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Abstract

Stratigraphic correlation and age modelling are fundamental to reconstructing Earth’s history, biological
evolution, and palaecoclimate, and underpin the exploration for subsurface resources. Correlations are
produced by integrating diverse stratigraphic data across multiple sites, typically by visual inspection. Here,
we introduce ‘StratoBayes’, a Bayesian statistical framework that combines stratigraphic correlation and
depositional age estimation of stratigraphic horizons, i.e. age modelling. Our method aligns quantitative
signals from two or more sites by shifting and scaling, allowing for sedimentation rate changes between
stratigraphic partitions. The likelihood of an alignment is evaluated by how well the adjusted signals
conform to a shared smooth trend, represented by a cubic spline. Tie points or independent age constraints,
such as radiometric dates or biostratigraphic markers, can be integrated within this framework, providing
age estimates for all sites. Our approach identifies multiple alignments where distinct alternatives exist,
estimates their relative probabilities, and quantifies the uncertainty associated with correlations and age
estimates. We apply StratoBayes to a lower Cambrian dataset comprising a combination of §'3C records,
radiometric dates and astrochronology from four sites in Morocco and Siberia. The results demonstrate its
capacity to quantify existing alignments, and provide the first precise age estimate for the evolutionary
appearance of trilobites in Siberia, one of the hallmarks of the Cambrian Explosion. Beyond this
application, StratoBayes offers a generalisable framework for probabilistic stratigraphic correlation, with

potential to improve age models across a range of proxy records and time intervals.



29

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59

1 Introduction

Stratigraphic correlation works on the basis that rocks that were deposited under similar conditions or at
the same time tend to share characteristics that allow for their attribution to a stratigraphic or temporal
horizon. For example, insofar as temporal changes in the global 8'°C composition of seawater are reflected
in marine sedimentary rocks, matching trends of changing 8'3C in rock sections from different locations
can be used to place those sections on a relative time scale (Cramer and Jarvis, 2020; Saltzman et al., 2012).
Quantitative signals such as isotopic compositions, elemental concentrations or geophysical well-log data
present a particular challenge: in aligning those signals by eye, the stratigrapher has to make a large number
of intuitive decisions about which peaks and troughs are likely to line up. Trying to integrate all the
stratigraphic evidence from multiple sites often results in more than one potential alignment solution and
differing interpretations between different workers (Bowyer et al., 2022, 2023; Landing and Kruse, 2017;
Smith et al., 2016).

Computer algorithms have been designed to address the problems arising from visual correlation
(Agterberg, 1990; Lisiecki and Lisiecki, 2002; Rudman and Lankston, 1973). Algorithms designed for
aligning quantitative signals from two or more sites typically use a point-based approach, aligning each
point of site A with zero, one or multiple points from site B. This approach proposes variable sedimentation
rates between points. This flexibility in principle allows the most precise alignments, though potentially at
the cost of overfitting. Point-based algorithms commonly use dynamic time warping (DTW), a technique
that finds the optimal match between two time-series data by adjusting their alignment (Sakoe and Chiba,
1978). For a selection of recent approaches using dynamic time warping for stratigraphic alignment, see
Wheeler and Hale (2014); Hay et al. (2019); Baville et al. (2022); Sylvester (2023); and Hagen et al. (2024).
The limitations of DTW-based approaches are that they commonly require known section tops and bottoms
(Sylvester, 2023); and they are generally deterministic, providing only a single solution without any
indication of uncertainty or alternative alignments (but see Al Ibrahim, 2022; Hay et al., 2019). The
integration of additional stratigraphic information besides the quantitative signals tends to be difficult,

requiring extra steps outside of the core DTW-algorithm (e.g. Hagen and Creveling, 2024).

Probabilistic approaches overcome some of these limitations by estimating the probabilities of different
outcomes, rather than producing deterministic predictions. An effective probabilistic approach is offered
by the Bayesian framework, which integrates multiple sources of uncertainty by combining prior
knowledge, encapsulated mathematically as a prior probability distribution, with a custom likelihood

function that is used to evaluate the likelihood of observed data. Given an appropriate prior and likelihood
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function it is straightforward to integrate different types of stratigraphic information. Bayesian approaches
are commonly employed in age-depth models that interpolate between absolute age constraints or tie points;
examples include Bchron (Haslett and Parnell, 2008) and Oxcal (Ramsey, 1995). This approach can be
extended by incorporating prior expectations on hiatuses, sedimentation rates, and rate variability, including

external information such as astrochronological data (e.g. Blaauw and Christen, 2011; Trayler et al., 2024).

Recent Bayesian methods have attempted to combine stratigraphic correlation and age modelling. Lee et
al. (2022) have implemented a Bayesian method that uses Gaussian process regression to match Cenozoic
oxygen isotope data from one site to an oxygen isotope stack, while simultaneously integrating age
estimates from radiocarbon dates to produce probabilistic age-depth models (i.e. the BIGMACS model).
This method improves upon earlier approaches by specifying uncertainty for tie points and integrates prior
knowledge on Cenozoic sedimentation rates with absolute age information from the aligned site. However,
age uncertainties from the reference site are not included, and varying sampling resolution or large
sedimentation rate changes may violate model assumptions and impede the broader adoption of this method
in its current form (Middleton et al., 2024). Edmonsond and Dyer (2024) have developed a different
Bayesian method based on Gaussian process regression that works without prior knowledge of
sedimentation rates, but requires minimum and maximum age estimates for all sections, and the absence of
an explicit prior on sedimentation rates may risk overfitting. Here, we introduce a versatile Bayesian method
for stratigraphic correlation and age modelling that can align quantitative signals from two or more sites
without the need to specify tie points or top and bottom ages, and with no restrictions on sampling
frequencies. Possible sedimentation rates can be specified by the user as priors, and the likelihood
encompasses the alignment of the signals and, optionally, additional age constraints such as dated horizons.
The method requires only vague prior knowledge on the ages and on the degree of overlap of the sections,
along with order-of-magnitude estimates of sedimentation rates; it is not necessary to specify matching
section tops or bottoms. The model is able to integrate radiometric dates from different sites, meaning that
ages from well-dated sites can inform age estimates at sites with little or no age information. Age estimates
with uncertainty can thus be obtained for any point within any site, and alternative alignments can be

identified. Additional stratigraphic knowledge, such as hiatuses or tie points, can be readily incorporated.

Our Bayesian model works by evaluating the fit of a single cubic spline (Heaton et al., 2020) to the
combined quantitative signal of all sites. If more than one type of signal is included, e.g. §'3C and §'%0, a
different spline is constructed for each signal type, and their joint likelihood is used to evaluate the
alignment. Different alignments are generated by shifting the sites relative to each other, and by scaling

segments of the sites using different sedimentation rates. Markov chain Monte Carlo methods are used to
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obtain the posterior distributions of the unknown model parameters. Our method is implemented as an R

package, ‘StratoBayes’.

To demonstrate the potential of this method, we apply it to artificial stratigraphic data and to a real case
study using lower Cambrian §'*C records from Morocco (Magaritz et al., 1991; Maloof et al., 2005, 2010;
Tucker, 1986) and Siberia (Kouchinsky et al., 2007). Integrating radiometric dates (Landing et al., 1998,
2021; Maloofet al., 2010), we provide age estimates for the studied sections of an interval spanning several
lower Cambrian carbon isotope excursions, and compare our algorithm-derived correlation with recent
stratigraphic models relying on visual expert-based interpretations (Bowyer et al., 2022, 2023). Our solution
also provides a fully quantitative age estimate for the appearance of the first Siberian trilobites, which are

thought to be the world’s oldest trilobites (Landing et al., 2021).

2 Bayesian stratigraphic model

StratoBayes generates and evaluates alignments of quantitative stratigraphic signals. A signal consists of,
for example, geochemical or geophysical measurements that vary across height or depth (Fig. 1a), obtained
from a contiguous sedimentary sequence, which may be interrupted by hiatuses at known horizons.
Alignments are generated by shifting the sites containing the signals either (a) against a fixed reference site,
or (b) against each other on an absolute age scale. Additionally, the sites are scaled (“stretched” or
“squeezed”) assuming different sedimentation rates. The fit of different alignments, corresponding to

different shifts and sedimentation rates, is evaluated in the Bayesian framework.

Statistical analysis in the Bayesian framework starts by formulating a probabilistic model that includes
known data y and unknown model parameters 6. Instead of trying to identify a single estimate for 6,
Bayesian inference involves estimating probability distributions for the model parameters, termed
“posterior probability distributions”. Posterior distributions are obtained by combining prior knowledge of
the parameters with the data via a likelihood function. Bayes’ theorem states that the probability of the
parameters given the data, p(8]y), i.e. the posterior probability, is proportional to the probability of the
data given the model parameters (i.e. the likelihood), p(y|@), times the prior probability of the model

parameters, p(6):

p(0ly) x p(y|0)p(6) ¢y

In our case, this approach requires specifying prior probability distributions for the unknown model
parameters that control the shifting and scaling (Fig. 1b), and optionally for the duration of pre-determined

hiatuses. Our model assumes that the measurements in each sedimentary sequence are samples (with noise)
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from a common underlying signal, whose value can be modelled by a smooth curve described by a cubic
B-spline. Our likelihood function quantifies how well a cubic B-spline fitted to a given alignment explains
the observed data (Fig. 1c). Additional likelihood components can integrate absolute age constraints such
as radiometric dates or other tie points, e.g. index fossils. Using Bayes’ theorem, the priors are combined

with the likelihood to obtain the posterior probability for any alignment.

We obtain probability distributions for the parameters of the model by running a Markov chain Monte Carlo
(MCMC) simulation. This involves repeatedly generating parameter values over a large number of
iterations. To ensure thorough exploration of the parameter space, we employ parallel tempering, i.e. we
run multiple chains in parallel, flattening the likelihood of the tempered (hot) chains, which can therefore
move between different posterior modes; swaps between chains are proposed at every iteration. For the
posterior estimates, we retain samples only from the primary (cold) chain. An initial portion of the samples
is discarded (burn-in) to remove dependency on starting values, and only every n iteration is recorded to

reduce autocorrelation. Details on the MCMC implementation are provided in Appendix A.

In the following, we will assume that measurements were taken on a height scale (increasing from the

bottom to the top), but depth-scale measurements can be used interchangeably by inverting their sign.

(a) data (b) priors (c) alignment
Site 1 Site 2 . . Site 1 Site 2
(reference site) unaligned uniform prior on a (reference site) unaligned
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Figure 1: Schematic of the alignment algorithm. a) Input data: Quantitative stratigraphic measurements
(e.g. geochemical data) from two sites recorded along their section height (here given in meters). b)
Priors must be placed on the shift parameter a and on the relative sedimentation rate v. Here, a
determines the reference height (at Site 1) corresponding to the top of the height range of Site 2, and v

corresponds to the sedimentation rate of Site 2 relative to Site 1. The vertical, dashed lines denote the a
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and v values, 12.3 m and 3.0, respectively, that were used in the creation of the data of site 2. ¢) An
alignment corresponding to a single sample from the posterior. The blue dashed line indicates the
position of the top of the data from Site 2 at the reference height scale (a; median: 12.5 m). The
relative sedimentation rate v has been estimated at a median of 2.8, corresponding to a shortening of
the dataset from Site 2 relative to the reference site (indicated by the dashed and solid light brown line).
Note that the posterior estimates of @ and v are similar, although not identical to the values used in
creating the data (see Sect. 3). The curved grey line shows the cubic B-spline corresponding to the

alignment.

2.1 Evaluating alignments with a cubic B-spline

Identifying good alignment positions requires evaluating and comparing different potential alignments. In
the Bayesian framework, the measure used for this evaluation is the likelihood. We derive the likelihood of
an alignment from its fit to a single cubic B-spline (Eilers and Marx, 1996), fitted to the measurements from

all sites, including the reference site (see Fig. 1c).
We model each measured value y; as normally distributed:
yi ~ Normal(u;, 0),  (2)

where y; is the mean, and the standard deviation ¢ represents the scatter around the spline. y; is given by

the spline function

k+2

w=Y BBGR) (3
=1

Here, u can be interpreted as an underlying common signal of which the observations from each site,
including the reference site, are noisy realisations. k denotes the number of internal knots of the spline, with
more knots implying that the spline can potentially capture higher-frequency variations. f; is the spline
coefficient associated with the j-th basis function, and B;(h;) is the j-th B-spline basis function evaluated
at a reference height h;. A roughness penalty controlled by a smoothing parameter A is incorporated in the
prior on 8, such that higher values of 4 serve to favour smoother splines (Appendix A). The number of
knots and the roughness penalty each influence spline flexibility in different ways: increasing k provides a
finer resolution for fitting local features, whereas increasing A penalizes abrupt changes and yields smoother
fits. The knots for the spline can be distributed across the reference height range that the converted

measurement heights occupy for a specific combination of shift parameters (@) and scale parameters (v,

6
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i.e. relative sedimentation rates). Our current model implementation uses evenly spaced knots, but knot
placement could also follow, for example, the density of measurements. Alternatively, the knots can be
fixed at specific heights on the reference scale, in which case combinations of @ and v that result in

converted measurement heights falling outside the knot range cannot be evaluated.

The likelihood of an alignment, given 8, o and A, is determined by the residual deviations of the y; values
from the corresponding y; values. The overall likelihood for n data points is obtained by taking the product

over all individual likelihoods for each pair of y; and y;:

Loipon = [ xeB) @
i=1

V2mro?

We thus assume that the deviations of the data from the spline are independently and identically distributed

according to a normal distribution with mean 0 and standard deviation o.

Our model allows for using more than one type of measurement simultaneously. In this case, a separate
spline is fitted to all data, from all sites, for each type of measurement. The product of all likelihoods from

all measurement types gives the overall likelihood.

2.2 Alignment and partitioning

In order to generate alignments of stratigraphic signals from different sites, one site is picked as a fixed
reference site. The other sites are shifted and stretched (or squeezed) relative to the fixed reference site r.
This requires specifying a shift parameter (height) ag, which anchors an arbitrary, specified height of site
s to a height in the reference site 7. Here, we anchor the top of site s, so we set ag = @top s MeANING At
will be the height at site r that aligns with the top of site s. To stretch or squeeze site s, a relative
sedimentation rate Vs can be specified, where v; is defined relative to the reference site. For any height h, ¢

at site s, the corresponding height in the reference site r can then be calculated as

1
hr = Qtop,s — V_ X (htop,s - hx,s) ’ (5)
s

where htp ¢ is the height of the top of site s. Although we here chose the top of site r as the reference
horizon a for simplicity, any horizon at site 7 can be used as a. A vy < 1 implies that site s has a lower
sedimentation rate than site r, and consequently, s has to be stretched to match r. A vy > 1, i.e. a higher

sedimentation rate at site s will lead to s being squeezed to match r.
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The model described here is simple in that the same v is applied to all measurements of the same site. In
this scenario, any site may be used as the reference site. Below, we introduce more complex models with
more than one sedimentation rate per site, and with hiatuses. With these models, it is practical to select the
site with the most sedimentation rate changes and hiatuses as the reference site. This reduces the number

of unknown parameters in the model, making it easier to obtain a representative sample from the posterior.

2.2.1 Multiple sedimentation rates per site
Instead of having one sedimentation rate per site, sites can be partitioned, reflecting for example lithological
units, with each partition being modelled with a distinct sedimentation rate:

nps—1

1 1
hr = Qtop,s — z (V_ X (hp,s — hp+1’5)> — "y X (hnp’S — hx,s) , D= 1.. My s (6)
p Np.s

l

Here, n,, ¢ is the number of partitions encountered from hyo), to hy s, hy 5 is the top height of partition p at
site s, and h,, .1 5 is the top height of the partition below partition p at site s. If h, ¢ falls in the first partition
from the top, the calculation simplifies to the equivalent of Equation 5, with hp_, the top height of the first
partition being also the top height of site s. The relative sedimentation rates of partitions, v,,, can differ for
each partition in each site, or partitions in different positions within a site or across sites may share

sedimentation rates.
2.2.2 Site-specific sedimentation rate multipliers

The sedimentation rate model above can be further expanded by adding an overall site-specific
sedimentation rate multiplier :

nps—1

1 1
hy = @top,s — —X(h s—h +1s) - X\hn,, —hxs), p=1..mpys (7)
|1z stp D, 12 » (S’Vnp's D.S » D,

l

This may be useful in scenarios where sedimentation rates systematically differ between sites, perhaps due
to varying distances from a sediment source, but where the sedimentation rate ratios of different partitions

are assumed to be constant across sites.
2.2.3 Hiatuses

Known hiatuses (also referred to as unconformities or stratigraphic gaps) can be included at specific pre-

defined locations in a site. Expanding Equation 5 to include gaps of height &, we obtain
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1
hr = Qtop,s — V_ X (htop,s - hx,s) - 2 6g » g=1 --Ng, (8)
s
g

where ng_is the number of gaps encountered from h;,p, s until height hy s. In a correlation on an absolute

age scale (Sect. 2.2.5), hiatuses would instead be expressed as durations, not heights.
2.2.4 Tie points

Tie points define specific heights within an aligned site and assign a probability distribution to indicate to
which horizon these heights correspond on the reference scale. For example, a tie point might be a
lithological boundary, a biostratigraphic horizon, or a radiometric date. If tie points are specified, the
likelihood of an alignment is expanded to include not only the fit of the signal data to the spline, but also

the positions of the ties on the reference height scale relative to the specified probability distribution.

For example, a point in an aligned section which is tied by observation to the reference section at a position
m; with a normally distributed uncertainty with standard deviation s; that ends up being shifted to a

reference height h; (computed from the relevant @ and v parameters) contributes a likelihood of

<_(mt—gt)2>
X e 2s¢ 9)

L(m¢|h,s¢) = >
TSt

to the overall likelihood of the model.
2.2.5 Age-scale alignment

Data on an (absolute) age scale can be aligned using the methods introduced above by using ages instead
of heights. However, height-scale data can be aligned on an age-scale if absolute age constraints (specified
as ties) are provided from at least one site. In this case, all sites will be shifted to align on a common age

scale, i.e., there is no reference site.

Analogous to the heights in the reference height scale in Equation 5, ages (a) can be calculated as:
1
a = Qgop,s + V_ X (htop,s - hx,s) (10)
N

Here, a;,p s 18 the top age (minimum age), rather than top height (maximum height), of site s. Sedimentation
rates Vg need to be expressed on the common age scale, rather than relative to a reference site. Equations

6-8 can be modified accordingly for an analysis on the age scale.
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It should be noted that due to sedimentation rates being fixed for an entire site or within partitions, our
current model implementation does not necessarily result in increasing age uncertainty away from absolute
age constraints. Potential sedimentation rate changes within sites or partitions could lead to our model
underestimating age uncertainty with growing stratigraphic distance from absolute age constraints (see De

Vleeschouwer and Parnell, 2014).

2.3 Priors

The Bayesian framework requires priors to be placed on all unknown model parameters. In our model, these
include the alignment parameters (e.g. a, v), the smoothing parameter A, the residual standard deviation
(if it is not fixed), and the spline coefficients . The priors on the alignment parameters determine the range
of possible alignments and need to be chosen with care. For the other parameters, weakly informative priors
with minimal influence on the analysis are preferred (Appendix A). In addition to those priors, we penalise

a lack of overlap by specifying a prior probability of data points from different sites overlapping each other.
2.3.1 Alignment parameters

The priors on the alignment parameters should reflect the stratigraphic knowledge on the input data. The
user may specify different types of prior distributions (e.g., normal, uniform, exponential) for the alignment

parameters during model setup.

. a determines the reference site (site ) height or age that a specific position within the aligned site
(site s) corresponds to. In the absence of prior knowledge on how the sites are likely to align, a
uniform prior can be placed on a. For example, if a refers to the top of site s, a uniform prior on
a with min and max equal to the height or age range of site r implies that the top of site s will be

placed within the height range of site 7.

. v is either a relative (height scale alignment) or an absolute (age scale alignment) sedimentation
rate. In our model implementation, priors are placed on the natural logarithm of v, In(v), rather
than on v directly. Specifying rate parameters on the logarithmic scale ensures that their priors are
symmetric: a doubling or halving of a rate has equivalent distances on the logarithmic scale. If the
sedimentation rate is relative, In(v) < 0 (i.e. v < 1) results in “stretching”, and In(v) > 0
(i.e. v > 1) results in “squeezing” of site s relative to site . In the absence of strong prior
knowledge about the relative sedimentation rate, a normal prior on In(v) with a mean of 0 places
equal prior probability on “stretching” or “squeezing” of site s relative to site r. The standard

deviation requires at least a broad guess of the potential magnitude of sedimentation rate

10
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differences. For example, a standard deviation of % places 95% of prior probability on % <v<

In(4)

4 for In(v) ~ Normal (O, Toc

). If v is an absolute sedimentation rate, the range of plausible

prior sedimentation rates may be estimated from the absolute age constraints.

. {, is a multiplier applied to all relative or absolute sedimentation rates v corresponding to a single
site s. As with v, In({) < 0 (i.e. {; < 1) causes additional “stretching”, and In({;) > 1 (i.e. {; >

0) causes additional “squeezing” of site s.

. 6 is the reference height range or duration of a hiatus. An exponential prior may be useful when
little is known about the extent of the hiatus, placing higher probabilities on short extents. The
rate needs to be chosen to make sense in the context of the height of the sections, or of the

anticipated age range of the sites.
2.3.2 Penalising a lack of overlap

Individual splines fitted to data from each site separately can almost always follow the data more closely
than a single spline fitted to aligned data from all sites. Given enough knots, alignments in which the data
do not overlap, or only overlap little, will thus generally result in a higher likelihood than alignments with
a partial or full overlap. This means that if the priors allow non-overlapping alignments, those will generally
be preferred in the model inference. To counteract this tendency, we impose a prior on the overlap of each

individual data point from all sites that penalises non-overlap with data from other sites.

The prior on overlap for data point i from site s is
P(ls) — e(_VS_:H'\/ Soverlap,s,i)xcoverlap , (1 1)

where S is the number of sites in the analysis, Syperiap,s,i 1S the number of other sites overlapping the
reference height h,. or age a of point ig, and Cyyeriqp 18 @ constant. This formulation implies that the penalty

for a point i that overlaps all other sites is 0, and the penalty is strongest (most negative) if i overlaps no
other sites. To work effectively, the penalty needs to be stronger for data sets with little noise (low residual

0), to offset the larger likelihood differences resulting from fitting a spline with low . A range of Coperiap

values may work in practice. A formulation that we have found works well in many scenarios sets

S
1 Oys
Coverlap = € X E .
s=1 s

)q (12)

11
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where c is a constant determining the strength of the overlap penalty (set to a default of ¢ = %), g=1ifo

is fixed, and g = 5 if o is variable (i.e. estimated in the model inference). Here, gy, 5 is the standard deviation

of all data y from site s, and o is the residual standard deviation of a Bayesian spline fitted to the data y

from site s, using the same priors as for the overall model inference.

3 Model illustration

We illustrate the performance of our stratigraphic alignment method with a simple, artificial dataset (Fig
2a). We generated measurements from a reference site (Site,.r) using a sine wave covering 3.5 periods,
where each period corresponds to 27 radians. To generate the signal data, we intercepted this sine wave at

heights h with 250 evenly spaced points per period, i.e. the number of data points (n) is 3.5 X 250 = 875.

. . . . 1
Each signal value y; was generated with random white noise o = - added, such that

1
y; ~ Normal (nisin (hi _ET[)'G)' i=1..n (13)

The factor n; modulates the amplitude of the sine wave at each height h;. It was set to n = 1 for the heights
ranging from —0.57 to 5w, and to 1 = 0.75 from heights 57 to 6.5m, which reduces the amplitude

beginning in the middle of the third period of the sine wave. The aligned signal was simulated as above,
but from a sine wave covering one period, sampling 250 data points, again with random noise using o = §

and = 1. To simulate a sedimentation rate twice as high as at the reference site, we multiplied the heights

of Site,igy by 2. The heights of Site,;q, were then shifted to start at 0.

align

The aligned signal should thus match either the first or the second, but not the third period of the reference
signal. To align the two sites, we used a simple model with a site-specific shift a, referring to the top of
Site,jign and relative sedimentation rate v as in Equation 5. From the data generation, we know that the
posterior of v should be = 2, with In(v) = 0.69, and a (defined as the reference height corresponding to

the top height of Site;,,) should be = 27 (top of first period) or = 4w (top of second period).

align

To minimise the influence of the priors, we used a uniform prior on a that extends well beyond the
alignment positions known from generating the data, and a broad normal prior on In(v) that encompasses

the known sedimentation rate v = 2 (Fig. 2b):

P(a) ~ Uniform(—m, 8m) (14)
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P(ln(v)) ~ Normal(0,1) (15)

These priors place 95% of prior probability for the relative sedimentation rate of Site,;,, between 0.14 and
7.1, and place the top of Site,;,, anywhere from half a period below the start of the first period (—) up to

one period above the third period (8m). For the cubic spline, we specify 20 evenly spaced knots, which is

more than enough to approximate the three periods of the sine wave.

We estimated the posterior of the model with three independent runs, each with 16 chains and 60,000

Sth

iterations. The first 10,000 samples were discarded as burn-in, and every 2 iteration was recorded,

resulting a total of 6000 samples after burn-in across all three independent model runs.

The results show that the analysis identified both matching alignments, corresponding to the first and
second period of the reference site (Fig. 2b). The posterior probability for (Site,e,) matching period 1 is
50.1%, and 49.9% for matching period 2. A density plot of the posterior of @ and In(v) shows that « has a
bimodal posterior, corresponding to the two alignments (Fig. 2¢). The trace plots indicate good mixing of

the chains (Fig. 2d), suggesting that the posterior estimates are robust.

It is notable that the model estimate for the relative sedimentation rate v is lower at 1.90 (95% credible
interval: 1.82 to 1.99) than the value used for the data generation (2.00). Reported values, here and
throughout, represent the posterior median, with 95% credible intervals — given in brackets — referring to
the interval between the 2.5% and 97.5% points of the posterior distribution. This deviation of the posterior
from the known sedimentation rate estimate arises because the priors favour greater overlap (see Sect.

2.3.2). The posterior alignment tends to “compress” the data from Site,y, slightly less than expected,

leading to an increased overlap of points (see also Fig. 5b).
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Figure 2: Model illustration using artificial data. a) Input data: Quantitative stratigraphic data from two

sites. The blue line indicates the range in which Site,..; was created with 7 = 1, and the purple line

above indicates the range for which 1 was set to 0.75 to lower the amplitude. b) Two alignments

identified by the inference, with (Site,jig,; blue squares) matching the first or second period of (Site,.f;

red points). The alignments shown here correspond to two distinct samples from the posterior; other

samples will result in slightly different positions of (Site,jig,). The curved dark lines show the cubic

spline corresponding to each alignment. ¢) Posterior densities of & and In(v). The two modes of a

correspond to the two distinct alignments in b). The dotted lines indicate the v values with which
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(Sitey,jign) Was simulated, and the two plausible a values. d) Trace plots of @ and In(v). The three

distinct colours correspond to the three independent model runs. For visual clarity, only 75 selected

samples are shown from each run.

4 Case study: Lower Cambrian 8'*C records

To demonstrate the utility of this method, we use it to align stable carbon isotope records (8'*C) from lower
Cambrian marine shelf carbonates (Fig. 3). We integrate a combination of radiometric dates, §'°C and
astrochronological information from four sites to obtain age estimates for the sampled intervals from all

sites, and use this age model for dating the first documented occurrence of Siberian trilobites.
4.1 Data

We selected three records from the Anti-Atlas mountains in Southern Morocco, corresponding to the Oued
Sdas, the Tiout and the Talat n’ Yissi sections, which were part of West-Gondwana during the early
Cambrian (Magaritz et al., 1991; Maloof et al., 2005, 2010; Tucker, 1986). Oued Sdas and Tiout harbour
multiple precise U-Pb radiometric ages (Landing et al., 2021; Maloof et al., 2010). Talat n’ Yissi has no
radiometric dates, but a radiometric date exists from the stratigraphically equivalent Lemdad syncline
(Landing et al., 1998) that has been correlated biostratigraphically to Talat n’Yissi with the Antatlasia gutta-
pluviae zone (Maloof et al., 2005); we include this date in the analysis. We will align these sites with each
other, and with a 8"°C record from the Sukharikha section from the northwestern Siberian platform
(Kouchinsky et al., 2007), corresponding to the palacocontinent Siberia. There are no radiometric dates
available for the Siberian section for this stratigraphic interval. Data that was inferred to be below the lower
leg of the prominent “5p” excursion (lowest peak in Fig. 3a and d) was excluded to simplify the correlation,
reducing the number of modelled sedimentation rates unconstrained by radiometric dates. This cropping of
data affects the Oued Sdas and Sukharikha sections; Fig. 3 shows all data that was included in the analysis.
8!3C values were used as reported by the authors of the respective publications without any scaling or other

adjustments.
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Figure 3: Cambrian 8'°C data and radiometric dates from Morocco (a - ¢) and Siberia (d). Different
colours, in conjunction with different symbols, delineate different lithological units or formations.
Circles indicate the position of radiometric dates, with mean age and 2 standard deviations denoting the
uncertainty. Stars denote the positions where the oldest trilobite remains are found in Morocco (a) and
Siberia (d). The dashed line in (d) indicates a hiatus. « indicates the reference horizon chosen for

specifying the prior on the shift parameter a for each site.

4.2 Model specification

To align the four sites on the age scale, we specify an a parameter on the absolute age scale (Ma) for each
site, and use absolute, rather than relative sedimentation rates (expressed in m Myr ). We encapsulate
variation in sedimentation rates (v) by partitioning sites into members, formations or lithological units,
leading to multiple sedimentation rates per site. As there are few radiometric dates to constrain
sedimentation rates, partitions shared between the Moroccan sites are set to have the same relative
sedimentation rate across sites. To account for potentially faster or slower sedimentation rates at different
sites, a site-specific sedimentation rate multiplier { is added for Oued Sdas and Talat n’Yissi that is
multiplied with the v from those sites. The v for a partition applies to all sites at which this partition occurs;
for Tiout, they are used unaltered, and no { is needed for Sukharikha as there are no shared partitions with
other sites. We partition the Moroccan data based on the lithostratigraphy from Maloof et al. (2005). We
divide the Adoudounian Tifnout Member into a lower part (Tifnout 1.), and an upper stromatolitic part
(Tifnout stromatolite), as preliminary results suggested pronounced sedimentation variability between those
parts. We subdivide the Lie de Vin Formation into three members; the Igoudine Formation is subdivided

into two members. The Amouslek and Isaafen formations are not subdivided. The Sukharikha section is
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divided into two formations, which we assign separate sedimentation rates. At the boundary, a substantial
hiatus is evinced by the truncation of the “7p” §'°C peak (Kouchinsky et al., 2007). We include the duration

of this hiatus (&) as an additional unknown parameter in the model.

The model requires priors to be specified for each of its 18 alignment parameters: Four a, eleven v, two {
and one & (Fig. 4). These priors are broadly guided by the radiometric dates and by previous work (Bowyer
etal., 2023; Landing et al., 2021; Sinnesael et al., 2024). The « for the Tiout and Sukharikha sites are placed
at the height positions of the first trilobite fossil remains found at Tiout (Sinnesael et al., 2024), and the first
appearance of Siberian trilobites correlated to Sukharikha (Landing et al., 2021; Varlamov et al., 2008).
Here, we place normal distributed priors with mean age 520 Ma and a wide standard deviation of 2 Myr on
the a parameters at Tiout and Sukharikha. This prior reflects the notion that first appearance dates of
trilobites may be broadly similar at = 520 Ma, but not necessarily identical, and the data is allowed to
determine the exact age of each a. The a priors for Oued Sdas and Talat n’Yissi are placed at the position
of the lowest or the only available radiometric date, respectively, consisting of normal distributions with

mean age equal to the mean age estimate of the radiometric data and a wide standard deviation of 2 Myr.

For the sedimentation rates, priors informed by an astrochronology of the Tiout section (Sinnesael et al.,
2024) are used for the following five stratigraphic partitions: The lower, middle and upper members of the
Lie de Vin Formation, and for the lower and upper (Tiout Member) members of the Igoudine Formation.
Those priors are chosen such that the 95 percentile interval of v spans the minimum and maximum of the
astrochronological sedimentation rate estimates when using an uncertainty of +1 short eccentricity cycle
for each partition, with an estimated duration of short (= 100 kyr) eccentricity cycles ranging from 92.5 to

100.5 kyr (two standard deviations, following Lantink et al., 2022).

To specify priors for the remaining Moroccan partitions (lower part of Tifnout Fm., Tifnout stromatolite,
Amouslek Fm., and Isaafen Fm.), sedimentation rates between the radiometric dates from Oued Sdas and
Tiout are calculated using the mean ages of the dates. The prior on In(v) is defined as a normal distribution
with a mean of 5.39, corresponding to the mean of the empirical sedimentation rates from Oued Sdas and
Tiout, calculated on the logarithmic scale. A wide standard deviation of 0.75 is set, resulting in the 95
percentile interval of v spanning 50.3 to 951 mMyr™'. This interval significantly exceeds the range of
sedimentation rates inferred from the radiometric dates at Oued Sdas and Tiout, 147 to 314 mMyr ™%,

allowing for the possibility of lower or higher sedimentation rates in some partitions.

Prior sedimentation rate estimates for the Siberian formations are estimated in the absence of radiometric
dates, very broadly based on global correlations by Bowyer et al. (2023). These correlations suggest average

sedimentation rates on the order of 20 to 30 m Myr™!; we place a normal prior on In(v) with a mean of
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3.30 and a standard deviation of (.75, resulting in a 95 percentile interval of v spanning 6.23 to
117.9mMyr ™1, which allows for the possibility of significantly different sedimentation rates from those

inferred by Bowyer et al. (2023).

Finally, a prior needs to be placed on the duration of the hiatus § between the Sukharikha and the
Krasnoporog formations. Kouchinsky et al. (2007) do not give an indication of the potential duration of this
hiatus, but if the under- and overlying 8'3C peaks are correlated as indicated by previous work (Bowyer et
al., 2022; Landing et al., 2021), a relatively short hiatus of =~ 1 Myr is likely. To express considerable
uncertainty about the duration of the hiatus, we place an exponential prior on § with a rate of 1, which
places 95% of prior probability on the duration being < 3 Myr, with 5% probability accounting for the
possibility of a longer gap.

The cubic spline comprises 40 evenly spaced knots, allowing it to closely follow trends in the 8'*C records
while keeping the MCMC runtime manageable, as a higher knot count increases computational cost. For
the smoothing parameter A, we applied a gamma prior with StratoBayes’ default values of ay = 1 and b; =
1000. We fixed g, which is the residual standard deviation of the overall spline, at 0.66, which is the
average residual standard deviation of individual cubic splines fitted to each 8'°C record from the four
respective sites. These individual splines were constructed with 40 knots evenly spaced across the height
range of each respective site and fitted with Gibbs sampling using 2000 iterations, discarding 25% of
samples as burn-in. The same default A priors as described above were applied, while the prior for these
splines’ standard deviations was specified as a gamma prior on the precision t, with a; = b; = 0.01 (see

Appendix A for details).
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Figure 4: Priors on the 18 alignment parameters for the Cambrian model. Prior probability density is
shown (a) for four a parameters corresponding to one site each (priors for Tiout and Sukharikha in grey
are identical), (b) for six v (sedimentation rate) parameters with little prior knowledge, (¢) for five v
parameters from Morocco with tight priors based on astrochronology, (d) for { parameters (site-specific
sedimentation rate multipliers) for Oued Sdas and Talat n’Yissi (identical), and (e) for the duration of
the hiatus between the Sukharikha and the Krasnoporog formations. The width of the red bar in (b)
visualises the range of sedimentation rates spanned by (c). Panel (f) visualises two alignments
generated by randomly drawing parameter values from their respective priors, to give an indication of
the broad range of alignments that the priors on the alignment parameters allow; colours correspond to
the four sites (see Fig. 6). Panels (b), (¢), and (d) are depicted with a logarithmic x-axis as the priors

were specified on In(v) and In(().

4.3 Parameter estimation

This model is more complex than our earlier examples, and hence requires longer runs with more chains.
We conducted four independent model runs, each with 750,000 iterations and 24 chains. The runs were
executed in parallel using four workers on a desktop computer (Intel 17-10700 CPU, 8 cores / 16 threads,
40 GB RAM) and completed within 5 days. The first 150,000 iterations were discarded as burn-in. From
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the remaining 600,000, every 50" iteration was retained, resulting in 12,000 samples per run and 48,000

samples in total.

Inspection of trace plots of the model runs indicates stationarity and good mixing of the chains with the
exception of infrequent visits of secondary posterior modes (Appendix B, Fig. B1). The potential scale
reduction factor (using eq.4 in Vats and Knudson, 2021) is between 1.00 and 1.05 for all alignment
parameters, suggesting approximate convergence of the MCMC. The multivariate effective sample size

(Vats et al., 2019) of the 48,000 samples is 4161.
4.4 Results

To identify distinctly different alignments in the posterior, a hierarchical density-based cluster analysis
(Campello et al., 2015) was conducted using the inferred ages of all partition boundaries of the four sites
(Fig. 4a,b). We specified 1% of samples (480) as the minimum number of points per cluster, resulting in
three distinct clusters with 93%, 2.8% and 2.6% of posterior samples, respectively, and 1.5% of samples
not being assigned to any cluster. These alignment clusters also differ in the prior probabilities and
likelihoods associated with individual posterior samples. On average, samples from alignment 1 tend to

exhibit a lower degree of overlap, but a higher likelihood (Fig. 4c), indicating a better fit to the data.

(a) (b)

@ R
w P =t h
@ > i
: . 5 .
o ] o> =
o =1
= O o -
O o w 0
N : o —
o ﬁ — a o
g% g
= w® =
@ _ —_—
=2 S o
o =
g 2 & b
@ 4 @
® T T T T T T 1 T T T T T 1
518.7 5189 5191 5193 516.5 5175 5185 5195
age (Ma) top of Tiout age (Ma) at top of Talat n'Yssi
(c)
o ] sample density
&
i
g . alignment 1
3 _
=g @ al t2
é, 3 | @ alignmen
£ - alignment 3
o
=3 -t
' outlier samples

1 T T T 1
-520 -480 -440

In prior overlap

20



442
443
444
445
446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461

Figure 5: (a, b) 2D density plots of the inferred top ages of the four sites, representing some of the ages
used for obtaining alignment clusters from posterior samples. (¢) 2D density plot of the In prior

probability of overlap against the overall In likelihood. Areas with more opaque shadings correspond to
a higher density of individual posterior samples. Colours correspond to alignment clusters: alignment 1

- violet; alignment 2 - blue; alignment 3 - green; outlier samples not assigned to any cluster - yellow.

Using samples from the posterior of the model parameters, alignments can be generated. Fig. 6 visualises
three alignments drawn from the three alignment clusters identified in the posterior. For each alignment
cluster, the iteration with partition boundary ages that are, on average, closest to the median ages of the
partition boundaries within that cluster is selected for displaying. All three alignments exhibit a good match
between the long-term trends of the 3'*C curves from the four sites and the common spline curve, although
many shorter-term deviations are visible (Fig. 6a-c). The spline curve notably follows the more densely
sampled sites (Oued Sdas, Talat n’Yissi) more so than the thinly sampled sites (Tiout, Sukharikha),

resulting in greater deviations of the latter two sites.

The posterior age estimates for the stratigraphic positions of the radiometric dates broadly match the age
estimates that were used as inputs in the analysis (Fig. 6d). The deviations are greatest for the Talat n’Yissi
date (Ta;), which has large uncertainty and therefore less influence on the analysis, and the second date
from Oued Sdas (Ou,). The first appearances of trilobites are visualised alongside the dates in Fig. 6d, and
are dated to 519.46 Ma (519.25 to 519.68 Ma) at Tiout. The age estimate for the first Siberian trilobites
differs considerably between the different alignment solutions: For the most likely alignment 1, the age
estimate is 520.79 Ma (520.98 to 520.61 Ma), and for alignment 2 the estimate is somewhat higher at 521.05
Ma (521.19 to 520.91 Ma). Alignment 3 suggests a significantly later appearance of Siberian trilobites at
519.98 Ma (520.15 to 519.84 Ma). All three alignments place the appearance of the first Siberian trilobites
before their appearance at Tiout, with the temporal gap (computed directly from the posterior distribution)
being estimated at 1.33 Myr (1.09 to 1.54 Myr) for alignment 1, 1.71 Myr (1.54 to 1.87 Myr) for alignment
2, and 0.63 Myr (0.53 to 0.74 Myr) for alignment 3.

21



(a) alignment 1 (b) alignment 2 (c) alignment 3

93% of samples 2.8% of samples 2.6% of samples (d) inferred ages

{ Ti; Tia
el Ti tril.
i

520

Tie gy, tril.

age (Ma)
525

radiometric

dates

trilobite
appearances

530

Posterior density
(coloured) and density of
radiometric dates (grey)

or prior (faint yellow)

O A legend:

© Tiout

|| Oued Sdas
-4 0 4 8 -4 0 4 8 -4 0 4 8 Talat n'Yssi

A\ sukharikha

535

6130 5130 813C

Figure 6: Three possible alignments identified by the inference with Cambrian data. (a) Exemplary
sample from the cluster of the most likely alignment (93% of posterior samples). (b, ¢c) Exemplary
samples from a second and third identified alignment cluster (2.8% and 2.6% of posterior samples,
respectively). Each shown alignment corresponds to a single sample from the posterior; other samples
will result in slightly different alignments. 1.5% of samples were not assigned to any cluster (see Fig.
5). The curved dark lines show the cubic B-splines corresponding to each visualised sample. The

coloured bars to the right of each alignment show the median duration of the stratigraphic partitions

under each respective alignment cluster, based on the median ages of partition boundaries, with colours

repeating the colour scheme of Fig. 2. (d) Posterior density of the inferred ages corresponding to the
radiometric dates to the left (3 from Tiout, 4 from Oued Sdas, and 1 from Talat n’Yissi) and the first
occurrences of trilobites at Tiout (Ti tril.) and Sukharikha (Sh tril.) to the right, in colours. All samples
from all alignment clusters were included. Greater width corresponds to higher posterior density; all
densities are scaled to have the same maximum for better visibility. Densities representing the
uncertainties of radiometric dates based on their mean and standard deviation are shown in grey (left).
The faint yellow shading to the right shows the prior density on «, i.e. the first appearance of trilobites

at Tiout and Siberia based on a mean age of (520 Ma) and a standard deviation of 2 Myr (identical for
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Tiout and Siberia). Colours and shapes of the points correspond to the four sites: Tiout - brown circles;

Oued Sdas - pink squares; Talat n’Yissi - green diamonds; Sukharikha - blue triangles.

The posterior of the model runs allows the construction of age models that span the entire height of each
site (Fig. 7). As sedimentation rates are constrained to be constant within the pre-defined partitions,
sedimentation rate changes are visible as inflections at the boundaries of these partitions. Age uncertainties
are relatively low at Tiout and most of Oued Sdas, which are relatively well constrained by radiometric
dates in the top (Tiout) and middle (Oued Sdas) parts of the sections, as well as by astronomical priors on
sedimentation rates. Uncertainty noticably increases towards the top and bottom of Oued Sdas. The lowest
partition of Oued Sdas is constrained only by its match to the lower part of the Sukharikha Fm., their age
estimates are thus varying considerably between different alignments (Fig. 6). Differences in the positioning
of the 8'3C curves between alignments are greatest at Talat n’Yissi and the Siberian Krasnoporog Fm. (Fig.

6), which results in large uncertainties in the age models (Fig. 7c, d).
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Figure 7: Age-depth model for each of the four sites. The solid lines indicate the median posterior ages
corresponding to the respective heights; the shaded interval denotes the 95% credible interval of
posterior ages. Colours correspond to the colours of partitions introduced in Fig. 3. Circles indicate the
mean age estimates of radiometric dates, with vertical lines spanning two standard deviations around
the mean of these age estimates. Stars denote the first appearances of trilobites in Morocco and Siberia.

See Fig. B2 for separate visualisations of age-depth models for different alignment solutions.

5 Discussion

5.1 Lower Cambrian stratigraphy

We used StratoBayes to correlate and date four lower Cambrian carbonate sections using 8'*C records,
radiometric dates and astrochronological sedimentation rate estimates. From a large space of possible
alignment configurations (Fig. 4), the software identified alignment solutions that visibly match the large-
scale features in the 8'°C records from multiple sites, while simultaneously achieving an approximate fit to

the radiometric dates (Fig. 6).

The most likely alignment solution from the posterior, alignment 1 (probability = 93%), results in a
correlation of the three Moroccan sites that has much in common with that proposed by Maloof et al. (2005).
In our model, we used common sedimentation rates for the stratigraphic partitions (members, formations)
shared between the sites, whilst allowing sedimentation rates to systematically differ from the reference
sedimentation rates at Tiout by adding a site-specific multiplier. This multiplier, {, is 1.02 (95% credible
interval: 0.97 to 1.08) for Oued Sdas, meaning the model estimates very similar sedimentation rates for
Tiout and Oued Sdas (Fig. 6a), consistent with their close geographical proximity. Sedimentation rates for
the shared partitions at Talat n’Yissi are lower by a factor of 0.86 (0.76 to 0.96), which would be consistent
with a moderately lower accommodation space at Talat n’Yissi relative to Tiout and Oued Sdas (as
suggested by Fig. 3B in Maloof et al., 2005). We deliberately chose broad priors that did not explicitly
enforce a relationship between sedimentation rates and palacogeography; nonetheless, the model identified
a geologically plausible solution. In contrast, the higher {744t niyssi of alignment 2 (probability = 2.8%,
1.07 to 1.37) and alignment 3 (probability = 2.6%, 2.07 to 2.45) are harder to reconcile with the

palaecogeographic context.

Alignments 2 and 3 also suggest different sedimentation rates between Tiout and Oued Sdas, with a higher

value of {pyed saas (1.13 to 1.26) being estimated by alignment 2, and a lower value of {pqeq sqas (0.83 to
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0.88) by alignment 3. The most consistent lithostratigraphic alignment between Tiout and Oued Sdas is
achieved by alignment 1, meaning that the age estimates for partition boundaries (based on members or
formations) are most similar (Fig. 6). For the more distant Talat n’Yissi, age estimates of partition

boundaries differ to varying degrees across all three alignments.

Breaking down the posterior probability into individual components — likelihood (fit of '*C measurements
to the spline, fit of age estimates to the radiometric dates) and prior probability from the overlap penalty —
reveals that samples from alignment 1 have a higher likelihood, on average (Fig. 5c). In contrast, alignments
2 and 3 have a greater number of overlapping 8"°C points, which results in higher overlap prior probabilities
(Fig. 5¢). The overlap prior reflects the prior belief that substantial parts of the sections involved in the
correlation should be overlapping. However, the weight of that prior is somewhat arbitrary and reflects the
technical requirement to facilitate overlap despite non-overlap allowing for closer fit to the spline, similar
to the role of the “edge value” in some DTW implementations (Hay et al., 2019). A lower prior weight on
overlap would thus have caused alignments 2 and 3 to receive lower posterior probabilities relative to
alignment 1. Taken together, the evidence from above leads us to strongly favour alignment 1, and we will

focus further discussion on that most likely alignment solution.

A radiometric date of 517.0 Ma (£2SD: 515.5 —518.5Ma) has been recovered from the Lemdad
Syncline in the Atlas mountains (Landing et al., 1998), and has been correlated biostratigraphically to a
horizon in the lower Isaafen Fm. at Talat n’Yissi (Maloof et al., 2005). In our alignment 1, this horizon has
a posterior age estimate of 519 Ma (519.2 to 518.8 Ma) — = 2 Myr older than the mean of the radiometric
date. This date has informed the age estimates for Talat n’Yssi in Maloof et al. (2005) and Maloof et al.
(2010), whereas alignment 1 produces age estimates close to those of Bowyer et al. (2022) and Bowyer et
al. (2023). Age estimates deviating from radiometric dates are not necessarily incorrect: Although
radiometric dates are sometimes treated as “absolute truth” within the stratigraphic community, they are
the result of various sources of technical uncertainties (Condon et al., 2024) and geological interpretations
like the actual zircon crystallisation versus eruption age (Keller et al., 2018). This is illustrated by the
recalculation of the radiometric date from Landing et al. (1998) to 515.56 Ma (+2SD: 514.40 —
516.72 Ma) in the Geological Time Scale 2012 (Schmitz et al., 2012).

The two radiometric dates measured at Tiout at the bottom of and within the Amouslek Formation suggest
a sedimentation rate of 146 m Myr~* (+2 SD: 78.7 to 613 m Myr %) for the Amouslek formation. However,
the posterior estimates for the sedimentation rate in the Amouslek formation are poorly constrained and
high compared to the sedimentation rates of all other partitions, at 3030 m Myr~* (800 to 17,300 m Myr ™ %).

It appears that the model has overestimated the Amouslek sedimentation rate in aligning the 3'*C record of
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the overlying Isaafen formation with a part of the Siberian Krasnoporog formation which has similar §'*°C
values (Fig. 6a). The alignments of Bowyer et al. (2022) imply significant sedimentation rate changes
within the Krasnoporog formation, allowing the 8'°C records to be better reconciled with the radiometric
dates. We didn’t allow for sedimentation rate changes within the Krasnoporog formation because the
stratigraphic log of Kouchinsky et al. (2007) indicates a uniform facies. Additional sedimentation rate

changes might lead to a closer alignment with the radiometric dates, at the cost of greater model complexity.

The alignment of the Siberian Sukharikha section with the Moroccan sites is relatively precise in the lower
half of the records: The prominent positive 3'°C excursions interpreted as the “5p” and “6p” excursions
have a similar magnitude both at Oued Sdas and Sukharikha, and are readily aligned visually (Bowyer et
al., 2022) and by our model (Fig. 6). Our model aligns the main 6p peak of Sukharikha with the first subpeak
of the second large excursion at Oued Sdas, as in model C in Bowyer et al. (2022). The lesser, positive
excursion below the hiatus at the top of the Sukharikha formation lines up with the positive excursion in
the lower Lie-de-Vin formation, representing the “II” peak as in model C in Bowyer et al. (2022). The upper
parts of the Moroccan records and the Siberian Krasnoporog formation appear to be aligned primarily by
matching the prominent positive excursion interpreted as excursion “IV”” (Bowyer et al., 2022; Kouchinsky
et al., 2007). The “III” peak below is only weakly expressed at Oued Sdas, leading to uncertainty in the
alignment with the corresponding part of the Krasnoporog formation, and in the inferred duration of the
hiatus even within alignment solution 1 (Fig. B3a-c). Similarly, considerable uncertainty exists in how the
top of Talat n’Yissi corresponds to the Krasnoporog formation. This is evident from variations between
samples in alignment solution 1 (Fig. B3a-c) and in the wide credible intervals of those parts of the age
models (Fig. 7). The relatively small magnitude of 3'*C changes limits the model’s ability to identify a

definitive alignment solution for that part of the record.

Our estimate for the Moroccan first appearance of trilobites at Tiout from alignment 1, 519.47 Ma (519.68
to 519.26 Ma), is slightly younger and somewhat less precise than the recent, astrochronological estimate
0f 519.62 Ma (95% highest posterior distribution: 519.70 to 519.54 Ma) by Sinnesael et al. (2024). We
attribute this difference to our model simultaneously combining different data types from multiple sites.
Additionally, Sinnesael et al. (2024) allowed sedimentation rates to vary between cycles, whereas our model
assumed a single sedimentation rate per member. In our alignment 1 solution, the highest §'*C values of
Tiout correlate to shortly after the peak of the IV 8'3C excursion. This correlation suggests that the actual
peak of the excursion at Tiout has not been sampled by Magaritz et al. (1991) and Tucker (1986), which
may result in misalignments when correlating the record to other sections. Further §'*C samples from the
lower Igoudine and upper Lie-de-Vin formation at Tiout are required to improve correlation with other

sections, including the correlation presented herein.
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Our model successfully reconstructs the first appearance of trilobites at Tiout, within error, despite using a
simpler astrochronology and enforcing a less variable sedimentation rate history than Sinnesael et al.
(2024). It also provides the first fully quantitative estimate for the first appearance of trilobites in Siberia
based on chemostratigraphic correlation and the Moroccan radiometric dates and astrochronology, at
520.79 Ma (520.98 to 520.61 Ma). This refines earlier estimates of ~ 521 Ma (Landing et al., 2021), and
quantifies the temporal gap between the appearance of trilobites in Siberia and Morocco as 1.33 Myr (1.09
to 1.54 Myr). We do not suggest that these estimates are definitive; indeed, we anticipate that the
incorporation of additional 3'*C data from Tiout, the inclusion of astrochronological estimates of individual
short eccentricity cycles, and the relaxation of the assumption of constant sedimentation rates within
partitions may update the estimate. A high-resolution temporal sequence of trilobite first occurrence dates
could be used to delineate trilobite evolutionary rates and dispersal; to evaluate evolutionary hypotheses on
the origins and biomineralisation of trilobites (Holmes and Budd, 2022; Paterson et al., 2019); and to inform

the definition of the base of the Cambrian Series 2 (Zhang et al., 2017).
5.2 Statistical alignment and age modelling

5.2.1 Advantages of Bayesian stratigraphic alignment

As shown above, our algorithm can identify the correct alignment positions in scenarios with one (Fig. 1)
or more than one (Fig. 2) known solution. In scenarios where more than one distinctly different alignment
is identified, the probability of each solution, given the specified data and model, is identified. This can be
used to evaluate the likelihood of competing models for the alignment of stratigraphic records found by
visual (e.g. Bowyer et al., 2023; Landing and Kruse, 2017) or algorithmic (e.g. Hay et al., 2019) correlation.
The requirement to specify priors for the alignment parameters can be leveraged to provide information
beyond that which is contained in the signals: for example, information on sedimentation rates may be

expressed in the prior.

Because our model can integrate absolute age constraints such as radiometric dates, a user is able to
correlate stratigraphic records and construct probabilistic age models in a single step. In our Cambrian
example, the posterior alignment and the posterior age model are thus influenced by the priors, the
quantitative signals and the radiometric dates. In contrast, age models constructed in a separate step after
identifying alignments do not reflect uncertainty arising during the alignment stage (Hagen and Creveling,

2024).

In our integrated approach, discrepancies between radiometric dates and signal alignment are resolved

probabilistically, with the model weighting the available evidence based on its likelihood and prior
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information. This means that posterior age estimates may diverge from the age information provided by
radiometric dates, as seen with the Ou, date in Fig. 6d. This is not necessarily a deficiency of the model;
rather, it indicates that the priors and non-radiometric data provide sufficiently strong evidence to suggest
that the actual age of the horizon associated with the radiometric date falls toward the tails of its confidence
interval, or that the radiometric uncertainty may be underestimated. Some degree of discrepancy is expected

when integrating multiple data types rather than relying on a single proxy (see also Lee et al., 2022).

If, on the other hand, the user wishes to increase the influence of radiometric dates on the posterior age
estimates, this can potentially be achieved by introducing additional sedimentation rate changes to allow
more flexible alignment of the proxy signals, reducing the weight of the proxy signal records — such as by

imposing a larger o for the cubic spline — or by weakening priors.
5.2.2 Model choice and priors

Stratigraphic alignment using algorithms has the advantage of removing some of the inherent subjectivity
of visual alignment (Sylvester, 2023). Yet, somewhat subjective decisions are still explicitly or implicitly
made with every alignment algorithm. In the case of DTW, subjectivity is introduced e.g. with restrictions
on the warping path (i.e. relative sedimentation rates, Sakoe and Chiba, 1978), with the amount of overlap
required between sections (Hay et al., 2019), or with the choice of an exponent controlling the weight of
outlier values (Wheeler and Hale, 2014). All of those settings can alter the outcome of DTW-based
alignments. Likewise, our Bayesian approach comes with a number of subjective choices. The appropriate
model structure can be readily determined when the data-generating process is known (Sect. 3), but has to
be carefully considered and potentially revised when dealing with complex real-world data (Sect. 4).
Lithological data may guide the partitioning of data and can inform somewhat objective choices of horizons
with likely sedimentation rate changes (Sect. 4.2), but such information may not be readily available with

some datasets, such as with well logs.

Besides the model structure, StratoBayes requires the user to specify priors for several model parameters:
relative or absolute sedimentation rates (v, {), the shifts of sections relative to one another («), the duration
of hiatuses (§), the degree of smoothing of the spline (1), the extent to which overlap of signal points should
be favoured (Cyperiap), and optionally the residual standard deviation of the spline (o). Although the choice
of any of those parameters has the potential to affect posterior alignments and age models, they also offer
a chance to explicitly include geological information that could otherwise only be incorporated by

discarding or modifying alignment solutions after the algorithmic alignment.
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While it is relatively straightforward to express prior beliefs on the alignment parameters a, v, { and 6, it
is hard to specify suitable priors for 4,0 and Cyyeriqp, as they do not correspond to measures used by
geologists. The default priors on 4,0 and Cyperiap in the StratoBayes software were chosen iteratively by
working with various test data sets. Users should avoid fine-tuning these priors directly on the data sets to
which they intend to apply StratoBayes, as this could introduce unintended circularity. Instead, analogous

independent data sets could be used to identify suitable priors for A, 0 and Cyyeriqp- For example, priors on

A and o for correlating §'3C curves could be meaningfully specified from pre-existing reconstructed §'3C

composite curves.
5.2.3 Challenges with the proxy and sedimentary record

Chemostratigraphy, and, more broadly, correlating geological sections based on proxy data relies on the
proxies accurately reflecting a common, underlying signal. Several processes may disrupt this assumption.
For example, 8"°C recorded in carbonates differs between different depositional environments, water
depths, and grain types (Geyman and Maloof, 2021), while the §'°C recorded in restricted basins may be
offset significantly relative to contemporary carbonates elsewhere (Uhlein et al., 2019). Where known, such
offsets could be accounted for by subtracting or adding the estimated offset relative to global values.
Alternatively, anticipated offsets could be modelled as additional unknown variables, as in Edmonsond and
Dyer (2024). This approach will likely require substantial prior knowledge on the potential magnitude and
direction of offsets; otherwise, the combination of variation along the height or time axis and along the

proxy value axis may result in a large range of mathematically feasible alignments.

A more fundamental problem is posed when similar patterns in a proxy curve are asynchronous in different
sections: Shifting and stretching proxy data from multiple sites may result in a strongly correlated composite
curve, but this correlation does not prove that the patterns or excursions observed at different sites were in
fact synchronous (Blaauw, 2012). Unless supported by independent evidence such as precise radiometric
dates, relative age estimates derived from proxy correlations (e.g. 8'°C) are conditional on the assumption

of synchronicity.

Several challenges arise from the variability of sedimentation and the incompleteness of the sedimentary
record. Sediment accumulation rates vary with measurement scale (Sadler, 1981): closer spacing between
measurements allows more variability to be identified, with actual sedimentation rate histories displaying
fractal properties (Miall, 2015). This implies that depositional ages tend to vary non-linearly along a
vertically sampled sedimentary section, with substantial incompleteness in shallow-water records (Curtis
et al., 2025). These discontinuities can lead to drastically altered shapes of proxy curves from different
depositional settings, and cycles from periodic proxy fluctuations may be missed due to insufficient
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preservation or sampling (Curtis et al., 2025). This issue is evident in the Sukharikha section, where it is
somewhat ambiguous whether the hiatus represents a fraction of a §'°C excursion (alignment 1 and 2) or
extends over more than one full cycle (alignment 3, Fig. 6). For correlations within sedimentary basins, the
method of Bloem and Curtis (2024) could help resolve ambiguous alignments by reconstructing
depositional histories through geological process modelling, but this method requires exceptionally high-

resolution sampling and its utility has yet to be demonstrated with real-world data sets.

Besides the completeness, the sampling density of proxy records may influence correlations. In
StratoBayes, densely sampled sections or parts of sections exert more influence on the shape of the spline
than those that are thinly sampled, which can be seen in the spline curve primarily following the densely
sampled Oued Sdas and Talat n’Yissi records in Fig. 6. Despite this, our Cambrian case study demonstrates
that sections with differing sampling densities — both between and within sites — can still be effectively
aligned. Varying sampling density would, however, pose a challenge for reconstructing a global average

proxy curve from local records, as the global curve would primarily reflect the more densely sampled sites.

StratoBayes introduces a simplification in modelling sedimentary histories by forcing uniform
sedimentation rates within pre-defined segments of a stratigraphic section. An effect of this simplification
can be seen in the age-depth plots in Fig. 7: Due to sedimentation rates being modelled as uniform within
stratigraphic partitions, the uncertainty of age estimates does not necessarily increase away from the
radiometric dates. We acknowledge that this may underestimate the uncertainty associated with potential
sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially when allowing for few
sedimentation rate changes. Similarly, our method currently only allows for specifying potential hiatuses

with an unknown duration at fixed, predetermined heights.

In principle, our method could be used to divide stratigraphic sections into an arbitrary number of segments
with differing sedimentation rates, and with an arbitrary number of potential hiatuses. In practice, estimating
the parameters of a model with more than a low double-digit number of alignment parameters (shift
parameters, sedimentation rates, hiatuses) represents a challenge for the current implementation of the
MCMC algorithm within StratoBayes, as finding and exploring the posterior becomes increasingly difficult
as more parameters are added. This limitation could be alleviated by incorporating MCMC methods suited
for higher dimensional problems and difficult posterior geometries. Alternatively, a continuous process
model such as the compound Poisson-gamma process of BChron (Haslett and Parnell, 2008) might be
integrated with our model for the proxy signal, but again the complexity of the MCMC would increase.
Another approach would be to divide the alignment problem into sub-problems, e.g. by multiple pairwise

correlation of sites (e.g. Hagen et al., 2024; Sylvester, 2023), or by correlating shorter subsections.
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5.3 Towards quantitative stratigraphy

Quantitative stratigraphic correlation and age modelling of diverse geological data represent a long-
standing challenge in stratigraphic research. Although many algorithms exist for correlating geochemical
and geophysical stratigraphic data (e.g. Baville et al., 2022; Bloem and Curtis, 2024; Hay et al., 2019;
Sylvester, 2023); few can readily provide uncertainty estimates or incorporate different types of data
simultaneously (e.g. Al Ibrahim, 2022; Edmonsond and Dyer, 2024; Lee et al., 2022). Consequently,
integrated statistical approaches have only rarely been applied to complex real-world stratigraphic problems

(Hagen et al., 2024; Lee et al., 2022).

Our new method has the potential to be applied to diverse datasets; examples range from shallow borehole
data from the Holocene (Finlay et al., 2022) to Proterozoic carbonates (Halverson et al., 2010). The ability
of our model to incorporate multiple proxy records simultaneously opens new possibilities for refining
stratigraphic correlations. For instance, correlations involving both 8'3C and 8%’Sr records could benefit
from a probabilistic framework that accounts for their respective uncertainties (Bowyer et al., 2022). The
integration of multiple proxies, e.g. multiple element ratios, in the StratoBayes framework could allow
correlations based on the entire record of all proxies, rather than a few visually distinct transitions (Craigie,

2015).

Beyond geochemical records, our approach could also be applied e.g. to geophysical well-logs such as
gamma ray or density logs, and magnetostratigraphic records could be correlated directly rather than relying
on visually interpreted polarity reversals (Langereis et al., 2010). While index fossils can currently be
integrated as tie points, the modelling framework could be expanded to explicitly model first and last
occurrences to better incorporate biostratigraphic uncertainty. Similarly, astrochronological constraints can
be expressed as priors on sedimentation rates, but an additional model component would be needed to

incorporate all astrochronological information from a given site (Sinnesael et al., 2024).

Conclusions

StratoBayes is a Bayesian modelling framework for the probabilistic alignment of stratigraphic proxy
records and age modelling. It correlates quantitative proxy signals such as isotope ratios, and integrates
additional stratigraphic information such radiometric dates, to construct probabilistic age models. Applying
our model to both simulated data and real-world stratigraphic records from the lower Cambrian of Morocco
and Siberia, we have demonstrated its ability to account for uncertainty from all model components and to

identify multiple plausible alignment solutions. Our lower Cambrian case study provides a fully
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probabilistic estimate for the first appearance of trilobites in Siberia, and quantifies the temporal gap
between their first occurrence and the oldest Moroccan trilobites. While our results remain dependent on
model assumptions, they represent a step towards a more objective and reproducible approach to early
Palaeozoic stratigraphy; they also highlight sources of uncertainty and identify targets for future research.
Beyond this case study, StratoBayes has broad applicability to stratigraphic problems across all time

intervals that involve the correlation of quantitative proxy records.

Appendix A: Markov chain Monte Carlo sampling scheme

Appendix A details the Metropolis-within-Gibbs sampling scheme and the parallel tempering framework
that are used within the StratoBayes software to sample from the posterior of the unknown model

parameters.

Sampling strategy

The MCMC sampling scheme used in this study includes an adaptive phase. During this phase, proposal
distributions and the probabilities with which different proposal types are selected for the Metropolis-
Hastings updates are adjusted based on the history of the MCMC chains to improve acceptance rates and
mixing. Additionally, the temperature ladder of the parallel tempering framework is updated to improve the
swap rates of chains. After the adaptive phase, the proposal distributions and probabilities, as well as chain

temperatures, remain fixed for the remainder of the run to ensure proper sampling from the posterior.

In the current implementation, the length of the adaptive phase is pre-determined by the user, specified as
a fixed number of iterations. However, the user has the option to extend the adaptation period by continuing
the run if needed. More generally, adaptation could also be stopped automatically based on criteria such as

mixing within chains (Yang and Rosenthal, 2017) or convergence criteria.

Adaptive MCMC algorithms do not always preserve the stationarity of the target distribution during the
adaptive phase (Roberts and Rosenthal, 2009). Therefore, all samples from the adaptive phase are discarded
as burn-in. Additionally, if diagnostic checks suggest that the MCMC has not converged by the end of the

adaptive phase, further samples may need to be discarded.
Gibbs sampling scheme for the cubic B-splines

The following sampling scheme was adapted from Heaton et al. (2020). The spline coefficients are sampled

from a multivariate normal distribution of the form:
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B~MVN(®BQQ),  (16)

where b is given by .
Ty
b=(BM®) %, a7

B(h) are cubic B-splines (Eilers and Marx, 1996) at a set of k knots evaluated at heights h at which y, the

composite stratigraphic signal of all sites, was observed. Here, o is the residual standard deviation.
The other element needed for sampling from the posterior of b is @, given by
Q=(H+1D)L, (18)

where A is a smoothing parameter, D is a penalty matrix to prevent the spline from overfitting the data, and

T
- (B2

(22

The standard deviation ¢ can be fixed as

S
1
c=3) 0, @0
s=1

where S is the number of sites, and o, is the standard deviation of individual splines fitted to the data of site
s. This often provides a good approximation of o, while removing an unknown model parameter, potentially

facilitating quicker convergence of the model run.

Alternatively, o can be estimated within the Gibbs sampling scheme from the data, by placing a conjugate

gamma prior on the inverse of the variance (precision, T = 1/52):
Ny
-2 ny 1 2
0~ ~Gamma| a, + > b, + EZ(y - ,BB(h)) (21)

The smoothing parameter A is estimated by placing a gamma prior on A:

k 1
A~ Gamma| a; + =, 1 1
~ L VK
m+ZZﬁDxﬁ

(22)
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Metropolis-Hastings step

The starting heights or ages a, sedimentation rates v, site multipliers { and gaps & are updated in a
Metropolis-Hastings step. For each unknown parameter, a new value is randomly sampled from a proposal
distribution. Initially, proposals are sampled independently for each parameter from its respective prior, or

alternatively from a custom proposal distribution.

In the following, the current set of parameter values is labelled 6, and the proposed set is labelled 6'. To
decide whether to accept or reject the new set of parameters, an acceptance probability A is calculated, and

the proposal is randomly accepted or rejected with a probability of A. This probability is calculated as

m(6")

A = min <1,m

) , (23)
where 1(6) is the unnormalised posterior probability of the current values, and 7(6") is the unnormalised

posterior probability of the proposed values. These can be calculated as
m(0) = p(0) x L(data|f), (24)
where p(8) is the prior probability of 6, and L(data|8) the likelihood of the data given 6.

We calculate the likelihood of the data given 6 as a product of the probability densities of each data point
of the signal y (recorded at two or more sites) and of all absolute age information. For the signal, we assume
that the observed values y are normally distributed and centred around the values predicted by the splines,
u, at height h, with a standard deviation o which has been introduced earlier. The likelihood of a data point
i from the signal y is thus

« e(_(}’iz—al;i)z) 25)

1

and the log-likelihood for all data points of the signal is calculated as

InL(y10) = ) InL(%l0)  (26)

If more than one type of signal is used, the log-likelihood of additional signals can be calculated analogously

and added in Equation 29.
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Age constraints are incorporated by using an age estimate from radiometric dates d with, for example, mean
ages Ayeqn and uncertainties given by standard deviations ag,. The probability density of a date d; is then

calculated as

Amean,i—Apredicted,i
X e Zasd,iz

L(d;]0) = (27)

1
V2magg

where apreqicrea,i 18 the age predicted by the age-height transform at the height hg;, the height at the site

at which date d; was obtained.

The log-likelihood for all age constraints is calculated as

InL(d|6) = Z InL(d;|6)  (28)

and the overall likelihood, if absolute age constraints are included, is

InL(y,d|6) = InL(y|8) + InL(d|6) (29)
Proposal types

In order to allow for a broad search of the parameter space, proposals are initially selected independently
for each parameter, and are selected independently of the current parameter values. These proposals lead to
a decreasing acceptance rate over time, and the chain tends to arrive at a single set of values with high
posterior probability, m(6), remaining there for many iterations due to frequent rejections. Therefore,

different types of proposals are used after an initial period:

1)  Proposing from the prior or a custom distribution: This proposal is used exclusively for a small

number of initial iterations and is alternated with other proposals later on.

2)  Adaptive independent (univariate) proposals: Proposals for each parameter are selected
independently from other parameter values. Proposals are dependent on the current state of the
parameter 6;, and sampled from a normal distribution N(6;, g;), where o; is a standard deviation
that is estimated based on the history of the MCMC chain, i.e. based on the sampled 6; from

previous iterations.

3) Adaptive dependent (multivariate) proposals (Roberts and Rosenthal, 2009): Proposals for the
parameters are selected jointly and are dependent on the current state of the parameters 6.

Proposals are sampled from a multivariate normal distribution MVN (8, Y), where X is a
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covariance matrix that is estimated based on the history of the MCMC chain, i.e. based on the

sampled 8; from previous iterations.

4)  Shifting some or all a and or § parameters while keeping the other parameters constant. This can
accelerate the convergence of the MCMC in cases where some sites are aligned with each other,

but offset relative to other sites.

Proposal types are chosen with a probability that broadly corresponds to the relative acceptance probability
of the respective proposal type, i.e. proposal types that are rejected often are chosen less frequently.
Adaptation for types 2) and 3), and the adjustment of proposal type probabilities ends after the adaptive
phase. Posterior samples from the adaptive phase have to be discarded as burn-in, to ensure the correct

convergence of the chain.

Parallel tempering

To avoid the MCMC chain becoming trapped at isolated peaks of the posterior probability distribution, we
implement a parallel tempering framework, following Sambridge (2014). This involves running multiple
chains in parallel. The target chain, the chain from which the posterior samples will be taken, is left
unaltered (“cold chain”). The other chains are tempered, i.e. their unnormalised log posterior probabilities
are raised to the power of 1/T, with T being the temperature. The higher T, the more “flattened” the posterior
probability landscape becomes, and the easier it is for the chain to explore the landscape. Frequently, chain
swaps are proposed, during which the model parameter values of different chains are exchanged with a
Metropolis-Hastings acceptance probability based on the ratios of posterior probabilities of the states of the

two chains, evaluated at both temperatures as in Appendix A2 of Sambridge (2014).

The initial temperatures for a number of chains n, are selected using a geometric spacing, with T; = 1 (cold
chain) and T,, . = oo (hottest chain). The infinite temperature of the hottest chain implies that all proposals
during the MCMC will be accepted, and we let that chain sample from the prior probability distributions of

the parameters. If n, > 2, intermediate chain temperatures are selected as
¢ .
T, = 10%=2%,  (30)

where

_ (nc - 1)(2/3) c—1- (nc - 1)/2

d ,
¢ ne—2 1.5 % n,

c=2...n,—1 (31)
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This leads to the spacing of temperatures decreasing with increasing number of chains, and temperature
spacing is narrower for lower temperatures on the log scale. A small amount of white noise from a normal
distribution with zero mean and a standard deviation of (5 X n,)~?! is added to each d, to vary the initial
temperature ladders between independent model runs. Temperatures are updated in the adaptive phase of

the MCMC to increase the swap rates of chains (Vousden et al., 2016).

Appendix B: Inspecting the posterior of the lower Cambrian case

study

Appendix B provides additional details on the posterior of the inference with lower Cambrian §'*C data and

radiometric dates.

Trace plots

Trace plots visualise the evolution of chains from an MCMC and, together with tools such as the potential
scale reduction factor (Gelman and Rubin, 1992; Vats and Knudson, 2021), allow for assessing convergence
of model runs. The trace plot indicative of a well-behaved model run should be stationary after the burn-in
phase, with different chains mixing well (Gelman et al., 1995). An example of a well-behaved trace plot is
the first panel of Fig. B1. Inspecting the trace plots of the 18 model parameters of the lower Cambrian case
study reveals that all parameters seem to have reached stationarity, this said; some chains occasionally visit
distinctly different values (e.g. Fig. B1, column 1, row 2). The chains are not mixing well in those regions
of the parameter space. Running the model for considerably more iterations is likely to overcome this
problem. However, this affects only the less likely alignments; the most likely alignment (alignment cluster

1) is well explored across all parameters.
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Figure B1: Trace plots of the 18 alignment parameters. Each colour corresponds to a distinct run. For
visual clarity, only 250 samples are displayed per run. The burn-in phase (the first 150,000 iterations)

is omitted.

Age-depth models for different alignments

The age-depth models for each of the four sites are shown for each alignment cluster separately in Fig. B2

(instead of for all samples combined as in Fig. 7).
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Figure B2: Age-depth model for each of the four sites. The solid lines indicate the median posterior
ages corresponding to the respective heights; the shaded interval denotes the 95% credible interval
of posterior ages. Colours correspond to the three different alignment clusters and outlier samples.
Circles indicate the mean age estimates of radiometric dates, with vertical lines spanning two
standard deviations around the mean of these age estimates. Crosses denote the first appearances of

trilobites in Morocco and Siberia.

Variation within alignment clusters

Summarising the posterior by grouping samples into clusters of similar alignments facilitates discussion of
the results but risks oversimplifying the variation within each cluster. Each cluster represents a set of
posterior samples that share similar inferred ages for the partition boundaries, but differences still exist
between individual samples within the same cluster. As an example, three distinct alignments from cluster 1

are visualised in Fig. B3. An alignment from a sample not assigned to any cluster is shown in Fig. B3d.
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Figure B3: Alternative alignments, each corresponding to a single sample from the posterior. (a) A
sample from the most likely cluster 1, corresponding to that shown in Fig. 6a. (b, c) Alignments
corresponding to other samples from cluster 1. (d) Alignment corresponding to an outlier sample that
was not assigned to any cluster. The curved dark lines show the cubic B-splines corresponding to each

alignment.

Posterior of alignment parameters

The posterior distributions of the alignment parameters are summarised in histograms in Fig. B4.
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Figure B4: Comparison of prior and posterior probability densities. Histograms in colour denote the
posterior probability densities of the 18 alignment parameters; the grey, smooth shadings represent

prior probability densities. The four colours correspond to the four independent model runs.
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