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Abstract 11 

Stratigraphic correlation and age modelling are fundamental to reconstructing Earth’s history, biological 12 

evolution, and palaeoclimate, and underpin the exploration for subsurface resources. Correlations are 13 

produced by integrating diverse stratigraphic data across multiple sites, typically by visual inspection. Here, 14 

we introduce ‘StratoBayes’, a Bayesian statistical framework that combines stratigraphic correlation and 15 

depositional age estimation of stratigraphic horizons, i.e. age modelling. Our method aligns quantitative 16 

signals from two or more sites by shifting and scaling, allowing for sedimentation rate changes between 17 

stratigraphic partitions. The likelihood of an alignment is evaluated by how well the adjusted signals 18 

conform to a shared smooth trend, represented by a cubic spline. Tie points or independent age constraints, 19 

such as radiometric dates or biostratigraphic markers, can be integrated within this framework, providing 20 

age estimates for all sites. Our approach identifies multiple alignments where distinct alternatives exist, 21 

estimates their relative probabilities, and quantifies the uncertainty associated with correlations and age 22 

estimates. We apply StratoBayes to a lower Cambrian dataset comprising a combination of δ13C records, 23 

radiometric dates and astrochronology from four sites in Morocco and Siberia. The results demonstrate its 24 

capacity to quantify existing alignments, and provide the first precise age estimate for the evolutionary 25 

appearance of trilobites in Siberia, one of the hallmarks of the Cambrian Explosion. Beyond this 26 

application, StratoBayes offers a generalisable framework for probabilistic stratigraphic correlation, with 27 

potential to improve age models across a range of proxy records and time intervals. 28 
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1 Introduction 29 

Stratigraphic correlation works on the basis that rocks that were deposited under similar conditions or at 30 

the same time tend to share characteristics that allow for their attribution to a stratigraphic or temporal 31 

horizon. For example, insofar as temporal changes in the global δ13C composition of seawater are reflected 32 

in marine sedimentary rocks, matching trends of changing δ13C in rock sections from different locations 33 

can be used to place those sections on a relative time scale (Cramer and Jarvis, 2020; Saltzman et al., 2012). 34 

Quantitative signals such as isotopic compositions, elemental concentrations or geophysical well-log data 35 

present a particular challenge: in aligning those signals by eye, the stratigrapher has to make a large number 36 

of intuitive decisions about which peaks and troughs are likely to line up. Trying to integrate all the 37 

stratigraphic evidence from multiple sites often results in more than one potential alignment solution and 38 

differing interpretations between different workers (Bowyer et al., 2022, 2023; Landing and Kruse, 2017; 39 

Smith et al., 2016). 40 

Computer algorithms have been designed to address the problems arising from visual correlation 41 

(Agterberg, 1990; Lisiecki and Lisiecki, 2002; Rudman and Lankston, 1973). Algorithms designed for 42 

aligning quantitative signals from two or more sites typically use a point-based approach, aligning each 43 

point of site A with zero, one or multiple points from site B. This approach proposes variable sedimentation 44 

rates between points. This flexibility in principle allows the most precise alignments, though potentially at 45 

the cost of overfitting. Point-based algorithms commonly use dynamic time warping (DTW), a technique 46 

that finds the optimal match between two time-series data by adjusting their alignment (Sakoe and Chiba, 47 

1978). For a selection of recent approaches using dynamic time warping for stratigraphic alignment, see 48 

Wheeler and Hale (2014); Hay et al. (2019); Baville et al. (2022); Sylvester (2023); and Hagen et al. (2024). 49 

The limitations of DTW-based approaches are that they commonly require known section tops and bottoms 50 

(Sylvester, 2023); and they are generally deterministic, providing only a single solution without any 51 

indication of uncertainty or alternative alignments (but see Al Ibrahim, 2022; Hay et al., 2019). The 52 

integration of additional stratigraphic information besides the quantitative signals tends to be difficult, 53 

requiring extra steps outside of the core DTW-algorithm (e.g. Hagen and Creveling, 2024). 54 

Probabilistic approaches overcome some of these limitations by estimating the probabilities of different 55 

outcomes, rather than producing deterministic predictions. An effective probabilistic approach is offered 56 

by the Bayesian framework, which integrates multiple sources of uncertainty by combining prior 57 

knowledge, encapsulated mathematically as a prior probability distribution, with a custom likelihood 58 

function that is used to evaluate the likelihood of observed data. Given an appropriate prior and likelihood 59 
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function it is straightforward to integrate different types of stratigraphic information. Bayesian approaches 60 

are commonly employed in age-depth models that interpolate between absolute age constraints or tie points; 61 

examples include Bchron (Haslett and Parnell, 2008) and Oxcal (Ramsey, 1995). This approach can be 62 

extended by incorporating prior expectations on hiatuses, sedimentation rates, and rate variability, including 63 

external information such as astrochronological data (e.g. Blaauw and Christen, 2011; Trayler et al., 2024). 64 

Recent Bayesian methods have attempted to combine stratigraphic correlation and age modelling. Lee et 65 

al. (2022) have implemented a Bayesian method that uses Gaussian process regression to match Cenozoic 66 

oxygen isotope data from one site to an oxygen isotope stack, while simultaneously integrating age 67 

estimates from radiocarbon dates to produce probabilistic age-depth models (i.e. the BIGMACS model). 68 

This method improves upon earlier approaches by specifying uncertainty for tie points and integrates prior 69 

knowledge on Cenozoic sedimentation rates with absolute age information from the aligned site. However, 70 

age uncertainties from the reference site are not included, and varying sampling resolution or large 71 

sedimentation rate changes may violate model assumptions and impede the broader adoption of this method 72 

in its current form (Middleton et al., 2024). Edmonsond and Dyer (2024) have developed a different 73 

Bayesian method based on Gaussian process regression that works without prior knowledge of 74 

sedimentation rates, but requires minimum and maximum age estimates for all sections, and the absence of 75 

an explicit prior on sedimentation rates may risk overfitting. Here, we introduce a versatile Bayesian method 76 

for stratigraphic correlation and age modelling that can align quantitative signals from two or more sites 77 

without the need to specify tie points or top and bottom ages, and with no restrictions on sampling 78 

frequencies. Possible sedimentation rates can be specified by the user as priors, and the likelihood 79 

encompasses the alignment of the signals and, optionally, additional age constraints such as dated horizons. 80 

The method requires only vague prior knowledge on the ages and on the degree of overlap of the sections, 81 

along with order-of-magnitude estimates of sedimentation rates; it is not necessary to specify matching 82 

section tops or bottoms. The model is able to integrate radiometric dates from different sites, meaning that 83 

ages from well-dated sites can inform age estimates at sites with little or no age information. Age estimates 84 

with uncertainty can thus be obtained for any point within any site, and alternative alignments can be 85 

identified. Additional stratigraphic knowledge, such as hiatuses or tie points, can be readily incorporated. 86 

Our Bayesian model works by evaluating the fit of a single cubic spline (Heaton et al., 2020) to the 87 

combined quantitative signal of all sites. If more than one type of signal is included, e.g. δ13C and δ18O, a 88 

different spline is constructed for each signal type, and their joint likelihood is used to evaluate the 89 

alignment. Different alignments are generated by shifting the sites relative to each other, and by scaling 90 

segments of the sites using different sedimentation rates. Markov chain Monte Carlo methods are used to 91 
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obtain the posterior distributions of the unknown model parameters. Our method is implemented as an R 92 

package, ‘StratoBayes’. 93 

To demonstrate the potential of this method, we apply it to artificial stratigraphic data and to a real case 94 

study using lower Cambrian δ13C records from Morocco (Magaritz et al., 1991; Maloof et al., 2005, 2010; 95 

Tucker, 1986) and Siberia (Kouchinsky et al., 2007). Integrating radiometric dates (Landing et al., 1998, 96 

2021; Maloof et al., 2010), we provide age estimates for the studied sections of an interval spanning several 97 

lower Cambrian carbon isotope excursions, and compare our algorithm-derived correlation with recent 98 

stratigraphic models relying on visual expert-based interpretations (Bowyer et al., 2022, 2023). Our solution 99 

also provides a fully quantitative age estimate for the appearance of the first Siberian trilobites, which are 100 

thought to be the world’s oldest trilobites (Landing et al., 2021). 101 

2 Bayesian stratigraphic model 102 

StratoBayes generates and evaluates alignments of quantitative stratigraphic signals. A signal consists of, 103 

for example, geochemical or geophysical measurements that vary across height or depth (Fig. 1a), obtained 104 

from a contiguous sedimentary sequence, which may be interrupted by hiatuses at known horizons. 105 

Alignments are generated by shifting the sites containing the signals either (a) against a fixed reference site, 106 

or (b) against each other on an absolute age scale. Additionally, the sites are scaled (“stretched” or 107 

“squeezed”) assuming different sedimentation rates. The fit of different alignments, corresponding to 108 

different shifts and sedimentation rates, is evaluated in the Bayesian framework. 109 

Statistical analysis in the Bayesian framework starts by formulating a probabilistic model that includes 110 

known data 𝑦𝑦 and unknown model parameters 𝜃𝜃. Instead of trying to identify a single estimate for 𝜃𝜃, 111 

Bayesian inference involves estimating probability distributions for the model parameters, termed 112 

“posterior probability distributions”. Posterior distributions are obtained by combining prior knowledge of 113 

the parameters with the data via a likelihood function. Bayes’ theorem states that the probability of the 114 

parameters given the data, 𝑝𝑝(𝜃𝜃|𝑦𝑦), i.e. the posterior probability, is proportional to the probability of the 115 

data given the model parameters (i.e. the likelihood), 𝑝𝑝(𝑦𝑦|𝜃𝜃), times the prior probability of the model 116 

parameters, 𝑝𝑝(𝜃𝜃): 117 

𝑝𝑝(𝜃𝜃|𝑦𝑦) ∝ 𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑝𝑝(𝜃𝜃)  (1) 118 

In our case, this approach requires specifying prior probability distributions for the unknown model 119 

parameters that control the shifting and scaling (Fig. 1b), and optionally for the duration of pre-determined 120 

hiatuses. Our model assumes that the measurements in each sedimentary sequence are samples (with noise) 121 
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from a common underlying signal, whose value can be modelled by a smooth curve described by a cubic 122 

B-spline. Our likelihood function quantifies how well a cubic B-spline fitted to a given alignment explains 123 

the observed data (Fig. 1c). Additional likelihood components can integrate absolute age constraints such 124 

as radiometric dates or other tie points, e.g. index fossils. Using Bayes’ theorem, the priors are combined 125 

with the likelihood to obtain the posterior probability for any alignment. 126 

We obtain probability distributions for the parameters of the model by running a Markov chain Monte Carlo 127 

(MCMC) simulation. This involves repeatedly generating parameter values over a large number of 128 

iterations. To ensure thorough exploration of the parameter space, we employ parallel tempering, i.e. we 129 

run multiple chains in parallel, flattening the likelihood of the tempered (hot) chains, which can therefore 130 

move between different posterior modes; swaps between chains are proposed at every iteration. For the 131 

posterior estimates, we retain samples only from the primary (cold) chain. An initial portion of the samples 132 

is discarded (burn-in) to remove dependency on starting values, and only every nth iteration is recorded to 133 

reduce autocorrelation. Details on the MCMC implementation are provided in Appendix A. 134 

In the following, we will assume that measurements were taken on a height scale (increasing from the 135 

bottom to the top), but depth-scale measurements can be used interchangeably by inverting their sign. 136 

 

Figure 1: Schematic of the alignment algorithm. a) Input data: Quantitative stratigraphic measurements 

(e.g. geochemical data) from two sites recorded along their section height (here given in meters). b) 

Priors must be placed on the shift parameter 𝛼𝛼 and on the relative sedimentation rate 𝜈𝜈. Here, 𝛼𝛼 

determines the reference height (at Site 1) corresponding to the top of the height range of Site 2, and 𝜈𝜈 

corresponds to the sedimentation rate of Site 2 relative to Site 1. The vertical, dashed lines denote the α 
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and 𝜈𝜈 values, 12.3 m and 3.0, respectively, that were used in the creation of the data of site 2. c) An 

alignment corresponding to a single sample from the posterior. The blue dashed line indicates the 

position of the top of the data from Site 2 at the reference height scale (𝛼𝛼; median: 12.5 m). The 

relative sedimentation rate 𝜈𝜈 has been estimated at a median of 2.8, corresponding to a shortening of 

the dataset from Site 2 relative to the reference site (indicated by the dashed and solid light brown line). 

Note that the posterior estimates of 𝛼𝛼 and 𝜈𝜈 are similar, although not identical to the values used in 

creating the data (see Sect. 3). The curved grey line shows the cubic B-spline corresponding to the 

alignment. 

2.1 Evaluating alignments with a cubic B-spline 137 

Identifying good alignment positions requires evaluating and comparing different potential alignments. In 138 

the Bayesian framework, the measure used for this evaluation is the likelihood. We derive the likelihood of 139 

an alignment from its fit to a single cubic B-spline (Eilers and Marx, 1996), fitted to the measurements from 140 

all sites, including the reference site (see Fig. 1c). 141 

We model each measured value 𝑦𝑦𝑖𝑖 as normally distributed: 142 

𝑦𝑦𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎),  (2) 143 

where 𝜇𝜇𝑖𝑖 is the mean, and the standard deviation 𝜎𝜎 represents the scatter around the spline. 𝜇𝜇𝑖𝑖 is given by 144 

the spline function 145 

𝜇𝜇𝑖𝑖 = �𝛽𝛽𝑗𝑗𝐵𝐵𝑗𝑗(ℎ𝑖𝑖)
𝑘𝑘+2

𝑗𝑗=1

  (3) 146 

Here, 𝜇𝜇 can be interpreted as an underlying common signal of which the observations from each site, 147 

including the reference site, are noisy realisations. 𝑘𝑘 denotes the number of internal knots of the spline, with 148 

more knots implying that the spline can potentially capture higher-frequency variations. 𝛽𝛽𝑗𝑗 is the spline 149 

coefficient associated with the 𝑗𝑗-th basis function, and 𝐵𝐵𝑗𝑗(ℎ𝑖𝑖) is the 𝑗𝑗-th B-spline basis function evaluated 150 

at a reference height ℎ𝑖𝑖. A roughness penalty controlled by a smoothing parameter 𝜆𝜆 is incorporated in the 151 

prior on 𝛃𝛃, such that higher values of 𝜆𝜆 serve to favour smoother splines (Appendix A). The number of 152 

knots and the roughness penalty each influence spline flexibility in different ways: increasing 𝑘𝑘 provides a 153 

finer resolution for fitting local features, whereas increasing 𝜆𝜆 penalizes abrupt changes and yields smoother 154 

fits. The knots for the spline can be distributed across the reference height range that the converted 155 

measurement heights occupy for a specific combination of shift parameters (𝛼𝛼) and scale parameters (𝜈𝜈, 156 
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i.e. relative sedimentation rates). Our current model implementation uses evenly spaced knots, but knot 157 

placement could also follow, for example, the density of measurements. Alternatively, the knots can be 158 

fixed at specific heights on the reference scale, in which case combinations of 𝛼𝛼 and 𝜈𝜈 that result in 159 

converted measurement heights falling outside the knot range cannot be evaluated. 160 

The likelihood of an alignment, given 𝛃𝛃, 𝜎𝜎 and 𝜆𝜆, is determined by the residual deviations of the 𝑦𝑦𝑖𝑖 values 161 

from the corresponding 𝜇𝜇𝑖𝑖 values. The overall likelihood for 𝑛𝑛 data points is obtained by taking the product 162 

over all individual likelihoods for each pair of 𝑦𝑦𝑖𝑖 and 𝜇𝜇𝑖𝑖: 163 

𝐿𝐿(𝐲𝐲|𝛃𝛃,𝜎𝜎, 𝜆𝜆) = �
1

√2𝜋𝜋𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

× 𝑒𝑒�−
(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2
2𝜎𝜎2 �  (4) 164 

We thus assume that the deviations of the data from the spline are independently and identically distributed 165 

according to a normal distribution with mean 0 and standard deviation 𝜎𝜎. 166 

Our model allows for using more than one type of measurement simultaneously. In this case, a separate 167 

spline is fitted to all data, from all sites, for each type of measurement. The product of all likelihoods from 168 

all measurement types gives the overall likelihood. 169 

2.2 Alignment and partitioning 170 

In order to generate alignments of stratigraphic signals from different sites, one site is picked as a fixed 171 

reference site. The other sites are shifted and stretched (or squeezed) relative to the fixed reference site 𝑟𝑟. 172 

This requires specifying a shift parameter (height) 𝛼𝛼𝑠𝑠, which anchors an arbitrary, specified height of site 173 

𝑠𝑠 to a height in the reference site 𝑟𝑟. Here, we anchor the top of site 𝑠𝑠, so we set 𝛼𝛼𝑠𝑠 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 meaning 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 174 

will be the height at site 𝑟𝑟 that aligns with the top of site 𝑠𝑠. To stretch or squeeze site 𝑠𝑠, a relative 175 

sedimentation rate 𝜈𝜈𝑠𝑠 can be specified, where 𝜈𝜈𝑠𝑠 is defined relative to the reference site. For any height ℎ𝑥𝑥,𝑠𝑠 176 

at site 𝑠𝑠, the corresponding height in the reference site 𝑟𝑟 can then be calculated as 177 

ℎ𝑟𝑟 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 −
1
𝜈𝜈𝑠𝑠

× �ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 − ℎ𝑥𝑥,𝑠𝑠� ,  (5) 178 

where ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 is the height of the top of site 𝑠𝑠. Although we here chose the top of site 𝑟𝑟 as the reference 179 

horizon 𝛼𝛼 for simplicity, any horizon at site 𝑟𝑟 can be used as 𝛼𝛼. A 𝜈𝜈𝑠𝑠 < 1 implies that site 𝑠𝑠 has a lower 180 

sedimentation rate than site 𝑟𝑟, and consequently, 𝑠𝑠 has to be stretched to match 𝑟𝑟. A 𝜈𝜈𝑠𝑠 > 1, i.e. a higher 181 

sedimentation rate at site 𝑠𝑠 will lead to 𝑠𝑠 being squeezed to match 𝑟𝑟. 182 
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The model described here is simple in that the same 𝜈𝜈 is applied to all measurements of the same site. In 183 

this scenario, any site may be used as the reference site. Below, we introduce more complex models with 184 

more than one sedimentation rate per site, and with hiatuses. With these models, it is practical to select the 185 

site with the most sedimentation rate changes and hiatuses as the reference site. This reduces the number 186 

of unknown parameters in the model, making it easier to obtain a representative sample from the posterior. 187 

2.2.1 Multiple sedimentation rates per site 188 

Instead of having one sedimentation rate per site, sites can be partitioned, reflecting for example lithological 189 

units, with each partition being modelled with a distinct sedimentation rate: 190 

ℎ𝑟𝑟 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 − � �
1
𝜈𝜈𝑝𝑝

× �ℎ𝑝𝑝,𝑠𝑠 − ℎ𝑝𝑝+1,𝑠𝑠��

𝑛𝑛𝑝𝑝,𝑠𝑠−1

𝑙𝑙

−
1

𝜈𝜈𝑛𝑛𝑝𝑝,𝑠𝑠

× �ℎ𝑛𝑛𝑝𝑝,𝑠𝑠 − ℎ𝑥𝑥,𝑠𝑠� ,     𝑝𝑝 = 1. . .𝑛𝑛𝑝𝑝,𝑠𝑠  (6) 191 

Here, 𝑛𝑛𝑝𝑝,𝑠𝑠 is the number of partitions encountered from ℎ𝑡𝑡𝑡𝑡𝑡𝑡 to ℎ𝑥𝑥,𝑠𝑠, ℎ𝑝𝑝,𝑠𝑠 is the top height of partition 𝑝𝑝 at 192 

site 𝑠𝑠, and ℎ𝑝𝑝+1,𝑠𝑠 is the top height of the partition below partition 𝑝𝑝 at site 𝑠𝑠. If ℎ𝑥𝑥,𝑠𝑠 falls in the first partition 193 

from the top, the calculation simplifies to the equivalent of Equation 5, with ℎ𝑃𝑃𝑠𝑠, the top height of the first 194 

partition being also the top height of site 𝑠𝑠. The relative sedimentation rates of partitions, 𝜈𝜈𝑝𝑝, can differ for 195 

each partition in each site, or partitions in different positions within a site or across sites may share 196 

sedimentation rates. 197 

2.2.2 Site-specific sedimentation rate multipliers 198 

The sedimentation rate model above can be further expanded by adding an overall site-specific 199 

sedimentation rate multiplier 𝜁𝜁𝑠𝑠: 200 

ℎ𝑟𝑟 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 − � �
1
𝜁𝜁𝑠𝑠𝜈𝜈𝑝𝑝

× �ℎ𝑝𝑝,𝑠𝑠 − ℎ𝑝𝑝+1,𝑠𝑠��

𝑛𝑛𝑝𝑝,𝑠𝑠−1

𝑙𝑙

−
1

𝜁𝜁𝑠𝑠𝜈𝜈𝑛𝑛𝑝𝑝,𝑠𝑠

× �ℎ𝑛𝑛𝑝𝑝,𝑠𝑠 − ℎ𝑥𝑥,𝑠𝑠� ,     𝑝𝑝 = 1. . .𝑛𝑛𝑝𝑝,𝑠𝑠  (7) 201 

This may be useful in scenarios where sedimentation rates systematically differ between sites, perhaps due 202 

to varying distances from a sediment source, but where the sedimentation rate ratios of different partitions 203 

are assumed to be constant across sites. 204 

2.2.3 Hiatuses 205 

Known hiatuses (also referred to as unconformities or stratigraphic gaps) can be included at specific pre-206 

defined locations in a site. Expanding Equation 5 to include gaps of height 𝛿𝛿, we obtain 207 
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ℎ𝑟𝑟 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 −
1
𝜈𝜈𝑠𝑠

× �ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 − ℎ𝑥𝑥,𝑠𝑠� −�𝛿𝛿𝑔𝑔

𝑛𝑛𝐺𝐺𝑠𝑠

𝑔𝑔

 ,     𝑔𝑔 = 1. . .𝑛𝑛𝐺𝐺𝑠𝑠  (8) 208 

where 𝑛𝑛𝐺𝐺𝑠𝑠 is the number of gaps encountered from ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 until height ℎ𝑥𝑥,𝑠𝑠. In a correlation on an absolute 209 

age scale (Sect. 2.2.5), hiatuses would instead be expressed as durations, not heights. 210 

2.2.4 Tie points 211 

Tie points define specific heights within an aligned site and assign a probability distribution to indicate to 212 

which horizon these heights correspond on the reference scale. For example, a tie point might be a 213 

lithological boundary, a biostratigraphic horizon, or a radiometric date. If tie points are specified, the 214 

likelihood of an alignment is expanded to include not only the fit of the signal data to the spline, but also 215 

the positions of the ties on the reference height scale relative to the specified probability distribution. 216 

For example, a point in an aligned section which is tied by observation to the reference section at a position 217 

𝑚𝑚𝑡𝑡 with a normally distributed uncertainty with standard deviation 𝑠𝑠𝑡𝑡 that ends up being shifted to a 218 

reference height ℎ𝑡𝑡 (computed from the relevant 𝛼𝛼 and 𝜈𝜈 parameters) contributes a likelihood of 219 

𝐿𝐿(𝑚𝑚𝑡𝑡|ℎ𝑡𝑡, 𝑠𝑠𝑡𝑡) =
1

�2𝜋𝜋𝑠𝑠𝑡𝑡2
× 𝑒𝑒

�−(𝑚𝑚𝑡𝑡−ℎ𝑡𝑡)2
2𝑠𝑠𝑡𝑡2

�
  (9) 220 

to the overall likelihood of the model. 221 

2.2.5 Age-scale alignment 222 

Data on an (absolute) age scale can be aligned using the methods introduced above by using ages instead 223 

of heights. However, height-scale data can be aligned on an age-scale if absolute age constraints (specified 224 

as ties) are provided from at least one site. In this case, all sites will be shifted to align on a common age 225 

scale, i.e., there is no reference site. 226 

Analogous to the heights in the reference height scale in Equation 5, ages (𝑎𝑎) can be calculated as: 227 

𝑎𝑎 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 +
1
𝜈𝜈𝑠𝑠

× �ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 − ℎ𝑥𝑥,𝑠𝑠�   (10) 228 

Here, 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 is the top age (minimum age), rather than top height (maximum height), of site 𝑠𝑠. Sedimentation 229 

rates 𝜈𝜈𝑠𝑠 need to be expressed on the common age scale, rather than relative to a reference site. Equations 230 

6–8 can be modified accordingly for an analysis on the age scale. 231 
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It should be noted that due to sedimentation rates being fixed for an entire site or within partitions, our 232 

current model implementation does not necessarily result in increasing age uncertainty away from absolute 233 

age constraints. Potential sedimentation rate changes within sites or partitions could lead to our model 234 

underestimating age uncertainty with growing stratigraphic distance from absolute age constraints (see De 235 

Vleeschouwer and Parnell, 2014). 236 

2.3 Priors 237 

The Bayesian framework requires priors to be placed on all unknown model parameters. In our model, these 238 

include the alignment parameters (e.g. 𝛼𝛼, 𝜈𝜈), the smoothing parameter 𝜆𝜆, the residual standard deviation 𝜎𝜎 239 

(if it is not fixed), and the spline coefficients 𝛃𝛃. The priors on the alignment parameters determine the range 240 

of possible alignments and need to be chosen with care. For the other parameters, weakly informative priors 241 

with minimal influence on the analysis are preferred (Appendix A). In addition to those priors, we penalise 242 

a lack of overlap by specifying a prior probability of data points from different sites overlapping each other. 243 

2.3.1 Alignment parameters 244 

The priors on the alignment parameters should reflect the stratigraphic knowledge on the input data. The 245 

user may specify different types of prior distributions (e.g., normal, uniform, exponential) for the alignment 246 

parameters during model setup. 247 

• 𝛼𝛼 determines the reference site (site 𝑟𝑟) height or age that a specific position within the aligned site 248 

(site 𝑠𝑠) corresponds to. In the absence of prior knowledge on how the sites are likely to align, a 249 

uniform prior can be placed on 𝛼𝛼. For example, if 𝛼𝛼 refers to the top of site 𝑠𝑠, a uniform prior on 250 

𝛼𝛼 with min and max equal to the height or age range of site 𝑟𝑟 implies that the top of site 𝑠𝑠 will be 251 

placed within the height range of site 𝑟𝑟. 252 

• 𝜈𝜈 is either a relative (height scale alignment) or an absolute (age scale alignment) sedimentation 253 

rate. In our model implementation, priors are placed on the natural logarithm of 𝜈𝜈, ln(𝜈𝜈), rather 254 

than on 𝜈𝜈 directly. Specifying rate parameters on the logarithmic scale ensures that their priors are 255 

symmetric: a doubling or halving of a rate has equivalent distances on the logarithmic scale. If the 256 

sedimentation rate is relative, ln(𝜈𝜈) < 0 (i.e. 𝜈𝜈 < 1) results in “stretching”, and ln(𝜈𝜈) > 0 257 

(i.e. 𝜈𝜈 > 1) results in “squeezing” of site 𝑠𝑠 relative to site 𝑟𝑟. In the absence of strong prior 258 

knowledge about the relative sedimentation rate, a normal prior on ln(𝜈𝜈) with a mean of 0 places 259 

equal prior probability on “stretching” or “squeezing” of site 𝑠𝑠 relative to site 𝑟𝑟. The standard 260 

deviation requires at least a broad guess of the potential magnitude of sedimentation rate 261 
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differences. For example, a standard deviation of ln(4)
1.96

 places 95% of prior probability on 1
4

< 𝜈𝜈 <262 

4 for ln(𝜈𝜈) ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �0, ln(4)
1.96

�. If 𝜈𝜈 is an absolute sedimentation rate, the range of plausible 263 

prior sedimentation rates may be estimated from the absolute age constraints. 264 

• 𝜁𝜁𝑠𝑠 is a multiplier applied to all relative or absolute sedimentation rates 𝜈𝜈 corresponding to a single 265 

site 𝑠𝑠. As with 𝜈𝜈, ln(𝜁𝜁𝑠𝑠) < 0 (i.e. 𝜁𝜁𝑠𝑠 < 1) causes additional “stretching”, and ln(𝜁𝜁𝑠𝑠) > 1 (i.e. 𝜁𝜁𝑠𝑠 >266 

0) causes additional “squeezing” of site 𝑠𝑠. 267 

• 𝛿𝛿 is the reference height range or duration of a hiatus. An exponential prior may be useful when 268 

little is known about the extent of the hiatus, placing higher probabilities on short extents. The 269 

rate needs to be chosen to make sense in the context of the height of the sections, or of the 270 

anticipated age range of the sites. 271 

2.3.2 Penalising a lack of overlap 272 

Individual splines fitted to data from each site separately can almost always follow the data more closely 273 

than a single spline fitted to aligned data from all sites. Given enough knots, alignments in which the data 274 

do not overlap, or only overlap little, will thus generally result in a higher likelihood than alignments with 275 

a partial or full overlap. This means that if the priors allow non-overlapping alignments, those will generally 276 

be preferred in the model inference. To counteract this tendency, we impose a prior on the overlap of each 277 

individual data point from all sites that penalises non-overlap with data from other sites. 278 

The prior on overlap for data point 𝑖𝑖 from site 𝑠𝑠 is 279 

𝑃𝑃(𝑖𝑖𝑠𝑠) = 𝑒𝑒�−√𝑆𝑆−1+�𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠,𝑖𝑖�×𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  ,  (11) 280 

where 𝑆𝑆 is the number of sites in the analysis, 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑠𝑠,𝑖𝑖 is the number of other sites overlapping the 281 

reference height ℎ𝑟𝑟 or age 𝑎𝑎 of point 𝑖𝑖𝑠𝑠, and 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is a constant. This formulation implies that the penalty 282 

for a point 𝑖𝑖𝑠𝑠 that overlaps all other sites is 0, and the penalty is strongest (most negative) if 𝑖𝑖𝑠𝑠 overlaps no 283 

other sites. To work effectively, the penalty needs to be stronger for data sets with little noise (low residual 284 

𝜎𝜎), to offset the larger likelihood differences resulting from fitting a spline with low 𝜎𝜎. A range of 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 285 

values may work in practice. A formulation that we have found works well in many scenarios sets 286 

𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐 ×
1
𝑆𝑆
��

𝜎𝜎𝑦𝑦,𝑠𝑠

𝜎𝜎𝑠𝑠
�
𝑞𝑞𝑆𝑆

𝑠𝑠=1

  (12) 287 
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where 𝑐𝑐 is a constant determining the strength of the overlap penalty (set to a default of 𝑐𝑐 = 1
4
), 𝑞𝑞 = 1 if 𝜎𝜎 288 

is fixed, and 𝑞𝑞 = 1
2
 if 𝜎𝜎 is variable (i.e. estimated in the model inference). Here, 𝜎𝜎𝑦𝑦,𝑠𝑠 is the standard deviation 289 

of all data 𝑦𝑦 from site 𝑠𝑠, and 𝜎𝜎𝑠𝑠 is the residual standard deviation of a Bayesian spline fitted to the data 𝑦𝑦 290 

from site 𝑠𝑠, using the same priors as for the overall model inference. 291 

3 Model illustration 292 

We illustrate the performance of our stratigraphic alignment method with a simple, artificial dataset (Fig 293 

2a). We generated measurements from a reference site (Siteref) using a sine wave covering 3.5 periods, 294 

where each period corresponds to 2𝜋𝜋 radians. To generate the signal data, we intercepted this sine wave at 295 

heights ℎ with 250 evenly spaced points per period, i.e. the number of data points (𝑛𝑛) is 3.5 × 250 = 875. 296 

Each signal value 𝑦𝑦𝑖𝑖 was generated with random white noise 𝜎𝜎 = 1
5
 added, such that 297 

𝑦𝑦𝑖𝑖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �𝜂𝜂𝑖𝑖sin �ℎ𝑖𝑖 −
1
2
𝜋𝜋� ,𝜎𝜎� ,     𝑖𝑖 = 1. . .𝑛𝑛  (13) 298 

The factor 𝜂𝜂𝑖𝑖 modulates the amplitude of the sine wave at each height ℎ𝑖𝑖. It was set to 𝜂𝜂 = 1 for the heights 299 

ranging from −0.5𝜋𝜋 to 5𝜋𝜋, and to 𝜂𝜂 = 0.75 from heights 5𝜋𝜋 to 6.5𝜋𝜋, which reduces the amplitude 300 

beginning in the middle of the third period of the sine wave. The aligned signal was simulated as above, 301 

but from a sine wave covering one period, sampling 250 data points, again with random noise using 𝜎𝜎 = 1
5
 302 

and 𝜂𝜂 = 1. To simulate a sedimentation rate twice as high as at the reference site, we multiplied the heights 303 

of Sitealign by 2. The heights of Sitealign were then shifted to start at 0. 304 

The aligned signal should thus match either the first or the second, but not the third period of the reference 305 

signal. To align the two sites, we used a simple model with a site-specific shift 𝛼𝛼, referring to the top of 306 

Sitealign and relative sedimentation rate 𝜈𝜈 as in Equation 5. From the data generation, we know that the 307 

posterior of 𝜈𝜈 should be ≈ 2, with ln(𝜈𝜈) ≈ 0.69, and 𝛼𝛼 (defined as the reference height corresponding to 308 

the top height of Sitealign) should be ≈ 2𝜋𝜋 (top of first period) or ≈ 4𝜋𝜋 (top of second period). 309 

To minimise the influence of the priors, we used a uniform prior on 𝛼𝛼 that extends well beyond the 310 

alignment positions known from generating the data, and a broad normal prior on ln(𝜈𝜈) that encompasses 311 

the known sedimentation rate 𝜈𝜈 = 2 (Fig. 2b): 312 

𝑃𝑃(𝛼𝛼) ∼ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−𝜋𝜋, 8𝜋𝜋)  (14) 313 
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𝑃𝑃�ln(𝜈𝜈)� ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1)  (15) 314 

These priors place 95% of prior probability for the relative sedimentation rate of Sitealign between 0.14 and 315 

7.1, and place the top of Sitealign anywhere from half a period below the start of the first period (−𝜋𝜋) up to 316 

one period above the third period (8𝜋𝜋). For the cubic spline, we specify 20 evenly spaced knots, which is 317 

more than enough to approximate the three periods of the sine wave. 318 

We estimated the posterior of the model with three independent runs, each with 16 chains and 60,000 319 

iterations. The first 10,000 samples were discarded as burn-in, and every 25𝑡𝑡ℎ iteration was recorded, 320 

resulting a total of 6000 samples after burn-in across all three independent model runs. 321 

The results show that the analysis identified both matching alignments, corresponding to the first and 322 

second period of the reference site (Fig. 2b). The posterior probability for (Sitealign) matching period 1 is 323 

50.1%, and 49.9% for matching period 2. A density plot of the posterior of 𝛼𝛼 and ln(𝜈𝜈) shows that 𝛼𝛼 has a 324 

bimodal posterior, corresponding to the two alignments (Fig. 2c). The trace plots indicate good mixing of 325 

the chains (Fig. 2d), suggesting that the posterior estimates are robust. 326 

It is notable that the model estimate for the relative sedimentation rate 𝜈𝜈 is lower at 1.90 (95% credible 327 

interval: 1.82 to 1.99) than the value used for the data generation (2.00). Reported values, here and 328 

throughout, represent the posterior median, with 95% credible intervals – given in brackets – referring to 329 

the interval between the 2.5% and 97.5% points of the posterior distribution. This deviation of the posterior 330 

from the known sedimentation rate estimate arises because the priors favour greater overlap (see Sect. 331 

2.3.2). The posterior alignment tends to “compress” the data from Sitealign slightly less than expected, 332 

leading to an increased overlap of points (see also Fig. 5b). 333 
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Figure 2: Model illustration using artificial data. a) Input data: Quantitative stratigraphic data from two 

sites. The blue line indicates the range in which 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 was created with 𝜂𝜂 = 1, and the purple line 

above indicates the range for which 𝜂𝜂 was set to 0.75 to lower the amplitude. b) Two alignments 

identified by the inference, with (Sitealign; blue squares) matching the first or second period of (Siteref; 

red points). The alignments shown here correspond to two distinct samples from the posterior; other 

samples will result in slightly different positions of (Sitealign). The curved dark lines show the cubic 

spline corresponding to each alignment. c) Posterior densities of 𝛼𝛼 and ln(𝜈𝜈). The two modes of 𝛼𝛼 

correspond to the two distinct alignments in b). The dotted lines indicate the 𝜈𝜈 values with which 
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(Sitealign) was simulated, and the two plausible 𝛼𝛼 values. d) Trace plots of 𝛼𝛼 and ln(𝜈𝜈). The three 

distinct colours correspond to the three independent model runs. For visual clarity, only 75 selected 

samples are shown from each run. 

4 Case study: Lower Cambrian δ13C records 334 

To demonstrate the utility of this method, we use it to align stable carbon isotope records (δ13C) from lower 335 

Cambrian marine shelf carbonates (Fig. 3). We integrate a combination of radiometric dates, δ13C and 336 

astrochronological information from four sites to obtain age estimates for the sampled intervals from all 337 

sites, and use this age model for dating the first documented occurrence of Siberian trilobites. 338 

4.1 Data 339 

We selected three records from the Anti-Atlas mountains in Southern Morocco, corresponding to the Oued 340 

Sdas, the Tiout and the Talat n’ Yissi sections, which were part of West-Gondwana during the early 341 

Cambrian (Magaritz et al., 1991; Maloof et al., 2005, 2010; Tucker, 1986). Oued Sdas and Tiout harbour 342 

multiple precise U-Pb radiometric ages (Landing et al., 2021; Maloof et al., 2010). Talat n’ Yissi has no 343 

radiometric dates, but a radiometric date exists from the stratigraphically equivalent Lemdad syncline 344 

(Landing et al., 1998) that has been correlated biostratigraphically to Talat n’Yissi with the Antatlasia gutta-345 

pluviae zone (Maloof et al., 2005); we include this date in the analysis. We will align these sites with each 346 

other, and with a δ13C record from the Sukharikha section from the northwestern Siberian platform 347 

(Kouchinsky et al., 2007), corresponding to the palaeocontinent Siberia. There are no radiometric dates 348 

available for the Siberian section for this stratigraphic interval. Data that was inferred to be below the lower 349 

leg of the prominent “5p” excursion (lowest peak in Fig. 3a and d) was excluded to simplify the correlation, 350 

reducing the number of modelled sedimentation rates unconstrained by radiometric dates. This cropping of 351 

data affects the Oued Sdas and Sukharikha sections; Fig. 3 shows all data that was included in the analysis. 352 

δ13C values were used as reported by the authors of the respective publications without any scaling or other 353 

adjustments. 354 
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Figure 3: Cambrian δ13C data and radiometric dates from Morocco (a - c) and Siberia (d). Different 

colours, in conjunction with different symbols, delineate different lithological units or formations. 

Circles indicate the position of radiometric dates, with mean age and 2 standard deviations denoting the 

uncertainty. Stars denote the positions where the oldest trilobite remains are found in Morocco (a) and 

Siberia (d). The dashed line in (d) indicates a hiatus. 𝛼𝛼 indicates the reference horizon chosen for 

specifying the prior on the shift parameter 𝛼𝛼 for each site. 

4.2 Model specification 355 

To align the four sites on the age scale, we specify an 𝛼𝛼 parameter on the absolute age scale (Ma) for each 356 

site, and use absolute, rather than relative sedimentation rates (expressed in m Myr−1). We encapsulate 357 

variation in sedimentation rates (𝜈𝜈) by partitioning sites into members, formations or lithological units, 358 

leading to multiple sedimentation rates per site. As there are few radiometric dates to constrain 359 

sedimentation rates, partitions shared between the Moroccan sites are set to have the same relative 360 

sedimentation rate across sites. To account for potentially faster or slower sedimentation rates at different 361 

sites, a site-specific sedimentation rate multiplier 𝜁𝜁 is added for Oued Sdas and Talat n’Yissi that is 362 

multiplied with the 𝜈𝜈 from those sites. The 𝜈𝜈 for a partition applies to all sites at which this partition occurs; 363 

for Tiout, they are used unaltered, and no 𝜁𝜁 is needed for Sukharikha as there are no shared partitions with 364 

other sites. We partition the Moroccan data based on the lithostratigraphy from Maloof et al. (2005). We 365 

divide the Adoudounian Tifnout Member into a lower part (Tifnout l.), and an upper stromatolitic part 366 

(Tifnout stromatolite), as preliminary results suggested pronounced sedimentation variability between those 367 

parts. We subdivide the Lie de Vin Formation into three members; the Igoudine Formation is subdivided 368 

into two members. The Amouslek and Isaafen formations are not subdivided. The Sukharikha section is 369 
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divided into two formations, which we assign separate sedimentation rates. At the boundary, a substantial 370 

hiatus is evinced by the truncation of the “7p” δ13C peak (Kouchinsky et al., 2007). We include the duration 371 

of this hiatus (𝛿𝛿) as an additional unknown parameter in the model. 372 

The model requires priors to be specified for each of its 18 alignment parameters: Four 𝛼𝛼, eleven 𝜈𝜈, two 𝜁𝜁 373 

and one 𝛿𝛿 (Fig. 4). These priors are broadly guided by the radiometric dates and by previous work (Bowyer 374 

et al., 2023; Landing et al., 2021; Sinnesael et al., 2024). The 𝛼𝛼 for the Tiout and Sukharikha sites are placed 375 

at the height positions of the first trilobite fossil remains found at Tiout (Sinnesael et al., 2024), and the first 376 

appearance of Siberian trilobites correlated to Sukharikha (Landing et al., 2021; Varlamov et al., 2008). 377 

Here, we place normal distributed priors with mean age 520 Ma and a wide standard deviation of 2 Myr on 378 

the 𝛼𝛼 parameters at Tiout and Sukharikha. This prior reflects the notion that first appearance dates of 379 

trilobites may be broadly similar at ≈ 520 Ma, but not necessarily identical, and the data is allowed to 380 

determine the exact age of each 𝛼𝛼. The 𝛼𝛼 priors for Oued Sdas and Talat n’Yissi are placed at the position 381 

of the lowest or the only available radiometric date, respectively, consisting of normal distributions with 382 

mean age equal to the mean age estimate of the radiometric data and a wide standard deviation of 2 Myr. 383 

For the sedimentation rates, priors informed by an astrochronology of the Tiout section (Sinnesael et al., 384 

2024) are used for the following five stratigraphic partitions: The lower, middle and upper members of the 385 

Lie de Vin Formation, and for the lower and upper (Tiout Member) members of the Igoudine Formation. 386 

Those priors are chosen such that the 95 percentile interval of 𝜈𝜈 spans the minimum and maximum of the 387 

astrochronological sedimentation rate estimates when using an uncertainty of ±1 short eccentricity cycle 388 

for each partition, with an estimated duration of short (≈ 100 kyr) eccentricity cycles ranging from 92.5 to 389 

100.5 kyr (two standard deviations, following Lantink et al., 2022). 390 

To specify priors for the remaining Moroccan partitions (lower part of Tifnout Fm., Tifnout stromatolite, 391 

Amouslek Fm., and Isaafen Fm.), sedimentation rates between the radiometric dates from Oued Sdas and 392 

Tiout are calculated using the mean ages of the dates. The prior on ln(𝜈𝜈) is defined as a normal distribution 393 

with a mean of 5.39, corresponding to the mean of the empirical sedimentation rates from Oued Sdas and 394 

Tiout, calculated on the logarithmic scale. A wide standard deviation of 0.75 is set, resulting in the 95 395 

percentile interval of 𝜈𝜈 spanning 50.3 to 951 m Myr−1. This interval significantly exceeds the range of 396 

sedimentation rates inferred from the radiometric dates at Oued Sdas and Tiout, 147 to 314 m Myr−1, 397 

allowing for the possibility of lower or higher sedimentation rates in some partitions. 398 

Prior sedimentation rate estimates for the Siberian formations are estimated in the absence of radiometric 399 

dates, very broadly based on global correlations by Bowyer et al. (2023). These correlations suggest average 400 

sedimentation rates on the order of 20 to 30 m Myr−1; we place a normal prior on ln(𝜈𝜈) with a mean of 401 
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3.30 and a standard deviation of 0.75, resulting in a 95 percentile interval of 𝜈𝜈 spanning 6.23 to 402 

117.9 m Myr−1, which allows for the possibility of significantly different sedimentation rates from those 403 

inferred by Bowyer et al. (2023). 404 

Finally, a prior needs to be placed on the duration of the hiatus 𝛿𝛿 between the Sukharikha and the 405 

Krasnoporog formations. Kouchinsky et al. (2007) do not give an indication of the potential duration of this 406 

hiatus, but if the under- and overlying δ13C peaks are correlated as indicated by previous work (Bowyer et 407 

al., 2022; Landing et al., 2021), a relatively short hiatus of ≈ 1 Myr is likely. To express considerable 408 

uncertainty about the duration of the hiatus, we place an exponential prior on 𝛿𝛿 with a rate of 1, which 409 

places 95% of prior probability on the duration being < 3 Myr, with 5% probability accounting for the 410 

possibility of a longer gap. 411 

The cubic spline comprises 40 evenly spaced knots, allowing it to closely follow trends in the δ13C records 412 

while keeping the MCMC runtime manageable, as a higher knot count increases computational cost. For 413 

the smoothing parameter 𝜆𝜆, we applied a gamma prior with StratoBayes’ default values of 𝑎𝑎𝜆𝜆 = 1 and 𝑏𝑏𝜆𝜆 =414 

1000. We fixed 𝜎𝜎, which is the residual standard deviation of the overall spline, at 0.66, which is the 415 

average residual standard deviation of individual cubic splines fitted to each δ13C record from the four 416 

respective sites. These individual splines were constructed with 40 knots evenly spaced across the height 417 

range of each respective site and fitted with Gibbs sampling using 2000 iterations, discarding 25% of 418 

samples as burn-in. The same default 𝜆𝜆 priors as described above were applied, while the prior for these 419 

splines’ standard deviations was specified as a gamma prior on the precision 𝜏𝜏, with 𝑎𝑎𝜏𝜏 = 𝑏𝑏𝜏𝜏 = 0.01 (see 420 

Appendix A for details).  421 
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Figure 4: Priors on the 18 alignment parameters for the Cambrian model. Prior probability density is 

shown (a) for four 𝛼𝛼 parameters corresponding to one site each (priors for Tiout and Sukharikha in grey 

are identical), (b) for six 𝜈𝜈 (sedimentation rate) parameters with little prior knowledge, (c) for five 𝜈𝜈 

parameters from Morocco with tight priors based on astrochronology, (d) for 𝜁𝜁 parameters (site-specific 

sedimentation rate multipliers) for Oued Sdas and Talat n’Yissi (identical), and (e) for the duration of 

the hiatus between the Sukharikha and the Krasnoporog formations. The width of the red bar in (b) 

visualises the range of sedimentation rates spanned by (c). Panel (f) visualises two alignments 

generated by randomly drawing parameter values from their respective priors, to give an indication of 

the broad range of alignments that the priors on the alignment parameters allow; colours correspond to 

the four sites (see Fig. 6). Panels (b), (c), and (d) are depicted with a logarithmic x-axis as the priors 

were specified on ln(𝜈𝜈) and ln(𝜁𝜁). 

4.3 Parameter estimation 422 

This model is more complex than our earlier examples, and hence requires longer runs with more chains. 423 

We conducted four independent model runs, each with 750,000 iterations and 24 chains. The runs were 424 

executed in parallel using four workers on a desktop computer (Intel i7-10700 CPU, 8 cores / 16 threads, 425 

40 GB RAM) and completed within 5 days. The first 150,000 iterations were discarded as burn-in. From 426 
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the remaining 600,000, every 50th iteration was retained, resulting in 12,000 samples per run and 48,000 427 

samples in total. 428 

Inspection of trace plots of the model runs indicates stationarity and good mixing of the chains with the 429 

exception of infrequent visits of secondary posterior modes (Appendix B, Fig. B1). The potential scale 430 

reduction factor (using eq.4 in Vats and Knudson, 2021) is between 1.00 and 1.05 for all alignment 431 

parameters, suggesting approximate convergence of the MCMC. The multivariate effective sample size 432 

(Vats et al., 2019) of the 48,000 samples is 4161. 433 

4.4 Results 434 

To identify distinctly different alignments in the posterior, a hierarchical density-based cluster analysis 435 

(Campello et al., 2015) was conducted using the inferred ages of all partition boundaries of the four sites 436 

(Fig. 4a,b). We specified 1% of samples (480) as the minimum number of points per cluster, resulting in 437 

three distinct clusters with 93%, 2.8% and 2.6% of posterior samples, respectively, and 1.5% of samples 438 

not being assigned to any cluster. These alignment clusters also differ in the prior probabilities and 439 

likelihoods associated with individual posterior samples. On average, samples from alignment 1 tend to 440 

exhibit a lower degree of overlap, but a higher likelihood (Fig. 4c), indicating a better fit to the data. 441 
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Figure 5: (a, b) 2D density plots of the inferred top ages of the four sites, representing some of the ages 

used for obtaining alignment clusters from posterior samples. (c) 2D density plot of the ln prior 

probability of overlap against the overall ln likelihood. Areas with more opaque shadings correspond to 

a higher density of individual posterior samples. Colours correspond to alignment clusters: alignment 1 

- violet; alignment 2 - blue; alignment 3 - green; outlier samples not assigned to any cluster - yellow. 

Using samples from the posterior of the model parameters, alignments can be generated. Fig. 6 visualises 442 

three alignments drawn from the three alignment clusters identified in the posterior. For each alignment 443 

cluster, the iteration with partition boundary ages that are, on average, closest to the median ages of the 444 

partition boundaries within that cluster is selected for displaying. All three alignments exhibit a good match 445 

between the long-term trends of the δ13C curves from the four sites and the common spline curve, although 446 

many shorter-term deviations are visible (Fig. 6a-c). The spline curve notably follows the more densely 447 

sampled sites (Oued Sdas, Talat n’Yissi) more so than the thinly sampled sites (Tiout, Sukharikha), 448 

resulting in greater deviations of the latter two sites. 449 

The posterior age estimates for the stratigraphic positions of the radiometric dates broadly match the age 450 

estimates that were used as inputs in the analysis (Fig. 6d). The deviations are greatest for the Talat n’Yissi 451 

date (Ta1), which has large uncertainty and therefore less influence on the analysis, and the second date 452 

from Oued Sdas (Ou2). The first appearances of trilobites are visualised alongside the dates in Fig. 6d, and 453 

are dated to 519.46 Ma (519.25 to 519.68 Ma) at Tiout. The age estimate for the first Siberian trilobites 454 

differs considerably between the different alignment solutions: For the most likely alignment 1, the age 455 

estimate is 520.79 Ma (520.98 to 520.61 Ma), and for alignment 2 the estimate is somewhat higher at 521.05 456 

Ma (521.19 to 520.91 Ma). Alignment 3 suggests a significantly later appearance of Siberian trilobites at 457 

519.98 Ma (520.15 to 519.84 Ma). All three alignments place the appearance of the first Siberian trilobites 458 

before their appearance at Tiout, with the temporal gap (computed directly from the posterior distribution) 459 

being estimated at 1.33 Myr (1.09 to 1.54 Myr) for alignment 1, 1.71 Myr (1.54 to 1.87 Myr) for alignment 460 

2, and 0.63 Myr (0.53 to 0.74 Myr) for alignment 3. 461 
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Figure 6: Three possible alignments identified by the inference with Cambrian data. (a) Exemplary 

sample from the cluster of the most likely alignment (93% of posterior samples). (b, c) Exemplary 

samples from a second and third identified alignment cluster (2.8% and 2.6% of posterior samples, 

respectively). Each shown alignment corresponds to a single sample from the posterior; other samples 

will result in slightly different alignments. 1.5% of samples were not assigned to any cluster (see Fig. 

5). The curved dark lines show the cubic B-splines corresponding to each visualised sample. The 

coloured bars to the right of each alignment show the median duration of the stratigraphic partitions 

under each respective alignment cluster, based on the median ages of partition boundaries, with colours 

repeating the colour scheme of Fig. 2. (d) Posterior density of the inferred ages corresponding to the 

radiometric dates to the left (3 from Tiout, 4 from Oued Sdas, and 1 from Talat n’Yissi) and the first 

occurrences of trilobites at Tiout (Ti tril.) and Sukharikha (Sh tril.) to the right, in colours. All samples 

from all alignment clusters were included. Greater width corresponds to higher posterior density; all 

densities are scaled to have the same maximum for better visibility. Densities representing the 

uncertainties of radiometric dates based on their mean and standard deviation are shown in grey (left). 

The faint yellow shading to the right shows the prior density on 𝛼𝛼, i.e. the first appearance of trilobites 

at Tiout and Siberia based on a mean age of (520 Ma) and a standard deviation of 2 Myr (identical for 
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Tiout and Siberia). Colours and shapes of the points correspond to the four sites: Tiout - brown circles; 

Oued Sdas - pink squares; Talat n’Yissi - green diamonds; Sukharikha - blue triangles. 

The posterior of the model runs allows the construction of age models that span the entire height of each 462 

site (Fig. 7). As sedimentation rates are constrained to be constant within the pre-defined partitions, 463 

sedimentation rate changes are visible as inflections at the boundaries of these partitions. Age uncertainties 464 

are relatively low at Tiout and most of Oued Sdas, which are relatively well constrained by radiometric 465 

dates in the top (Tiout) and middle (Oued Sdas) parts of the sections, as well as by astronomical priors on 466 

sedimentation rates. Uncertainty noticably increases towards the top and bottom of Oued Sdas. The lowest 467 

partition of Oued Sdas is constrained only by its match to the lower part of the Sukharikha Fm., their age 468 

estimates are thus varying considerably between different alignments (Fig. 6). Differences in the positioning 469 

of the δ13C curves between alignments are greatest at Talat n’Yissi and the Siberian Krasnoporog Fm. (Fig. 470 

6), which results in large uncertainties in the age models (Fig. 7c, d). 471 
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Figure 7: Age-depth model for each of the four sites. The solid lines indicate the median posterior ages 

corresponding to the respective heights; the shaded interval denotes the 95% credible interval of 

posterior ages. Colours correspond to the colours of partitions introduced in Fig. 3. Circles indicate the 

mean age estimates of radiometric dates, with vertical lines spanning two standard deviations around 

the mean of these age estimates. Stars denote the first appearances of trilobites in Morocco and Siberia. 

See Fig. B2 for separate visualisations of age-depth models for different alignment solutions. 

5 Discussion 472 

5.1 Lower Cambrian stratigraphy 473 

We used StratoBayes to correlate and date four lower Cambrian carbonate sections using δ13C records, 474 

radiometric dates and astrochronological sedimentation rate estimates. From a large space of possible 475 

alignment configurations (Fig. 4), the software identified alignment solutions that visibly match the large-476 

scale features in the δ13C records from multiple sites, while simultaneously achieving an approximate fit to 477 

the radiometric dates (Fig. 6). 478 

The most likely alignment solution from the posterior, alignment 1 (probability = 93%), results in a 479 

correlation of the three Moroccan sites that has much in common with that proposed by Maloof et al. (2005). 480 

In our model, we used common sedimentation rates for the stratigraphic partitions (members, formations) 481 

shared between the sites, whilst allowing sedimentation rates to systematically differ from the reference 482 

sedimentation rates at Tiout by adding a site-specific multiplier. This multiplier, 𝜁𝜁, is 1.02 (95% credible 483 

interval: 0.97 to 1.08) for Oued Sdas, meaning the model estimates very similar sedimentation rates for 484 

Tiout and Oued Sdas (Fig. 6a), consistent with their close geographical proximity. Sedimentation rates for 485 

the shared partitions at Talat n’Yissi are lower by a factor of 0.86 (0.76 to 0.96), which would be consistent 486 

with a moderately lower accommodation space at Talat n’Yissi relative to Tiout and Oued Sdas (as 487 

suggested by Fig. 3B in Maloof et al., 2005). We deliberately chose broad priors that did not explicitly 488 

enforce a relationship between sedimentation rates and palaeogeography; nonetheless, the model identified 489 

a geologically plausible solution. In contrast, the higher 𝜁𝜁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛′𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 of alignment 2 (probability = 2.8%, 490 

1.07 to 1.37) and alignment 3 (probability = 2.6%, 2.07 to 2.45) are harder to reconcile with the 491 

palaeogeographic context. 492 

Alignments 2 and 3 also suggest different sedimentation rates between Tiout and Oued Sdas, with a higher 493 

value of 𝜁𝜁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (1.13 to 1.26) being estimated by alignment 2, and a lower value of 𝜁𝜁𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (0.83 to 494 
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0.88) by alignment 3. The most consistent lithostratigraphic alignment between Tiout and Oued Sdas is 495 

achieved by alignment 1, meaning that the age estimates for partition boundaries (based on members or 496 

formations) are most similar (Fig. 6). For the more distant Talat n’Yissi, age estimates of partition 497 

boundaries differ to varying degrees across all three alignments. 498 

Breaking down the posterior probability into individual components – likelihood (fit of δ13C measurements 499 

to the spline, fit of age estimates to the radiometric dates) and prior probability from the overlap penalty – 500 

reveals that samples from alignment 1 have a higher likelihood, on average (Fig. 5c). In contrast, alignments 501 

2 and 3 have a greater number of overlapping δ13C points, which results in higher overlap prior probabilities 502 

(Fig. 5c). The overlap prior reflects the prior belief that substantial parts of the sections involved in the 503 

correlation should be overlapping. However, the weight of that prior is somewhat arbitrary and reflects the 504 

technical requirement to facilitate overlap despite non-overlap allowing for closer fit to the spline, similar 505 

to the role of the “edge value” in some DTW implementations (Hay et al., 2019). A lower prior weight on 506 

overlap would thus have caused alignments 2 and 3 to receive lower posterior probabilities relative to 507 

alignment 1. Taken together, the evidence from above leads us to strongly favour alignment 1, and we will 508 

focus further discussion on that most likely alignment solution. 509 

A radiometric date of 517.0 Ma (±2 SD:  515.5 − 518.5 Ma) has been recovered from the Lemdad 510 

Syncline in the Atlas mountains (Landing et al., 1998), and has been correlated biostratigraphically to a 511 

horizon in the lower Isaafen Fm. at Talat n’Yissi (Maloof et al., 2005). In our alignment 1, this horizon has 512 

a posterior age estimate of 519 Ma (519.2 to 518.8 Ma) – ≈ 2 Myr older than the mean of the radiometric 513 

date. This date has informed the age estimates for Talat n’Yssi in Maloof et al. (2005) and Maloof et al. 514 

(2010), whereas alignment 1 produces age estimates close to those of Bowyer et al. (2022) and Bowyer et 515 

al. (2023). Age estimates deviating from radiometric dates are not necessarily incorrect: Although 516 

radiometric dates are sometimes treated as “absolute truth” within the stratigraphic community, they are 517 

the result of various sources of technical uncertainties (Condon et al., 2024) and geological interpretations 518 

like the actual zircon crystallisation versus eruption age (Keller et al., 2018). This is illustrated by the 519 

recalculation of the radiometric date from Landing et al. (1998) to 515.56 Ma (±2 SD:  514.40−520 

516.72 Ma) in the Geological Time Scale 2012 (Schmitz et al., 2012). 521 

The two radiometric dates measured at Tiout at the bottom of and within the Amouslek Formation suggest 522 

a sedimentation rate of 146 m Myr−1 (±2 SD: 78.7 to 613 m Myr−1) for the Amouslek formation. However, 523 

the posterior estimates for the sedimentation rate in the Amouslek formation are poorly constrained and 524 

high compared to the sedimentation rates of all other partitions, at 3030 m Myr−1 (800 to 17,300 m Myr−1). 525 

It appears that the model has overestimated the Amouslek sedimentation rate in aligning the δ13C record of 526 
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the overlying Isaafen formation with a part of the Siberian Krasnoporog formation which has similar δ13C 527 

values (Fig. 6a). The alignments of Bowyer et al. (2022) imply significant sedimentation rate changes 528 

within the Krasnoporog formation, allowing the δ13C records to be better reconciled with the radiometric 529 

dates. We didn’t allow for sedimentation rate changes within the Krasnoporog formation because the 530 

stratigraphic log of Kouchinsky et al. (2007) indicates a uniform facies. Additional sedimentation rate 531 

changes might lead to a closer alignment with the radiometric dates, at the cost of greater model complexity. 532 

The alignment of the Siberian Sukharikha section with the Moroccan sites is relatively precise in the lower 533 

half of the records: The prominent positive δ13C excursions interpreted as the “5p” and “6p” excursions 534 

have a similar magnitude both at Oued Sdas and Sukharikha, and are readily aligned visually (Bowyer et 535 

al., 2022) and by our model (Fig. 6). Our model aligns the main 6p peak of Sukharikha with the first subpeak 536 

of the second large excursion at Oued Sdas, as in model C in Bowyer et al. (2022). The lesser, positive 537 

excursion below the hiatus at the top of the Sukharikha formation lines up with the positive excursion in 538 

the lower Lie-de-Vin formation, representing the “II” peak as in model C in Bowyer et al. (2022). The upper 539 

parts of the Moroccan records and the Siberian Krasnoporog formation appear to be aligned primarily by 540 

matching the prominent positive excursion interpreted as excursion “IV” (Bowyer et al., 2022; Kouchinsky 541 

et al., 2007). The “III” peak below is only weakly expressed at Oued Sdas, leading to uncertainty in the 542 

alignment with the corresponding part of the Krasnoporog formation, and in the inferred duration of the 543 

hiatus even within alignment solution 1 (Fig. B3a-c). Similarly, considerable uncertainty exists in how the 544 

top of Talat n’Yissi corresponds to the Krasnoporog formation. This is evident from variations between 545 

samples in alignment solution 1 (Fig. B3a-c) and in the wide credible intervals of those parts of the age 546 

models (Fig. 7). The relatively small magnitude of δ13C changes limits the model’s ability to identify a 547 

definitive alignment solution for that part of the record. 548 

Our estimate for the Moroccan first appearance of trilobites at Tiout from alignment 1, 519.47 Ma (519.68 549 

to 519.26 Ma), is slightly younger and somewhat less precise than the recent, astrochronological estimate 550 

of 519.62 Ma (95% highest posterior distribution: 519.70 to 519.54 Ma) by Sinnesael et al. (2024). We 551 

attribute this difference to our model simultaneously combining different data types from multiple sites. 552 

Additionally, Sinnesael et al. (2024) allowed sedimentation rates to vary between cycles, whereas our model 553 

assumed a single sedimentation rate per member. In our alignment 1 solution, the highest δ13C values of 554 

Tiout correlate to shortly after the peak of the IV δ13C excursion. This correlation suggests that the actual 555 

peak of the excursion at Tiout has not been sampled by Magaritz et al. (1991) and Tucker (1986), which 556 

may result in misalignments when correlating the record to other sections. Further δ13C samples from the 557 

lower Igoudine and upper Lie-de-Vin formation at Tiout are required to improve correlation with other 558 

sections, including the correlation presented herein. 559 
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Our model successfully reconstructs the first appearance of trilobites at Tiout, within error, despite using a 560 

simpler astrochronology and enforcing a less variable sedimentation rate history than Sinnesael et al. 561 

(2024). It also provides the first fully quantitative estimate for the first appearance of trilobites in Siberia 562 

based on chemostratigraphic correlation and the Moroccan radiometric dates and astrochronology, at 563 

520.79 Ma (520.98 to 520.61 Ma). This refines earlier estimates of ≈ 521 Ma (Landing et al., 2021), and 564 

quantifies the temporal gap between the appearance of trilobites in Siberia and Morocco as 1.33 Myr (1.09 565 

to 1.54 Myr). We do not suggest that these estimates are definitive; indeed, we anticipate that the 566 

incorporation of additional δ13C data from Tiout, the inclusion of astrochronological estimates of individual 567 

short eccentricity cycles, and the relaxation of the assumption of constant sedimentation rates within 568 

partitions may update the estimate. A high-resolution temporal sequence of trilobite first occurrence dates 569 

could be used to delineate trilobite evolutionary rates and dispersal; to evaluate evolutionary hypotheses on 570 

the origins and biomineralisation of trilobites (Holmes and Budd, 2022; Paterson et al., 2019); and to inform 571 

the definition of the base of the Cambrian Series 2 (Zhang et al., 2017). 572 

5.2 Statistical alignment and age modelling 573 

5.2.1 Advantages of Bayesian stratigraphic alignment 574 

As shown above, our algorithm can identify the correct alignment positions in scenarios with one (Fig. 1) 575 

or more than one (Fig. 2) known solution. In scenarios where more than one distinctly different alignment 576 

is identified, the probability of each solution, given the specified data and model, is identified. This can be 577 

used to evaluate the likelihood of competing models for the alignment of stratigraphic records found by 578 

visual (e.g. Bowyer et al., 2023; Landing and Kruse, 2017) or algorithmic (e.g. Hay et al., 2019) correlation. 579 

The requirement to specify priors for the alignment parameters can be leveraged to provide information 580 

beyond that which is contained in the signals: for example, information on sedimentation rates may be 581 

expressed in the prior. 582 

Because our model can integrate absolute age constraints such as radiometric dates, a user is able to 583 

correlate stratigraphic records and construct probabilistic age models in a single step. In our Cambrian 584 

example, the posterior alignment and the posterior age model are thus influenced by the priors, the 585 

quantitative signals and the radiometric dates. In contrast, age models constructed in a separate step after 586 

identifying alignments do not reflect uncertainty arising during the alignment stage (Hagen and Creveling, 587 

2024). 588 

In our integrated approach, discrepancies between radiometric dates and signal alignment are resolved 589 

probabilistically, with the model weighting the available evidence based on its likelihood and prior 590 
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information. This means that posterior age estimates may diverge from the age information provided by 591 

radiometric dates, as seen with the Ou2 date in Fig. 6d. This is not necessarily a deficiency of the model; 592 

rather, it indicates that the priors and non-radiometric data provide sufficiently strong evidence to suggest 593 

that the actual age of the horizon associated with the radiometric date falls toward the tails of its confidence 594 

interval, or that the radiometric uncertainty may be underestimated. Some degree of discrepancy is expected 595 

when integrating multiple data types rather than relying on a single proxy (see also Lee et al., 2022). 596 

If, on the other hand, the user wishes to increase the influence of radiometric dates on the posterior age 597 

estimates, this can potentially be achieved by introducing additional sedimentation rate changes to allow 598 

more flexible alignment of the proxy signals, reducing the weight of the proxy signal records – such as by 599 

imposing a larger 𝜎𝜎 for the cubic spline – or by weakening priors. 600 

5.2.2 Model choice and priors 601 

Stratigraphic alignment using algorithms has the advantage of removing some of the inherent subjectivity 602 

of visual alignment (Sylvester, 2023). Yet, somewhat subjective decisions are still explicitly or implicitly 603 

made with every alignment algorithm. In the case of DTW, subjectivity is introduced e.g. with restrictions 604 

on the warping path (i.e. relative sedimentation rates, Sakoe and Chiba, 1978), with the amount of overlap 605 

required between sections (Hay et al., 2019), or with the choice of an exponent controlling the weight of 606 

outlier values (Wheeler and Hale, 2014). All of those settings can alter the outcome of DTW-based 607 

alignments. Likewise, our Bayesian approach comes with a number of subjective choices. The appropriate 608 

model structure can be readily determined when the data-generating process is known (Sect. 3), but has to 609 

be carefully considered and potentially revised when dealing with complex real-world data (Sect. 4). 610 

Lithological data may guide the partitioning of data and can inform somewhat objective choices of horizons 611 

with likely sedimentation rate changes (Sect. 4.2), but such information may not be readily available with 612 

some datasets, such as with well logs. 613 

Besides the model structure, StratoBayes requires the user to specify priors for several model parameters: 614 

relative or absolute sedimentation rates (𝜈𝜈, 𝜁𝜁), the shifts of sections relative to one another (𝛼𝛼), the duration 615 

of hiatuses (𝛿𝛿), the degree of smoothing of the spline (𝜆𝜆), the extent to which overlap of signal points should 616 

be favoured (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), and optionally the residual standard deviation of the spline (𝜎𝜎). Although the choice 617 

of any of those parameters has the potential to affect posterior alignments and age models, they also offer 618 

a chance to explicitly include geological information that could otherwise only be incorporated by 619 

discarding or modifying alignment solutions after the algorithmic alignment. 620 
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While it is relatively straightforward to express prior beliefs on the alignment parameters 𝛼𝛼, 𝜈𝜈, 𝜁𝜁 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿, it 621 

is hard to specify suitable priors for 𝜆𝜆,𝜎𝜎 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, as they do not correspond to measures used by 622 

geologists. The default priors on 𝜆𝜆,𝜎𝜎 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in the StratoBayes software were chosen iteratively by 623 

working with various test data sets. Users should avoid fine-tuning these priors directly on the data sets to 624 

which they intend to apply StratoBayes, as this could introduce unintended circularity. Instead, analogous 625 

independent data sets could be used to identify suitable priors for 𝜆𝜆,𝜎𝜎 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. For example, priors on 626 

𝜆𝜆 and 𝜎𝜎 for correlating δ13C curves could be meaningfully specified from pre-existing reconstructed δ13C 627 

composite curves.  628 

5.2.3 Challenges with the proxy and sedimentary record 629 

Chemostratigraphy, and, more broadly, correlating geological sections based on proxy data relies on the 630 

proxies accurately reflecting a common, underlying signal. Several processes may disrupt this assumption. 631 

For example, δ13C recorded in carbonates differs between different depositional environments, water 632 

depths, and grain types (Geyman and Maloof, 2021), while the δ13C recorded in restricted basins may be 633 

offset significantly relative to contemporary carbonates elsewhere (Uhlein et al., 2019). Where known, such 634 

offsets could be accounted for by subtracting or adding the estimated offset relative to global values. 635 

Alternatively, anticipated offsets could be modelled as additional unknown variables, as in Edmonsond and 636 

Dyer (2024). This approach will likely require substantial prior knowledge on the potential magnitude and 637 

direction of offsets; otherwise, the combination of variation along the height or time axis and along the 638 

proxy value axis may result in a large range of mathematically feasible alignments. 639 

A more fundamental problem is posed when similar patterns in a proxy curve are asynchronous in different 640 

sections: Shifting and stretching proxy data from multiple sites may result in a strongly correlated composite 641 

curve, but this correlation does not prove that the patterns or excursions observed at different sites were in 642 

fact synchronous (Blaauw, 2012). Unless supported by independent evidence such as precise radiometric 643 

dates, relative age estimates derived from proxy correlations (e.g. δ13C) are conditional on the assumption 644 

of synchronicity.  645 

Several challenges arise from the variability of sedimentation and the incompleteness of the sedimentary 646 

record. Sediment accumulation rates vary with measurement scale (Sadler, 1981): closer spacing between 647 

measurements allows more variability to be identified, with actual sedimentation rate histories displaying 648 

fractal properties (Miall, 2015). This implies that depositional ages tend to vary non-linearly along a 649 

vertically sampled sedimentary section, with substantial incompleteness in shallow-water records (Curtis 650 

et al., 2025). These discontinuities can lead to drastically altered shapes of proxy curves from different 651 

depositional settings, and cycles from periodic proxy fluctuations may be missed due to insufficient 652 
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preservation or sampling (Curtis et al., 2025). This issue is evident in the Sukharikha section, where it is 653 

somewhat ambiguous whether the hiatus represents a fraction of a δ13C excursion (alignment 1 and 2) or 654 

extends over more than one full cycle (alignment 3, Fig. 6). For correlations within sedimentary basins, the 655 

method of Bloem and Curtis (2024) could help resolve ambiguous alignments by reconstructing 656 

depositional histories through geological process modelling, but this method requires exceptionally high-657 

resolution sampling and its utility has yet to be demonstrated with real-world data sets. 658 

Besides the completeness, the sampling density of proxy records may influence correlations. In 659 

StratoBayes, densely sampled sections or parts of sections exert more influence on the shape of the spline 660 

than those that are thinly sampled, which can be seen in the spline curve primarily following the densely 661 

sampled Oued Sdas and Talat n’Yissi records in Fig. 6. Despite this, our Cambrian case study demonstrates 662 

that sections with differing sampling densities – both between and within sites – can still be effectively 663 

aligned. Varying sampling density would, however, pose a challenge for reconstructing a global average 664 

proxy curve from local records, as the global curve would primarily reflect the more densely sampled sites. 665 

StratoBayes introduces a simplification in modelling sedimentary histories by forcing uniform 666 

sedimentation rates within pre-defined segments of a stratigraphic section. An effect of this simplification 667 

can be seen in the age-depth plots in Fig. 7: Due to sedimentation rates being modelled as uniform within 668 

stratigraphic partitions, the uncertainty of age estimates does not necessarily increase away from the 669 

radiometric dates. We acknowledge that this may underestimate the uncertainty associated with potential 670 

sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially when allowing for few 671 

sedimentation rate changes. Similarly, our method currently only allows for specifying potential hiatuses 672 

with an unknown duration at fixed, predetermined heights.  673 

In principle, our method could be used to divide stratigraphic sections into an arbitrary number of segments 674 

with differing sedimentation rates, and with an arbitrary number of potential hiatuses. In practice, estimating 675 

the parameters of a model with more than a low double-digit number of alignment parameters (shift 676 

parameters, sedimentation rates, hiatuses) represents a challenge for the current implementation of the 677 

MCMC algorithm within StratoBayes, as finding and exploring the posterior becomes increasingly difficult 678 

as more parameters are added. This limitation could be alleviated by incorporating MCMC methods suited 679 

for higher dimensional problems and difficult posterior geometries. Alternatively, a continuous process 680 

model such as the compound Poisson-gamma process of BChron (Haslett and Parnell, 2008) might be 681 

integrated with our model for the proxy signal, but again the complexity of the MCMC would increase. 682 

Another approach would be to divide the alignment problem into sub-problems, e.g. by multiple pairwise 683 

correlation of sites (e.g. Hagen et al., 2024; Sylvester, 2023), or by correlating shorter subsections. 684 
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5.3 Towards quantitative stratigraphy 685 

Quantitative stratigraphic correlation and age modelling of diverse geological data represent a long-686 

standing challenge in stratigraphic research. Although many algorithms exist for correlating geochemical 687 

and geophysical stratigraphic data (e.g. Baville et al., 2022; Bloem and Curtis, 2024; Hay et al., 2019; 688 

Sylvester, 2023); few can readily provide uncertainty estimates or incorporate different types of data 689 

simultaneously (e.g. Al Ibrahim, 2022; Edmonsond and Dyer, 2024; Lee et al., 2022). Consequently, 690 

integrated statistical approaches have only rarely been applied to complex real-world stratigraphic problems 691 

(Hagen et al., 2024; Lee et al., 2022). 692 

Our new method has the potential to be applied to diverse datasets; examples range from shallow borehole 693 

data from the Holocene (Finlay et al., 2022) to Proterozoic carbonates (Halverson et al., 2010). The ability 694 

of our model to incorporate multiple proxy records simultaneously opens new possibilities for refining 695 

stratigraphic correlations. For instance, correlations involving both δ13C and δ87Sr records could benefit 696 

from a probabilistic framework that accounts for their respective uncertainties (Bowyer et al., 2022). The 697 

integration of multiple proxies, e.g. multiple element ratios, in the StratoBayes framework could allow 698 

correlations based on the entire record of all proxies, rather than a few visually distinct transitions (Craigie, 699 

2015). 700 

Beyond geochemical records, our approach could also be applied e.g. to geophysical well-logs such as 701 

gamma ray or density logs, and magnetostratigraphic records could be correlated directly rather than relying 702 

on visually interpreted polarity reversals (Langereis et al., 2010). While index fossils can currently be 703 

integrated as tie points, the modelling framework could be expanded to explicitly model first and last 704 

occurrences to better incorporate biostratigraphic uncertainty. Similarly, astrochronological constraints can 705 

be expressed as priors on sedimentation rates, but an additional model component would be needed to 706 

incorporate all astrochronological information from a given site (Sinnesael et al., 2024). 707 

Conclusions 708 

StratoBayes is a Bayesian modelling framework for the probabilistic alignment of stratigraphic proxy 709 

records and age modelling. It correlates quantitative proxy signals such as isotope ratios, and integrates 710 

additional stratigraphic information such radiometric dates, to construct probabilistic age models. Applying 711 

our model to both simulated data and real-world stratigraphic records from the lower Cambrian of Morocco 712 

and Siberia, we have demonstrated its ability to account for uncertainty from all model components and to 713 

identify multiple plausible alignment solutions. Our lower Cambrian case study provides a fully 714 
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probabilistic estimate for the first appearance of trilobites in Siberia, and quantifies the temporal gap 715 

between their first occurrence and the oldest Moroccan trilobites. While our results remain dependent on 716 

model assumptions, they represent a step towards a more objective and reproducible approach to early 717 

Palaeozoic stratigraphy; they also highlight sources of uncertainty and identify targets for future research. 718 

Beyond this case study, StratoBayes has broad applicability to stratigraphic problems across all time 719 

intervals that involve the correlation of quantitative proxy records. 720 

Appendix A: Markov chain Monte Carlo sampling scheme 721 

Appendix A details the Metropolis-within-Gibbs sampling scheme and the parallel tempering framework 722 

that are used within the StratoBayes software to sample from the posterior of the unknown model 723 

parameters. 724 

Sampling strategy 725 

The MCMC sampling scheme used in this study includes an adaptive phase. During this phase, proposal 726 

distributions and the probabilities with which different proposal types are selected for the Metropolis-727 

Hastings updates are adjusted based on the history of the MCMC chains to improve acceptance rates and 728 

mixing. Additionally, the temperature ladder of the parallel tempering framework is updated to improve the 729 

swap rates of chains. After the adaptive phase, the proposal distributions and probabilities, as well as chain 730 

temperatures, remain fixed for the remainder of the run to ensure proper sampling from the posterior. 731 

In the current implementation, the length of the adaptive phase is pre-determined by the user, specified as 732 

a fixed number of iterations. However, the user has the option to extend the adaptation period by continuing 733 

the run if needed. More generally, adaptation could also be stopped automatically based on criteria such as 734 

mixing within chains (Yang and Rosenthal, 2017) or convergence criteria. 735 

Adaptive MCMC algorithms do not always preserve the stationarity of the target distribution during the 736 

adaptive phase (Roberts and Rosenthal, 2009). Therefore, all samples from the adaptive phase are discarded 737 

as burn-in. Additionally, if diagnostic checks suggest that the MCMC has not converged by the end of the 738 

adaptive phase, further samples may need to be discarded. 739 

Gibbs sampling scheme for the cubic B-splines 740 

The following sampling scheme was adapted from Heaton et al. (2020). The spline coefficients are sampled 741 

from a multivariate normal distribution of the form: 742 
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𝛽𝛽 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑏𝑏𝐐𝐐,𝐐𝐐) ,  (16) 743 

where 𝑏𝑏 is given by . 744 

𝑏𝑏 = �𝐁𝐁(ℎ)�𝑇𝑇
𝑦𝑦
𝜎𝜎2

,  (17) 745 

𝐁𝐁(ℎ) are cubic B-splines (Eilers and Marx, 1996) at a set of 𝑘𝑘 knots evaluated at heights ℎ at which 𝑦𝑦, the 746 

composite stratigraphic signal of all sites, was observed. Here, 𝜎𝜎 is the residual standard deviation. 747 

The other element needed for sampling from the posterior of 𝑏𝑏 is 𝑄𝑄, given by 748 

𝐐𝐐 = (𝐇𝐇 + 𝜆𝜆𝐃𝐃)−1,  (18) 749 

where 𝜆𝜆 is a smoothing parameter, 𝐃𝐃 is a penalty matrix to prevent the spline from overfitting the data, and 750 

𝐇𝐇 = �
𝐁𝐁(ℎ)
𝜎𝜎 �

𝑇𝑇 𝐁𝐁(ℎ)
𝜎𝜎

  (19) 751 

The standard deviation 𝜎𝜎 can be fixed as 752 

𝜎𝜎 =
1
𝑆𝑆
�𝜎𝜎𝑠𝑠

𝑆𝑆

𝑠𝑠=1

,    (20) 753 

where 𝑆𝑆 is the number of sites, and 𝜎𝜎𝑠𝑠 is the standard deviation of individual splines fitted to the data of site 754 

𝑠𝑠. This often provides a good approximation of 𝜎𝜎, while removing an unknown model parameter, potentially 755 

facilitating quicker convergence of the model run. 756 

Alternatively, 𝜎𝜎 can be estimated within the Gibbs sampling scheme from the data, by placing a conjugate 757 

gamma prior on the inverse of the variance (precision, 𝜏𝜏 = 1/𝜎𝜎2): 758 

𝜎𝜎−2 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑎𝑎𝜎𝜎 +
𝑛𝑛𝑦𝑦
2

, 𝑏𝑏𝜎𝜎 +
1
2
��𝑦𝑦 − 𝛽𝛽𝐁𝐁(ℎ)�2
𝑛𝑛𝑦𝑦

�  (21) 759 

The smoothing parameter 𝜆𝜆 is estimated by placing a gamma prior on 𝜆𝜆: 760 

𝜆𝜆 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑎𝑎𝜆𝜆 +
𝑘𝑘
2

,
1

1
𝑏𝑏𝜆𝜆

+ 1
2∑ 𝛽𝛽𝐃𝐃 × 𝛽𝛽𝑘𝑘

�  (22) 761 
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Metropolis-Hastings step 762 

The starting heights or ages 𝛼𝛼, sedimentation rates 𝜈𝜈, site multipliers 𝜁𝜁 and gaps 𝛿𝛿 are updated in a 763 

Metropolis-Hastings step. For each unknown parameter, a new value is randomly sampled from a proposal 764 

distribution. Initially, proposals are sampled independently for each parameter from its respective prior, or 765 

alternatively from a custom proposal distribution. 766 

In the following, the current set of parameter values is labelled 𝜃𝜃, and the proposed set is labelled 𝜃𝜃′. To 767 

decide whether to accept or reject the new set of parameters, an acceptance probability 𝐴𝐴 is calculated, and 768 

the proposal is randomly accepted or rejected with a probability of 𝐴𝐴. This probability is calculated as 769 

𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝜋𝜋(𝜃𝜃′)
𝜋𝜋(𝜃𝜃)� ,  (23) 770 

where 𝜋𝜋(𝜃𝜃) is the unnormalised posterior probability of the current values, and 𝜋𝜋(𝜃𝜃′) is the unnormalised 771 

posterior probability of the proposed values. These can be calculated as 772 

𝜋𝜋(𝜃𝜃) = 𝑝𝑝(𝜃𝜃) × 𝐿𝐿(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃),  (24) 773 

where 𝑝𝑝(𝜃𝜃) is the prior probability of 𝜃𝜃, and 𝐿𝐿(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃) the likelihood of the data given 𝜃𝜃. 774 

We calculate the likelihood of the data given 𝜃𝜃 as a product of the probability densities of each data point 775 

of the signal 𝑦𝑦 (recorded at two or more sites) and of all absolute age information. For the signal, we assume 776 

that the observed values 𝑦𝑦 are normally distributed and centred around the values predicted by the splines, 777 

𝜇𝜇, at height ℎ, with a standard deviation 𝜎𝜎 which has been introduced earlier. The likelihood of a data point 778 

𝑖𝑖 from the signal 𝑦𝑦 is thus 779 

𝐿𝐿(𝑦𝑦𝑖𝑖|𝜃𝜃) =
1

√2𝜋𝜋𝜎𝜎2
× 𝑒𝑒�−

(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2
2𝜎𝜎2 �  (25) 780 

and the log-likelihood for all data points of the signal is calculated as 781 

ln𝐿𝐿(𝑦𝑦|𝜃𝜃) = � ln𝐿𝐿(𝑦𝑦𝑖𝑖|𝜃𝜃)
𝑖𝑖

  (26) 782 

If more than one type of signal is used, the log-likelihood of additional signals can be calculated analogously 783 

and added in Equation 29. 784 



35 
 

Age constraints are incorporated by using an age estimate from radiometric dates 𝑑𝑑 with, for example, mean 785 

ages 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and uncertainties given by standard deviations 𝑎𝑎𝑠𝑠𝑠𝑠. The probability density of a date 𝑑𝑑𝑖𝑖 is then 786 

calculated as 787 

𝐿𝐿(𝑑𝑑𝑖𝑖|𝜃𝜃) =
1

�2𝜋𝜋𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖
2

× 𝑒𝑒
�−

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖−𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖
2𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖2

�
  (27) 788 

where 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 is the age predicted by the age-height transform at the height ℎ𝑠𝑠,𝑖𝑖, the height at the site 789 

at which date 𝑑𝑑𝑖𝑖 was obtained. 790 

The log-likelihood for all age constraints is calculated as 791 

ln𝐿𝐿(𝑑𝑑|𝜃𝜃) = � ln𝐿𝐿(𝑑𝑑𝑖𝑖|𝜃𝜃)
𝑖𝑖

  (28) 792 

and the overall likelihood, if absolute age constraints are included, is 793 

ln𝐿𝐿(𝑦𝑦,𝑑𝑑|𝜃𝜃) = ln𝐿𝐿(𝑦𝑦|𝜃𝜃) + ln𝐿𝐿(𝑑𝑑|𝜃𝜃)  (29) 794 

Proposal types 795 

In order to allow for a broad search of the parameter space, proposals are initially selected independently 796 

for each parameter, and are selected independently of the current parameter values. These proposals lead to 797 

a decreasing acceptance rate over time, and the chain tends to arrive at a single set of values with high 798 

posterior probability, 𝜋𝜋(𝜃𝜃), remaining there for many iterations due to frequent rejections. Therefore, 799 

different types of proposals are used after an initial period: 800 

1) Proposing from the prior or a custom distribution: This proposal is used exclusively for a small 801 

number of initial iterations and is alternated with other proposals later on. 802 

2) Adaptive independent (univariate) proposals: Proposals for each parameter are selected 803 

independently from other parameter values. Proposals are dependent on the current state of the 804 

parameter 𝜃𝜃𝑖𝑖, and sampled from a normal distribution 𝑁𝑁(𝜃𝜃𝑖𝑖,𝜎𝜎𝑖𝑖), where 𝜎𝜎𝑖𝑖 is a standard deviation 805 

that is estimated based on the history of the MCMC chain, i.e. based on the sampled 𝜃𝜃𝑖𝑖 from 806 

previous iterations. 807 

3) Adaptive dependent (multivariate) proposals (Roberts and Rosenthal, 2009): Proposals for the 808 

parameters are selected jointly and are dependent on the current state of the parameters 𝜃𝜃. 809 

Proposals are sampled from a multivariate normal distribution 𝑀𝑀𝑀𝑀𝑀𝑀(𝜃𝜃,𝛴𝛴), where 𝛴𝛴 is a 810 



36 
 

covariance matrix that is estimated based on the history of the MCMC chain, i.e. based on the 811 

sampled 𝜃𝜃𝑖𝑖 from previous iterations. 812 

4) Shifting some or all 𝛼𝛼 and or 𝛿𝛿 parameters while keeping the other parameters constant. This can 813 

accelerate the convergence of the MCMC in cases where some sites are aligned with each other, 814 

but offset relative to other sites. 815 

Proposal types are chosen with a probability that broadly corresponds to the relative acceptance probability 816 

of the respective proposal type, i.e. proposal types that are rejected often are chosen less frequently. 817 

Adaptation for types 2) and 3), and the adjustment of proposal type probabilities ends after the adaptive 818 

phase. Posterior samples from the adaptive phase have to be discarded as burn-in, to ensure the correct 819 

convergence of the chain. 820 

Parallel tempering 821 

To avoid the MCMC chain becoming trapped at isolated peaks of the posterior probability distribution, we 822 

implement a parallel tempering framework, following Sambridge (2014). This involves running multiple 823 

chains in parallel. The target chain, the chain from which the posterior samples will be taken, is left 824 

unaltered (“cold chain”). The other chains are tempered, i.e. their unnormalised log posterior probabilities 825 

are raised to the power of 1/𝑇𝑇, with 𝑇𝑇 being the temperature. The higher 𝑇𝑇, the more “flattened” the posterior 826 

probability landscape becomes, and the easier it is for the chain to explore the landscape. Frequently, chain 827 

swaps are proposed, during which the model parameter values of different chains are exchanged with a 828 

Metropolis-Hastings acceptance probability based on the ratios of posterior probabilities of the states of the 829 

two chains, evaluated at both temperatures as in Appendix A2 of Sambridge (2014). 830 

The initial temperatures for a number of chains 𝑛𝑛𝑐𝑐 are selected using a geometric spacing, with 𝑇𝑇1 = 1 (cold 831 

chain) and 𝑇𝑇𝑛𝑛𝑐𝑐 = ∞ (hottest chain). The infinite temperature of the hottest chain implies that all proposals 832 

during the MCMC will be accepted, and we let that chain sample from the prior probability distributions of 833 

the parameters. If 𝑛𝑛𝑐𝑐 > 2, intermediate chain temperatures are selected as 834 

𝑇𝑇𝑐𝑐 = 10∑ 𝑑𝑑𝑗𝑗𝑐𝑐
𝑗𝑗=2  ,  (30) 835 

where 836 

𝑑𝑑𝑐𝑐 =
(𝑛𝑛𝑐𝑐 − 1)(2/3)

𝑛𝑛𝑐𝑐 − 2
+
𝑐𝑐 − 1 − (𝑛𝑛𝑐𝑐 − 1)/2

1.5 ∗ 𝑛𝑛𝑐𝑐
,     𝑐𝑐 = 2. . .𝑛𝑛𝑐𝑐 − 1  (31) 837 
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This leads to the spacing of temperatures decreasing with increasing number of chains, and temperature 838 

spacing is narrower for lower temperatures on the log scale. A small amount of white noise from a normal 839 

distribution with zero mean and a standard deviation of (5 × 𝑛𝑛𝑐𝑐)−1 is added to each 𝑑𝑑𝑐𝑐 to vary the initial 840 

temperature ladders between independent model runs. Temperatures are updated in the adaptive phase of 841 

the MCMC to increase the swap rates of chains (Vousden et al., 2016). 842 

Appendix B: Inspecting the posterior of the lower Cambrian case 843 

study 844 

Appendix B provides additional details on the posterior of the inference with lower Cambrian δ13C data and 845 

radiometric dates. 846 

Trace plots 847 

Trace plots visualise the evolution of chains from an MCMC and, together with tools such as the potential 848 

scale reduction factor (Gelman and Rubin, 1992; Vats and Knudson, 2021), allow for assessing convergence 849 

of model runs. The trace plot indicative of a well-behaved model run should be stationary after the burn-in 850 

phase, with different chains mixing well (Gelman et al., 1995). An example of a well-behaved trace plot is 851 

the first panel of Fig. B1. Inspecting the trace plots of the 18 model parameters of the lower Cambrian case 852 

study reveals that all parameters seem to have reached stationarity, this said; some chains occasionally visit 853 

distinctly different values (e.g. Fig. B1, column 1, row 2). The chains are not mixing well in those regions 854 

of the parameter space. Running the model for considerably more iterations is likely to overcome this 855 

problem. However, this affects only the less likely alignments; the most likely alignment (alignment cluster 856 

1) is well explored across all parameters. 857 
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Figure B1: Trace plots of the 18 alignment parameters. Each colour corresponds to a distinct run. For 

visual clarity, only 250 samples are displayed per run. The burn-in phase (the first 150,000 iterations) 

is omitted. 

Age-depth models for different alignments 

The age-depth models for each of the four sites are shown for each alignment cluster separately in Fig. B2 

(instead of for all samples combined as in Fig. 7). 
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Figure B2: Age-depth model for each of the four sites. The solid lines indicate the median posterior 

ages corresponding to the respective heights; the shaded interval denotes the 95% credible interval 

of posterior ages. Colours correspond to the three different alignment clusters and outlier samples. 

Circles indicate the mean age estimates of radiometric dates, with vertical lines spanning two 

standard deviations around the mean of these age estimates. Crosses denote the first appearances of 

trilobites in Morocco and Siberia. 

Variation within alignment clusters 858 

Summarising the posterior by grouping samples into clusters of similar alignments facilitates discussion of 859 

the results but risks oversimplifying the variation within each cluster. Each cluster represents a set of 860 

posterior samples that share similar inferred ages for the partition boundaries, but differences still exist 861 

between individual samples within the same cluster. As an example, three distinct alignments from cluster 1 862 

are visualised in Fig. B3. An alignment from a sample not assigned to any cluster is shown in Fig. B3d. 863 
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Figure B3: Alternative alignments, each corresponding to a single sample from the posterior. (a) A 

sample from the most likely cluster 1, corresponding to that shown in Fig. 6a. (b, c) Alignments 

corresponding to other samples from cluster 1. (d) Alignment corresponding to an outlier sample that 

was not assigned to any cluster. The curved dark lines show the cubic B-splines corresponding to each 

alignment. 

Posterior of alignment parameters 864 

The posterior distributions of the alignment parameters are summarised in histograms in Fig. B4. 865 
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Figure B4: Comparison of prior and posterior probability densities. Histograms in colour denote the 

posterior probability densities of the 18 alignment parameters; the grey, smooth shadings represent 

prior probability densities. The four colours correspond to the four independent model runs. 
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