. We focus on the MAE as 609 
the evaluation metric. For comparison of hourly data, we account for the temporal autocorrelation 610 
by estimating the lag-1 autocorrelation and applying the effective sample size adjustment (Wilks, 611 
2011). For cases with smaller sample size, we also apply the non-parametric Wilcoxon signed rank 612 
test (e.g., Menut et al., 2019; Tao et al., 2025) to ensure the robustness of our test. In addition, 613 
when multiple model sensitivity simulations are evaluated, we apply a Bonferroni correction 614 
procedure (SIMES, 1986) to both paired-t and Wilcoxon tests, following previous work (Crippa 615 
et al., 2017). Under this approach, the null hypothesis is rejected if 𝑝 ≤ !

"
	, where 𝑝 is the raw 𝑝 616 

value, 𝛼 is the significance level (0.05 in this study) and m is the number of hypothesis tests. For 617 
testing the significance over spatial maps, where a large number of tests are performed 618 
simultaneously, we instead apply the Benjamini-Hochberg false discovery rate (FDR) correction 619 
(Benjamini & Hochberg, 1995). We hence report adjusted 𝑝-value throughout this work unless 620 
noted otherwise. 621 

3.2 Model configuration 622 

All the UI-WRF-Chem model simulations for MAIA target areas are set up as 2 nested domains 623 
(Fig 2) with a 4 km x 4 km horizontal spatial resolution for the inner domain (D2) focusing on the 624 
MAIA target area and a 12 km x 12 km horizontal spatial resolution for a larger outer domain 625 
(D1). The inner and outer domain have nominal dimension of ~360 km (east-west) x 480 km 626 
(north-south) and ~1080 km (east-west) x 1000 km (north-south), respectively. Both domains have 627 
48 vertical levels extending from the surface to 50 hPa. For the inner domain (D2), we have turned 628 
off the cumulus scheme to let the model fully resolve the convective process while all other model 629 
configurations are kept the same for both domains. A summary of model configurations regarding 630 
different schemes used for the four targets areas is provided in Table 1. For each target area, we 631 
first run a suite of sensitivity simulations to test the model sensitivity to different physics schemes 632 
by evaluating model simulated meteorology variables with ground observations and then select 633 
the optimal combination of physics schemes based on evaluation results. A description of the 634 
satellite and ground observation datasets used are provided in Text S1 of the supporting 635 
information (SI).  636 
 637 
Table 1. A summary of model physics, chemistry and emissions configurations for CHN-Beijing, ITA-Rome, USA-LosAngeles, 638 
and USA-Atlanta target areas. 639 

Category Model component CHN-Beijing ITA-Rome USA-Los 
Angeles USA-Atlanta 

Physics Microphysics Lin Morrison Lin Lin 
Cumulus G3D G3D G3D G3D 

Longwave radiation RRTMG RRTMG RRTMG RRTMG 
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Shortwave radiation RRTMG RRTMG RRTMG RRTMG 
Planetary boundary 

layer YSU YSU YSU YSU 

Surface layer Revised MM5 
Land surface model NOAH NOAH NOAH NOAH 

Chemistry Gas-phase RADM2 RADM2 RADM2 RADM2 
Aerosols MADE/SORAGM-DustSS 

Photolysis Madronich F-TUV 
Emissions Anthropogenic 

emissions MEIC 2016 HTAP v3 (2018) NEI 2017 NEI 2017 

Dust emissions GOCART with AFWA modifications 
Biogenic emissions 

of VOCs MEGAN MEGAN MEGAN MEGAN 

Soil NOx emissions BDISNP BDISNP BDISNP BDISNP 
Wildfire emissions FLAMBE FLAMBE FLAMBE FLAMBE 

 640 
There are many physics schemes that can be used in WRF-Chem. We select the commonly used 641 
schemes for each target area based on literature review and our previous work (e.g., Yang et al., 642 
2013; Sha et al., 2021; Zhang et al., 2022). We also consider a few other factors as described 643 
below. For the cumulus scheme, we consider the Grell 3D ensemble (G3D, (Grell and Dévényi, 644 
2002)) scheme, which also accounts for cloud radiation feedback. For model spatial grids greater 645 
than 10 km, they usually rely on the cumulus parameterization to determine the subgrid convective 646 
processes. For model spatial grids smaller than 10 km, it is generally considered as the convective 647 
gray zone, where the use of convective parameterization or explicit resolving treatment of the 648 
convective process remains to be an ongoing question (Jeworrek et al., 2019). Typically, for model 649 
spatial grids larger than 5 km, convective parameterization has been used in regional model studies 650 
(e.g., Zhang and Mcfarlane, 1995; Clark et al., 2009; Dudhia, 2014). For model spatial grids 651 
smaller than 5 km, generally considered convection-permitting scale, numerous regional model 652 
studies have suggested to turn off the cumulus scheme (e.g., Prein et al., 2015; Wang et al., 2021b; 653 
Weisman et al., 1997; Weisman et al., 2008; Done et al., 2004; Gao et al., 2017), especially if the 654 
cumulus scheme is not scale-aware (Wagner et al., 2018). Therefore, we have chosen to turn off 655 
the cumulus scheme here for the inner domain (D2) with the 4 km spatial resolution.  656 
 657 
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 658 
Figure 2. Terrain height for (a) CHN-Beijing, (b) ITA-Rome, (c) USA-LosAngeles and (d) USA-Atlanta target areas of the 2 nested 659 
domains: the outer domain (D1) and the inner domain (D2) shown as the white box. For (a), the orange filled triangles represent 660 
the ground observation sites of PM2.5 and PM10 mass concentration. Both open magenta squares and stars represent the AERONET 661 
ground observation sites. The sites denoted by the stars are used to constrain the dust particle size distribution as described in Sect 662 
4.1, while the sites denoted by squares are used to evaluate model simulated AOD. (b) is same as (a), except that the orange open 663 
circles represent ground observations of PM10 mass concentration, and orange filled triangles are the ground observations sites of 664 
PM2.5 mass concentration. (c) is the same as (b) except that the orange box is defined as the dust-prone region, which is used to 665 
tune dust emissions. For (d), orange filled triangles represent the ground observation sites of PM2.5 mass concentration.  666 
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 667 
Figure 3. Taylor Diagrams for evaluating UI-WRF-Chem model simulated (a) meteorological variables (t2, dewt2 or RH, wspd10 668 
and pres) with ground observations for CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas, and (b) surface 669 
skin temperature (TSK) with MODIS observed land surface temperature (LST) for CHN-Beijing during July 2018. In (a), 670 
evaluation results of daily meteorology variables are based on the model final configuration for each target area (Table 1). Color 671 
bar represents the ratio between model results and ground observations. In (b), USGS and updated refer to the UI-WRF-Chem 672 
sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd 673 
(updated land cover type, GVF, LAI and albedo with MODIS land data) in Table 2, respectively. UI-WRF-Chem simulated TSK 674 
averaged over the Terra and Aqua overpass time during daytime (TD and AD) and nighttime (TN and AN), respectively are 675 
compared to the corresponding Terra and Aqua observations. Color bar represents the normalized mean bias (NMB) between model 676 
results and satellite observations.  677 

 678 
With the current version (WRF-Chem v3.8.1) of the code, chemical species are transported using 679 
the G3D scheme, regardless of which cumulus scheme is used, while other scalars are transported 680 
with the selected cumulus scheme. Therefore, the G3D scheme is used to ensure the consistency 681 
between chemistry and physics. Additionally, WRF-Chem v3.8.1 was selected as the base version 682 
at the beginning of this project due to its stability. We have maintained this version over the course 683 
of the project to ensure the consistency and reproducibility of the results. Although there are 684 
several scale-aware cumulus schemes available in WRF-Chem such as the Kain-Fritsch scheme 685 
(KF, (Kain, 2004)) and the Grell-Freitas scheme (GF, (Grell and Freitas, 2014)), only the GF 686 
scheme has been updated to ensure the consistent transport of both chemical species and other 687 
scalars, as described by Li et al. (2018, 2019). We acknowledge the limitation of using only the 688 
G3D scheme in this work and plan to update the UI-WRF-Chem modelling framework to a newer 689 
version to enable the use of the GF scheme and incorporate other recent improvements as well.  690 
 691 
For the microphysics scheme, an inexpensive scheme is typically sufficient for model spatial grids 692 
greater than 10 km but a more complex scheme that accounts for the prediction of the mixed phases 693 
(6-class schemes, including graupel) and number concentrations (double-moment schemes) is 694 
required (Han et al., 2019). Therefore, we consider these three schemes in the current work: the 695 
Lin scheme (Lin et al., 1983; Chen and Sun, 2002), the WRF Single-Moment 6-Class 696 
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Microphysics Scheme (WSM6) (Hong and Lim, 2006) and the Morrison scheme (Morrison et al., 697 
2009). The former two is a single-moment 6 class scheme and the latter one is a double-moment 698 
scheme, which also predicts the number concentration of the hydrometer besides the total amount. 699 
All the three schemes include the simulations of graupel which is shown to help with the simulation 700 
of convection for higher resolution simulation (Brisson et al., 2015). At convective-permitting 701 
scales, the graupel size representation could play a more important role in the precipitation 702 
prediction than the number of moments (single vs. double) in certain cases (Adams-Selin et al., 703 
2013).  704 
 705 
For the shortwave radiation scheme, we only consider the two-stream multiband Goddard scheme 706 
(Chou et al., 1998) and the Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 707 
2008), which both include the direct aerosol radiation feedback. For the longwave radiation, we 708 
select the RRTMG and the Rapid Radiative Transfer Model (RRTM) schemes (Mlawer et al., 709 
1997). RRTMG for both shortwave and longwave radiation schemes are recommended to pair 710 
together in the model by the developing team of WRF-Chem. For the planetary boundary layer 711 
(PBL) scheme and the corresponding surface layer scheme, we consider the nonlocal boundary 712 
layer scheme – the Yonsei University scheme (YSU, (Hong et al., 2006)) with the revised fifth-713 
generation Pennsylvania State University – National Center for Atmospheric Research Mesoscale 714 
Model (MM5) (Grell et al., 1994; Jiménez et al., 2012) surface layer scheme. We also consider 715 
two commonly used local boundary layer schemes: Mellor-Yamada-Janjic (MYJ, (Janjic, 2001)) 716 
with the ETA similarity surface layer scheme; Mellor-Yamada-Nakanishi-Niino level 2.5 717 
(MYNN2.5, (Nakanishi and Niino, 2004)) with the MYNN surface layer scheme. When using the 718 
YSU scheme, we also turn on the surface drag parameterization (Jiménez and Dudhia, 2012) to 719 
improve topographic effects on surface winds over a complex terrain. The land surface model is 720 
the Noah land model (Chen and Dudhia, 2001), which incorporates our updates of the land surface 721 
properties as described in Sect 2.4. Additionally, for a specific target area, other physics schemes 722 
not mentioned here but commonly used in that area will also be tested.  723 
 724 
Details regarding the selection and evaluation results of the physics scheme for the four target 725 
areas are available in Text S2 of the SI. Here, we provide a summary of the evaluation results. 726 
Sensitivity simulations performed for each target area are listed in Table S1 and we focus on testing 727 
the following schemes: microphysics, shortwave and longwave radiation and PBL. We evaluate 728 
four UI-WRF-Chem simulated meteorology variables with surface observations: air temperature 729 
at 2m (t2), dew temperature at 2m (dewt2) or relative humidity (RH), wind speed at 10m (wspd10) 730 
and sea level pressure (pres). Results of the hourly or 3-hourly evaluation of the meteorology 731 
variables are summarized in Table S2 and Fig S1. Overall, all the sensitivity simulations of t2 and 732 
pres for all the target areas show the highest correlation (> 0.8). Dewt2 or RH also show good 733 
correlation (0.59 – 0.84) with ITA-Rome showing the lowest correlation. The case study of ITA-734 
Rome is conducted over June 2023, where some regions in Italy experienced rainfall events about 735 
one third of the month. Uncertainties of UI-WRF-Chem capturing the rainfall events (discussed in 736 
Sect 4.2) could result in the lower correlation of RH. Comparatively, wspd10 shows lower 737 
correlation (0.22 – 0.52) over USA-Atlanta. Across the target areas, we find that wspd10 is most 738 
sensitive to the PBL scheme compared with other schemes tested, which is also found in previous 739 
studies (e.g., Yu et al., 2022). It is found that no single combination of the physics scheme will 740 
result in the best performance for each meteorology variable evaluated. The interaction of these 741 
different parametrized processes mentioned above (e.g., convection, boundary layer mixing, 742 
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microphysics and radiation) are complex (Prein et al., 2015) and it is region, case and variable 743 
specific. Therefore, model performance can vary from region to region or case to case.  744 
 745 
Based on the evaluation results, we select the optimal combination of various physics schemes 746 
tested as the final configuration for each target area (Table S1 and Table 1). We summarize the 747 
statistics of the evaluation of the daily meteorology variables for the four target areas in Fig 3(a), 748 
for the final configuration only. We find that UI-WRF-Chem simulated daily t2, dewt2 and pres 749 
all show high correlation (> 0.7) and low NMB ((–10%) – (+ 10%)) across the target areas. For 750 
evaluation of daily wspd10, correlation increases, and bias decreases compared with hourly 751 
evaluation. For USA-Atlanta, the daily wspd10 still shows lower correlation (~0.25) compared 752 
with other target areas. The sensitivity simulation over USA-Atlanta is conducted over June 2022 753 
and majority of the wspd10 are under 5 m s-1. It can be challenging for the model to capture this 754 
stable condition very well. Future work could focus on trying nudging with ground observation to 755 
improve the model performance over this area. We also recognize that our sensitivity tests are 756 
limited to one month for each target area. We are not able to test the performance for different 757 
seasons. Nevertheless, it provides values for understanding the model sensitivity to different 758 
schemes at different locations.  759 
 760 
Biogenic emissions for VOCs are from the MEGAN scheme and soil NOx emissions are from the 761 
BDISNP scheme. Fire emissions are from the FLAMBE emission inventory and dust emissions 762 
use the GOCART with AFWA modification. Here, we use MEIC 2016 as the anthropogenic 763 
emission for CHN-Beijing and NEI 2017 emission inventory for USA-LosAngeles and USA-764 
Atlanta. The HTAP_v3 2018 is used for ITA-Rome. The gas-phase chemistry is the RADM2, and 765 
the aerosol module is the newly added scheme MADE/SORGAM-DustSS: the MADE/SORGAM 766 
scheme with the addition of dust and sea salt aerosol species as described in Sect 2.7. Lastly, we 767 
use the Madronich Fast Tropospheric UV and Visible Radiation Model (F-TUV) as the photolysis 768 
scheme (Madronich, 1987; Tie et al., 2003).  769 

4. Case studies for different target areas  770 

4.1 Case study – CHN-Beijing  771 

Beijing and its surrounding area in China, are affected by both local and regional emissions as well 772 
as long-range transport (Wu et al., 2021; Zhang et al., 2018). In recent decades, the North China 773 
Plain including the Beijing area has experienced severe PM pollution problems as a result of the 774 
rapid economic growth and urbanization (Zhang et al., 2016). In addition to the impacts of 775 
anthropogenic emission on surface PM levels, strong dust storms from the Taklamakan Desert and 776 
the Gobi Desert sometimes can be transported downwind to the Beijing area and affect local air 777 
quality in the springtime. Here for the CHN-Beijing target area (Fig 2(a)), we first focus on a dust 778 
intrusion event during 24–31 March 2018, to study the impacts of chemical boundary conditions 779 
on surface PM. Figure 4 shows the MODIS Aqua observed AOD over part of China for the period 780 
of this event. The dust storm can be seen on 26 March 2018, at both Taklamakan and Gobi Deserts 781 
and by 28 March, strong dust clouds have been transported to Beijing and its surrounding areas. 782 
Figure S2 displays the movement of surface observations of daily PM10 mass concentration across 783 
China from 24 March to 31 March 2018. On 27 March and 28 March 2018, high surface PM10 784 
concentration were observed in Beijing, Tianjin and Hebei province with hourly concentration 785 
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exceeding 1000 µg m-3 (not shown here). Then, we focus on July 2018 to study the impacts of 786 
updating land surface properties and soil NOx emission scheme on model performances.  787 
 788 

 789 
Figure 4. (a)–(h) MODIS Aqua Deep Blue (DB) AOD from 24–31 March 2018. The white boxes represent the UI-WRF-Chem 2 790 
nested domains for outer (D1) and inner domain (D2) over CHN-Beijing, respectively. The white diagonal lines indicate the 791 
CALIOP tracks. The magenta contour lines represent the boundaries of Taklamakan and Gobi Deserts.  792 

4.1.1 Sensitivity experiment design  793 

For CHN-Beijing target area, we carry out a suite of sensitivity simulations using the UI-WRF-794 
Chem framework as shown in Table 2 to investigate the impacts of chemical boundary conditions, 795 
updated land surface properties and soil NOx emission scheme on model performance. First, three 796 
simulations are conducted during March 2018 to study the impacts of using MERRA-2 data to 797 
provide chemical boundary conditions on model performance. Additionally, four simulations are 798 
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carried out for July 2018 to investigate the impacts of updating land surface properties as well as 799 
surface soil NOx emission scheme. The simulation with “2N_def” uses the default USGS land 800 
cover type and subsequently derived GVF, LAI and albedo, using a predefined look-up table. The 801 
simulations with “2N_upd” uses the corresponding updated land cover type, GVF, LAI and albedo, 802 
based on the MODIS land data products for the simulation period, as described in Sect 2.4. The 803 
simulations with “2N_*_snox*” use our newly developed BDISNP soil NOx emission scheme.  804 
 805 
Table 2. A suite of UI-WRF-Chem sensitivity simulations with different chemical boundary conditions, land data and soil NOx 806 
emission schemes for CHN-Beijing.  807 

simulation namea land datab soil NOx 
emissionc 

species considered in 
the chemical 
boundaryd 

 simulation 
timee 

2N_upd_snox-none updated BDISNP none  03/2018 
2N_upd_snox-dust updated BDISNP dust + other aerosols  03/2018 

2N_upd_snox-dust PSD updated BDISNP dust PSD + other 
aerosols  

 03/2018 

      
2N_def USGS Guenther dust + other aerosols  07/2028 
2N_upd updated Guenther dust + other aerosols  07/2018 

2N_upd_MEGAN updated MEGAN dust + other aerosols  07/2018 
2N_upd_BDISNP  updated BDISNP dust + other aerosols  07/2018 

aThe simulation name starting with “2N*” refers to the 2 nested domains used for CHN-Beijing as shown in Fig 2(a). The 2 nested 808 
domains have a horizontal spatial resolution of 4 km x 4 km and 12 km x 12 km for the inner and outer domain, respectively.  809 
bWe test different land surface properties used for the UI-WRF-Chem static input data. The simulation name with “*def*” refers 810 
to the use of USGS land cover type data and subsequently derived GVF, LAI and albedo, with a predefined look-up table. The 811 
simulation name with “*upd*” refers to the use of updated land cover type, GVF, LAI and albedo data with MODIS land data 812 
products.  813 
cWe test different soil NOx emission schemes. The Guenther scheme calculates biogenic emissions including soil NOx emissions, 814 
without any external input datasets needed. The MEGAN scheme requires external input files to calculate biogenic emissions 815 
including soil NOx emissions. The BDISNP is our newly developed scheme. Since the USGS land data is only compatible with the 816 
Guenther scheme, we conduct sensitivity simulations “2N_def” and “2N_upd” to evaluate the impacts of updating land surface 817 
properties. The simulation name with “*snox*” means that the BDISNP soil NOx emission scheme is used.  818 
dWe test different scenarios of chemical species used in MERRA-2 data for updating UI-WRF-Chem chemical boundary 819 
conditions. “None” (simulation name with “*none*”) means that chemical boundary conditions from MERRA-2 data are not used 820 
but instead the model default chemical boundary conditions are used. They represent a clean North American summer day, which 821 
includes a limited number of chemical species and most of them are gas species. For aerosol species, the concentrations are close 822 
to zero values. “dust + other aerosols” (simulation name with “*dust*”) means that dust and other aerosols including sulfate, BC 823 
and OC are considered in the chemical boundary conditions from MERRA-2 data. “dust particle size distribution (PSD) + other 824 
aerosols” (simulation name with “*dust PSD*”) is the same as “dust + other aerosols” except that we use the ratio of averaged PSD 825 
from AERONET observations and MERRA-2 data over 2000–2020 to scale the dust concentration for each size bin in the MERRA-826 
2 data. More details can be found in Sect 4.1.1. 827 
eWe conduct the sensitivity simulations in two different time periods: March and July 2018, respectively. The simulations in March 828 
focus on evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions on model performance while 829 
the simulations in July focus on the impacts of updating land surface properties with MODIS data and soil NOx emission scheme.  830 

The impacts of chemical boundary conditions are evaluated from several sensitivity experiments. 831 
In the simulation “2N_upd_snox-none”, no chemical species from MERRA-2 data are transported 832 
into the domain. In the simulation “2N_upd_snox-dust”, dust and other aerosols including sulfate, 833 
BC and OC are considered in the chemical boundary condition from MERRA-2 data. Furthermore, 834 
to constrain the chemical boundary condition for the allocation of dust concentration as a function 835 
of different size bins, we analyze the AERONET measured aerosol volume size distribution 836 
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(AVSD) data from 2000 to 2020. If the fine mode fraction (FMF) of AOD at 500 nm is less than 837 
0.3 (Lee et al., 2017), it is considered as a dust event. Figure 5(a) shows the averaged dust particle 838 
size distribution (PSD) over the AERONET sites (Fig 2(a)) between 2000–2020 from both 839 
AERONET and MERRA-2 data for all the dust events that occurred in CHN-Beijing. The ratio 840 
between the mean of the AERONET PSD and MERRA-2 PSD for each of the five dust size bins 841 
is then used as a constraint to scale the dust concentration in each bin in the MERRA-2 chemical 842 
boundary data. The sensitivity run “2N_upd_snox-dust PSD” in Table 2 is based on this result.  843 
 844 

 845 
Figure 5. Averaged particle size distribution (PSD) from AERONET observations (blue line) and MERRA-2 data (the 5 colored 846 
bins) for (a) CHN-Beijing and (b) ITA_Rome over 2000–2020 and 2000–2023, respectively. The AERONET sites used are shown 847 
as stars in Fig 2(a) and (b), respectively. The dark gray areas represent the AERONET variability. AERO-mean and MERRA-2 848 
mean represent the fraction of the PSD from each bin over the sum of the 5 bins. Ratio-mean is the ratio of the total PSD of 849 
AERONET over MERRA-2 for each bin.  850 

Three UI-WRF-Chem sensitivity simulations in Table 2 are run from 18 March to 31 March 2018, 851 
for evaluating the impacts of using MERRA-2 data to provide chemical boundary conditions. The 852 
simulation results with the first 6 days are used as initialization. Model output from 24 March to 853 
31 March 2018, are used for analysis, unless noted otherwise. The rest of the four simulations are 854 
used for evaluating the impacts of updating land surface properties and soil NOx emission scheme 855 
on model performance. They are carried out from 24 June to 31 July 2018, and model outputs from 856 
1 July to 31 July are used for data analysis. We mainly use model output from the inner domain 857 
(D2) for data analysis unless noted otherwise.  858 
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4.1.2 Impacts of chemical boundary conditions on surface PM and AOD  859 

 860 
Figure 6. Scatter plot of hourly surface PM2.5 concentration between model (y axis) and ground observation (x axis) for surface 861 
sites in the inner domain (D2) of CHN-Beijing for 24–31 March 2018. (a)–(c) refer to the UI-WRF-Chem sensitivity simulations 862 
with different chemical boundary conditions being considered using MERRA-2 data (Table 2). (a) no chemical species, (b) dust 863 
and other aerosols and (c) same as (b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD data 864 
with AERONET PSD climatology data. (d) is from MERRA-2 simulated surface PM2.5 concentration. Also shown on the scatter 865 
plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard 866 
deviation for observed (x) and model-simulated surface PM2.5 (y), the number of collocated data points (N), the density of points 867 
(the color bar), the best fit linear regression line (the solid black line) and the 1:1 line (the dashed black line). WRF-Chem PM data 868 
are regridded onto the MERRA-2 grid, and when multiple surface sites fall within the same MERRA-2 grid, the observations are 869 
then averaged to represent a single collocated site.  870 
 871 
First, we evaluate the effectiveness of using MERRA-2 data to provide chemical boundary 872 
conditions in capturing this dust long-range transport event in spring 2018. Figure 6 shows the 873 
overall evaluation of model simulated hourly surface PM2.5 mass concentration against ground 874 
observations over PTA-Beijing during 24-31 March 2018. Results are presented for three 875 
sensitivity experiments, as described in section 4.1.1. WRF-Chem PM data are regridded onto the 876 
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MERRA-2 grid to ensure a fair comparison. Without considering any chemical species in the 877 
boundary, the UI-WRF-Chem simulated PM2.5 concentration (2N_upd_snox_none) substantially 878 
underestimates ground observations with a MB of -66.4 µg m-3. After including dust and other 879 
aerosols in the boundary conditions, the UI-WRF-Chem simulated PM2.5 concentration 880 
(2N_upd_snox_dust) increases from 18.7 µg m-3 to 35.5 µg m-3 and thus reduces the MB to -49.6 881 
µg m-3. The correlation (R) increases from 0.19 to 0.51 and MAE decreases from 66.7 to 50.2 µg 882 
m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). By constraining the dust PSD in the 883 
MERRA-2 data with the AERONET climatology data, the UI-WRF-Chem simulated PM2.5 884 
(2N_upd_snox_dust PSD) further improves the model performance with MB of -24 µg m-3, R of 885 
0.54 and MAE of 37.0 µg m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). This 886 
sensitivity simulation also outperforms the MERRA-2 simulated surface PM2.5 concentration with 887 
MB of -33.7 µg m-3, R of 0.39 and MAE of 41.7 µg m-3 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni 888 
correction).  889 
 890 
Figure 7(a) and Figure S3 show the time series of hourly surface PM2.5 and PM10 concentration 891 
from 24–31 March 2018 for both model simulations and ground observations. During 27–28 892 
March, when the dust front intruded PTA-Beijing, hourly observations of surface PM2.5 and PM10 893 
concentration averaged over all the sites could reach approximately 150 and 900 µg m-3, 894 
respectively. The UI-WRF-Chem simulation without chemical boundary conditions 895 
(2N_upd_snox_none) misses this peak for both PM2.5 and PM10 while both the UI-WRF-Chem 896 
simulation with chemical boundary condition (2N_upd_snox_dust) and MERRA-2 data capture 897 
this peak for PM2.5 but miss the peak for PM10. The UI-WRF-Chem simulation with dust PSD 898 
constrained (2N_upd_snox_dust PSD) capture the peaks of both PM2.5 and PM10. Compared with 899 
the simulation without boundary conditions (2N_upd_snox_none), adding chemical boundary 900 
conditions (2N_upd_snox_dust) improves model performance with increased correlation for both 901 
PM2.5 (0.41 to 0.72) and PM10 (0.06 to 0.23). The simulation with dust PSD constrained 902 
(2N_upd_snox_dust PSD) does not improve the correlation of PM2.5 (0.65) but does for PM10 903 
(0.28), compared with the simulation using dust in the chemical boundary (2N_upd_snox_dust). 904 
Time series of UI-WRF-Chem simulated hourly speciated PM2.5 (e.g., OC, EC, sulfate, nitrate) 905 
and dust components in both PM2.5 and PM10 from the two sensitivity simulations 906 
(2N_upd_snox_dust and 2N_upd_snox_dust PSD) (not shown here) indicate that only the dust 907 
components exhibit similar peaks as in the total PM2.5 and PM10, while other speciated PM2.5 908 
components do not follow the same temporal pattern. This demonstrates that the observed peaks 909 
in both PM2.5 and PM10 are primarily driven by the dust intrusion event. Moreover, the magnitude 910 
of the peak from the sensitivity simulation – 2N_upd_snox_dust PSD is larger and matches better 911 
with surface observations, especially for PM10, than that of the 2N_upd_snox_dust. This further 912 
highlights the effectiveness of our method in improving the representation of dust size distribution 913 
in MERRA-2 data.  914 
 915 
Not only does considering chemical boundary conditions improve surface PM mass concentration, 916 
it also enhances the total aerosol column amount and vertical distribution. Figure 7(b)–(d) shows 917 
the AOD evaluation between model simulations and AERONET observations. Without 918 
considering boundary conditions, the UI-WRF-Chem simulation (2N_upd_snox_none) 919 
significantly underestimates the AERONET observed AOD (0.05 vs. 0.73) and shows poor 920 
correlation (0.02). Including dust and other aerosols (2N_upd_snox_dust) increases UI-WRF-921 
Chem simulated AOD (0.29), improves correlation (0.29) and reduces MAE from 0.67 to 0.44 922 
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(paired t-test, adjusted 𝑝 > 0.05; Wilcoxon, adjusted 𝑝 < 0.05; Bonferroni correction). Further 923 
constraining the dust in the boundary (2N_upd_snox_dust PSD) yields the best model performance 924 
with simulated AOD of 0.93 and correlation of 0.83, reducing MAE from 0.44 to 0.31 (paired t-925 
test, adjusted 𝑝 > 0.05; Wilcoxon, adjusted 𝑝 < 0.05; Bonferroni correction). The paired t-test does 926 
not find statistically significant changes in the MAE, likely due to the smaller sample size, whereas 927 
the Wilcoxon test shows that changes in the MAE are statistically significant.  928 
 929 

 930 
Figure 7. (a) time series of hourly surface PM2.5 concentration averaged over surface sites in the inner domain (D2) of CHN-Beijing 931 
for 24–31 March 2018, from model simulations and ground observations. 2N_upd_snox-none/dust/dust PSD refer to the UI-WRF-932 
Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data (Table 2): no 933 
chemical species; dust and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD data with 934 
AERONET PSD climatology data. Also shown on the plot is the mean ± standard deviation of surface PM2.5 for model simulations 935 
or observations as well as the correlation coefficient (R). (b)–(d): scatter plot of hourly AOD between model (y axis) and AERONET 936 
observation (x axis) for 24–31 March 2018. Also shown on the scatter plot is R, the root-mean-square error (RMSE), the mean 937 
absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated AOD (y), the number of collocated 938 
data points (N), the best fit linear regression line (the solid black line) and the 1:1 line (the dashed black line).  939 

We then compare the UI-WRF-Chem simulated vertical aerosol profile with the Cloud-Aerosol 940 
Lidar with Orthogonal Polarization (CALIOP) data for the outer domain (D1) during 26–28 941 
March, when dust reaches the PTA-Beijing domain. Figure 8 shows the CALIOP derived aerosol 942 
extinction coefficient, aerosol type as well as UI-WRF-Chem simulated extinction coefficient. The 943 
CALIOP ground tracks are located within the UI-WRF-Chem outer domain (D1) (Fig 4) and 944 
model grids that overlap with the tracks are selected. From both the CALIOP aerosol extinction  945 
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 946 
Figure 8. Comparison of CALIOP–derived vertical profile of aerosol extinction coefficient (532 nm, (a)–(c)) and aerosol type ((d)–947 
(f)) with UI-WRF-Chem simulated extinction coefficient for CHN-Beijing over 26–28 March 2018. UI-WRF-Chem outputs are 948 
from the outer domain (D1) that overlap with CALIOP tracks (Fig 4). (g)–(i) are the extinction coefficients from the UI-WRF-949 
Chem sensitivity simulation 2N_upd_snox-dust, where dust and other aerosols are considered in the MERRA-2 chemical boundary 950 
conditions. (j)–(l) are the extinction coefficients from UI-WRF-Chem sensitivity simulation 2N_upd_snox-dust PSD where dust 951 
concentration is scaled in the MERRA-2 chemical boundary conditions, based on constraining MERRA-2 dust PSD data with 952 
AERONET PSD climatology data. In (a)–(f), the gray areas represent cloud. In (d)–(f), different aerosol types are classified: d mari 953 
for dusty marine, p dust for polluted dust, c cont for clean continental, p cont for polluted continental and c mari for clean marine. 954 
ND includes areas that have clean air and aerosol type not being determined. 955 
 956 
coefficient and aerosol type, we can see that dust is dominating the vertical distribution above ~3–957 
4 km and mixed with marine and anthropogenic aerosols in the boundary layer. Without 958 
considering aerosols in the chemical boundary conditions, the UI-WRF-Chem simulated 959 
extinction coefficient is negligible above the boundary layer (not shown here). After considering 960 
dust and other aerosols in the chemical boundary, we can see the increase in the extinction 961 
coefficient in the vertical distribution (Fig 8(g)–(i)). Constraining the dust PSD in the boundary 962 
(2N_upd_snox_dust PSD, Fig 8(j)–(l)) further enhances the vertical distribution of the aerosol 963 
extinction coefficient, which matches better with the CALIOP observations. This reflects the 964 
effectiveness of including dust and other aerosols in the chemical boundary condition to better 965 
capture the vertical distribution of aerosol properties in this dust intrusion event. We note that 966 
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CALIOP data is also subject to uncertainties of the lidar ratio used in deriving the extinction, and 967 
so is the extinction modeled by UI-WRF-Chem (Yang et al., 2013). Hence, CALIOP data is used 968 
as a relative reference to assess the model improvement. 969 
 970 
Since PTA-Being is located downwind of the dust source regions in this case, there could be 971 
uncertainties in simulating the transport of different dust size bins in MERRA-2 data from source 972 
regions. Thus, our constraining method could provide an effective way to improve the dust size 973 
distribution in the boundary conditions and subsequently improve model simulated surface PM 974 
concentration as well as vertical distribution of aerosols. This method could also benefit other 975 
PTAs such as ITA-Rome, that can be affected by dust transport events, which will be discussed in 976 
Sect 4.2.  977 

4.1.3 Impacts of updated land surface properties on model performance   978 

The UI-WRF-Chem model simulated surface skin temperature (TSK) is evaluated with satellite 979 
observations of land surface temperature (LST) from MODIS onboard Terra and Aqua for July 980 
2018. We first regrid the MODIS daily LST data onto the WRF-Chem model grid, and then mask 981 
the WRF-Chem output based on the spatial and temporal availability of MODIS data to ensure a 982 
fair comparison. The Beijing-Tian-Hebei region is one of the highly urbanized clusters in the world 983 
and has experienced intense urban heat island (UHI) effects in the past decade (Wang et al., 2016; 984 
Clinton and Gong, 2013). First, by comparing the default and updated land cover type (Fig 9(a) 985 
and Fig 9(f)), we can see that the updated land cover type captures the urban growth over the 986 
region. The corresponding land surface properties including LAI, GVF and albedo also show 987 
changes with the updated data (Fig S4). Both daytime (~10:30 am and ~1:30 pm LT) (Fig 9(b) and 988 
Fig S5(a)) and nighttime (~10:30 pm and ~1:30 am LT) (Fig 9(g) and Fig S5(e)) LST from MODIS 989 
Terra and Aqua show the UHI phenomenon over the region. Our UI-WRF-Chem model simulated 990 
TSK with updated land surface properties using MODIS data can capture the UHI spatial pattern 991 
with higher temperature in urban areas than rural areas for both daytime and nighttime. It matches 992 
the spatial pattern of satellite observed LST UHI better than the UI-WRF-Chem simulation with 993 
the use of the default USGS land cover type and other surface properties, which is consistent with 994 
our previous work (Wang et al., 2023). Figure 3(b) shows the Taylor Diagram of comparing UI-995 
WRF-Chem simulated LST with MODIS Terra and Aqua daytime and nighttime, respectively. We 996 
find that the UI-WRF-Chem simulated TSK with updated land surface properties decreases the 997 
relative bias for both Terra and Aqua daytime and nighttime, compared with the UI-WRF-Chem 998 
simulation using the default USGS land surface properties. The model simulated TSK with 999 
updated land surface properties also results in an increase in correlation for the Aqua daytime 1000 
period compared with the model simulation using the USGS land surface properties.  1001 
 1002 
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 1003 
Figure 9. Comparison of UI-WRF-Chem simulated monthly mean surface skin temperature (TSK) with MODIS Terra observed 1004 
land surface temperature (LST) over the inner domain (D2) of CHN-Beijing for July 2018. (a) and (f) are the land cover type 1005 
from the default USGS data and updated MODIS land data. (b) and (g) are the MODIS Terra LST during daytime (D) and 1006 
nighttime (N), respectively. (c) and (d) are model simulated TSK averaged over Terra overpass time during daytime from UI-1007 
WRF-Chem sensitivity simulations 2N_def (default USGS land cover type and subsequently derived GVF, LAI and albedo) and 1008 
2N_upd (updated land cover type, GVF, LAI and albedo with MODIS land data) in Table 2, respectively. (e) is the ratio between 1009 
(d) and (c), expressed as the geometric mean of daily ratio, with stippling indicating model grids where the difference is 1010 
statistically significant (Wilcoxon test, adjusted p < 0.05; FDR correction). (h)–(j) are the same as (c)–(e) but averaged over Terra 1011 
overpass time during nighttime. Oceans are masked as gray colors.  1012 

Figure S6 shows the potential impacts of updated land surface properties on model simulated 1013 
planetary boundary layer height (PBLH) and subsequently on surface PM2.5 concentration. We 1014 
find that the PBLH mainly increases in the urban areas where the land surface temperature 1015 
increases, which in turn leads to a decrease in surface PM2.5. Our work shows the promising use 1016 
of updated land surface properties with timely satellite data to better capture the land cover type 1017 
and other land surface properties for regions with fast urban development. To better study the 1018 
impacts of UHI in the region, an urban canopy model could be used to include more details about 1019 
the underlying urban surface feature and better simulate the physical processes in the boundary 1020 
layer (He et al., 2019; Liang et al., 2021) with a finer spatial resolution, which is beyond the scope 1021 
of the current work.  1022 

4.1.4 Impacts of updated soil NOx emission scheme on model performance 1023 

Our previous work (Sha et al., 2021) has shown the improvement of model simulated NO2 VCD, 1024 
when evaluated against TROPOMI NO2 VCD over croplands in California, using the BDISNP 1025 
soil NOx emission scheme. Here, we also use TROPOMI NO2 VCD to evaluate UI-WRF-Chem 1026 
simulated NO2 VCD over croplands in the outer domain (D1) of CHN-Beijing for July 2018. Daily 1027 
TROPOMI NO2 data are regridded to UI-WRF-Chem grids with averaging kernels being applied. 1028 
Hourly data from UI-WRF-Chem output, close to the TROPOMI overpass time (~1:30 PM LT) 1029 
are averaged to compare with TROPOMI data. First, Figure S7 shows the UI-WRF-Chem 1030 
simulated monthly mean soil NOx emissions using the default emission scheme – MEGAN 1031 
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(2N_upd_MEGAN in Table 2) and the updated scheme – BDISNP (2N_upd_BDISNP in Table 1032 
2), respectively. The MEGAN scheme (Fig S7(a)) simulates low soil NOx emissions over the 1033 
whole domain and the BDISNP (Fig S7(b)) instead simulates higher soil NOx emissions in non-1034 
urban areas. Croplands show the largest soil NOx emissions due to the use of fertilizer.  1035 
 1036 

 1037 
Figure 10. Monthly mean NO2 tropospheric vertical column density (VCD) over the outer domain (D1) of CHN-Beijing for July 1038 
2018 from TROPOMI observation and model sensitivity simulations. Only model grids identified as croplands are shown on the 1039 
plots and the rest are marked as gray colors. (a) TROPOMI observations; (b) UI-WRF-Chem sensitivity simulation 1040 
2N_upd_MEGAN (Table 2) using the MEGAN scheme to calculate soil NOx emissions; (c) UI-WRF-Chem sensitivity simulation 1041 
2N_upd_BDISNP (Table 2) using the BDISNP scheme to calculate soil NOx emissions. The white box represents the inner domain 1042 
(D2). 1043 

We compare the model simulated tropospheric NO2 VCD with TROPOMI NO2 VCD for July 2018 1044 
(Fig 10 and Fig 11). We can find that both simulations underestimate TROPOMI NO2 VCD (2.2 1045 
x 1015 molecules cm-2) by 1.4 x 1015 and 1.3 x 1015 molecules cm-2 for the MEGAN and BDISNP 1046 
respectively (Fig 11(a) and (b)) over the whole domain. The model simulated NO2 VCD increases 1047 
from 1.4 x 1015 using the MEGAN scheme to 1.7 x 1015 molecules cm-2 using the BDISNP scheme. 1048 
The BDISNP decreases MAE from 1.59 x 1015 molecules cm-2 to 1.53 x 1015 molecules cm-2 1049 
(paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction) over the whole domain mainly due to the 1050 
improvement over croplands. Over croplands, we can see the enhancement in the model simulated 1051 
NO2 VCD (Fig 10(c)). MAE for croplands decreases from 1.88 x 1015 molecules cm-2 to 1.77 x 1052 
1015 molecules cm-2 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). Both reductions in 1053 
MAE are statistically significant, underscoring that the improvements are robust, though moderate 1054 
in magnitude. The increase in soil NOx emissions has potential impacts on surface nitrate. Figure 1055 
S8 shows that the increase in surface soil NOx emissions leads to the increase in surface nitrate up 1056 
to 30% in rural areas. Due to the lack of surface observation of nitrate, we are limited to quantify 1057 
the impacts of the improvement of soil NOx emissions on surface nitrate. The MAIA satellite 1058 
mission coupled with the Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et 1059 
al., 2020) satellite mission could provide a synergetic opportunity to evaluate both gas and aerosol 1060 
chemistry.  1061 
 1062 
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 1063 
Figure 11. Scatter plot of daily tropospheric NO2 VCD between model (y axis) and TROPOMI observation (x axis) over the outer 1064 
domain (D1) of CHN-Beijing for July 2018. (a) and (c) refer to the UI-WRF-Chem sensitivity simulation using the MEGAN 1065 
scheme (2N_upd_MEGAN in Table 2) and (b) and (d) refer to the sensitivity simulation using the BDISNP scheme 1066 
(2N_upd_BDISNP in Table 2) to calculate soil NOx emissions, respectively. (a) and (b) are for model grids over the whole domain 1067 
while (c) and (d) are for model grids that are identified as croplands. Also shown on the scatter plot is the correlation coefficient 1068 
(R), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model simulated tropospheric NO2 VCD 1069 
(y), the number of collocated data points (N), the density of points (the color bar), the best fit linear regression line (the solid black 1070 
line) and the 1:1 line (the dashed black line).  1071 

4.2 Case study – ITA-Rome 1072 

Our case study over CHN-Beijing target area has demonstrated the benefits of using MERRA-2 1073 
data to provide chemical boundary conditions for capturing long-range transport events such as 1074 
dust intrusion. Some of the other target areas including ITA-Rome are also impacted by dust 1075 
transport. Saharan dust transport poses a significant concern on air quality in Europe and the 1076 
Mediterranean Basin. Previous studies have shown that Saharan dust outbreaks are more frequent 1077 
in southern Europe including Italy than northern Europe (Querol et al., 2009; Viana et al., 2014; 1078 
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Pey et al., 2013; Wang et al., 2020a). For example, Pey et al. (2013) showed that across the 1079 
Mediterranean Basin, African dust outbreaks occurred from 30% to 37% of the annual days in the 1080 
southern sites and less than 20% of the days in the northern sites. The work of Barnaba et al. (2022) 1081 
investigated the impacts of African dust on surface PM10 concentrations in Italy using surface 1082 
monitoring sites in Italy from 2006-2012 and found that African dust affected surface PM10 levels 1083 
in Northern and Southern Italy for about 10% and 30% of dates in a year, respectively.  1084 
 1085 
Here, we focus on June 2023, where Saharan dust affected PM concentrations in ITA-Rome, and 1086 
investigate the benefits of using MERRA-2 data to provide chemical boundary conditions for 1087 
driving UI-WRF-Chem. For example, one Saharan dust intrusion into Italy occurred from 19–22 1088 
June 2023 as seen from the VIIRS AOD (Fig S9) and MERRA-2 simulated dust AOD (not shown 1089 
here) also captures this dust intrusion event. We conduct three UI-WRF-Chem model sensitivity 1090 
simulations with different chemical boundary conditions to evaluate model simulated surface PM 1091 
concentrations and AOD: (1) simulation “2N-none”: no chemical species from MERRA-2 data are 1092 
transported into the domain; (2) simulation “2N-dust”: dust and other aerosols including sulfate, 1093 
BC and OC are considered in the MERRA-2 chemical boundary condition; (3) simulation “2N-1094 
dust PSD”: dust concentration of different size bins in the MERRA-2 boundary conditions is 1095 
constrained using the AERONET PSD climatology data from 2000–2023. AERONET sites close 1096 
to the Saharan dust source region are used for constraining MERRA-2 PSD (Fig 2(b)). Figure 5(b) 1097 
shows the averaged PSD over the AERONET sites between 2000–2023 from both MERRA-2 and 1098 
AERONET data. The ratio between the mean of the AERONET PSD and MERRA-2 PSD for each 1099 
of the five dust size bins is then used as a constraint to scale the dust concentration in each bin in 1100 
the MERRA-2 chemical boundary data in the simulation “2N-dust PSD”.  1101 
 1102 
Like the case study in CHN-Beijing, using MERRA-2 data to provide chemical boundary 1103 
conditions for UI-WRF-Chem over ITA-Rome also improves both model simulated surface PM 1104 
concentration and AOD (Fig 12). WRF-Chem PM data are regridded onto the MERRA-2 grid for 1105 
a fair comparison. Compared with the sensitivity simulation 2N-none, the correlation (R) from the 1106 
sensitivity simulation 2N-dust increases from 0.12 to 0.54, 0.38 to 0.70, and 0.15 to 0.62 for surface 1107 
PM2.5, surface PM10 and AOD, respectively, for the whole month of June. The MB decreases from 1108 
–6.8 to –2.1 µg m-3, –13.8 to –2.3 µg m-3, and –0.23 to –0.13 for surface PM2.5, PM10 and AOD 1109 
respectively. The MAE decreases significantly from 6.9 to 3.8 µg m-3, 13.7 to 9.1 µg m-3, and 0.23 1110 
to 0.13 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction) for surface PM2.5, PM10 and AOD 1111 
respectively. Using constrained dust concentration in the MERRA-2 data (2N-dust PSD) further 1112 
reduces the MB for surface PM2.5 and AOD and slightly overestimates surface PM10, compared 1113 
with simulation 2N-dust. In contrast, Both MERRA-2 simulated surface PM2.5 and PM10 1114 
overestimates surface observations with MB of 6.4 µg m-3 and 21.8 µg m-3, respectively. Both 1115 
simulations (2N-dust and 2N-dust PSD) show higher correlation than MERRA-2 (0.70 vs. 0.66) 1116 
when evaluating surface PM10 concentration against ground observations, while simulation 2N-1117 
dust PSD shows slightly lower correlation than MERRA-2 for surface PM2.5 (0.52 vs. 0.54). MAEs 1118 
from both simulations are also improved significantly (paired t-test, adjusted 𝑝 < 0.05; Bonferroni 1119 
correction), compared to those of MERRA-2 for both surface PM2.5 (3.8 vs 6.7 µg m-3; 4.1 vs 1120 
6.7 µg m-3) and PM10 (9.1 vs. 22.0 µg m-3; 10.3 vs. 22.0 µg m-3). Compared with simulation 2N-1121 
dust, simulation 2N-dust PSD improves model simulated AOD with MB decreasing from 0.13 to 1122 
0.09 and MAE decreases from 0.13 to 0.11 (paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). 1123 
MERRA-2 data has the best AOD performance as expected since it assimilates satellite AOD.  1124 
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During June 2023, some parts of the ITA-Rome domain experienced precipitation events (Fig 1125 
S10), which occurred mostly during the first half of the month. Compared to the Global 1126 
Precipitation Measurement Missions (GPM) observed precipitation and MERRA-2 simulated 1127 
precipitation (Fig S10), UI-WRF-Chem simulates higher precipitation, which could result in 1128 
higher wet deposition of aerosols and lower concentration. Figure S11 shows the comparison of 1129 
model simulated surface daily PM2.5 and PM10 with ground observations for the first and second 1130 
half of the month in June 2023, respectively. We can see that UI-WRF-Chem simulation 2N-dust 1131 
underestimates both surface PM2.5 and PM10 during the first half of the month (Fig S11(a)–(h)) 1132 
with MB of –3.1 and –5.7 µg m-3, respectively, while MERRA-2 overestimates surface PM2.5 and 1133 
PM10 with MB of 5.1 and 15.7 µg m-3, respectively. During the second half of the month (Fig 1134 
S11(i)–(p)), UI-WRF-Chem simulation 2N-dust underestimates surface PM2.5 with MB of –1.3 µg 1135 
m-3 but slightly overestimates surface PM10 with MB of 1.3 µg m-3. MERRA-2 still overestimates 1136 
surface PM2.5 and PM10 with MB of 7.4 and 28.4 µg m-3, respectively. Due to the coarse spatial 1137 
resolution of MERRA-2 data, it may not resolve the localized convective processes well, which 1138 
could affect the subsequent wet deposition. There are also uncertainties associated with the dust 1139 
size distribution in MERRA-2 data, which could also affect the wet deposition.  1140 
 1141 
Additionally, uncertainty in UI-WRF-Chem model simulated wet deposition of aerosols could also 1142 
play a role in the model results discussed above. Previous studies have mostly focused on dry dust 1143 
events (e.g., Zeng et al., 2020), and less has focused on wet dust events, especially dust wet 1144 
deposition. Jung and Shao (2006) implemented a below-cloud dust wet deposition scheme for the 1145 
UOC dust emission scheme in WRF-Chem. Currently, no dust wet scavenging scheme is 1146 
implemented for the original GOCART or GOCART AFWA dust scheme in WRF-Chem. As in 1147 
previous work (Su and Fung, 2015), we have implemented a simple scheme to allow dust wet 1148 
scavenging by large scale and convective precipitation by assigning a scavenging efficiency for 1149 
different dust size bins in the model. Future work will focus on implementing a more complex dust 1150 
wet deposition scheme to better account for the scavenging process that consider the dust particle 1151 
size distribution etc., such as the work of Tsarpalis et al. (2018) and Zhao et al. (2003). 1152 
Nevertheless, the case study over ITA-Rome again demonstrates the benefits of using MERRA-2 1153 
data to drive UI-WRF-Chem for capturing dust transport events.  1154 
 1155 
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 1156 
Figure 12. Scatter plot of daily PM2.5 concentration ((a)–(d)), PM10 concentration ((e)–(h)), and AOD ((i)–(l)), between model (y 1157 
axis) and ground observation (x axis) over the inner domain (D2) of ITA-Rome for June 2023. (a)–(c), (e)–(g), and (i)–(k) refer to 1158 
the UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data. 1159 
2N-none: no chemical species; 2N-dust: dust and other aerosols; 2N-dust PSD: same as 2N-dust except that the dust concentration 1160 
is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. (d), (h) and (l) show the MERRA-1161 
2 simulated daily PM2.5, PM10 and AOD, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-1162 
mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated 1163 
PM2.5/PM10/AOD (y), the number of collocated data points (N), the best fit linear regression line (the solid black line) and the 1:1 1164 
line (the dashed black line). WRF-Chem PM data are regridded onto the MERRA-2 grid, and when multiple surface PM sites fall 1165 
within the same MERRA-2 grid, the observations are then averaged to represent a single collocated site. 1166 

4.3 Case study – USA-LosAngeles  1167 

Each target area has its unique feature of aerosol composition and various factors that affect the 1168 
aerosol concentration, we have demonstrated the impacts of dust transport on surface PM 1169 
concentration and AOD over CHN-Beijing and ITA-Rome target areas. Here, we focus on some 1170 
fine tuning over USA-Los Angeles target area to improve the model simulation of surface PM 1171 
concentration and AOD.  1172 
 1173 
For the USA-LosAngeles target area (Fig 2(c)), we investigate the impacts of dust emissions on 1174 
surface PM concentration and AOD. Part of the outer domain (D1) over the USA-LosAngeles 1175 
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target area (here defined as the dust-prone region, the orange box in Fig S12), located in the 1176 
southwestern U.S., are desert regions with higher soil erodibility than other parts of the domain. It 1177 
is common in WRF-Chem to tune some of the parameters in the dust emission scheme including 1178 
the soil erodibility to better match model simulated PM10 concentration and AOD with satellite- 1179 
and ground-based observations (e.g., Su and Fung, 2015). This approach has been mainly focusing 1180 
on the total atmospheric dust load instead of an individual dust event and it is sufficient to capture 1181 
the general magnitude of dust aerosol patterns. We have adopted this simple approach here to do 1182 
some dust parameter tuning to improve model simulated surface PM10 concentration and AOD 1183 
with a focus on the overall magnitude.  1184 
 1185 

 1186 
Figure 13. Scatter plot of daily surface PM10 concentration and hourly AOD between model (y axis) and ground observation (x 1187 
axis) over the dust-prone region of USA-LosAngeles for July 2018. (a)-(i) are for surface daily PM10 and (j)-(r) are for hourly 1188 
AOD from two groups of sensitivity simulations: (1) gamma = 1, 1.5, 2, 2.5, 3 while alpha stays as 1; (2) alpha = 0.2, 0.3, 0.4, 0.5 1189 
while gamma stays as 1, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error 1190 
(RMSE), the mean absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated surface 1191 
PM10/AOD (y), the number of collocated data points (N), the best fit linear regression line (the solid black line) and the 1:1 line 1192 
(the dashed black line).  1193 
 1194 
There are several parameters that can be used to tune dust emissions in the WRF-Chem model. 1195 
One is the dust_gamma (gamma for short here), which tunes the soil erodibility in an exponential 1196 
manner. Soil erodibility serves as an important factor for identifying dust source and estimating 1197 
dust emission flux in the model. The other one is the dust_alpha (alpha for short here), which 1198 
linearly tunes the total dust emissions. If we use the default setting (gamma=1, alpha = 1), both 1199 
model simulated surface daily PM10 concentration and hourly AOD overestimate surface 1200 
measurements of PM10 and AOD in the dust-prone region (Fig 13(a) and (j), Fig S13 and S14). 1201 
Model simulated surface PM2.5 concentration also overestimates surface measurements of PM2.5 1202 
(Fig S13 (a)). We conduct two groups of sensitivity simulations to test the responses of model 1203 
simulated PM10 and AOD to a range of gamma and alpha values, respectively. For the first group 1204 
test, we set the gamma with 1.5, 2, 2.5 and 3 respectively, while keeping the alpha value as 1. For 1205 
the second group test, we set the alpha with 0.2, 0.3, 0.4, and 0.5 respectively, while keeping the 1206 
gamma value as 1. As gamma increases from 1 to 3 with the constant alpha value of 1, correlation 1207 
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increases for AOD and decreases for surface PM10 (Fig 13). MB and RMSE also decreases with 1208 
increasing gamma value until when gamma value reaches 2.5 for both AOD and PM10. MAE also 1209 
decreases significantly for both AOD (0.08 to 0.04) and PM10 (46.7 to 21.5 µg m-3) (paired t-test, 1210 
adjusted 𝑝 < 0.05; Bonferroni correction) when gamma increases from 1 to 2.5. As alpha value 1211 
decreases from 1 to 0.5 with the constant gamma of 1, both MB and RMSE for surface PM10 and 1212 
AOD decrease until alpha value drops to 0.3. The correlation almost stays the same or slightly 1213 
increases for both PM10 and AOD with decreasing alpha value. MAE also decreases significantly 1214 
for both AOD (0.08 to 0.04) and PM10 (46.7 to 17.9 µg m-3) (paired t-test, adjusted 𝑝 < 0.05; 1215 
Bonferroni correction) when alpha decreases from 1 to 0.3. Furthermore, the sensitivity simulation 1216 
(gamma = 1, alpha = 0.3) outperforms the sensitivity simulation (gamma = 2.5, alpha = 1) with 1217 
enhanced correlation (0.48 vs. 0.37) and statistically significant decrease in MAE (17.9 vs. 21.5, 1218 
paired t-test, adjusted 𝑝 < 0.05; Bonferroni correction). Therefore, we choose gamma of 1 and 1219 
alpha of 0.3 as the final configuration to account for the model performance of both PM10 and 1220 
AOD.  1221 
 1222 
Here, we use one month of data to tune the dust emissions by focusing on the magnitude of the 1223 
total dust load. It is challenging to fine tune each individual dust event and acquire consistent 1224 
results. The work of Hyde et al. (2018) simulated nine dust storms in south-central Arizona with 1225 
WRF-Chem using the GOCART AFWA dust emission scheme and the model unevenly 1226 
reproduced the dust-storm events with some cases overestimating surface PM10 and some cases 1227 
underestimating surface PM10. Our evaluation of AOD with AERONET observation is rather 1228 
limited spatially as we only have one AERONET site available over the dust-prone region. We 1229 
also conduct the same set of sensitivity simulations for July 2019 (results not shown here) and the 1230 
sensitivities to the tuned parameters are comparable to results shown here in general, which further 1231 
confirms the validity of the simple approach we have used. Additionally, more recent work has 1232 
incorporated the albedo-based drag partition (Chappell and Webb, 2016) from satellite data into 1233 
the GOCART AFWA dust emission scheme to better represent the impacts of roughness features 1234 
from vegetation and non-vegetation such as soil and rocks, which demonstrated improved model 1235 
performance in capturing individual dust event over the Southwestern U.S. (Legrand et al., 2023; 1236 
Dhital et al., 2024). It is beyond the scope of this work to implement this method, but future work 1237 
could explore the use of this advanced method and focus on longer periods of model simulation to 1238 
further evaluate model performances.  1239 
 1240 

4.4 Case study – USA-Atlanta  1241 

As described in Sect 3, for the standard PTA nested domain setup, we have chosen to turn off the 1242 
cumulus parameterization in the inner domain (D2) with the spatial resolution of 4 km and allow 1243 
the microphysics scheme to explicitly resolve the convection. Here, we use PTA-Atlanta as an 1244 
example to examine the impacts of different setups of microphysics and cumulus schemes on 1245 
model simulated precipitation and surface total and speciated PM2.5. Since the MAIA satellite 1246 
mission focuses on speciated PM, we also use PTA-Atlanta here to demonstrate how UI-WRF-1247 
Chem simulates speciated PM2.5 mass concentrations in addition to total PM2.5.  1248 
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4.4.1 Impacts of microphysics and cumulus schemes on precipitation and surface total PM2.5 1249 

Southeastern U.S. including the PTA-Atlanta (Fig 2(d)) target area experiences pulse-type summer 1250 
convective precipitation due to the interplay of land-sea breezes, outflow boundaries and complex 1251 
terrain etc. (Case et al., 2011). Here, we focus on June 2022 over PTA-Atlanta to demonstrate the 1252 
impacts of different setups of microphysics and cumulus schemes on model simulated precipitation 1253 
and subsequent surface total PM2.5 concentration. We perform six UI-WRF-Chem sensitivity 1254 
simulations with different setups of microphysics and cumulus schemes while keeping other 1255 
schemes the same as shown in Table 3: (1) mp2cu5: both domain 1 and domain 2 have the Lin 1256 
microphysics scheme on. Domain 1 and domain 2 have the G3D cumulus scheme on and off, 1257 
respectively; (2) mp2cu5bothon: same as (1) except that both domain and 1 and domain 2 have the 1258 
G3D cumulus scheme on; (3) mp2cu3bothon: same as (2) except that both domain 1 and domain 1259 
2 have the GF cumulus scheme on; (4) mp10cu5; (5) mp10cu5bothon; and (6) mp10cu3bothon. 1260 
(4)-(6) are the same as (1)-(3) except that both domain 1 and domain 2 have the Morrison 1261 
microphysics scheme on. Here, the difference between (1) and (2) illustrates the impacts of turning 1262 
on/off the cumulus scheme at the 4 km resolution. The difference between (1), (2) and (1), (3) 1263 
evaluates the impacts of using a traditional cumulus scheme vs. a scale-aware cumulus scheme. 1264 
Corresponding difference between (1), (3) and (4), (6) represents the impacts of the microphysics 1265 
scheme.  1266 
 1267 
Table 3. A suite of UI-WRF-Chem sensitivity simulations performed over PTA-Atlanta with different setups of microphysics and 1268 
cumulus schemes for the outer domain (D1) and inner domain (D2), respectively.  1269 

 mp2cu5 mp2cu5bothon mp2cu3bothon mp10cu5 mp10cu5bothon mp10cu3bothon 
Microphysics-

D1 
Lin Lin Lin Morrison Morrison Morrison 

Microphysics-
D2 

Lin Lin Lin Morrison Morrison Morrison 

Cumulus-D1 G3D G3D GF G3D G3D GF 
Cumulus-D2 off G3D GF off G3D GF 

 1270 
We first focus on the evaluation of daily precipitation. Although, hourly precipitation rate can be 1271 
important to tell the intensity of the precipitation event, verification of the hourly precipitation can 1272 
raise double-penalty issues at the finer resolution (Rossa et al., 2008; Gilleland et al., 2009), where 1273 
a slight shift in the prediction of the timing or location of the precipitation event compared with 1274 
the ground truth could result in the verification penalties in both space-time. Here, we accumulate 1275 
the hourly precipitation into daily precipitation to help offset the errors associated with the timing 1276 
of the event. Figure S15 shows the monthly averaged daily precipitation from UI-WRF-Chem 1277 
model sensitivity simulations (1)-(6) with surface observations. In general, all the sensitivity runs 1278 
overestimate the precipitation. Turning on the cumulus scheme in domain 2 when using the 1279 
traditional G3D scheme results in larger bias compared to the results of turning the G3D scheme 1280 
off. The work of Zhang et al. (2021) also found that the WRF model had better prediction of 1281 
precipitation in the central Great Plains in the U.S. when turning off the G3D cumulus scheme 1282 
with the spatial resolution of 4 km, compared to the sensitivity run of turning on the G3D cumulus 1283 
scheme. Turning off the cumulus scheme in domain 2 when using the G3D scheme is comparable 1284 
to the results of the simulation using the scale-aware GF cumulus scheme.  1285 
 1286 
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We then investigate the impacts on surface total PM2.5 concentration. Figure S16 shows the spatial 1287 
map of surface total PM2.5 concentration for June 2022 and Fig 14 compares model simulated daily 1288 
total PM2.5 concentration with ground observation. Both sensitivity simulations (2) and (4) with 1289 
the G3D scheme on for the inner domain (D2) simulate higher precipitation than other simulations, 1290 
which leads to lower surface PM2.5 concentrations (Fig S16(b) and (e)). Overall, the surface PM2.5 1291 
concentrations from sensitivity simulations (2) and (4) have the lowest correlation (0.34 and 0.49) 1292 
compared to other simulations (0.52–0.61) (Fig 14). They also have higher MB (–5.1 µg m-3 and 1293 
–5.9 µg m-3) compared with other simulations (–4.7 to –3.2 µg m-3) (Fig 14). Sensitivity 1294 
simulations over CHN-Beijing also show similar results related to surface PM2.5 concentration 1295 
when contrasting the sensitivity simulation with or without the G3D cumulus on for the inner 1296 
domain (not shown here). This validates our choice of turning the cumulus scheme off for the inner 1297 
domain (D2) when using the traditional cumulus scheme such as G3D. When only using the Lin 1298 
microphysics scheme (mp2), the MAE from simulation (1) mp2cu5 improves on both simulation 1299 
(2) mp2cu5on and simulation (3) mp2cu3bothon (3.7 vs. 5.7; 3.7 vs. 651µg m-3) (paired t-test, 1300 
adjusted 𝑝 < 0.05; Bonferroni correction). When only considering using the Morrison 1301 
microphysics scheme (mp10), simulation (4) mp10cu5 shows statistically lower MAE than that of 1302 
simulation (5) mp10cu5bothon (5.0 vs. 6.2 µg m-3), while simulation (6) mp10cu3bothon shows 1303 
statistically reduced MAE than simulation (4) (4.8 vs. 5.0 µg m-3) (paired t-test, adjusted 𝑝 < 0.05; 1304 
Bonferroni correction). Furthermore, simulation (1) outperforms simulation (6) with reduced 1305 
RMSE (4.6 vs. 5.6 µg m-3) and statistically significant lower MAE (3.7 vs. 4.8 µg m-3) (paired t-1306 
test, adjusted 𝑝 < 0.05; Bonferroni correction). Therefore, we have selected simulation (1) as the 1307 
final configuration for PTA-Atlanta. It also indicates that surface PM2.5 concentrations from 1308 
sensitivity simulations, which turn off the G3D cumulus scheme ((1) and (4)) are comparable to 1309 
or even better than the results from the sensitivity simulations (3) and (6), which turn on the scale-1310 
aware cumulus scheme GF, although further tests using the GF are needed.  1311 
 1312 
There are some uncertainties in this case study. First, our evaluation is limited in time. A longer 1313 
dataset would be more helpful to reveal model performances in other seasons too (Jeworrek et al., 1314 
2021). Also, we have only considered a limited number of model configurations. Previous studies 1315 
have shown that the prediction of precipitation is also sensitive to other schemes in the model such 1316 
as the PBL scheme (Klein et al., 2015; Argüeso et al., 2011). Most previous work have focused on 1317 
the impacts of microphysics and cumulus schemes on precipitation and less have focused on the 1318 
coupling with the aerosol fields. The process of handling aerosol-cloud interactions would be 1319 
another source of uncertainty here. Lastly, deficiencies in MERRA-2 meteorology boundary 1320 
conditions could also introduce uncertainties or biases in the WRF-Chem simulation (Zhang et al., 1321 
2021).  1322 
 1323 

4.4.2 Evaluation of model simulated speciated PM2.5  1324 

Surface measurements of total and speciated PM2.5 mass concentration from the Interagency 1325 
Monitoring of Protected Visual Environments (IMPROVE) (Malm et al., 1994; Solomon et al., 1326 
2014) and the Chemical Speciation Network (CSN) (Solomon et al., 2014) networks (see Fig S17 1327 
for sites location information) are used to evaluate model performance. We compare UI-WRF-1328 
Chem simulated speciated PM2.5 (OC, EC, Sulfate + Nitrate, Dust) and total PM2.5 against these 1329 
observations. Figure S18 shows the comparison of daily speciated PM2.5 between the model and 1330 
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ground observations for the six different sensitivity simulations (Table 3), while Fig S17 shows 1331 
the spatial distribution of total and speciated PM2.5 for the “mp2cu5” sensitivity simulation only.  1332 
 1333 

 1334 
Figure 14. Scatter plot of daily surface PM2.5 concentration between model (y axis) and ground observation (x axis) over the inner 1335 
domain (D2) of USA-Atlanta for June 2022. (a)-(f) are the UI-WRF-Chem sensitivity simulations with different setups of 1336 
microphysics and cumulus schemes. (a)–(c) all have the Lin microphysics scheme on for domain 1. (a) has the Lin microphysics 1337 
scheme on for domain 2 and no cumulus scheme is used for domain 2. (b) is the same as (a) except that the G3D cumulus scheme 1338 
is turned on for domain 2. (c) is same as (b) except that the GF cumulus scheme is used for domain 2. (d)–(f) are the same as (a)–1339 
(c) except that the Morrison microphysics scheme is used for both domain 1 and domain 2. Also shown on the scatter plot is the 1340 
correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error (MAE), the mean ± standard deviation 1341 
for observed (x) and model-simulated surface PM2.5 (y), the number of collocated data points (N), the best fit linear regression 1342 
line (the solid black line) and the 1:1 line (the dashed black line).  1343 
 1344 
During this month of June, both surface observations and model simulations indicate that OC, 1345 
sulfate and dust are the dominate components of total PM2.5, consistent with previous studies, 1346 
which show that OC and sulfate are the primary contributors to total PM2.5 in the Southeastern 1347 
U.S. (Hand et al., 2024; Zhu et al., 2024). Prescribed burns in the Southeastern U.S. including the 1348 
states of Alabama and Georgia are a major source of OC emissions in this region (Li et al., 2023; 1349 
Cummins et al., 2023), some of which are represented by the FLAMBE emission inventory in this 1350 
work. All the model sensitivity simulations for OC show good correlation (0.45–0.60, Fig S18) 1351 
and reasonable MB values (–1.13 to –0.36 µg m-3). Model simulated EC concentrations also show 1352 
good correlation (0.45–0.72, Fig S18) but underestimate ground observations with MB from –0.28 1353 
to –0.21 µg m-3. For the dust component, correlation ranges from 0.42–0.73 (Fig S18) but all the 1354 
model sensitivity simulations overestimate ground observations with MB from 0.42–1.6 µg m-3. 1355 
In contrast, the combined sulfate + nitrate for all the sensitivity simulations show relatively lower 1356 
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correlation (–0.03 to 0.23) and varying levels of MB (–0.49 to 0.01 µg m-3). The nitrate 1357 
concentration from ground observations is low in this region with an average value of 0.198 µg m-1358 
3 for this month, which makes it challenging for the model to reproduce such a low level. Also due 1359 
to limited samples used for comparison here, sulfate and nitrate are combined for evaluation. 1360 
Overall, the “mp2cu5” sensitivity simulation (Table 3) yields the best performance.  1361 
 1362 

 1363 
Figure 15. Box-whisker plots of (a) total and speciated PM2.5 concentrations from UI-WRF-Chem simulation (mp2cu5 in Table 3) 1364 
and surface observations from IMPROVE and CSN sites over the inner domain (D2) of PTA-Atlanta for June 2022, and (b) the 1365 
ratio of model simulated to observed PM2.5. Speciated PM2.5 include OC, EC, dust and the combined sulfate + nitrate. Also Shown 1366 
on the boxer plot are the 5th and 95th percentiles (the whiskers), the interquartile range (the boxes), the median (the black lines) and 1367 
the mean (the filled circles). Note on (b), the y-axis is truncated between 3.6–5.0 for improved visualization.  1368 
 1369 
Figure 15 shows the variability in total and speciated PM2.5 mass concentration from model 1370 
simulation mp2cu5 (Table 3) compared with surface observations as well as the ratio of model 1371 
simulation to observation. The simulated-to-observed ratio for dust (1–5.8) exhibits much larger 1372 
variability than other PM2.5 components (0–2), with model simulation consistently overestimating 1373 
dust. During this month, PTA-Atlanta may have been affected by long-range transport of Sahara 1374 
dust in the model simulation. These biases are likely due to uncertainties in the MERRA-2 1375 
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simulated dust particle size distribution, as also demonstrated by the case studies over CHN-1376 
Beijing and ITA-Rome, motivating future work to tune the dust particle size distribution of 1377 
MERRA-2 data for this region. Ratios for other components mostly remain below 2. Both sulfate 1378 
and nitrate aerosols are predominantly secondary aerosols in the atmosphere, formed through 1379 
chemical reactions and are also highly water-soluble, making them sensitive to uncertainties in the 1380 
aerosol chemistry and wet deposition schemes. As discussed earlier, this month experiences some 1381 
convective precipitation events, which likely contributes to the uncertainty and large variability in 1382 
the simulated speciated PM2.5 concentration.  1383 
 1384 
Although our analysis here is limited to one month and one PTA, it provides a valuable case study 1385 
of how the UI-WRF-Chem modeling framework simulates speciated PM2.5. Moreover, previous 1386 
work by Jin et al. (2024) using the same UI-WRF-Chem framework demonstrated its broader 1387 
robustness over the Boston PTA. It illustrated the feasibility of the MAIA modeling framework 1388 
for generating L2 and L4 PM products with a full year (2018) of UI-WRF-Chem outputs of total 1389 
and speciated PM2.5 mass concentrations and showed the correlation of evaluating model total and 1390 
speciated PM2.5 mass concentrations against ground observations ranging from 0.40 to 0.73 (Table 1391 
S1 therein). Together, these results suggest that while the single-month evaluation such as the case 1392 
study here only provides a partial picture of model performance, the framework has been shown 1393 
to produce reliable and robust results for longer time periods. Future work will therefore focus on 1394 
a more comprehensive assessment of model performance with respect to the PM composition using 1395 
longer datasets across different PTAs.  1396 

5. Conclusions and discussion 1397 

We have developed the Unified Inputs (of initial and boundary conditions) for WRF-Chem (UI-1398 
WRF-Chem) modeling framework as the CTM, to support the MAIA satellite mission, which aims 1399 
to study how different types of PM air pollution affect human health. The UI-WRF-Chem outputs 1400 
including meteorology variables as well as total and speciated PM concentrations will be integrated 1401 
together with satellite and ground-based observations data to generate surface total and speciated 1402 
PM maps. Building upon the standard WRF-Chem model, we have developed new modules and 1403 
included major enhancements in the UI-WRF-Chem framework to improve model simulated 1404 
meteorology variables, PM concentration and AOD. These major developments include: (1) using 1405 
NASA GEOS data including GEOS FP and MERRA-2 data to provide both meteorological and 1406 
chemical initial and boundary conditions to drive WRF-Chem simulations at a finer spatial 1407 
resolution for both forecasting and reanalysis modes; (2) using a global or regional land data 1408 
assimilation system (GLDAS or NLDAS) to constrain soil properties (e.g., soil moisture); (3) 1409 
updating land surface properties (land cover type, LAI, GVF and albedo) with recent available 1410 
MODIS land data products; (4) developing a new soil NOx emission scheme – BDISNP; (5) 1411 
developing the WEPS stand-alone module to process both global and regional anthropogenic 1412 
emissions as well as fire emissions.  1413 
 1414 
In this work, we focus on four target areas to demonstrate the application of the UI-WRF-Chem 1415 
modeling framework: CHN-Beijing, ITA-Rome, USA-LosAngeles, and USA-Atlanta. Each target 1416 
area is set up with 2 nested domains with a 12 km and 4 km spatial resolution for the outer domain 1417 
(D1) and inner domain (D2), respectively. First, we conduct a suite of sensitivity simulations over 1418 
each target area to select the optimal combination of physics schemes used in the model. We have 1419 
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chosen to turn off the cumulus scheme for the inner domain (D2), since we are using the traditional 1420 
G3D cumulus scheme, which is not a scale-aware scheme. We investigate the impacts of cumulus 1421 
and microphysics schemes on model performance over the USA-Atlanta target area for June 2022. 1422 
Our case study shows that turning on the G3D cumulus scheme in the inner domain (D2) produces 1423 
higher precipitation than the sensitivity simulation with the G3D scheme off, which in turn leads 1424 
to lower surface total and speciated PM2.5 concentrations. Compared with surface observations of 1425 
precipitation and PM2.5 concentration, the sensitivity simulation with the G3D scheme off shows 1426 
better performance than keeping it on. Due to the problem with the scale-aware GF cumulus 1427 
scheme in the model (not coupled to the chemistry), we are not able to fully investigate the impact 1428 
of a scale-aware scheme on model performance in the current work. Future work will explore the 1429 
use of this scale-aware scheme with longer periods of simulation or across different target areas.  1430 
  1431 
Both CHN-Beijing and ITA-Rome target areas are affected by dust long-range transport events. 1432 
We select two dust intrusion events that impacted these two target areas. A dust storm originated 1433 
from the Taklamakan and Gobi Deserts around 24 March 2018 and moved downwind to CHN-1434 
Beijing from 27 to 28 March 2018. For ITA-Rome, we focus on June 2023, where Saharan dust 1435 
transported to the target area. For both target areas, we conduct UI-WRF-Chem sensitivity 1436 
simulations with different chemical boundary conditions from MERRA-2 data being considered: 1437 
no chemical species; including dust and other aerosols. Here, we develop a method to constrain 1438 
the dust concentration for each size bin in the MERRA-2 data using AERONET data. We compare 1439 
the dust PSD from MERRA-2 data with AERONET observations to better distribute the dust 1440 
concentration in different size bins in the MERRA-2 chemical boundary conditions, based on long-1441 
term datasets. Our results show that including the dust and other aerosols in the boundary improve 1442 
model simulated surface PM concentration and AOD during dust intrusion events for both target 1443 
areas, compared to the model run without using MERRA-2 chemical boundary conditions. Using 1444 
the constrained dust concentration in the MERRA-2 data further improves model performance. 1445 
This method helps reduce the computational cost when long-range transport or regional transport 1446 
affects a target area. Otherwise, we would need to add a third nested domain with expanded domain 1447 
size to cover the pollution sources such as the dust source region. Since our work mainly focuses 1448 
on improving the representation of the dust size distribution in MERRA-2 data, we recognize that 1449 
other global models such as CAM-Chem may also provide useful information for chemical 1450 
boundary conditions in different applications. While a comprehensive understanding of how 1451 
different global models affect WRF-Chem simulations of special events such as the dust long-1452 
range transport, would provide valuable insights to the community, our work here demonstrates 1453 
an efficient way for improving the simulation of dust transport using WRF-Chem.  1454 
 1455 
Updating land surface properties (land cover type, LAI, GVF and surface albedo) with recent 1456 
available MODIS land data improves model simulated TSK compared with MODIS LST, which 1457 
is demonstrated over the CHN-Beijing target area for July 2018. This could help better capture the 1458 
UHI phenomenon, which leads to better simulation of processes that are important for surface PM 1459 
simulation. For other PTAs, which have experienced rapid urbanization, updating land cover type 1460 
and other land surface properties with recent MODIS land data can be important since the default 1461 
datasets used in the standard WRF-Chem model are outdated. We also recognize that we have not 1462 
investigated the use of an urban canopy model to simulate the UHI effect in the UI-WRF-Chem 1463 
framework. The newly updated BDISNP soil NOx emission scheme improves the simulation of 1464 
NO2, which subsequently affects surface nitrate. Evaluated against TROPOMI NO2 VCD, the 1465 
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updated BDISNP soil NOx emission scheme increases NO2 VCD, mainly over croplands in CHN-1466 
Beijing target area than the simulation using the default MEGAN soil NOx emission scheme, which 1467 
is mainly due to the application of fertilizer use. Since ground observations of surface NO2, O3, 1468 
and PM2.5 concentrations are mostly located in urban areas, we acknowledge that our current work 1469 
is limited in scope, and additional efforts will be needed to further evaluate the impacts of this 1470 
updated BDISNP scheme in rural areas. Nevertheless, the launch of the GEMS and the 1471 
Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman et al., 2017) satellites will 1472 
provide good opportunities to further refine the BDISNP scheme. The synergy between MAIA 1473 
and GEMS/TEMPO will also provide opportunities to evaluate both gas and aerosol composition 1474 
simultaneously.  1475 
 1476 
We perform a case study over the USA-LosAngeles target area, where we tune dust emissions 1477 
inside the target area. Southwestern U.S., covering part of the USA-LosAngeles target area are 1478 
desert regions, which experience dust outbreaks. If we use the default dust emission scheme, the 1479 
model simulated surface PM and AOD overestimate ground observations. We conduct sensitivity 1480 
simulations to fine tune the parameters in the dust emission scheme as commonly done in the 1481 
literature to find the optimal parameter. The case study over USA-LosAngeles together with other 1482 
case studies give an example of the fine-tuning work we are doing as we continue evaluating and 1483 
improving model performance.  1484 
 1485 
We also use PTA-Atlanta as an example to demonstrate how UI-WRF-Chem simulates speciated 1486 
PM2.5. Overall, model simulated daily OC, EC and dust show higher correlation (0.5, 0.71 and 1487 
0.73) while the combined sulfate +nitrate aerosol concentration shows relatively lower correlation 1488 
(0.23), when evaluated against measurements from IMPROVE and CSN networks. Since our work 1489 
is based on only one month of data with precipitation events, the simulated total and speciated 1490 
PM2.5 concentrations are subject to large uncertainty and variability, particularly due to chemistry 1491 
and wet deposition schemes associated with precipitation. As a result, this analysis only provides 1492 
a partial picture of the model performance. Nevertheless, previous work by Jin et al. (2024) 1493 
demonstrated the robustness of the UI-WRF-Chem framework over the Boston PTA, showing its 1494 
feasibility for generating MAIA L2 and L4 PM products. Using a full year (2018) of UI-WRF-1495 
Chem outputs, they reported correlations of 0.40–0.73 between simulated and observed total and 1496 
speciated PM2.5 (Table S1 therein). 1497 
 1498 
The MAIA project leverages existing PM monitoring networks where available and has deployed 1499 
additional PM speciation monitors in PTAs where such data were otherwise unavailable, including 1500 
through the Surface Particulate Matter Network (SPARTAN) (Snider et al., 2015). At the time of 1501 
writing, long-term datasets of speciated PM2.5 from observations are only available for some PTAs 1502 
and extended model outputs are not yet available for all PTAs. We have since generated extended 1503 
UI-WRF-Chem model outputs for each PTA and longer observations of speciated PM2.5 are being 1504 
collected. As part of the MAIA satellite mission, these expanded UI-WRF-Chem model outputs 1505 
will enable a more comprehensive assessment of UI-WRF-Chem model performance, especially 1506 
for speciated PM2.5 across diverse PTAs. Such evaluation will enhance the robustness of UI-WRF-1507 
Chem for its role in the MAIA satellite mission and provide valuable insights for simulating PM 1508 
composition in support air quality and publica health studies.  1509 
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Code and data availability 1510 

The codes used in this work are available at:  https://zenodo.org/records/15074108 (Zhang, 2025a). 1511 
WRF-Chem is an open-access model, which is available at: https://github.com/wrf-1512 
model/WRF/releases. The WRF-Chem preprocessor tools including mozbc, bio_emiss, 1513 
anthro_emiss and  EPA_ANTHRO_EMIS are available at: https://www2.acom.ucar.edu/wrf-1514 
chem/wrf-chem-tools-community. Input files for bio_emiss and U.S. EPA NEI 2017 data can also 1515 
be acquired from this website. EDGAR-HTAP global anthropogenic emission data are available 1516 
at: https://edgar.jrc.ec.europa.eu/dataset_htap_v3. MEIC anthropogenic emission data for China 1517 
are available at: http://meicmodel.org.cn/?page_id=1772&lang=en. MODIS and VIIRS data are 1518 
available at: https://ladsweb.modaps.eosdis.nasa.gov/; CALIOP data are downloaded from 1519 
https://asdc.larc.nasa.gov/project/CALIPSO; MERRA-2, GLDAS, NLDAS, TROPOIMI and 1520 
GPM data can be acquired from https://disc.gsfc.nasa.gov/. Both ground observations of 1521 
meteorology and PM data for Beijing are available at: https://quotsoft.net/air/. Ground 1522 
observations of meteorology and PM data for Los Angeles as well as PM data for Atlanta are from 1523 
https://aqs.epa.gov/aqsweb/airdata/download_files.html. Ground observations of meteorology 1524 
data for Rome and Atlanta are from https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/. Speciated 1525 
PM2.5 data from both IMPROVE and CSN networks are available at 1526 
https://views.cira.colostate.edu/fed/Membership/Login.aspx?ReturnUrl=%2ffed%2fQueryWizar1527 
d. Ground observations of PM data for Rome are available from 1528 
https://search.earthdata.nasa.gov/search (use key words MAIA PM data). AERONET data can be 1529 
downloaded at: https://aeronet.gsfc.nasa.gov/. Other datasets that are used and created in this work 1530 
are available at: https://zenodo.org/records/15239059 (Zhang, 2025b).  1531 
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