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Response to reviewers: 

We sincerely thank the reviewers for the time and efforts in reviewing our manuscript and for 

providing constructive feedback to improve our manuscript. We have revised the manuscript 

following the suggestions. Below we provide the point-by-point responses with the original 

comments in black and our responses in blue.  

RC 1: 

 

This paper focuses on the development of a Unified Inputs for WRF-Chem (UIWRF-Chem) 

system to support the MAIA satellite mission. The authors propose a framework that integrates 

NASA’s GEOS-FP and MERRA-2 as initial and boundary conditions, incorporates a stand-alone 

emissions preprocessor, updates land surface properties, and implements a new NOₓ emission 

scheme. They test the system’s performance across four MAIA target cities. 

Overall, this is a solid and technically sound study. The authors demonstrate a good 

understanding of the different options available in WRF-Chem and the key differences among 

them. However, the manuscript currently suffers from a lack of clarity, particularly in the 

Introduction and Model Description sections. I recommend major revisions before it can be 

considered for publication. 

Response: We thank the reviewer for taking the time to review our manuscript and we truly 

appreciate the efforts. We are also grateful for the valuable feedback to improve our manuscript.  

General Comments: 

1. Clarify the link to MAIA mission needs. Since the core purpose of this study is to support 

the MAIA mission, the paper should better articulate MAIA's specific modeling 

requirements—e.g., what variables are most relevant, what forecast capabilities are 

needed, and how UIWRF-Chem is designed to meet those needs. 

Response: Thanks for the valuable feedback and we agree it would be beneficial to 

clarify the link to the MAIA mission needs. We have added Sect 2.1 to describe the 

MAIA PM products and what are needed from UI-WRF-Chem to generate the PM 

products. We have then added Sect 2.2 to provide an overview of the UI-WRF-Chem 

modeling framework and how it is designed to meet those needs. Below shows Sect 2.1 

and please find Sect 2.2 in our response under Specific Comments #3.  

2.1 Overview of MAIA PM products 

The MAIA PM products to be generated in the PTAs include a Level 2 (L2) PM product 

and a Level 4 (L4) Gap-Filled PM (GFPM) product. Both L2 and L4 PM products 

include 24-hr averaged total and speciated PM mass concentration with a spatial 

resolution of 1 km within bounding boxes measuring 360 km x 480 km (east-west x north-

south) size. The L2 PM data are only available for days corresponding to MAIA satellite 

overpasses (typically 3–4 times per week in the PTAs) at locations with valid MAIA 



 2 

aerosol retrievals. The L4 PM data merge L2 satellite-derived PM concentration with 

bias-corrected PM concentrations from UI-WRF-Chem outputs and are therefore 

spatially (covering the whole target area) and temporally (daily) “complete”. The L2 PM 

product is derived using GRMs which take the satellite retrieved aerosol parameters, 

meteorological variables and total and speciated PM concentrations from UI-WRF-

Chem and other ancillary information such as population density data as predictors and 

surface observations of total and speciated PM concentrations as target variables. GRMs 

are trained for each PM type and each PTA. For the launch-ready version of the GRMs, 

four meteorological variables from UI-WRF-Chem are used: 2 m air temperature, 10 m 

wind speed, surface relative humidity (RH) and planetary boundary layer height (PBLH). 

To generate the L4 GFPM product, separately trained GRMs are employed to generate a 

bias-corrected, CTM-based PM product where the primary predictor is the CTM-

generated PM concentration, rather than the satellite-retrieved aerosol optical depth. 

Other predictors and target variables are the same as those used in the generation of L2 

PM product. For areas where both satellite-derived L2 PM and CTM-based PM products 

are available, these two products are then combined using weights derived from a 

Bayesian Ensemble Averaging model to generate the final L4 GFPM product. More 

detailed information can be found in Jin et al. (2024).  

Two versions of the MAIA L2 PM and L4 GFPM products will be generated as part of 

the routine processing: the “forecast” and the “reanalysis” version. For the forecast 

product version, GEOS FP meteorology is used for model initial and boundary 

conditions and GEOS FP fields of aerosols and aerosol precursors will also be used to 

specify boundary conditions of atmospheric composition. The reanalysis versions replace 

GEOS FP variables with outputs from MERRA-2 data. Due to the ~ 6 month latency of 

speciated PM2.5 data from surface monitors, the forecast versions will rely on previously 

available measurements. Generation of the reanalysis products will nominally occur on 

an annual basis and will benefit from more complete surface monitor datasets. More 

detailed information about the PM products can be found at 

https://maia.jpl.nasa.gov/resources/data-and-applications/. 

2. Improve the Introduction. The rationale for modifying WRF-Chem is not clearly laid out. 

The authors should explain why it is necessary to update land surface properties, 

emissions modules, and boundary/initial conditions in the context of MAIA. A clearer 

articulation of these needs would better frame the scientific motivation. 

Response: Thanks for the suggestion. We have revised the introduction to clarify the role 

of UI-WRF-Chem in the MAIA satellite mission and the motivation for our major 

updates in UI-WRF-Chem. Please see the updated manuscript for the revised 

introduction.  

3. Reorganize the Model Description section. The current presentation of model 

improvements is confusing. I suggest breaking it into clearly labeled subsections, each 

focused on a single enhancement (e.g., emissions, boundary conditions, NOₓ scheme, 

land surface update). 
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Response: Thanks for the suggestion to improve the Model Description Section. We 

agree clarification is needed and have reorganized the session following the suggestion. 

We first added Sect 2.1 to provide an overview of the MAIA PM products and identify 

variables required from UI-WRF-Chem outputs to generate these products. We next 

added Sect 2.2 to provide an overview of the UI-WRF-Chem modeling framework, 

explain the motivation of the model updates and highlight the novelty of developments in 

the current work. We then have each of the model improvement as a subsection:  

2.3 Updates of meteorological and chemical initial and boundary conditions as well as 

soil properties;  

2.4 Updates of land surface properties; 

2.5 Development of BDISNP soil NOx emission scheme;  

2.6 Development of WRF-Chem Emission Preprocessing System (WEPS);  

2.7 Updates of WRF-Chem Chemistry scheme;  

2.8 Postprocessing and evaluation codes, and repository management.  

4. Quantify significance of improvements. While the paper compares results from different 

modeling schemes, it does not provide evidence of whether the differences are 

statistically significant or robust across other regions or time periods. 

Response: Thank you for the suggestion. We agree that it is important to assess whether 

the differences are statistically significant. We have added Sect 3.1 to describe the 

methods used for significance testing and apply the tests for case studies conducted over 

Beijing, Rome, Los Angeles, and Atlanta target areas. Please see our detailed response 

under Specific Comments #10.  

 

Specific Comments: 

1. Why use WRF-Chem v3.8.1? Given that WRF-Chem versions above 4.0 are now 

available (with improvements such as subgrid-scale chemical transport for KF and GF 

schemes), the authors should justify why UIWRF-Chem is based on v3.8.1. Even though 

they mention plans to test GF in the future, a more detailed explanation is needed. 

Response: Thanks for bringing up this important point. The model development 

presented in this paper spanned several years, during which WRF-Chem v3.8.1 was 

selected as the base version due to its stability and widespread use at the time. While the 

newer versions of WRF-Chem (v4.0 or above) include updates relevant to this work such 

as the subgrid-scale chemical transport using the KF or GF scheme, we have kept the 

WRF-Chem v3.8.1 throughout the development to ensure consistency and reproducibility 

of the results. We also note that only the GF scheme can ensure the consistency of the 

transport of the chemical species and other scalars. Although the KF scheme is widely 

used and advanced, it has not yet been updated to support the consistent transport of 

chemical species and other scalars using the same scheme. Nevertheless, we 



 4 

acknowledge the limitation of using an older version and recognize the benefits 

introduced in the newer versions. We plan to update the UI-WRF-Chem system with a 

newer version to incorporate these improvements in the future work.  

We have made some revisions and added one paragraph in Sect 3 to provide more 

detailed explanation as follows: 

With the current version (WRF-Chem v3.8.1) of the code, chemical species are 

transported using the G3D scheme, regardless of which cumulus scheme is used, while 

other scalars are transported with the selected cumulus scheme. Therefore, the G3D 

scheme is used to ensure the consistency between chemistry and physics. Additionally, 

WRF-Chem v3.8.1 was selected as the base version at the beginning of this project due to 

its stability. We have maintained this version over the course of the project to ensure the 

consistency and reproducibility of the results. Although there are several scale-aware 

cumulus schemes available in WRF-Chem such as the Kain-Fritsch scheme (KF, (Kain, 

2004)) and the Grell-Freitas scheme (GF, (Grell and Freitas, 2014)), only the GF 

scheme has been updated to ensure the consistent transport of both chemical species and 

other scalars, as described by Li et al. (2018, 2019). We acknowledge the limitation of 

using only the G3D scheme in this work and plan to update the UI-WRF-Chem modelling 

framework to a newer version to enable the use of the GF scheme and incorporate other 

recent improvements as well.  

2. Summarize model setup in a table. Please consider adding a summary table listing the 

model configuration (e.g., resolution, land surface model, physics schemes, emissions 

setup, etc.), or update Table S2 accordingly. 

Response: Thanks for the suggestion. We have added Table 1 to summarize the model 

configurations regarding physics, chemistry and emissions for the four target areas.  

Table 1. A summary of model physics, chemistry and emissions configurations for CHN-Beijing, ITA-Rome, USA-

LosAngeles, and USA-Atlanta target areas. 

Category Model component CHN-Beijing ITA-Rome 
USA-Los 

Angeles 
USA-Atlanta 

Physics Microphysics Lin Morrison Lin Lin 

Cumulus G3D G3D G3D G3D 

Longwave radiation RRTMG RRTMG RRTMG RRTMG 

Shortwave radiation RRTMG RRTMG RRTMG RRTMG 

Planetary boundary 

layer 
YSU YSU YSU YSU 

Surface layer Revised MM5 

Land surface model NOAH NOAH NOAH NOAH 

Chemistry Gas-phase RADM2 RADM2 RADM2 RADM2 

Aerosols MADE/SORAGM-DustSS 

Photolysis Madronich F-TUV 
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Emissions Anthropogenic 

emissions 
MEIC 2016 HTAP v3 (2018) NEI 2017 NEI 2017 

Dust emissions GOCART with AFWA modifications 

Biogenic emissions 

of VOCs 
MEGAN MEGAN MEGAN MEGAN 

Soil NOx emissions BDISNP BDISNP BDISNP BDISNP 

Wildfire emissions FLAMBE FLAMBE FLAMBE FLAMBE 

3. Highlight novelty of new modules. Some of the newly added components appear to be 

simple integrations into WRF-Chem rather than innovations. The paper should more 

clearly highlight what is original and novel in this system. 

Response: We appreciate the suggestion and agree that highlighting the originality of our 

work is important. We have added section 2.2 to provide an overview of the UI-WRF-

Chem modeling framework and clearly outline the novelty of the new modules we have 

developed. In addition, we have included a flowchart of the UI-WRF-Chem modeling 

framework (Fig 1) to visually emphasize these updates.   

2.2 Overview of UI-WRF-Chem modeling framework  

To meet these needs, UI-WRF-Chem is designed to operate in both forecasting (or near 

real time, NRT) and reanalysis modes. We use the NASA GEOS model data: GEOS FP in 

forecasting or NRT mode and MERRA-2 in reanalysis mode to drive WRF-Chem 

simulations by providing self-consistent and unified meteorological and chemical initial 

and boundary conditions, referred to as the Unified Inputs (of initial and boundary 

conditions) for meteorology and chemistry. Figure 1 presents the flowchart of the UI-

WRF-Chem modeling framework. Here, we provide a brief description of the UI-WRF-

Chem framework, outline the components included in the standard WRF-Chem model 

and highlight the major updates we have introduced.  

Compared with the standard WRF-Chem model, the UI-WRF-Chem modeling framework 

incorporates new modules and significant modifications to enable the seamless use of 

NASA GEOS data, updates of land surface properties with recent available MODIS land 

data and expanded emission capabilities. First, we incorporate the GEOS2WRF module 

from NASA’S Unified-Weather Research and Forecasting model (NU-WRF) (Peters-

Lidard et al., 2015), which functions similarly to the standard ungrib process, by 

converting GEOS FP or MERRA-2 data to an intermediate file format. We also develop 

the LDAS2WRF module, adapted from the GEOS2WRF module to convert the GLDAS or 

NLDAS data into the same intermediate file format. The standard metgrid process then 

converts these intermediate files into meteorological files in the NetCDF format 

(met_em.d*.nc), respectively. These two NetCDF files are subsequently merged to 

generate the final meteorological files for the real process. Second, to integrate the 

MODIS land data into the static geographical datasets, we develop the conv_geo Python-

based module, where we convert the MODIS land data into the standard binary file 

formats required by the geogrid process. This enables updates of land surface properties 
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with recent available MODIS land data, not available in the standard WRF-Chem model. 

Additionally, we develop the GEOSBC module, by modifying the standard mozbc module 

to use GEOS FP or MERRA-2 data for updating both chemical initial and boundary 

conditions, which improves the consistency between meteorology and chemistry inputs. 

Additionally, we modify WRF-Chem’s chemistry scheme to ensure compatibility between 

dust fields from GEOS FP or MERRA-2 and the dust representation in the chemistry 

scheme itself (see Sect 2.7 for more information). 

For emissions, we develop the BDISNP scheme for soil NOx emissions by extending the 

workflow of the standard MEGAN-based biogenic VOC calculation. Same as the 

MEGAN process, we first use the standard bio_emiss module to read the MEGAN 

emission input datasets (e.g., isoprene emission factor) and then convert them into the 

wrfbiochemi_d0* files for the real process. We then apply the add_fert module that we 

have developed here to incorporate emission input datasets (e.g., fertilizer data), specific 

to the BDISNP scheme into wrfbiochemi_d0* files. Additionally, we modify WRF-Chem 

codes to calculate soil NOx emissions. We also develop the WEPS module to process 

both anthropogenic and fire emissions, adopting some functionalities from the widely 

used anthro_emiss and EPA_ANTHRO_EMISS utilities in the WRF-Chem community. 

This provides flexibility for incorporating additional emission inventories into the WEPS. 

Lastly, we develop a Python-based postprocessing module to calculate selected WRF-

Chem variables and compile hourly WRF-Chem output files into daily files in the formats 

required by the GRMs.  

 

Figure 1. Flowchart of UI-WRF-Chem modeling framework. Pink parallelogram represent input datasets 

used, including meteorological, land surface and emission data. Rounded rectangles represent different 

modules and processes within the UI-WRF-Chem framework. Blue rounded rectangles denote standard 

WRF-Chem components without any changes, except for GEOS2WRF, which is from NASA’s NU-WRF 

framework. Yellow round rectangles represent modified modules based on standard WRF-Chem 

components, except for LDAS2WRF, which is adapted from GEOS2WRF. Orange rounded rectangles 

indicate new modules developed in this work. The input datasets and modules enclosed within the dashed 

box corresponds to the WPS in the standard WRF-Chem model, where meteorological files (met_em.d*.nc) 

are generated. The conv_geo process converts MODIS land data into binary files, for the geogrid process. 
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Both GEOS2WRF and LDAS2WRF convert input data in the NetCDF file format to an intermediate file 

format, equivalent to the ungrib process. GEOSBC is adapted from the mozbc module, where GEOS FP 

and MERRA-2 data are used to update chemical initial and boundary conditions. The bio_emiss module 

reads MEGAN emission input datasets (e.g., isoprene emission factor) and generates files 

(wrfbiochemi_d0*) for WRF-Chem to calculate biogenic emissions. The add_fert module is used to add the 

BDISNP input datasets (e.g., fertilizer data) into the wrfbiochemi_d0* files for the real process. WEPS 

processes both anthropogenic and fire emission datasets and converts them into WRF-Chem-ready 

emission files (*wrfichemi*). Dashed lines from real to bio_emiss and WEPS indicate that real needs to be 

executed once before running the full flow to generate wrfinput_d0* files, which provide domain 

information to these two modules. 

4. Table S1. Please consider highlighting the best-performing configurations for easy 

comparison. 

Response: Thanks for the suggestion and we have added an asterisk mark to denote the 

best-performing configuration for each PTA as seen in Table S1.  

Table S1. A suite of UI-WRF-Chem sensitivity simulations with different options of physics schemes over CHN-

Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas. 

Target area Simulation 

number  

Microphysics Longwave Shortwave PBL 

Beijing 1* Lin RRTMG RRTMG YSU 

2 Morrison RRTMG RRTMG YSU 

3 Lin RRTMG RRTMG MYJ 

4 Lin RRTM Goddard YSU 

Rome  1 Lin RRTMG RRTMG YSU 

2* Morrison RRTMG RRTMG YSU 

3 WSM6 RRTMG RRTMG YSU 

4 Morrison RRTMG RRTMG MYJ 

5 Morrison RRTMG RRTMG MYNN2.5 

6 Morrison RRTM Goddard YSU 

Los Angeles 1* Lin RRTMG RRTMG  YSU 

2 Lin  RRTMG RRTMG MYJ 

3 Lin  RRTM Goddard YSU 

Atlanta 1* Lin RRTMG RRTMG YSU 

2 Morrison RRTMG RRTMG YSU 

3 WSM6 RRTMG RRTMG YSU 

4 Lin RRTMG RRTMG MYJ 

5 Lin RRTMG RRTMG MYNN2.5 

6  Lin RRTM Goddard  YSU 

*These are the final configurations selected for each target area. 
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5. Figure 5: The comparison may be misleading due to resolution differences—MERRA-2 

is coarse and likely underestimates high PM₂.₅ values, whereas WRF-Chem has higher 

resolution and better captures spatial variability. Consider interpolating WRF-Chem 

output to the MERRA-2 grid for a fair comparison or include scatterplots at matched 

resolution. 

Response: We agree that it is a fair comparison to interpolate the WRF-Chem output to 

the MERRA-2 grid. We have regridded the WRF-Chem outputs into the MERRA-2 grid 

and average the data of the sites that fall into the same MERRA-2 grid. We have updated 

the figure as follows: 

 

Figure 6. Scatter plot of hourly surface PM2.5 concentration between model (y axis) and ground 

observation (x axis) for surface sites in the inner domain (D2) of CHN-Beijing for 24–31 March 2018. (a)–

(c) refer to the UI-WRF-Chem sensitivity simulations with different chemical boundary conditions being 

considered using MERRA-2 data (Table 2). (a) no chemical species, (b) dust and other aerosols and (c) 
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same as (b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD data 

with AERONET PSD climatology data. (d) is from MERRA-2 simulated surface PM2.5 concentration. Also 

shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean 

absolute error (MAE), the mean ± standard deviation for observed (x) and model-simulated surface PM2.5 

(y), the number of collocated data points (N), the density of points (the color bar), the best fit linear 

regression line (the solid black line) and the 1:1 line (the dashed black line). WRF-Chem PM data are 

regridded onto the MERRA-2 grid, and when multiple surface sites fall within the same MERRA-2 grid, the 

observations are then averaged to represent a single collocated site. 

6. Figure 6: Please emphasize the observational data (e.g., bold lines or larger markers) to 

improve readability. 

Response: Thanks for the suggestion and we have increased the size of the markers for 

observational data as follows: 

 

Figure 7. (a) time series of hourly surface PM2.5 concentration averaged over surface sites in the inner 

domain (D2) of CHN-Beijing for 24–31 March 2018, from model simulations and ground observations. 

2N_upd_snox-none/dust/dust PSD refer to the UI-WRF-Chem sensitivity simulations with different 

chemical boundary conditions being considered using MERRA-2 data (Table 2): no chemical species; dust 

and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD data with 

AERONET PSD climatology data. Also shown on the plot is the mean ± standard deviation of surface 

PM2.5 for model simulations or observations as well as the correlation coefficient (R). (b)–(d): scatter plot 

of hourly AOD between model (y axis) and AERONET observation (x axis) for 24–31 March 2018. Also 

shown on the scatter plot is R, the root-mean-square error (RMSE), the mean absolute error (MAE), the 
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mean ± standard deviation for observed (x) and model-simulated AOD (y), the number of collocated data 

points (N), the best fit linear regression line (the solid black line) and the 1:1 line (the dashed black line).  

7. Line 720: Consider discussing why the updated system better captures the observed 

PM₂.₅ peaks. This would strengthen the case for the model improvements. 

Response: Thanks for the suggestion and we have added discussion on why the updated 

system better captures the observed PM2.5 peaks as follows: 

Time series of UI-WRF-Chem simulated hourly speciated PM2.5 (e.g., OC, EC, sulfate, 

nitrate) and dust components in both PM2.5 and PM10 from the two sensitivity simulations 

(2N_upd_snox_dust and 2N_upd_snox_dust PSD) (not shown here) indicate that only the 

dust components exhibit similar peaks as in the total PM2.5 and PM10, while other 

speciated PM2.5 components do not follow the same temporal pattern. This demonstrates 

that the observed peaks in both PM2.5 and PM10 are primarily driven by the dust intrusion 

event. Moreover, the magnitude of the peak from the sensitivity simulation – 

2N_upd_snox_dust PSD is larger and matches better with surface observations, 

especially for PM10, than that of the 2N_upd_snox_dust. This further highlights the 

effectiveness of our method in improving the representation of dust size distribution in 

MERRA-2 data.  

8. Line 1035: It would be helpful to summarize the sensitivity tests in a table for easier 

interpretation. 

Response: Thanks for the suggestion and we have added a table (Table 3) to summarize 

the sensitivity tests.  

Table 3. A suite of UI-WRF-Chem sensitivity simulations performed over PTA-Atlanta with different setups of 

microphysics and cumulus schemes for Domain 1 (D1) and Domain 2 (D2), respectively.  

 mp2cu5 mp2cu5bothon mp2cu3bothon mp10cu5 mp10cu5bothon mp10cu3bothon 

Microphysics-

D1 

Lin Lin Lin Morrison Morrison Morrison 

Microphysics-

D2 

Lin Lin Lin Morrison Morrison Morrison 

Cumulus-D1 G3D G3D GF G3D G3D GF 

Cumulus-D2 off G3D GF off G3D GF 

9. MAIA compositional data: Since MAIA will retrieve PM component information, the 

paper should demonstrate how UIWRF-Chem simulates PM species. It would be useful 

to show comparisons against ground-based observations (e.g., from the IMPROVE 

network). 

Response: Thank you for bringing up this point. We agree that it is important to 

demonstrate how UI-WRF-Chem simulates PM species. As an example, we have 

evaluated the UI-WRF-Chem simulated sulfate + nitrate, EC, OC and dust against both 
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IMPROVE and CSN networks over the Atlanta PTA. At the time of writing, speciation 

data for some non-US PTAs are not yet available and we do not have sufficient modeling 

data to evaluate the model performance either. We have recently generated longer 

datasets of UI-WRF-Chem simulations for each PTA. Our ongoing work focuses on 

evaluating model performances for total PM, speciated PM2.5 and AOD, which will 

provide a more comprehensive assessment of model performance. We have added Sect 

4.4.2 to present the composition analysis as follows and the updated supplement includes 

Figures S17 and S18.  

4.4.2 Evaluation of model simulated PM2.5 composition  

Surface measurements of total and speciated PM2.5 mass concentration from the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) (Malm et al., 

1994; Solomon et al., 2014) and the Chemical Speciation Network (CSN) (Solomon et al., 

2014) networks (see Fig S17 for sites location information) are used to evaluate model 

performance. We compare UI-WRF-Chem simulated speciated PM2.5 (OC, EC, Sulfate + 

Nitrate, Dust) and total PM2.5 against these observations. Figure S18 shows the 

comparison of daily speciated PM2.5 between the model and ground observations for the 

six different sensitivity simulations (Table 3), while Fig S17 shows the spatial distribution 

of total and speciated PM2.5 for the “mp2cu5” sensitivity simulation only.  

During this month of June, both surface observations and model simulations indicate that 

OC, sulfate and dust are the dominate components of total PM2.5, consistent with 

previous studies, which show that OC and sulfate are the primary contributors to total 

PM2.5 in the Southeastern U.S. (Hand et al., 2024; Zhu et al., 2024). Prescribed burns in 

the Southeastern U.S. including the states of Alabama and Georgia are a major source of 

OC emissions in this region (Li et al., 2023; Cummins et al., 2023), some of which are 

represented by the FLAMBE emission inventory in this work. All the model sensitivity 

simulations for OC show good correlation (0.45–0.60, Fig S18) and reasonable MB 

values (–1.13 to –0.36 g m-3). Model simulated EC concentrations also show good 

correlation (0.45–0.72, Fig S18) but underestimate ground observations with MB from –

0.28 to –0.21 g m-3. For the dust component, correlation ranges from 0.42–0.73 (Fig 

S18) but all the model sensitivity simulations overestimate ground observations with MB 

from 0.42–1.6 g m-3. In contrast, the combined sulfate + nitrate for all the sensitivity 

simulations show relatively lower correlation (–0.03 to 0.23) and varying levels of MB (–

0.49 to 0.01 g m-3). The nitrate concentration from ground observations is low in this 

region with an average value of 0.198 g m-3 for this month, which makes it challenging 

for the model to reproduce such a low level. Also due to limited samples used for 

comparison here, sulfate and nitrate are combined for evaluation. Overall, the “mp2cu5” 

sensitivity simulation (Table 3) yields the best performance.  

Figure 15 shows the variability in total and speciated PM2.5 mass concentration from 

model simulation mp2cu5 (Table 3) compared with surface observations as well as the 

ratio of model simulation to observation. The simulated-to-observed ratio for dust (1–

5.8) exhibits much larger variability than other PM2.5 components (0–2), with model 

simulation consistently overestimating dust. During this month, PTA-Atlanta may have 



 12 

been affected by long-range transport of Sahara dust in the model simulation. These 

biases are likely due to uncertainties in the MERRA-2 simulated dust particle size 

distribution, as also demonstrated by the case studies over CHN-Beijing and ITA-Rome, 

motivating future work to tune the dust particle size distribution of MERRA-2 data for 

this region. Ratios for other components mostly remain below 2. Both sulfate and nitrate 

aerosols are predominantly secondary aerosols in the atmosphere, formed through 

chemical reactions and are also highly water-soluble, making them sensitive to 

uncertainties in the aerosol chemistry and wet deposition schemes. As discussed earlier, 

this month experiences some convective precipitation events, which likely contributes to 

the uncertainty and large variability in the simulated speciated PM2.5 concentration.  

Although our analysis here is limited to one month and one PTA, it provides a valuable 

case study of how the UI-WRF-Chem modeling framework simulates speciated PM2.5. 

Moreover, previous work by Jin et al. (2024) using the same UI-WRF-Chem framework 

demonstrated its broader robustness over the Boston PTA. It illustrated the feasibility of 

the MAIA modeling framework for generating L2 and L4 PM products with a full year 

(2018) of UI-WRF-Chem outputs of total and speciated PM2.5 mass concentrations and 

showed the correlation of evaluating model total and speciated PM2.5 mass 

concentrations against ground observations ranging from 0.40 to 0.73 (Table S1 therein). 

Together, these results suggest that while the single-month evaluation such as the case 

study here only provides a partial picture of model performance, the framework has been 

shown to produce reliable and robust results for longer time periods. Future work will 

therefore focus on a more comprehensive assessment of model performance with respect 

to the PM composition using longer datasets across different PTAs. 
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Figure 15. Box-whisker plots of (a) total and speciated PM2.5 concentrations from UI-WRF-Chem 

simulation (mp2cu5 in Table 3) and surface observations from IMPROVE and CSN sites over the inner 

domain (D2) of PTA-Atlanta for June 2022, and (b) the ratio of model simulated to observed PM2.5. 

Speciated PM2.5 include OC, EC, dust and the combined sulfate + nitrate. Also Shown on the boxer plot are 

the 5th and 95th percentiles (the whiskers), the interquartile range (the boxes), the median (the black lines) 

and the mean (the filled circles). Note on (b), the y-axis is truncated between 3.6–5.0 for improved 

visualization.  

10. Significance testing: The paper discusses improved performance for certain 

configurations but lacks significance tests to demonstrate that the improvements are 

statistically meaningful. This is important to ensure the optimal setup is not case-specific. 

Response: Thank you for the suggestion to strengthen our analysis with significance 

testing. We have first added Sect 3.1 Evaluation statistics to describe the methods used to 

conduct significance tests. Briefly, we apply the paired t-test and add the non-parametric 

Wilcoxon signed rank test when the sample size is small to ensure a robust test. In 

addition, we use either the Bonferroni correction procedure or the Benjamini-Hochberg 
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false discovery rate correction when multiple tests are considered. These tests are applied 

in different case studies to assess whether improvements are statistically significant, 

focusing on the mean absolute error (MAE) metric.  

Overall, the improvements for the case studies over Beijing, Rome, Los Angeles, and 

Atlanta are statistically significant, indicating that the results are not random. We further 

emphasize that incorporating the improved dust size distribution in MERRA-2 data, 

constrained by AERONET observations, enhance simulations of surface PM and AOD 

for both Rome and Beijing. This provides additional evidence that the improvements are 

robust across target areas. Below is Sect 3.1 and details of the significance testing for 

each case study can be found in the updated manuscript.  

3.1 Evaluation statistics 

Several statistics are used to evaluate the model performance against ground and 

satellite observations, including linear correlation coefficient (R), root mean square 

error (RMSE), mean bias (MB), normalized mean bias (NMB), mean absolute error 

(MAE), normalized standard deviation (NSD) and normalized centered root mean square 

error (NCRMSE). NSD is the ratio of the standard deviation of the model simulation to 

the standard deviation of the observation. NCRMSE is like RMSE except that the impact 

of the bias is removed. Some of these statistics are summarized in a Taylor Diagram 

(Taylor, 2001), which includes R (shown as the cosine of the polar angle), NSD (shown 

as the radius from the quadrant center), and NCRMSE (shown as the radius from the 

expected point, which is located at the point where R and NSD are unity).  

To determine whether the performances among model sensitivity simulations for different 

case studies over different target areas are statistically significant, we conduct the paired 

t-test on collocated model-observation samples or between model simulations. We focus 

on the MAE as the evaluation metric. For comparison of hourly data, we account for the 

temporal autocorrelation by estimating the lag-1 autocorrelation and applying the 

effective sample size adjustment (Wilks, 2011). For cases with smaller sample size, we 

also apply the non-parametric Wilcoxon signed rank test (e.g., Menut et al., 2019; Tao et 

al., 2025) to ensure the robustness of our test. In addition, when multiple model 

sensitivity simulations are evaluated, we apply a Bonferroni correction procedure 

(SIMES, 1986) to both paired-t and Wilcoxon tests, following previous work (Crippa et 

al., 2017). Under this approach, the null hypothesis is rejected if 𝑝 ≤
𝛼

𝑚
 , where 𝑝 is the 

raw 𝑝 value, 𝛼 is the significance level (0.05 in this study) and m is the number of 

hypothesis tests. For testing the significance over spatial maps, where a large number of 

tests are performed simultaneously, we instead apply the Benjamini-Hochberg false 

discovery rate (FDR) correction (Benjamini & Hochberg, 1995). We hence report 

adjusted 𝑝-value throughout this work unless noted otherwise. 
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RC2: 

Zhang et al. present UI-WRF-Chem, a set of unified inputs (initial and boundary conditions) for 

WRF-Chem in support of the MAIA satellite mission. UI-WRF-Chem provides meteorological 

inputs as well as emissions; land surface data; and a new soil NOx emissions scheme. A new 

chemistry scheme based on MADE/SORGAM is also developed, MADE/SORGAM-DustSS, to 

incorporate GOCART-AFWA emission scheme for matching with the MERRA-2/GEOS-FP 

dust size bins. 

The manuscript details many improvements to provide inputs to WRF-Chem. Of particular note 

is the development of WEPS as an emissions pre-processor which resolves a point of frustration 

in offline emissions processing for WRF-Chem. In addition, to support the MAIA satellite 

mission, UI-WRF-Chem extensively incorporates data from GEOS-FP and MERRA-2 products 

to the WRF-Chem model pipeline and evaluates many of these developments. These 

improvements have also been validated in four extensive case studies across the globe. The 

manuscript is well written and I recommend its publication. 

Response: We sincerely thank the reviewer for spending the time and effort providing valuable 

feedback to improve our manuscript and we truly appreciate the recognition of our work.  

Major comments: 

 

1. The authors evaluate throughout the effect of incorporating "MERRA-2 chemical boundary 

conditions" into the simulation. Just to confirm that the simulations marked "none" mean zero 

boundary conditions are input; is this usual in WRF-Chem simulations? Does the common 

approach of using CAM-chem/WACCM outputs as boundary conditions provide no information 

for the dust and other aerosols in a WRF-Chem simulation? If CAM-chem/WACCM, as global 

models, can provide some kind of information, I think it would be a more fair comparison as to 

whether these conditions can/can not help the regional model capture the long-range transport 

event. 

Response: We thank the reviewer for this insightful comment and the opportunity to clarify. In 

our work, the simulations marked “none” indicate that no chemical boundary conditions from 

MERRA-2 are used. Instead, the model applies its default chemical boundary conditions which 

represent a clean North American summery day and includes a limited number of mostly gas-

phase species. This default setting was originally developed for tropospheric ozone forecast. For 

aerosol species, the concentration values are close to zero. We have added this clarification to the 

caption of Table 2. We also note that the common approach of using CAM-Chem/WACCM 

outputs as boundary conditions does provide information for dust and other aerosols.  

We agree with the reviewer that comparing MERRA-2 chemical boundary conditions to an 

alternative global model such as CAM-Chem/WACCM could provide a more direct assessment 

of how using different global models influence the representation of long-range transport. In this 

study, we chose the “none” case as the baseline run to directly quantify the contribution from 

MERRA-2 chemical boundary conditions. Our focus was on improving the representation of 

dust size distribution in MERRA-2. We recognize that different studies have adopted different 
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global models as chemical boundary conditions depending on the research scope and a 

comprehensive assessment of WRF-Chem’s sensitivity to these choices would provide valuable 

insights to the community.  

We have also included the following sentences in Sect 5 to clarify this point: 

Since our work mainly focuses on improving the representation of the dust size distribution in 

MERRA-2 data, we recognize that other global models such as CAM-Chem may also provide 

useful information for chemical boundary conditions in different applications. While a 

comprehensive understanding of how different global models affect WRF-Chem simulations of 

special events such as the dust long-range transport, would provide valuable insights to the 

community, our work here demonstrates an efficient way for improving the simulation of dust 

transport using WRF-Chem.  

2. UI-WRF-Chem extensively integrates outputs from GEOS-FP and MERRA-2 as inputs for 

WRF-Chem; many of these improvements are not trivial, e.g., the updates to land input data, a 

new soil NOx emissions scheme, etc... Do the authors plan to contribute this capability to WPS 

and the WRF mainline model code in the future? 

Response: Thank you for the affirmation and bringing up this point. We are planning to update 

the UI-WRF-Chem modeling framework with a newer version of the WRF-Chem code, and we 

consider sharing the updates such as the soil NOx emissions scheme with the mainline model 

code.  

3. WEPS builds on the existing WRF-Chem emissions processing tools to incorporate several 

global inventories, as well as allowing NEI and MEIC inventories to replace the global 

inventory. Is the process of regional inventories to override the global inventory an automated 

process (i.e., a regional netCDF file can be supplied and it'll overwrite the global inventory?) like 

in GEOS-Chem's emissions tool, HEMCO, or code changes will be needed? How extensible is 

WEPS to update with further inventories, and how easy is it to update inventores in the future? 

For example, I noted that FINN v1.01 is supported but not the more recent FINN v2.5 - will 

WEPS enable an easier update of the inventores for ingestion into WRF-Chem? 

Response: Thank you for the question. The approach used by WEPS is like HEMCO to some 

extent. In WEPS, a namelist file is used to specify the emission inventory to be used, whether it 

is a global emission inventory or a specific regional emission inventory such as NEI. The extent 

of code modifications required depends on the format of the raw emission inventories. For 

example, we have successfully ingested the global emission inventory EDGAR-HTAP 2010, 

EDGAR 2015 and EDGAR-HTAP 2020 using the same code with minimal modifications as 

they share similar formats. Currently, WEPS has the capability to ingest emission inventories in 

both netcdf and text file formats. We anticipate that WEPS will allow an easy integration of an 

alternative wildfire or anthropogenic emission inventory by adapting the current code.  

4. I also suggest some presentation improvements: organize the best configuration (of model 

physics) for each case study domain in a table; also label in the figures the D1 and D2 domains 
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for each case study; at times D1 is the whole region and D1 is marked by a rectangle and inset 

text could help the reader. 

Response: Thank you for the suggestion to improve the presentation of the manuscript. We have 

first improved Table S1 by adding asterisk marks to denote the best-performing configuration of 

physics scheme for each target area. We have also added a table (Table 1) to summarize the best 

configuration of physics scheme selected together with other model set up such as land surface 

model and emission schemes for each target area studied. We have also improved figures with 

maps to clearly denote D1 and D2 (please see all figures in the updated manuscript and 

supplement).  

Table S1. A suite of UI-WRF-Chem sensitivity simulations with different options of physics schemes over CHN-

Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas. 

Target area Simulation 

number  

Microphysics Longwave Shortwave PBL 

Beijing 1* Lin RRTMG RRTMG YSU 

2 Morrison RRTMG RRTMG YSU 

3 Lin RRTMG RRTMG MYJ 

4 Lin RRTM Goddard YSU 

Rome  1 Lin RRTMG RRTMG YSU 

2* Morrison RRTMG RRTMG YSU 

3 WSM6 RRTMG RRTMG YSU 

4 Morrison RRTMG RRTMG MYJ 

5 Morrison RRTMG RRTMG MYNN2.5 

6 Morrison RRTM Goddard YSU 

Los Angeles 1* Lin RRTMG RRTMG  YSU 

2 Lin  RRTMG RRTMG MYJ 

3 Lin  RRTM Goddard YSU 

Atlanta 1* Lin RRTMG RRTMG YSU 

2 Morrison RRTMG RRTMG YSU 

3 WSM6 RRTMG RRTMG YSU 

4 Lin RRTMG RRTMG MYJ 

5 Lin RRTMG RRTMG MYNN2.5 

6  Lin RRTM Goddard  YSU 

*These are the final configurations selected for each target area. 
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Table 1. A summary of model physics, chemistry and emissions configurations for CHN-Beijing, ITA-Rome, USA-

LosAngeles, and USA-Atlanta target areas. 

Category Model component CHN-Beijing ITA-Rome 
USA-Los 

Angeles 
USA-Atlanta 

Physics Microphysics Lin Morrison Lin Lin 

Cumulus G3D G3D G3D G3D 

Longwave radiation RRTMG RRTMG RRTMG RRTMG 

Shortwave radiation RRTMG RRTMG RRTMG RRTMG 

Planetary boundary 

layer 
YSU YSU YSU YSU 

Surface layer Revised MM5 

Land surface model NOAH NOAH NOAH NOAH 

Chemistry Gas-phase RADM2 RADM2 RADM2 RADM2 

Aerosols MADE/SORAGM-DustSS 

Photolysis Madronich F-TUV 

Emissions Anthropogenic 

emissions 
MEIC 2016 HTAP v3 (2018) NEI 2017 NEI 2017 

Dust emissions GOCART with AFWA modifications 

Biogenic emissions 

of VOCs 
MEGAN MEGAN MEGAN MEGAN 

Soil NOx emissions BDISNP BDISNP BDISNP BDISNP 

Wildfire emissions FLAMBE FLAMBE FLAMBE FLAMBE 

 

Specific/Minor comments: 

 

L40: "because of" -> I suggest "enabled by". 

Response: Thank you for the suggestion. We have replaced “because of” with “enabled by”.  

 

L223-225: It's not clear what the paragraph is suggesting here. Are you suggesting that the 

manuscript's use of GEOS-FP and MERRA2 differs from the common practice of using CAM-

chem/WACCM outputs as chemical IC/BC (which I believe is the common practice in the WRF-

Chem user's guide) or that GEOS-FP and MERRA-2 are different in that they assimilate 

satellite-based aerosol fields? I would suggest revising this paragraph for clarity. 

Response: Thank you for the question and suggestion to make this paragraph clear. We meant 

the use of the GEOS-FP and MERRA-2 is different from other work in the sense that they 

assimilate satellite-based aerosol fields. We have revised this paragraph as follows: 

We have developed the capability to use GEOS FP and MERRA-2 data to provide chemical 

initial and boundary conditions in our UI-WRF-Chem modeling framework. Since WRF-Chem is 

a regional chemical transport model, time-varying chemical boundary conditions from global 
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chemical transport models are typically used to specify concentrations of different chemical 

species at the domain boundaries. This is especially important for long-lived chemical species, 

such as O3, or capturing regional or long-range transport events. The common practice is to use 

global model outputs such as the Community Atmosphere Model with Chemistry, CAM-Chem 

(Emmons et al., 2020) for reanalysis or the Whole Atmosphere Community Climate Model 

(WACCM) (Gettelman et al., 2019) for forecasts. Unlike CAM-Chem or WACCM, which do not 

assimilate satellite aerosol observations, GEOS FP and MERRA-2 incorporate satellite-based 

aerosol data assimilation, which provides observational constraints for the day-to-day variations 

in aerosol concentrations over a given domain. To leverage this unique capability, we have 

modified the WRF-Chem preprocessor tool – mozbc (https://www2.acom.ucar.edu/wrf-chem/wrf-

chem-tools-community) to create the GEOSBC module (Fig 1), enabling direct ingestion of 

GEOS FP and MERRA-2 data for updating chemical initial and boundary conditions.   

 

L425: "sea seal" -> "sea salt"? 

Response: We have fixed it.  

 

L446: "relative humanity" -> "relative humidity"? 

Response: We have fixed it. 

 

L519: "the chemistry will be transported..." -> maybe "the chemical tracers will be transported"? 

Response: Yes, we agree. We have changed it to “the chemical species will be transported”.  

 

SI Table S1 Los Angeles Simulation #1: "Li" -> "Lin" 

Response: We have fixed it.  
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