

1 **Technical note: In situ photosynthesis-irradiance curve**
2 **determination in peatlands with a modulated-light skirt-chamber**

3
4 Frederic Thalasso^{1,2,*}, Julio A. Salas-Rabaza^{2,*}, Brenda Riquelme del Río², Jorge F. Perez-
5 Quezada^{2,3,4}, Cristian Gajardo³, Matías Troncoso-Villar²

6
7 ¹Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto
8 Politécnico Nacional (Cinvestav), Av. IPN 2508, Mexico City 07360, Mexico

9 ²Cape Horn International Center, Universidad de Magallanes, O'Higgins 310, Puerto Williams, Chile

10 ³Department of Environmental Sciences and Renewable Natural Resources, University of Chile, Av. Santa Rosa
11 11315, La Pintana, Santiago, Chile

12 ⁴Institute of Ecology and Biodiversity, Barrio Universitario Concepción, Chile

13
14 *Correspondence to:* Frederic Thalasso (thalasso@cinvestav.mx), Julio A. Salas-Rabaza (jsalasrab@gmail.com).

15
16 **Supplementary Information**

17
18 **S1. Chamber design and mass balance**

19
20 The new modulated-light skirt-chamber was manufactured using 3D printing with thermoplastic
21 polyurethane and consists of two sections (Figure 1). The first section is a ring-shaped base with
22 an outer diameter of 320 mm and an inner diameter of 240 mm. This base is designed to be placed
23 on the ground, with the plastic skirt glued to its upper surface. The base can also accommodate a
24 steel chain placed above the plastic skirt to improve sealing with the ground. Along the inner
25 perimeter of the base, a 5×5 mm groove allows the chamber (second section) to be positioned
26 hermetically using silicone grease for sealing. The chamber is an oblique cylinder cut at a 40°
27 angle from the horizontal, with a minimum height of 40 mm, a maximum height of 250 mm, an
28 internal diameter of 240 mm, and a thickness of 15 mm. This design, combined with its
29 orientability, enhances direct sunlight exposure for most of the day, even at relatively high latitudes
30 where sun inclination is low. The internal surface of the chamber is covered with a reflective film
31 (Q-BICS, Mexico) to ensure maximum light dispersion. Around the oblique cut, a 10×10 mm
32 support ledge runs along the entire perimeter, positioned just 10 mm below the cut edge, to support
33 an oval window made of 9 mm-thick commercial glass window, which is sealed with silicone.
34 Within the chamber, two light/temperature data loggers are placed at ground level to measure light
35 intensity. On the higher side of the chamber, a 180×40 mm opening leads to a rectangular extension
36 housing a battery-operated fan, facilitating air circulation within the chamber. This design prevents
37 the creation of shadows from the electric fan and optimizes light distribution over the entire ground
38 surface. Inlet and outlet ports, positioned on opposite sides of the frame, are connected in
39 recirculation mode to an UGGA (Los Gatos Inc., ABB, USA), which continuously measures CH₄
40 and CO₂ concentrations at 1 Hz. In this study, we focus solely on CO₂ emissions, although CH₄
41 concentrations are measured when used as a tracer gas to determine the gas residence time within
42 the chamber, as described in section 2.2.

43
44 The concept of the chamber is the absence of a collar penetrating the ground, thus minimizing
45 disturbance and reducing deployment time, but leading to imperfect sealing at the ground-chamber

47 interface, allowing for gas exchange between the atmosphere and the chamber. Under these
48 conditions, the mass balance of the chamber is as follows:

49

$$50 \frac{dc_{c,co2}}{dt} = CO_2 \text{ flux} + \text{input caused by leaks} - \text{output caused by leaks} \quad (S1)$$

51

$$52 \frac{dc_{c,co2}}{dt} = F_{CO2} \cdot \frac{A_C}{V_C} + \frac{Q_L}{V_C} \cdot C_{L,CO2} - \frac{Q_L}{V_C} \cdot C_{c,CO2} \quad (S2)$$

53 where $C_{c,CO2}$ is the CO_2 concentration within the chamber ($\mu\text{mol m}^{-3}$), F_{CO2} is the CO_2 flux
54 captured by the chamber ($\mu\text{mol m}^{-2} \text{ s}^{-1}$), A_C is the area of the chamber in contact with the ground
55 (m^2), V_C is the chamber volume (m^3), Q_L is the leak flow rate to/from the chamber ($\text{m}^3 \text{ s}^{-1}$), and
56 $C_{L,CO2}$ is the CO_2 concentration at ground level outside the chamber, entering with the leaks (μmol
57 m^{-3}).

58 Given that Q_L/V_C is the dilution rate caused by leaks and is the inverse of the gas residence time
59 within the chamber (θ_C , s), Equation S2 can be rewritten as follows:

60

$$63 \frac{dc_{CO2}}{dt} = F_{CO2} \cdot \frac{A_C}{V_C} + \frac{Q_L}{V_C} \cdot (C_{L,CO2} - C_{c,CO2}) = F_{CO2} \cdot \frac{A_C}{V_C} + \frac{(C_{L,CO2} - C_{c,CO2})}{\theta_C} \quad (S3; 1)$$

61 In addition to Equation S3, like most gas analyzers, the UGGA includes a cavity where the gas
62 pumped out from the chamber is measured, causing measurement delays. This introduces a slight
63 difference between the gas concentration measured by the analyzer and the actual concentration
64 within the chamber. To solve that aspect, the mass balance of the analyzer's cavity can be described
65 as follows:

66

$$71 \frac{dc_{D,CO2}}{dt} = \frac{Q_D}{V_D} \cdot C_{c,CO2} - \frac{Q_D}{V_D} \cdot C_{D,CO2} = \frac{(C_{c,CO2} - C_{D,CO2})}{\theta_D} \quad (S4)$$

72 where $C_{D,CO2}$ is the CO_2 concentration measured (within the detector; $\mu\text{mol m}^{-3}$), Q_D is the flow
73 rate to/from the detector ($\text{m}^3 \text{ s}^{-1}$), V_D is the detector's cavity volume (m^3), and θ_D is the gas
74 residence time within the detector's cavity.

75 Equation S4 can be rewritten to obtain the actual CO_2 concentration, as follows:

76

$$79 C_{c,CO2} = \frac{dc_{D,CO2}}{dt} \cdot \theta_D + C_{D,CO2} \quad (S5)$$

80 By combining Equations S3 and S5, we obtain:

81

$$83 F_{CO2} = \left(\frac{dc_{c,CO2}}{dt} - \frac{(C_{L,CO2} - C_{c,CO2})}{\theta_C} \right) \cdot \frac{V_C}{A_C} \quad (S6)$$

84 In which $C_{c,CO2}$ is replaced by Equation S5.

85

87 **S2. Determination of the chamber residence time (θ_C)**

88

89 Resolving Equation S6 requires the determination of θ_C . The strategy included the creation of a
 90 transient state of the gas concentration, using CH₄ as a tracer gas. CH₄ was chosen, because it is
 91 detected by the UGGA and does not interfere with F_{CO_2} measurements. Thus, the transient state
 92 and the determination of θ_C can be done during flux measurement. In practice, a pulse of CH₄ was
 93 injected into the chamber. After the CH₄ pulse injection, the CH₄ concentration within the chamber
 94 (C_{C,CH_4}) is artificially increased and then tends to decrease back to a steady-state concentration at
 95 which the chamber is under equilibrium with the environment. This transient decrease of C_{C,CH_4} at
 96 any time, can be described by the following mass balance (similar to Equation S1,2):
 97

$$98 \frac{dC_{C,CH_4}}{dt} = CH_4 \text{ flux} + \text{input caused by leaks} - \text{output caused by leaks} \quad (S7)$$

$$100 \frac{dC_{C,CH_4}}{dt} = F_{CH_4} \cdot \frac{A_C}{V_C} + \frac{Q_L}{V_C} \cdot (C_{L,CH_4} - C_{C,CH_4}) = F_{CH_4} \cdot \frac{A_C}{V_C} + \frac{(C_{L,CH_4} - C_{C,CH_4})}{\theta_C} \quad (S8)$$

101 In Equations S7 and S8 the variables are defined as follows: C_{C,CH_4} represents the CH₄
 102 concentration inside the chamber ($\mu\text{mol m}^{-3}$); F_{CH_4} denotes the CH₄ flux from the ecosystem (μmol
 103 $\text{m}^{-2} \text{s}^{-1}$); A_C represents the area of the chamber in contact with the ground (m^2); V_C represents the
 104 chamber volume (m^3); Q_L indicates the flowrate of gas exchange between the chamber and the
 105 exterior due to leaks ($\text{m}^3 \text{s}^{-1}$); and C_{L,CH_4} signifies the gas concentration at ground level outside the
 106 chamber (to be considered for leaks; $\mu\text{mol m}^{-3}$). The term Q_L/V_C is the dilution rate caused by the
 107 gas exchange between the chamber and the environment due to leak, which is the inverse of the
 108 mean residence time of the chamber (θ_C).
 109

110 Under steady state, *i.e.* gas concentration not changing over time, Equation S8 would become:
 111

$$113 0 = F_{CH_4} \cdot \frac{A_C}{V_C} + \frac{(C_{L,CH_4} - C_{C,CH_4}^*)}{\theta_C} \quad (S9)$$

114 Where C_{C,CH_4}^* is the concentration within the chamber that would be observed under steady state,
 115 *i.e.* constant. Under these conditions, Equation S9 can be reorganized as:
 116

$$118 F_{CH_4} \cdot \frac{A_C}{V_C} = - \frac{(C_{L,CH_4} - C_{C,CH_4}^*)}{\theta_C} \quad (S10)$$

119 By combining Equations S8 and S10, we can write:
 120

$$122 \frac{dC_{C,CH_4}}{dt} = \frac{(C_{L,CH_4} - C_{C,CH_4})}{\theta_C} - \frac{(C_{L,CH_4} - C_{C,CH_4}^*)}{\theta_C} = \frac{C_{C,CH_4}^* - C_{C,CH_4}}{\theta_C} \quad (S11)$$

123 By variable separation and integration S11 can be written:
 124

$$126 \int_0^t \frac{d(C_{C,CH_4}^* - C_{C,CH_4})}{(C_{C,CH_4}^* - C_{C,CH_4})} = - \int_0^t \frac{dt}{\theta_C} \quad (S12)$$

$$128 \ln \frac{(C_{C,CH_4}^* - C_{C,CH_4})_t}{(C_{C,CH_4}^* - C_{C,CH_4})_0} = - t / \theta_C \quad (S13)$$

129

$$130 \quad \frac{C_{C,CH4}^* - C_{C,CH4,t}}{C_{C,CH4}^* - C_{C,CH4,0}} = e^{-t/\theta_C} \quad (S14)$$

131

132 And finally:

133

$$134 \quad C_{C,CH4}(t) = C_{C,CH4}^* - (C_{C,CH4}^* - C_{C,CH4,0}) \cdot e^{-t/\theta_C} \quad (S15)$$

135

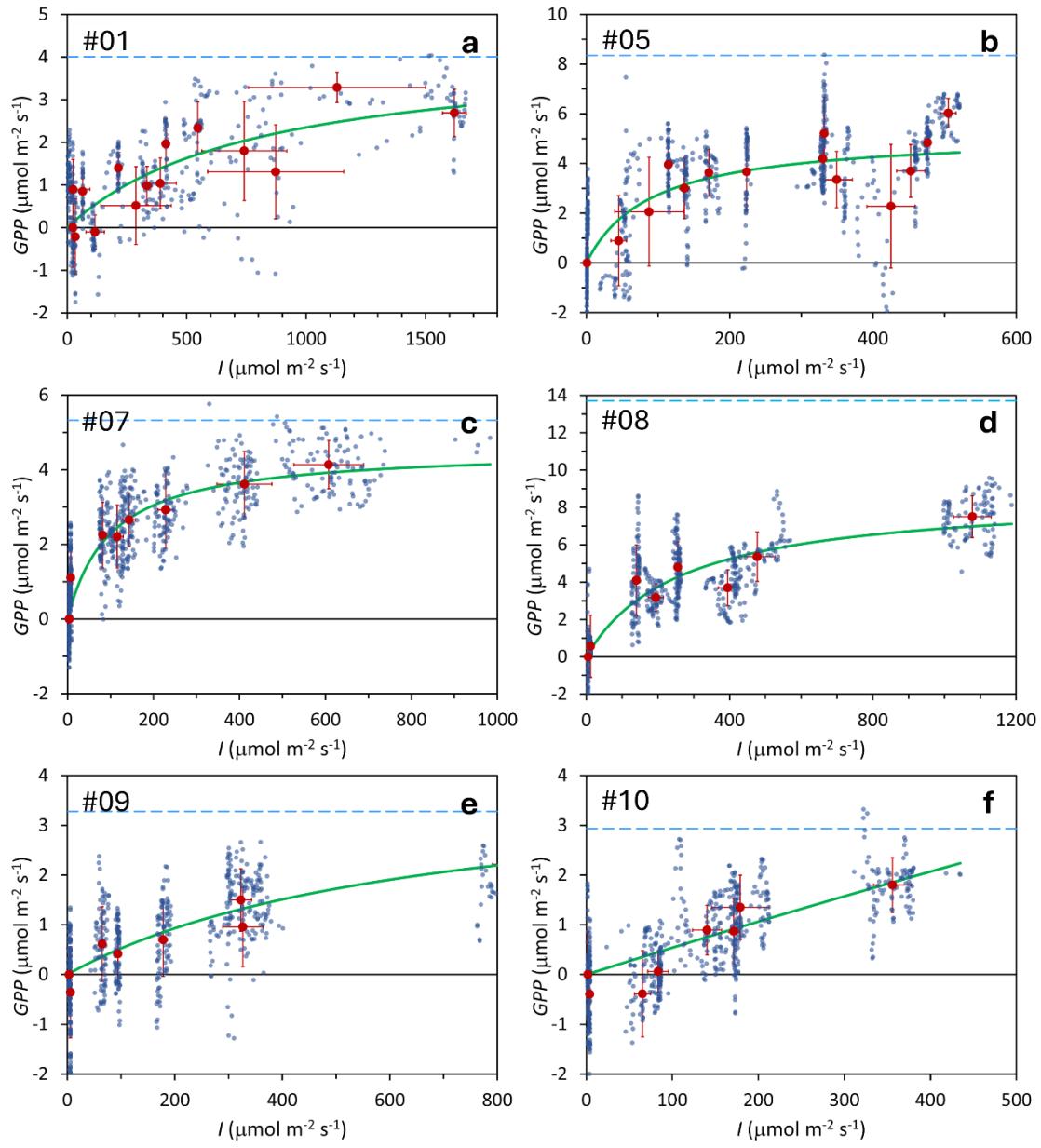
136 It is important to note that for θ_C determination, any section of $C_{C,CH4}$ is valid, regardless of the
 137 initial and final $C_{C,CH4}$ values. A corollary of this is that the mass of CH₄ injected into the chamber
 138 is unimportant, as long as it is detectable. The selected section of $C_{C,CH4}$ was used to calibrate
 139 Equation S14, with θ_C and $C_{SS,CH4}$ as adjustment parameters and through the minimization of the
 140 Root Mean Square Error.

141

142 ***S3. Determination of the detector's cavity residence time (θ_D)***

143

144 For the determination of θ_D , the same strategy and Equation S14 were used, except that θ_D
 145 substitutes θ_C and that a step increase of $C_{C,CH4}$ at the detector inflow was used (no chamber)
 146 instead of a pulse concentration. Also, this determination was conducted in the laboratory, as θ_D is
 147 a detector parameter not changing over time.


148

149

150 **Table S1:** Percentage of light transmittance for the different fabrics used, as measured in the field
 151 under natural light conditions. Of the 11 fabrics tested, we progressively selected 6 that provided
 152 reliable data, which are marked with an asterisk.

Fabric	% transmittance	SD
None *	100.0%	-
1	85.2%	12.3%
2	57.4%	21.9%
3 *	51.1%	19.2%
4 *	35.9%	13.4%
5 *	22.3%	2.3%
6	21.2%	10.7%
7 *	15.5%	3.2%
8	12.7%	5.8%
9	5.0%	1.7%
10	1.1%	0.1%
11 *	0.4%	0.1%

153

154
155
156
157
158
159
160
161
162
163
164
165

Figure S1 (1/2): Photosynthesis-Irradiance (PI) curves observed at 20 locations in a subantarctic peatland bog, measured *in situ* using the modulated-light skirt-chamber. Blue points represent individual measurements, with 500-900 data points collected at each location. Red points indicate the mean of data clusters collected under each irradiance level, corresponding to each screen of fabric used. Error bars on the red points represent one standard deviation. The green continuous lines represent the best fitting of the Monod model, and the red continuous line represents the best fitting of the Bernard-Rémond model. The light blue dashed line indicates the level of respiration, expressed in the same units as the GPP . The numbers indicated in the upper left corner reference the experiment numbers listed in Table 1, where model parameters and statistics are provided.

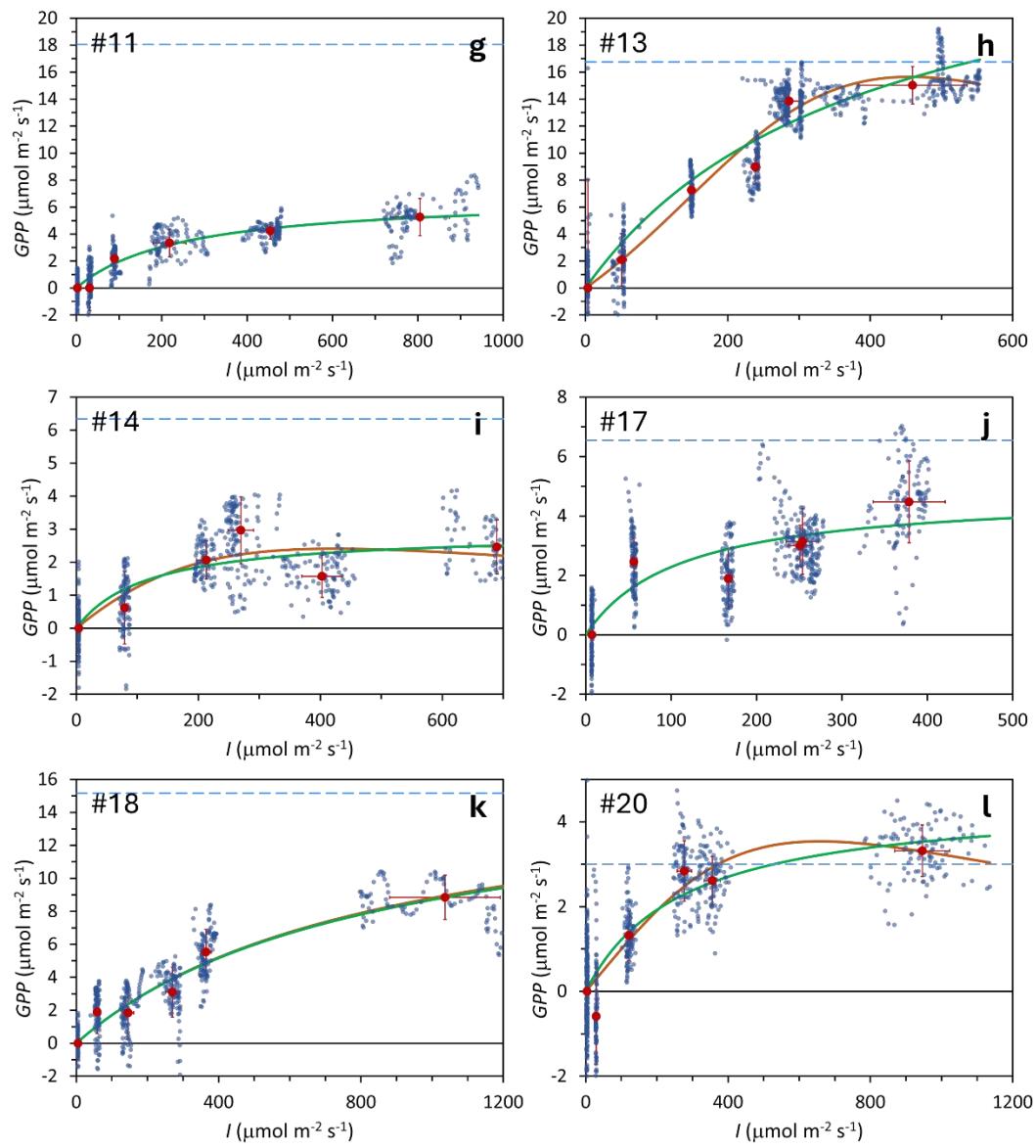
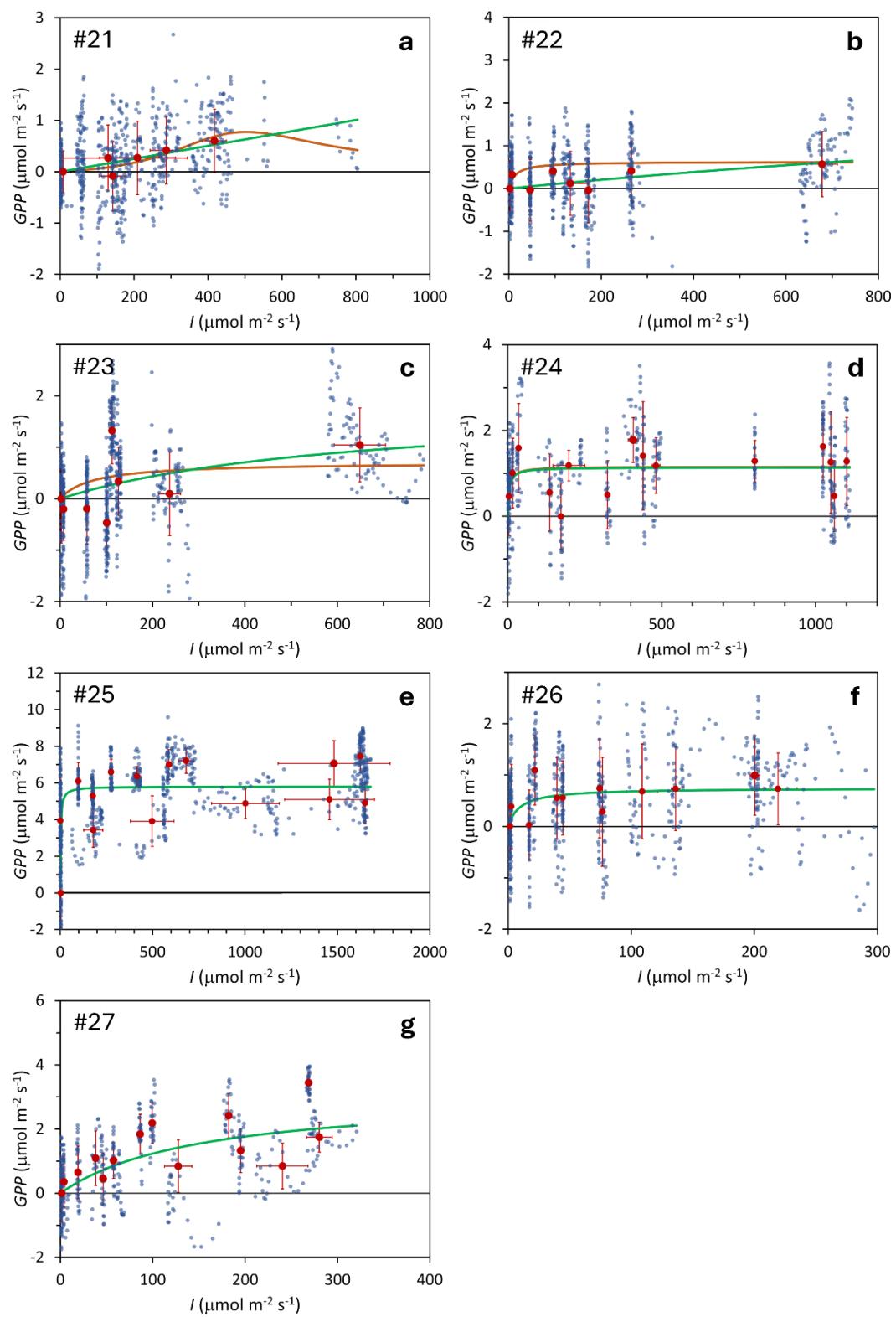



Figure S1 (2/2): Photosynthesis-Irradiance (PI) curves observed at 20 locations in a subantarctic peatland bog, measured *in situ* using the modulated-light skirt-chamber. Blue points represent individual measurements, with 500-900 data points collected at each location. Red points indicate the mean of data clusters collected under each irradiance level, corresponding to each screen of fabric used. Error bars on the red points represent one standard deviation. The green continuous lines represent the best fitting of the Monod model, and the red continuous line represents the best fitting of the Bernard-Rémond model. The light blue dashed line indicates the level of respiration, expressed in the same units as the GPP . The numbers indicated in the upper left corner reference the experiment numbers listed in Table 1, where model parameters and statistics are provided.

