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Abstract 11 

Stratigraphic correlation and age modelling are fundamental to reconstructing Earth’s history, biological 12 

evolution, and palaeoclimate, and underpin the exploration for subsurface resources. Correlations are 13 

produced by integrating diverse stratigraphic data across multiple sites, typically by visual inspection. Here, 14 

we introduce ‘StratoBayes’, a Bayesian statistical framework that combines stratigraphic correlation and 15 

depositional age estimation of stratigraphic horizons, i.e. age modelling. Our method aligns quantitative 16 

signals from two or more sites by shifting and scaling, allowing for sedimentation rate changes between 17 

stratigraphic partitions. The likelihood of an alignment is evaluated by how well the adjusted signals 18 

conform to a shared smooth trend, represented by a cubic spline. Tie points or independent age constraints, 19 

such as radiometric dates or biostratigraphic markers, can be integrated within this framework, providing 20 

age estimates for all sites. Our approach identifies multiple alignments where distinct alternatives exist, 21 

estimates their relative probabilities, and quantifies the uncertainty associated with correlations and age 22 

estimates. We apply StratoBayes to a lower Cambrian dataset comprising a combination of δ13C records, 23 

radiometric dates and astrochronology from four sites in Morocco and Siberia. The results demonstrate its 24 

capacity to quantify existing alignments, and provide the first precise age estimate for the evolutionary 25 

appearance of trilobites in Siberia, one of the hallmarks of the Cambrian Explosion. Beyond this 26 

application, StratoBayes offers a generalisable framework for probabilistic stratigraphic correlation, with 27 

potential to improve age models across a range of proxy records and time intervals. 28 
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Non-technical short summary (max 500 char) 29 

StratoBayes is a novel Bayesian method for aligning stratigraphic data from multiple sites. It integrates 30 

diverse information, such as geochemical signals and radiometric dates, and provides robust age estimates 31 

with quantified uncertainty for all sites. We use StratoBayes to correlate lower Cambrian δ13C records from 32 

Morocco with an undated record from Siberia, and estimate the age of the world’s oldest trilobites. 33 

1 Introduction 34 

Stratigraphic correlation works on the basis that rocks that were deposited under similar conditions or at 35 

the same time tend to share characteristics that allow for their attribution to a stratigraphic or temporal 36 

horizon. For example, insofar as temporal changes in the global δ13C composition of seawater are reflected 37 

in marine sedimentary rocks, matching trends of changing δ13C in rock sections from different locations 38 

can be used to place those sections on a relative time scale (Cramer and Jarvis, 2020; Saltzman et al., 2012). 39 

Quantitative signals such as isotopic compositions, elemental concentrations or geophysical well-log data 40 

present a particular challenge: in aligning those signals by eye, the stratigrapher has to make a large number 41 

of intuitive decisions about which peaks and troughs are likely to line up. Trying to integrate all the 42 

stratigraphic evidence from multiple sites often results in more than one potential alignment solution and 43 

differing interpretations between different workers (Bowyer et al., 2022, 2023; Landing and Kruse, 2017; 44 

Smith et al., 2016). 45 

Computer algorithms have been designed to address the problems arising from visual correlation 46 

(Agterberg, 1990; Lisiecki and Lisiecki, 2002; Rudman and Lankston, 1973). Algorithms designed for 47 

aligning quantitative signals from two or more sites typically use a point-based approach, aligning each 48 

point of site A with zero, one or multiple points from site B. This approach proposes variable sedimentation 49 

rates between points. This flexibility in principle allows the most precise alignments, though potentially at 50 

the cost of overfitting. Point-based algorithms commonly use dynamic time warping (DTW), a technique 51 

that finds the optimal match between two time-series data by adjusting their alignment (Sakoe and Chiba, 52 

1978). For a selection of recent approaches using dynamic time warping for stratigraphic alignment, see 53 

Wheeler and Hale (2014); Hay et al. (2019); Baville et al. (2022); Sylvester (2023); and Hagen et al. (2024). 54 

The limitations of DTW-based approaches are that they commonly require known section tops and bottoms 55 

(Sylvester, 2023); and they are generally deterministic, providing only a single solution without any 56 

indication of uncertainty or alternative alignments (but see Al Ibrahim, 2022; Hay et al., 2019). The 57 



3 

 

integration of additional stratigraphic information besides the quantitative signals tends to be difficult, 58 

requiring extra steps outside of the core DTW-algorithm (e.g. Hagen and Creveling, 2024). 59 

Probabilistic approaches overcome some of these limitations by estimating the probabilities of different 60 

outcomes, rather than producing deterministic predictions. An effective probabilistic approach is offered 61 

by the Bayesian framework, which integrates multiple sources of uncertainty by combining prior 62 

knowledge, encapsulated mathematically as a prior probability distribution, with a custom likelihood 63 

function that is used to evaluate the likelihood of observed data. Given an appropriate prior and likelihood 64 

function it is straightforward to integrate different different types of stratigraphic information. Bayesian 65 

approaches are commonly employed in age-depth models that interpolate between absolute age constraints 66 

or tie points; examples include, e.g. Bchron (Haslett and Parnell, 2008) and Oxcal (Ramsey, 1995).; This 67 

approach can be extended by incorporating prior expectations on Bacon (Blaauw and Christen, 2011) also 68 

includes priors on hiatuses, sedimentation rates, and rate variability, including external information such as 69 

astrochronological data (e.g. Blaauw and Christen, 2011; Trayler et al., 20234). A recent Bayesian age-70 

depth modelling approach by Trayler et al. (2023) considers hiatuses and uses astrochronological 71 

interpretations to inform sedimentation rate priors. 72 

Recent Bayesian methods have attempted to combine stratigraphic correlation and age modelling. Lee et 73 

al. (2022) have implemented a Bayesian method that uses Gaussian process regression to match Cenozoic 74 

oxygen isotope data from one site to an oxygen isotope stack, while simultaneously integrating age 75 

estimates from radiocarbon dates to produce probabilistic age-depth models (i.e. the BIGMACS model). 76 

This method improves upon earlier approaches by specifying uncertainty for tie points and integrates prior 77 

knowledge on Cenozoic sedimentation rates with absolute age information from the aligned site. However, 78 

age uncertainties from the reference site are not included, and varying sampling resolution or large 79 

sedimentation rate changes may violate model assumptions and impede the broader adoption of this method 80 

in its current form (Middleton et al., 2024). Edmonsond and Dyer (2024) have developed a different 81 

Bayesian method based on Gaussian process regression that works without prior knowledge of 82 

sedimentation rates, but requires minimum and maximum age estimates for all sections, and the absence of 83 

an explicit prior on sedimentation rates may risk overfitting.  84 

Here, we introduce a versatile Bayesian method for stratigraphic correlation and age modelling that can 85 

align quantitative signals from two or more sites without the need to specify tie points or top and bottom 86 

ages, and with no restrictions on sampling frequencies. Possible sedimentation rates can be specified by the 87 

user as priors, and the likelihood encompasses the alignment of the signals and, optionally, additional age 88 

constraints such as dated horizons. The method requires only vague prior knowledge on the ages and on the 89 

degree of overlap of the sections, along with order-of-magnitude estimates of sedimentation rates; it is not 90 
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necessary to specify matching section tops or bottoms. The model is able to integrate radiometric dates 91 

from different sites, meaning that ages from well-dated sites can inform age estimates at sites with little or 92 

no age information. Age estimates with uncertainty can thus be obtained for any point within any site, and 93 

alternative alignments can be identified. Additional stratigraphic knowledge, such as hiatuses or tie points, 94 

can be readily incorporated. 95 

Our Bayesian model works by evaluating the fit of a single cubic spline (Heaton et al., 2020) to the 96 

combined quantitative signal of all sites. If more than one type of signal is included, e.g. δ13C and δ18O, a 97 

different spline is constructed for each signal type, and their joint likelihood is used to evaluate the 98 

alignment. Different alignments are generated by shifting the sites relative to each other, and by scaling 99 

segments of the sites using different sedimentation rates. Markov chain Monte Carlo methods are used to 100 

obtain the posterior distributions of the unknown model parameters. Our method is implemented as an R 101 

package, ‘StratoBayes’. 102 

To demonstrate the potential of this method, we apply it to artificial stratigraphic data and to a real case 103 

study using lower Cambrian δ13C records from Morocco (Magaritz et al., 1991; Maloof et al., 2005, 2010; 104 

Tucker, 1986) and Siberia (Kouchinsky et al., 2007). Integrating radiometric dates (Landing et al., 1998, 105 

2021; Maloof et al., 2010), we provide age estimates for the studied sections of an interval spanning several 106 

lower Cambrian carbon isotope excursions, and compare our algorithm-derived correlation with recent 107 

stratigraphic models relying on visual expert-based interpretations (Bowyer et al., 2022, 2023). Our solution 108 

also provides a fully quantitative age estimate for the appearance of the first Siberian trilobites, which are 109 

thought to be the world’s oldest trilobites (Landing et al., 2021). 110 

2 Bayesian stratigraphic model 111 

StratoBayes generates and evaluates alignments of quantitative stratigraphic signals. A signal consists of, 112 

for example, of geochemical or geophysical measurements that vary across height or depth (Fig. 1a), 113 

obtained from a contiguous sedimentary sequence, which may be interrupted by hiatuses at known horizons. 114 

Alignments are generated by shifting the sites containing the signals either (a) against a fixed reference site, 115 

or (b) against each other on an absolute age scale. Additionally, the sites are scaled (“stretched” or 116 

“squeezed”) assuming different sedimentation rates. The fit of different alignments, corresponding to 117 

different shifts and sedimentation rates, is evaluated in the Bayesian framework. 118 

Statistical analysis in the Bayesian framework starts by formulating a probabilistic model that includes 119 

known data 𝑦 and unknown model parameters 𝜃. Instead of trying to identify a single estimate for 𝜃, 120 
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Bayesian inference involves estimating probability distributions for the model parameters, termed 121 

“posterior probability distributions”. Posterior distributions are obtained by combining prior knowledge of 122 

the parameters with the data via a likelihood function. Bayes’ theorem states that the probability of the 123 

parameters given the data, 𝑝(𝜃|𝑦), i.e. the posterior probability, is proportional to the probability of the 124 

data given the model parameters (i.e. the likelihood), 𝑝(𝑦|𝜃), times the prior probability of the model 125 

parameters, 𝑝(𝜃): 126 

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)  (1) 127 

In our case, this approach requires specifying prior probability distributions for the unknown model 128 

parameters that control the shifting and scaling (Fig. 1b), and optionally for the duration of pre-determined 129 

hiatuses. Our model assumes that the measurements in each sedimentary sequence are samples (with noise) 130 

from a common underlying signal, whose value can be modelled by a smooth curve described by a cubic 131 

B-spline. Our likelihood function quantifies how well a cubic B-spline fitted to a given alignment explains 132 

the observed data (Fig. 1c). Additional likelihood components can integrate absolute age constraints such 133 

as radiometric dates or other tie points, e.g. index fossils. Using Bayes’ theorem, the priors are combined 134 

with the likelihood to obtain the posterior probability for any alignment. 135 

We obtain probability distributions for the parameters of the model by running a Markov chain Monte Carlo 136 

(MCMC) simulation. This involves repeatedly generating parameter values over a large number of 137 

iterations. To ensure thorough exploration of the parameter space, we employ parallel tempering, i.e. we 138 

run multiple chains in parallel, flattening the likelihood of the tempered (hot) chains, which can therefore 139 

move between different posterior modes; s; waps between chains are proposed at every iteration. but For 140 

the posterior estimates, we  retain samples only from the primary (cold) chain. An initial portion of the 141 

samples is discarded (burn-in) to remove dependency on starting values, and only every nth iteration is 142 

recorded to reduce autocorrelation. Details on the MCMC implementation are provided in Appendix A. 143 

In the following, we will assume that measurements were taken on a height scale (increasing from the 144 

bottom to the top), but depth-scale measurements can be used interchangeably by inverting their sign. 145 
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Figure 1: Schematic of the alignment algorithm. a) Input data: Quantitative stratigraphic measurements 

(e.g. geochemical data) from two sites recorded along their section height (here given in meters). b) 

Priors must be placed on the shift parameter 𝛼 and on the relative sedimentation rate 𝜈𝛾. Here, 𝛼 

determines the reference height (at Site 1) corresponding to the top of the height range of Site 2, and 𝜈𝛾 

corresponds to the sedimentation rate of Site 2 relative to Site 1. The vertical, dashed lines denote the α 

and 𝜈 values, 12.3 m and 3.0, respectively, that were used in the creation of the data of site 2. c) An 

alignment corresponding to a single sample from the posterior. The blue dashed line indicates the 

position of the top of the data from Site 2 at the reference height scale (𝛼; median: 12.5 m). The 

relative sedimentation rate 𝜈𝛾 has been estimated at a median of 2.8, corresponding to a shortening of 

the dataset from Site 2 relative to the reference site (indicated by the dashed and solid light brown line). 

Note that the posterior estimates of 𝛼 and 𝜈 are similar, although not identical to the values used in 
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creating the data (see Sect. 3). The curved grey line shows the cubic B-spline corresponding to the 

alignment. 

2.1 Evaluating alignments with a cubic B-spline 146 

Identifying good alignment positions requires evaluating and comparing different potential alignments. In 147 

the Bayesian framework, the measure used for this evaluation is the likelihood. We derive the likelihood of 148 

an alignment from its fit to a single cubic B-spline (Eilers and Marx, 1996), fitted to the measurements from 149 

all sites, including the reference site (see Fig. 1c). 150 

We model each measured value 𝑦௜ as normally distributed: 151 

𝑦௜ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇௜ , 𝜎),  (2) 152 

where 𝜇௜ is the mean, and the standard deviation 𝜎 represents the scatter around the spline. 𝜇௜  is given by 153 

the spline function 154 

𝜇௜ = ෍ 𝛽௝𝐵௝(ℎ௜)

௞ାଶ

௝ୀଵ

  (3) 155 

Here, 𝜇 can be interpreted as an underlying common signal of which the observations from each site, 156 

including the reference site, are noisy realisations. 𝑘 denotes the number of internal knots of the spline, with 157 

more knots implying that the spline can potentially capture higher-frequency variations. 𝛽௝ is the spline 158 

coefficient associated with the 𝑗-th basis function, and 𝐵௝(ℎ௜) is the 𝑗-th B-spline basis function evaluated 159 

at a reference height ℎ௜. A roughness penalty controlled by a smoothing parameter 𝜆 is incorporated in the 160 

prior on 𝛃, such that higher values of 𝜆 serve to favour smoother splines (Appendix A). The number of 161 

knots and the roughness penalty each influence spline flexibility in different ways: increasing 𝑘 provides a 162 

finer resolution for fitting local features, whereas increasing 𝜆 penalizes abrupt changes and yields smoother 163 

fits. The knots for the spline can be distributed across the reference height range that the converted 164 

measurement heights occupy for a specific combination of shift parameters (𝛼) and scale parameters (𝜈𝛾, 165 

i.e. relative sedimentation rates) parameters. Our current model implementation uses evenly spaced knots, 166 

but knot placement could also follow, for example, the density of measurements. Alternatively, the knots 167 

can be fixed at specific heights on the reference scale, in which case combinations of 𝛼 and 𝜈𝛾 that result 168 

in converted measurement heights falling outside the knot range cannot be evaluated. 169 
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The likelihood of an alignment, given 𝛃, 𝜎 and 𝜆, is determined by the residual deviations of the 𝑦௜ values 170 

from the corresponding 𝜇௜  values. The overall likelihood for 𝑛 data points is obtained by taking the product 171 

over all individual likelihoods for each pair of 𝑦௜ and 𝜇௜: 172 

𝐿(𝐲|𝛃, 𝜎, 𝜆) = ෑ
1

√2𝜋𝜎ଶ

௡

௜ୀଵ

× 𝑒
൬ି

(௬೔ିఓ೔)మ

ଶఙమ ൰
  (4) 173 

We thus assume that the deviations of the data from the spline are independently and identically distributed 174 

according to a normal distribution with mean 0 and standard deviation 𝜎. 175 

Our model allows for using more than one type of measurement simultaneously. In this case, a separate 176 

spline is fitted to all data, from all sites, for each type of measurement. The product of all likelihoods from 177 

all measurement types gives the overall likelihood. 178 

2.2 Alignment and partitioning 179 

In order to generate alignments of stratigraphic signals from different sites, one site is picked as a fixed 180 

reference site. The other sites are shifted and stretched (or squeezed) relative to the fixed reference site 𝑟. 181 

This requires specifying a shift parameter (height) 𝛼௦, which anchors an arbitrary, specified height of site 182 

𝑠 to a height in the reference site 𝑟. Here, we anchor the top of site 𝑠, so we set 𝛼௦ = 𝛼௧௢௣,௦ meaning 𝛼௧௢௣,௦ 183 

will be the height at site 𝑟 that aligns with the top of site 𝑠. To stretch or squeeze site 𝑠, a relative 184 

sedimentation rate 𝜈𝛾௦ can be specified, where 𝜈𝛾௦ is defined relative to the reference site. For any height 185 

ℎ௫,௦ at site 𝑠, the corresponding height in the reference site 𝑟 can then be calculated as 186 

ℎ௥ = 𝛼௧௢௣,௦ −
1

𝜈𝛾௦
× ൫ℎ௧௢௣,௦ − ℎ௫,௦൯ ,  (5) 187 

where ℎ௧௢௣,௦ is the height of the top of site 𝑠. Although we here chose the top of site 𝑟 as the reference 188 

horizon 𝛼 for simplicity, any horizon at site 𝑟 can be used as 𝛼. A 𝜈𝛾௦ < 1 implies that site 𝑠 has a lower 189 

sedimentation rate than site 𝑟, and consequently, 𝑠 has to be stretched to match 𝑟. A 𝜈𝛾௦ > 1, i.e. a higher 190 

sedimentation rate at site 𝑠 will lead to 𝑠 being squeezed to match 𝑟. 191 

The model described here is simple in that the same 𝜈𝛾 is applied to all measurements of the same site. In 192 

this scenario, any site may be used as the reference site. Below, we introduce more complex models with 193 

more than one sedimentation rate per site, and with hiatuses. With these models, it is practical to select the 194 

site with the most sedimentation rate changes and hiatuses as the reference site. This reduces the number 195 

of unknown parameters in the model, making it easier to obtain a representative sample from the posterior. 196 
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2.2.1 Multiple sedimentation rates per site 197 

Instead of having one sedimentation rate per site, sites can be partitioned, reflecting for example lithological 198 

units, with each partition being modelled with a distinct sedimentation rate: 199 

ℎ௥ = 𝛼௧௢௣,௦ − ෍ ൭
1

𝜈𝛾௣
× ൫ℎ௣,௦ − ℎ௣ାଵ,௦൯൱

௡೛,ೞିଵ

௟

−
1

𝜈𝛾௡೛,ೞ

× ቀℎ௡೛,ೞ
− ℎ௫,௦ቁ ,     𝑝 = 1. . . 𝑛௣,௦  (6) 200 

Here, 𝑛௣,௦ is the number of partitions encountered from ℎ௧௢௣ to ℎ௫,௦, ℎ௣,௦ is the top height of partition 𝑝 at 201 

site 𝑠, and ℎ௣ାଵ,௦ is the top height of the partition below partition 𝑝 at site 𝑠. If ℎ௫,௦ falls in the first partition 202 

from the top, the calculation simplifies to the equivalent of Equation 5, with ℎ௉ೞ
, the top height of the first 203 

partition being also the top height of site 𝑠. The relative sedimentation rates of partitions, 𝜈𝛾௣, can differ 204 

for each partition in each site, or partitions in different positions within a site or across sites may share 205 

sedimentation rates. 206 

2.2.2 Site-specific sedimentation rate multipliers 207 

The sedimentation rate model above can be further expanded by adding an overall site-specific 208 

sedimentation rate multiplier 𝜁௦: 209 

ℎ௥ = 𝛼௧௢௣,௦ − ෍ ൭
1

𝜁௦𝜈𝛾௣
× ൫ℎ௣,௦ − ℎ௣ାଵ,௦൯൱

௡೛,ೞିଵ

௟

−
1

𝜁௦𝜈𝛾௡೛,ೞ

× ቀℎ௡೛,ೞ
− ℎ௫,௦ቁ ,     𝑝 = 1. . . 𝑛௣,௦  (7) 210 

This may be useful in scenarios where sedimentation rates systematically differ between sites, perhaps due 211 

to varying distances from a sediment source, but where the sedimentation rate ratios of different partitions 212 

are assumed to be constant across sites. 213 

2.2.3 Hiatuses 214 

Known hiatuses (also referred to as unconformities or stratigraphic gaps) can be included at specific pre-215 

defined locations in a site. Expanding Equation 5 to include gaps of height 𝛿, we obtain 216 

ℎ௥ = 𝛼௧௢௣,௦ −
1

𝜈𝛾௦
× ൫ℎ௧௢௣,௦ − ℎ௫,௦൯ − ෍ 𝛿௚

௡ಸೞ

௚

 ,     𝑔 = 1. . . 𝑛ீೞ
  (8) 217 

where 𝑛ீೞ
 is the number of gaps encountered from ℎ௧௢௣,௦ until height ℎ௫,௦. In a correlation on an absolute 218 

age scale (Sect. 2.2.5), hiatuses would instead be expressed as durations, not heights. 219 
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2.2.4 Tie points 220 

Tie points define specific heights within an aligned site and assign a probability distribution to indicate to 221 

which horizon these heights correspond on the reference scale. For example, a tie point might be a 222 

lithological boundary, a biostratigraphic horizon, or a radiometric date. If tie points are specified, the 223 

likelihood of an alignment is expanded to include not only the fit of the signal data to the spline, but also 224 

the positions of the ties on the reference height scale relative to the specified probability distribution. 225 

For example, a point in an aligned section which is tied by observation to the reference section at a position 226 

𝑚௧ with a normally distributed uncertainty with standard deviation 𝑠௧ that ends up being shifted to a 227 

reference height ℎ௧ (computed from the relevant 𝛼 and 𝜈𝛾 parameters) contributes a likelihood of 228 

𝐿(𝑚௧|ℎ௧, 𝑠௧) =
1

ඥ2𝜋𝑠௧
ଶ

× 𝑒
ቆି

(௠೟ି௛೟)మ

ଶ௦೟
మ ቇ

  (9) 229 

to the overall likelihood of the model. 230 

2.2.5 Age-scale alignment 231 

Data on an (absolute) age scale can be aligned using the methods introduced above by using ages instead 232 

of heights. However, height-scale data can be aligned on an age-scale if absolute age constraints (specified 233 

as ties) are provided from at least one site. In this case, all sites will be shifted to align on a common age 234 

scale, i.e., there is no reference site. 235 

Analogous to the heights in the reference height scale in Equation 5, ages (𝑎) can be calculated as: 236 

𝑎 = 𝛼௧௢௣,௦ +
1

𝜈𝛾௦
× ൫ℎ௧௢௣,௦ − ℎ௫,௦൯   (10) 237 

Here, 𝛼௧௢௣,௦ is the top age (minimum age), rather than top height (maximum height), of site 𝑠. Sedimentation 238 

rates 𝜈𝛾௦ need to be expressed on the common age scale, rather than relative to a reference site. Equations 239 

6–8 can be modified accordingly for an analysis on the age scale. 240 

It should be noted that due to sedimentation rates being fixed for an entire site or within partitions, our 241 

current model implementation does not necessarily result in increasing age uncertainty away from absolute 242 

age constraints. Potential sedimentation rate changes within sites or partitions could lead to our model 243 

underestimating age uncertainty with growing stratigraphic distance from absolute age constraints (see De 244 

Vleeschouwer and Parnell, 2014). 245 
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2.3 Priors 246 

The Bayesian framework requires priors to be placed on all unknown model parameters. In our model, these 247 

include the alignment parameters (e.g. 𝛼, 𝜈𝛾), the smoothing parameter 𝜆, the residual standard deviation 248 

𝜎 (if it is not fixed), and the spline coefficients 𝛃. The priors on the alignment parameters determine the 249 

range of possible alignments and need to be chosen with care. For the other parameters, weakly informative 250 

priors with minimal influence on the analysis are preferred (Appendix A). In addition to those priors, we 251 

penalise a lack of overlap by specifying a prior probability of data points from different sites overlapping 252 

each other. 253 

2.3.1 Alignment parameters 254 

The priors on the alignment parameters should reflect the stratigraphic knowledge on the input data. The 255 

user may specify different types of prior distributions (e.g., normal, uniform, exponential) for the alignment 256 

parameters during model setup. 257 

• 𝛼 determines the reference site (site 𝑟) height or age that a specific position within the aligned site 258 

(site 𝑠) corresponds to. In the absence of prior knowledge on how the sites are likely to align, a 259 

uniform prior can be placed on 𝛼. For example, if 𝛼 refers to the top of site 𝑠, a uniform prior on 260 

𝛼 with min and max equal to the height or age range of site 𝑟 implies that the top of site 𝑠 will be 261 

placed within the height range of site 𝑟. 262 

• 𝜈𝛾 is either a relative (height scale alignment) or an absolute (age scale alignment) sedimentation 263 

rate. In our model implementation, priors are placed on the natural logarithm of 𝜈𝛾, ln(𝜈𝛾), rather 264 

than on 𝜈𝛾 directly. Specifying rate parameters on the logarithmic scale ensures that their priors 265 

are symmetric: a doubling or halving of a rate has equivalent distances on the logarithmic scale. If 266 

the sedimentation rate is relative, ln(𝜈𝛾) < 0 (i.e. 𝜈𝛾 < 1) results in “stretching”, and ln(𝜈𝛾) > 0 267 

(i.e. 𝜈𝛾 > 1) results in “squeezing” of site 𝑠 relative to site 𝑟. In the absence of strong prior 268 

knowledge about the relative sedimentation rate, a normal prior on ln(𝜈𝛾) with a mean of 0 269 

places equal prior probability on “stretching” or “squeezing” of site 𝑠 relative to site 𝑟. The 270 

standard deviation requires at least a broad guess of the potential magnitude of sedimentation rate 271 

differences. For example, a standard deviation of 
୪୬(ସ)

ଵ.ଽ଺
 places 95% of prior probability on 

ଵ

ସ
<272 

𝜈𝛾 < 4 for ln(𝜈𝛾) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 ቀ0,
୪୬(ସ)

ଵ.ଽ଺
ቁ. If 𝜈𝛾 is an absolute sedimentation rate, the range of 273 

plausible prior sedimentation rates may be estimated from the absolute age constraints. 274 
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• 𝜁௦ is a multiplier applied to all relative or absolute sedimentation rates 𝜈𝛾 corresponding to a 275 

single site 𝑠. As with 𝜈 𝛾, ln(𝜁௦) < 0 (i.e. 𝜁௦ < 1) causes additional “stretching”, and ln(𝜁௦) > 1 276 

(i.e. 𝜁௦ > 0) causes additional “squeezing” of site 𝑠. 277 

• 𝛿 is the reference height range or duration of a hiatus. An exponential prior may be useful when 278 

little is known about the extent of the hiatus, placing higher probabilities on short extents. The 279 

rate needs to be chosen to make sense in the context of the height of the sections, or of the 280 

anticipated age range of the sites. 281 

2.3.2 Penalising a lack of overlap 282 

Individual splines fitted to data from each site separately can almost always follow the data more closely 283 

than a single spline fitted to aligned data from all sites. Given enough knots, alignments in which the data 284 

do not overlap, or only overlap little, will thus generally result in a higher likelihood than alignments with 285 

a partial or full overlap. This means that if the priors allow non-overlapping alignments, those will generally 286 

be preferred in the model inference. To counteract this tendency, we impose a prior on the overlap of each 287 

individual data point from all sites that penalises non-overlap with data from other sites. 288 

The prior on overlap for data point 𝑖 from site 𝑠 is 289 

𝑃(𝑖௦) = 𝑒൫ି√ௌିଵାඥௌ೚ೡ೐ೝ೗ೌ೛,ೞ,೔൯×௖೚ೡ೐ೝ೗ೌ೛  ,  (11) 290 

where 𝑆 is the number of sites in the analysis,where 𝑆௢௩௘௥௟௔௣,௦,௜ is the number of other sites overlapping the 291 

reference height ℎ௥ or age 𝑎 of point 𝑖௦, and 𝑐௢௩௘௥௟௔௣ is a constant. This formulation implies that the penalty 292 

for a point 𝑖௦ that overlaps all other sites is 0, and the penalty is strongest (most negative) if 𝑖௦ overlaps no 293 

other sites. To work effectively, the penalty needs to be stronger for data sets with little noise (low residual 294 

𝜎), to offset the larger likelihood differences resulting from fitting a spline with low 𝜎. A range of 𝑐௢௩௘௥௟௔௣ 295 

values may work in practice. A formulation that we have found works well in many scenarios sets 296 

𝑐௢௩௘௥௟௔௣ = 𝑐 ×
1

𝑆
෍ ൬

𝜎௬,௦

𝜎௦
൰

௤
ௌ

௦ୀଵ

  (12) 297 

where 𝑐 is a constant determining the strength of the overlap penalty (set to a default of 𝑐 =
ଵ

ସ
), 𝑞 = 1 if 𝜎 298 

is fixed, and 𝑞 =
ଵ

ଶ
 if 𝜎 is variable (i.e. estimated in the model inference). Here, 𝜎௬,௦ is the standard deviation 299 

of all data 𝑦 from site 𝑠, and 𝜎௦ is the residual standard deviation of a Bayesian spline fitted to the data 𝑦 300 

from site 𝑠, using the same priors as for the overall model inference. 301 
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3 Model illustration 302 

We illustrate the performance of our stratigraphic alignment method with a simple, artificial dataset (Fig 303 

2a). We generated measurements from a reference site (Siteref) using a sine wave covering 3.5 periods, 304 

where each period corresponds to 2𝜋 radians. To generate the signal data, we intercepted this sine wave at 305 

heights ℎ with 250 evenly spaced points per period, i.e. the number of data points (𝑛) is 3.5 × 250 = 875. 306 

Each signal value 𝑦௜ was generated with random white noise 𝜎 =
ଵ

ହ
 added, such that 307 

𝑦௜ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 ൬𝜂௜sin ൬ℎ௜ −
1

2
𝜋൰ , 𝜎൰ ,     𝑖 = 1. . . 𝑛  (13) 308 

The factor 𝜂௜ modulates the amplitude of the sine wave at each height ℎ௜. It was set to 𝜂 = 1 for the heights 309 

ranging from −0.5𝜋 to 5𝜋, and to 𝜂 = 0.75 from heights 5𝜋 to 6.5𝜋, which reduces the amplitude 310 

beginning in the middle of the third period of the sine wave. The aligned signal was simulated as above, 311 

but from a sine wave covering one period, sampling 250 data points, again with random noise using 𝜎 =
ଵ

ହ
 312 

and 𝜂 = 1. To simulate a sedimentation rate twice as high as at the reference site, we multiplied the heights 313 

of Sitealign by 2. The heights of Sitealign were then shifted to start at 0. 314 

The aligned signal should thus match either the first or the second, but not the third period of the reference 315 

signal. To align the two sites, we used a simple model with a site-specific shift 𝛼, referring to the top of 316 

Sitealign and relative sedimentation rate 𝜈𝛾 as in Equation 5. From the data generation, we know that the 317 

posterior of 𝜈𝛾 should be ≈ 2, with ln(𝛾𝜈) ≈ 0.69, and 𝛼 (defined as the reference height corresponding 318 

to the top height of Sitealign) should be ≈ 2𝜋 (top of first period) or ≈ 4𝜋 (top of second period). 319 

To minimise the influence of the priors, we used a uniform prior on 𝛼 that extends well beyond the 320 

alignment positions known from generating the data, and a broad normal prior on ln(𝜈𝛾) that encompasses 321 

the known sedimentation rate 𝜈𝛾 = 2 (Fig. 2b): 322 

𝑃(𝛼) ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝜋, 8𝜋)  (14) 323 

𝑃൫ln(𝛾𝜈)൯ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)  (15) 324 

These priors place 95% of prior probability for the relative sedimentation rate of Sitealign between 0.14 and 325 

7.1, and place the top of Sitealign anywhere from half a period below the start of the first period (−𝜋) up to 326 

one period above the third period (8𝜋). For the cubic spline, we specify 20 evenly spaced knots, which is 327 

more than enough to approximate the three periods of the sine wave. 328 
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We estimated the posterior of the model with three independent runs, each with 16 chains and 60,000 329 

iterations. The first 10,000 samples were discarded as burn-in, and every 25௧௛ iteration was recorded, 330 

resulting a total of 6000 samples after burn-in across all three independent model runs. 331 

The results show that the analysis identified both matching alignments, corresponding to the first and 332 

second period of the reference site (Fig. 2b). The posterior probability for (Sitealign) matching period 1 is 333 

50.1%, and 49.9% for matching period 2. A density plot of the posterior of 𝛼 and ln(𝜈𝛾) shows that 𝛼 has 334 

a bimodal posterior, corresponding to the two alignments (Fig. 2c). The trace plots indicate good mixing of 335 

the chains (Fig. 2d), suggesting that the posterior estimates are robust. 336 

It is notable that the model estimate for the relative sedimentation rate 𝜈𝛾 is lower at 1.90 (95% credible 337 

interval: 1.82 to 1.99) than the value used for the data generation (2.00). Reported values, here and 338 

throughout, represent the posterior median, with 95% credible intervals – given in brackets – referring to 339 

the interval between the 2.5% and 97.5% points of the posterior distribution. This deviation of the posterior 340 

from the known sedimentation rate estimate arises because the priors favour greater overlap (see Sect. 341 

2.3.2). The posterior alignment tends to “compress” the data from Sitealign slightly less than expected, 342 

leading to an increased overlap of points (see also Fig. 5b). 343 
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Figure 2: Model illustration using artificial data. a) Input data: Quantitative stratigraphic data from two 

sites. The blue line indicates the range in which 𝑆𝑖𝑡𝑒௥௘௙ was created with 𝜂 = 1, and the purple line 

above indicates the range for which 𝜂 was set to 0.75 to lower the amplitude. b) Two alignments 

identified by the inference, with (Sitealign; blue squares) matching the first or second period of (Siteref; 

red points). The alignments shown here correspond to two distinct samples from the posterior; other 

samples will result in slightly different positions of (Sitealign). The curved dark lines show the cubic 

spline corresponding to each alignment. c) Posterior densities of 𝛼 and ln(𝜈𝛾). The two modes of 𝛼 

correspond to the two distinct alignments in b). The dotted lines indicate the 𝜈𝛾 values with which 

(Sitealign) was simulated, and the two plausible 𝛼 values. d) Trace plots of 𝛼 and ln(𝜈𝛾). The three 

distinct colours correspond to the three independent model runs. For visual clarity, only 75 selected 

samples are shown from each run. 
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4 Case study: Lower Cambrian δ13C records 344 

To demonstrate the utility of this method, we use it to align stable carbon isotope records (δ13C) from lower 345 

Cambrian marine shelf carbonates (Fig. 3). We integrate a combination of radiometric dates, δ13C and 346 

astrochronological information from four sites to obtain age estimates for the sampled intervals from all 347 

sites, and use this age model for dating the first documented occurrence of Siberian trilobites. 348 

4.1 Data 349 

We selected three records from the Anti-Atlas mountains in Southern Morocco, corresponding to the Oued 350 

Sdas, the Tiout and the Talat n’ Yissi sections, which were part of West-Gondwana during the early 351 

Cambrian (Magaritz et al., 1991; Maloof et al., 2005, 2010; Tucker, 1986). Oued Sdas and Tiout harbour 352 

multiple precise U-Pb radiometric ages (Landing et al., 2021; Maloof et al., 2010). Talat n’ Yissi has no 353 

radiometric dates, but a radiometric date exists from the stratigraphically equivalent Lemdad syncline 354 

(Landing et al., 1998) that has been correlated biostratigraphically to Talat n’Yissi with the Antatlasia gutta-355 

pluviae zone (Maloof et al., 2005); we include this date in the analysis. We will align these sites with each 356 

other, and with a δ13C record from the Sukharikha section from the northwestern Siberian platform 357 

(Kouchinsky et al., 2007), corresponding to the palaeocontinent Siberia. There are no radiometric dates 358 

available for the Siberian section for this stratigraphic interval. Data that was inferred to be below the lower 359 

leg of the prominent “5p” excursion (lowest peak in Fig. 3a and d) was excluded to simplify the correlation, 360 

reducing the number of modelled sedimentation rates unconstrained by radiometric dates. This cropping of 361 

data affects the Oued Sdas and Sukharikha sections; Fig. 3 shows all data that was included in the analysis. 362 

We did not change the magnitude of the δ13C values by scaling data; δ13C values were used as reported by 363 

the authors of the respective publications without any scaling or other adjustments. 364 
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Figure 3: Cambrian δ13C data and radiometric dates from Morocco (a - c) and Siberia (d). Different 

colours, in conjunction with different symbols, delineate different lithological units or formations. 

Circles indicate the position of radiometric dates, with mean age and 2 standard deviations denoting the 

uncertainty. Stars denote the positions where the oldest trilobite remains are found in Morocco (a) and 

Siberia (d). The dashed line in (d) indicates a hiatus. 𝛼 indicates the reference horizon chosen for 

specifying the prior on the shift parameter 𝛼 for each site. 

4.2 Model specification 365 

To align the four sites on the age scale, we specify an 𝛼 parameter on the absolute age scale (Ma) for each 366 

site, and use absolute, rather than relative sedimentation rates (expressed in m Myrିଵ). We encapsulate 367 

variation in sedimentation rates (𝜈𝛾) by partitioning sites into members, formations or lithological units, 368 

leading to multiple sedimentation rates per site. As there are few radiometric dates to constrain 369 

sedimentation rates, partitions shared between the Moroccan sites are set to have the same relative 370 

sedimentation rate across sites. To account for potentially faster or slower sedimentation rates at different 371 

sites, a site-specific sedimentation rate multiplier 𝜁 is added for Oued Sdas and Talat n’Yissi that is 372 

multiplied with the 𝜈𝛾 from those sites. The 𝜈𝛾 for a partition applies to all sites at which this partition 373 

occurs; for Tiout, they are used unaltered, and no 𝜁 is needed for Sukharikha as there are no shared partitions 374 

with other sites. We partition the Moroccan data based on the lithostratigraphy from Maloof et al. (2005). 375 

We divide the Adoudounian Tifnout Member into a lower part (Tifnout l.), and an upper stromatolitic part 376 

(Tifnout stromatolite), as preliminary results suggested pronounced sedimentation variability between those 377 

parts. We subdivide the Lie de Vin Formation into three members; the Igoudine Formation is subdivided 378 

into two members. The Amouslek and Isaafen formations are not subdivided. The Sukharikha section is 379 
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divided into two formations, which we assign separate sedimentation rates. At the boundary, a substantial 380 

hiatus is evinced by the truncation of the “7p” δ13C peak (Kouchinsky et al., 2007). We include the duration 381 

of this hiatus (𝛿) as an additional unknown parameter in the model. 382 

The model requires priors to be specified for each of its 18 alignment parameters: Four 𝛼, eleven 𝜈𝛾, two 383 

𝜁 and one 𝛿 (Fig. 4). These priors are broadly guided by the radiometric dates and by previous work 384 

(Bowyer et al., 2023; Landing et al., 2021; Sinnesael et al., 2024). The 𝛼 for the Tiout and Sukharikha sites 385 

are placed at the height positions of the first trilobite fossil remains found at Tiout (Sinnesael et al., 2024), 386 

and the first appearance of Siberian trilobites correlated to Sukharikha (Landing et al., 2021; Varlamov et 387 

al., 2008). Here, we place normal distributed priors with mean age 520 Ma and a wide standard deviation 388 

of 2 Myr on the 𝛼 parameters at Tiout and Sukharikha. This prior reflects the notion that first appearance 389 

dates of trilobites may be broadly similar at ≈ 520 Ma, but not necessarily identical, and the data is allowed 390 

to determine the exact age of each 𝛼. The 𝛼 priors for Oued Sdas and Talat n’Yissi are placed at the position 391 

of the lowest or the only available radiometric date, respectively, consisting of normal distributions with 392 

mean age equal to the mean age estimate of the radiometric data and a wide standard deviation of 2 Myr. 393 

For the sedimentation rates, priors informed by an astrochronology of the Tiout section (Sinnesael et al., 394 

2024) are used for the following five stratigraphic partitions: The lower, middle and upper members of the 395 

Lie de Vin Formation, and for the lower and upper (Tiout Member) members of the Igoudine Formation. 396 

Those priors are chosen such that the 95 percentile interval of 𝜈𝛾 spans the minimum and maximum of the 397 

astrochronological sedimentation rate estimates when using an uncertainty of ±1 short eccentricity cycle 398 

for each partition, with an estimated duration of short (≈ 100 kyr) eccentricity cycles ranging from 92.5 to 399 

100.5 kyr (two standard deviations, following Lantink et al., 2022). 400 

To specify priors for the remaining Moroccan partitions (lower part of Tifnout Fm., Tifnout stromatolite, 401 

Amouslek Fm., and Isaafen Fm.), sedimentation rates between the radiometric dates from Oued Sdas and 402 

Tiout are calculated using the mean ages of the dates. The prior on ln(𝜈𝛾) is defined as a normal distribution 403 

with a mean of 5.39, corresponding to the mean of the empirical sedimentation rates from Oued Sdas and 404 

Tiout, calculated on the logarithmic scale. A wide standard deviation of 0.75 is set, resulting in the 95 405 

percentile interval of 𝜈𝛾 spanning 50.3 to 951 m Myrିଵ. This interval significantly exceeds the range of 406 

sedimentation rates inferred from the radiometric dates at Oued Sdas and Tiout, 147 to 314 m Myrିଵ, 407 

allowing for the possibility of lower or higher sedimentation rates in some partitions. 408 

Prior sedimentation rate estimates for the Siberian formations are estimated in the absence of radiometric 409 

dates, very broadly based on global correlations by Bowyer et al. (2023). These correlations suggest average 410 

sedimentation rates on the order of 20 to 30 m Myrିଵ; we place a normal prior on ln(𝜈𝛾) with a mean of 411 
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3.30 and a standard deviation of 0.75, resulting in a 95 percentile interval of 𝜈𝛾 spanning 6.23 to 412 

117.9 m Myrିଵ, which allows for the possibility of significantly different sedimentation rates from those 413 

inferred by Bowyer et al. (2023). 414 

Finally, a prior needs to be placed on the duration of the hiatus 𝛿 between the Sukharikha and the 415 

Krasnoporog formations. Kouchinsky et al. (2007) do not give an indication of the potential duration of this 416 

hiatus, but if the under- and overlying δ13C peaks are correlated as indicated by previous work (Bowyer et 417 

al., 2022; Landing et al., 2021), a relatively short hiatus of ≈ 1 Myr is likely. To express considerable 418 

uncertainty about the duration of the hiatus, we place an exponential prior on 𝛿 with a rate of 1, which 419 

places 95% of prior probability on the duration being < 3 Myr, with 5% probability accounting for the 420 

possibility of a longer gap. 421 

The cubic spline comprises 40 evenly spaced knots, allowing it to closely follow trends in the δ13C records 422 

while keeping the MCMC runtime manageable, as a higher knot count increases computational cost. For 423 

the smoothing parameter 𝜆, we applied a gamma prior with StratoBayes’ default values of 𝑎ఒ = 1 and 𝑏ఒ =424 

1000. We fixed 𝜎, which is the residual standard deviation of the overall spline, at 0.66, which is the 425 

average residual standard deviation of individual cubic splines fitted to each δ13C record from the four 426 

respective sites. These individual splines were constructed with 40 knots evenly spaced across the height 427 

range of each respective site and fitted with Gibbs sampling using 2000 iterations, discarding 25% of 428 

samples as burn-in. The same default 𝜆 priors as described above were applied, while the prior for these 429 

splines’ standard deviations was specified as a gamma prior on the precision 𝜏, with 𝑎ఛ = 𝑏ఛ = 0.01 (see 430 

Appendix A for details).  431 
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Figure 4: Priors on the 18 alignment parameters for the Cambrian model. Prior probability density is 

shown (a) for four 𝛼 parameters corresponding to one site each (priors for Tiout and Sukharikha in grey 
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are identical), (b) for six 𝜈𝛾 (sedimentation rate) parameters with little prior knowledge, (c) for five 𝜈𝛾 

parameters from Morocco with tight priors based on astrochronology, (d) for 𝜁 parameters (site-specific 

sedimentation rate multipliers) for Oued Sdas and Talat n’Yissi (identical), and (e) for the duration of 

the hiatus between the Sukharikha and the Krasnoporog formations. The width of the red bar in (b) 

visualises the range of sedimentation rates spanned by (c). Panel (f) visualises two alignments 

generated by randomly drawing parameter values from their respective priors, to give an indication of 

the broad range of alignments that the priors on the alignment parameters allow; colours correspond to 

the four sites (see Fig. 6). Panels (b), (c), and (d) are depicted with a logarithmic x-axis as the priors 

were specified on ln(𝜈𝛾) and ln(𝜁). 

4.3 Parameter estimation 432 

This model is more complex than our earlier examples, and hence requires longer runs with more chains. 433 

We conducted four independent model runs, each with 750,000 iterations and 24 chains. The runs were 434 

executed in parallel using four workers on a desktop computer (Intel i7-10700 CPU, 8 cores / 16 threads, 435 

40 GB RAM) and completed within 5 days. The first 150,000 iterations were discarded as burn-in. From 436 

the remaining 600,000, every 50th iteration was retained, resulting in 12,000 samples per run and 48,000 437 

samples in total. 438 

Inspection of trace plots of the model runs indicates stationarity and good mixing of the chains with the 439 

exception of infrequent visits of secondary posterior modes (Appendix B, Fig. B1). The potential scale 440 

reduction factor (using eq.4 in Vats and Knudson, 2021) is between 1.00 and 1.05 for all alignment 441 

parameters, suggesting approximate convergence of the MCMC. The multivariate effective sample size 442 

(Vats et al., 2019) of the 48,000 samples is 4161. 443 

4.4 Results 444 

To identify distinctly different alignments in the posterior, a hierarchical density-based cluster analysis 445 

(Campello et al., 2015) was conducted using the inferred ages of all partition boundaries of the four sites 446 

(Fig. 4a,b). We specified 1% of samples (480) as the minimum number of points per cluster, resulting in 447 

three distinct clusters with 93%, 2.8% and 2.6% of posterior samples, respectively, and 1.5% of samples 448 

not being assigned to any cluster. These alignment clusters also differ in the prior probabilities and 449 

likelihoods associated with individual posterior samples. On average, samples from alignment 1 tend to 450 

exhibit a lower degree of overlap, but a higher likelihood (Fig. 4c), indicating a better fit to the data. 451 
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Figure 5: (a, b) 2D density plots of the inferred top ages of the four sites, representing some of the ages 

used for obtaining alignment clusters from posterior samples. (c) 2D density plot of the ln prior 

probability of overlap against the overall ln likelihood. Areas with more opaque shadings correspond to 

a higher density of individual posterior samples. Colours correspond to alignment clusters: alignment 1 

- violet; alignment 2 - blue; alignment 3 - green; outlier samples not assigned to any cluster - yellow. 

Using samples from the posterior of the model parameters, alignments can be generated. Fig. 6 visualises 452 

three alignments drawn from the three alignment clusters identified in the posterior. For each alignment 453 

cluster, the iteration with partition boundary ages that are, on average, closest to the median ages of the 454 

partition boundaries within that cluster is selected for displaying. All three alignments exhibit a good match 455 

between the long-term trends of the δ13C curves from the four sites and the common spline curve, although 456 

many shorter-term deviations are visible (Fig. 6a-c). The spline curve notably follows the more densely 457 

sampled sites (Oued Sdas, Talat n’Yissi) more so than the thinly sampled sites (Tiout, Sukharikha), 458 

resulting in greater deviations of the latter two sites. 459 

The posterior age estimates for the stratigraphic positions of the radiometric dates broadly match the age 460 

estimates that were used as inputs in the analysis (Fig. 6d). The deviations are greatest for the Talat n’Yissi 461 

date (Taଵ), which has large uncertainty and therefore less influence on the analysis, and the second date 462 

from Oued Sdas (Ouଶ). The first appearances of trilobites are visualised alongside the dates in Fig. 6d, and 463 
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are dated to 519.46 Ma (519.25 to 519.68 Ma) at Tiout. The age estimate for the first Siberian trilobites 464 

differs considerably between the different alignment solutions: For the most likely alignment 1, the age 465 

estimate is 520.79 Ma (520.98 to 520.61 Ma), and for alignment 2 the estimate is somewhat higher at 521.05 466 

Ma (521.19 to 520.91 Ma). Alignment 3 suggests a significantly later appearance of Siberian trilobites at 467 

519.98 Ma (520.15 to 519.84 Ma). All three alignments place the appearance of the first Siberian trilobites 468 

before their appearance at Tiout, with the temporal gap (computed directly from the posterior distribution) 469 

being estimated at 1.33 Myr (1.09 to 1.54 Myr) for alignment 1, 1.71 Myr (1.54 to 1.87 Myr) for alignment 470 

2, and 0.63 Myr (0.53 to 0.74 Myr) for alignment 3. 471 

 

Figure 6: Three possible alignments identified by the inference with Cambrian data. (a) Exemplary 

sample from the cluster of the most likely alignment (93% of posterior samples). (b, c) Exemplary 

samples from a second and third identified alignment cluster (2.8% and 2.6% of posterior samples, 

respectively). Each shown alignment corresponds to a single sample from the posterior; other samples 

will result in slightly different alignments. 1.5% of samples were not assigned to any cluster (see Fig. 

5). The curved dark lines show the cubic B-splines corresponding to each visualised sample. The 

coloured bars to the right of each alignment show the median duration of the stratigraphic partitions 

under each respective alignment cluster, based on the median ages of partition boundaries, with colours 

repeating the colour scheme of Fig. 2. (d) Posterior density of the inferred ages corresponding to the 



25 

 

radiometric dates to the left (3 from Tiout, 4 from Oued Sdas, and 1 from Talat n’Yissi) and the first 

occurrences of trilobites at Tiout (Ti tril.) and Sukharikha (Sh tril.) to the right, in colours. All samples 

from all alignment clusters were included. Greater width corresponds to higher posterior density; all 

densities are scaled to have the same maximum for better visibility. Densities representing the 

uncertainties of radiometric dates based on their mean and standard deviation are shown in grey (left). 

The faint yellow shading to the right shows the prior density on 𝛼, i.e. the first appearance of trilobites 

at Tiout and Siberia based on a mean age of (520 Ma) and a standard deviation of 2 Myr (identical for 

Tiout and Siberia). Colours and shapes of the points correspond to the four sites: Tiout - brown circles; 

Oued Sdas - pink squares; Talat n’Yissi - green diamonds; Sukharikha - blue triangles. 

The posterior of the model runs allows the construction of age models that span the entire height of each 472 

site (Fig. 7). As sedimentation rates are constrained to be constant within the pre-defined partitions, 473 

sedimentation rate changes are visible as inflections at the boundaries of these partitions. Age uncertainties 474 

are relatively low at Tiout and most of Oued Sdas, which are relatively well constrained by radiometric 475 

dates in the top (Tiout) and middle (Oued Sdas) parts of the sections, as well as by astronomical priors on 476 

sedimentation rates. Uncertainty noticably increases towards the top and bottom of Oued Sdas. The lowest 477 

partition of Oued Sdas is constrained only by its match to the lower part of the Sukharikha Fm., their age 478 

estimates are thus varying considerably between different alignments (Fig. 6). Differences in the positioning 479 

of the δ13C curves between alignments are greatest at Talat n’Yissi and the Siberian Krasnoporog Fm. (Fig. 480 

6), which results in large uncertainties in the age models (Fig. 7c, d). 481 
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Figure 7: Age-depth model for each of the four sites. The solid lines indicate the median posterior ages 

corresponding to the respective heights; the shaded interval denotes the 95% credible interval of 

posterior ages. Colours correspond to the colours of partitions introduced in Fig. 3. Circles indicate the 

mean age estimates of radiometric dates, with vertical lines spanning two standard deviations around 

the mean of these age estimates. Stars denote the first appearances of trilobites in Morocco and Siberia. 

See Fig. B2 for separate visualisations of age-depth models for different alignment solutions. 

5 Discussion 482 

5.1 Lower Cambrian stratigraphy 483 

We used StratoBayes to correlate and date four lower Cambrian carbonate sections using δ13C records, 484 

radiometric dates and astrochronological sedimentation rate estimates. From a large space of possible 485 
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alignment configurations (Fig. 4), the software identified alignment solutions that visibly match the large-486 

scale features in the δ13C records from multiple sites, while simultaneously achieving an approximate fit to 487 

the radiometric dates (Fig. 6). 488 

The most likely alignment solution from the posterior, alignment 1 (probability = 93%), results in a 489 

correlation of the three Moroccan sites that has much in common with that proposed by Maloof et al. (2005). 490 

In our model, we used common sedimentation rates for the stratigraphic partitions (members, formations) 491 

shared between the sites, whilst allowing sedimentation rates to systematically differ from the reference 492 

sedimentation rates at Tiout by adding a site-specific multiplier. This multiplier, 𝜁, is 1.02 (95% credible 493 

interval: 0.97 to 1.08) for Oued Sdas, meaning the model estimates very similar sedimentation rates for 494 

Tiout and Oued Sdas (Fig. 6a), consistent with their close geographical proximity. Sedimentation rates for 495 

the shared partitions at Talat n’Yissi are lower by a factor of 0.86 (0.76 to 0.96), which would be consistent 496 

with a moderately lower accommodation space at Talat n’Yissi relative to Tiout and Oued Sdas (as 497 

suggested by Fig. 3B in Maloof et al., 2005). We deliberately chose broad priors that did not explicitly 498 

enforce a relationship between sedimentation rates and palaeogeography; nonetheless, the model identified 499 

a geologically plausible solution. In contrast, the higher 𝜁்௔௟௔௧ ௡ᇱ௒௦௦௜ of alignment 2 (probability = 2.8%, 500 

1.07 to 1.37) and alignment 3 (probability = 2.6%, 2.07 to 2.45) are harder to reconcile with the 501 

palaeogeographic context. 502 

Alignments 2 and 3 also suggest different sedimentation rates between Tiout and Oued Sdas, with a higher 503 

value of 𝜁ை௨௘ௗ ௌௗ௔௦ (1.13 to 1.26) being estimated by alignment 2, and a lower value of 𝜁ை௨௘ௗ ௌௗ௔௦ (0.83 to 504 

0.88) by alignment 3. The most consistent lithostratigraphic alignment between Tiout and Oued Sdas is 505 

achieved by alignment 1, meaning that the age estimates for partition boundaries (based on members or 506 

formations) are most similar (Fig. 6). For the more distant Talat n’Yissi, age estimates of partition 507 

boundaries differ to varying degrees across all three alignments. 508 

Breaking down the posterior probability into individual components – likelihood (fit of δ13C measurements 509 

to the spline, fit of age estimates to the radiometric dates) and prior probability from the overlap penalty – 510 

reveals that samples from alignment 1 have a higher likelihood, on average (Fig. 5c). In contrast, alignments 511 

2 and 3 have a greater number of overlapping δ13C points, which results in higher overlap prior probabilities 512 

(Fig. 5c). The overlap prior reflects the prior belief that substantial parts of the sections involved in the 513 

correlation should be overlapping. However, the weight of that prior is somewhat arbitrary and reflects the 514 

technical requirement to facilitate overlap despite non-overlap allowing for closer fit to the spline, similar 515 

to the role of the “edge value” in some DTW implementations (Hay et al., 2019). A lower prior weight on 516 

overlap would thus have caused alignments 2 and 3 to receive lower posterior probabilities relative to 517 
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alignment 1. Taken together, the evidence from above leads us to strongly favour alignment 1, and we will 518 

focus further discussion on that most likely alignment solution. 519 

A radiometric date of 517.0 Ma (±2 SD:  515.5 − 518.5 Ma) has been recovered from the Lemdad 520 

Syncline in the Atlas mountains (Landing et al., 1998), and has been correlated biostratigraphically to a 521 

horizon in the lower Isaafen Fm. at Talat n’Yissi (Maloof et al., 2005). In our alignment 1, this horizon has 522 

a posterior age estimate of 519 Ma (519.2 to 518.8 Ma) – ≈ 2 Myr older than the mean of the radiometric 523 

date. This date has informed the age estimates for Talat n’Yssi in Maloof et al. (2005) and Maloof et al. 524 

(2010), whereas alignment 1 produces age estimates close to those of Bowyer et al. (2022) and Bowyer et 525 

al. (2023). Age estimates deviating from radiometric dates are not necessarily incorrect: Although 526 

radiometric dates are sometimes treated as “absolute truth” within the stratigraphic community, they are 527 

the result of various sources of technical uncertainties (Condon et al., 2024) and geological interpretations 528 

like the actual zircon crystallisation versus eruption age (Keller et al., 2018). This is illustrated by the 529 

recalculation of the radiometric date from Landing et al. (1998) to 515.56 Ma (±2 SD:  514.40 −530 

516.72 Ma) in the Geological Time Scale 2012 (Schmitz et al., 2012). 531 

The two radiometric dates measured at Tiout at the bottom of and within the Amouslek Formation suggest 532 

a sedimentation rate of 146 m Myrିଵ (±2 SD: 78.7 to 613 m Myrିଵ) for the Amouslek formation. However, 533 

the posterior estimates for the sedimentation rate in the Amouslek formation are poorly constrained and 534 

high compared to the sedimentation rates of all other partitions, at 3030 m Myrିଵ (800 to 17,300 m Myrିଵ). 535 

It appears that the model has overestimated the Amouslek sedimentation rate in aligning the δ13C record of 536 

the overlying Isaafen formation with a part of the Siberian Krasnoporog formation which has similar δ13C 537 

values (Fig. 6a). The alignments of Bowyer et al. (2022) imply significant sedimentation rate changes 538 

within the Krasnoporog formation, allowing the δ13C records to be better reconciled with the radiometric 539 

dates. We didn’t allow for sedimentation rate changes within the Krasnoporog formation because the 540 

stratigraphic log of Kouchinsky et al. (2007) indicates a uniform facies. Additional sedimentation rate 541 

changes might lead to a closer alignment with the radiometric dates, at the cost of greater model complexity. 542 

The alignment of the Siberian Sukharikha section with the Moroccan sites is relatively precise in the lower 543 

half of the records: The prominent positive δ13C excursions interpreted as the “5p” and “6p” excursions 544 

have a similar magnitude both at Oued Sdas and Sukharikha, and are readily aligned visually (Bowyer et 545 

al., 2022) and by our model (Fig. 6). Our model aligns the main 6p peak of Sukharikha with the first subpeak 546 

of the second large excursion at Oued Sdas, as in model C in Bowyer et al. (2022). The lesser, positive 547 

excursion below the hiatus at the top of the Sukharikha formation lines up with the positive excursion in 548 

the lower Lie-de-Vin formation, representing the “II” peak as in model C in Bowyer et al. (2022). The upper 549 
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parts of the Moroccan records and the Siberian Krasnoporog formation appear to be aligned primarily by 550 

matching the prominent positive excursion interpreted as excursion “IV” (Bowyer et al., 2022; Kouchinsky 551 

et al., 2007). The “III” peak below is only weakly expressed at Oued Sdas, leading to uncertainty in the 552 

alignment with the corresponding part of the Krasnoporog formation, and in the inferred duration of the 553 

hiatus even within alignment solution 1 (Fig. B2aB3a-c). Similarly, considerable uncertainty exists in how 554 

the top of Talat n’Yissi corresponds to the Krasnoporog formation. This is evident from variations between 555 

samples in alignment solution 1 (Fig. B2aB3a-c) and in the wide credible intervals of those parts of the age 556 

models (Fig. 7). The relatively small magnitude of δ13C changes limits the model’s ability to identify a 557 

definitive alignment solution for that part of the record. 558 

Our estimate for the Moroccan first appearance of trilobites at Tiout from alignment 1, 519.47 Ma (519.68 559 

to 519.26 Ma), is slightly younger and somewhat less precise than the recent, astrochronological estimate 560 

of 519.62 Ma (95% highest posterior distribution: 519.70 to 519.54 Ma) by Sinnesael et al. (2024). We 561 

attribute this difference to our model simultaneously combining different data types from multiple sites. 562 

Additionally, Sinnesael et al. (2024) allowed sedimentation rates to vary between cycles, whereas our model 563 

assumed a single sedimentation rate per member. In our alignment 1 solution, the highest δ13C values of 564 

Tiout correlate to shortly after the peak of the IV δ13C excursion. This correlation suggests that the actual 565 

peak of the excursion at Tiout has not been sampled by Magaritz et al. (1991) and Tucker (1986), which 566 

may result in misalignments when correlating the record to other sections. Further δ13C samples from the 567 

lower Igoudine and upper Lie-de-Vin formation at Tiout are required to improve correlation with other 568 

sections, including the correlation presented herein. 569 

Our model successfully reconstructs the first appearance of trilobites at Tiout, within error, despite using a 570 

simpler astrochronology and enforcing a less variable sedimentation rate history than Sinnesael et al. 571 

(2024). It also provides the first fully quantitative estimate for the first appearance of trilobites in Siberia 572 

based on chemostratigraphic correlation and the Moroccan radiometric dates and astrochronology, at 573 

520.79 Ma (520.98 to 520.61 Ma). This refines earlier estimates of ≈ 521 Ma (Landing et al., 2021), and 574 

quantifies the temporal gap between the appearance of trilobites in Siberia and Morocco as 1.33 Myr (1.09 575 

to 1.54 Myr). We do not suggest that these estimates are definitive; indeed, we anticipate that the 576 

incorporation of additional δ13C data from Tiout, the inclusion of astrochronological estimates of individual 577 

short eccentricity cycles, and the relaxation of the assumption of constant sedimentation rates within 578 

partitions may update the estimate. A high-resolution temporal sequence of trilobite first occurrence dates 579 

could be used to delineate trilobite evolutionary rates and dispersal; to evaluate evolutionary hypotheses on 580 

the origins and biomineralisation of trilobites (Holmes and Budd, 2022; Paterson et al., 2019); and to inform 581 

the definition of the base of the Cambrian Series 2 (Zhang et al., 2017). 582 
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5.2 Statistical alignment and age modelling 583 

5.2.1 Advantages of Bayesian stratigraphic alignment 584 

As shown above, our algorithm can identify the correct alignment positions in scenarios with one (Fig. 1) 585 

or more than one (Fig. 2) known solution. In scenarios where more than one distinctly different alignment 586 

is identified, the probability of each solution, given the specified data and model, is identified. This can be 587 

used to evaluate the likelihood of competing models for the alignment of stratigraphic records found by 588 

visual (e.g. Bowyer et al., 2023; Landing and Kruse, 2017) or algorithmic (e.g. Hay et al., 2019) correlation. 589 

The requirement to specify priors for the alignment parameters can be leveraged to provide information 590 

beyond that which is contained in the signals: for example, information on sedimentation rates may be 591 

expressed in the prior. 592 

Because our model can integrate absolute age constraints such as radiometric dates, a user is able to 593 

correlate stratigraphic records and construct probabilistic age models in a single step. In our Cambrian 594 

example, the posterior alignment and the posterior age model are thus influenced by the priors, the 595 

quantitative signals and the radiometric dates. In contrast, age models constructed in a separate step after 596 

identifying alignments do not reflect uncertainty arising during the alignment stage (Hagen and Creveling, 597 

2024). 598 

In our integrated approach, discrepancies between radiometric dates and signal alignment are resolved 599 

probabilistically, with the model weighting the available evidence based on its likelihood and prior 600 

information. This means that posterior age estimates may diverge from the age information provided by 601 

radiometric dates, as seen with the Ouଶ date in Fig. 6d. This is not necessarily a deficiency of the model; 602 

rather, it indicates that the priors and non-radiometric data provide sufficiently strong evidence to suggest 603 

that the actual age of the horizon associated with the radiometric date falls toward the tails of its confidence 604 

interval, or that the radiometric uncertainty may be underestimated. Some degree of discrepancy is expected 605 

when integrating multiple data types rather than relying on a single proxy (see also Lee et al., 2022). 606 

If, on the other hand, the user wishes to increase the influence of radiometric dates on the posterior age 607 

estimates, this can potentially be achieved by introducing additional sedimentation rate changes to allow 608 

more flexible alignment of the proxy signals, reducing the weight of the proxy signal records – such as by 609 

imposing a larger 𝜎 for the cubic spline – or by weakening priors. 610 



31 

 

5.2.2 Model choice and priors 611 

Stratigraphic alignment using algorithms has the advantage of removing some of the inherent subjectivity 612 

of visual alignment (Sylvester, 2023). Yet, somewhat subjective decisions are still explicitly or implicitly 613 

made with every alignment algorithm. In the case of DTW, subjectivity is introduced e.g. with restrictions 614 

on the warping path (i.e. relative sedimentation rates, Sakoe and Chiba, 1978), with the amount of overlap 615 

required between sections (Hay et al., 2019), or with the choice of an exponent controlling the weight of 616 

outlier values (Wheeler and Hale, 2014). All of those settings can alter the outcome of DTW-based 617 

alignments. Likewise, our Bayesian approach comes with a number of subjective choices. The appropriate 618 

model structure can be readily determined when the data-generating process is known (Sect. 3), but has to 619 

be carefully considered and potentially revised when dealing with complex real-world data (Sect. 4). 620 

Lithological data may guide the partitioning of data and can inform somewhat objective choices of horizons 621 

with likely sedimentation rate changes (Sect. 4.2), but such information may not be readily available with 622 

some datasets, such as with well logs. 623 

Besides the model structure, StratoBayes requires the user to specify priors for several model parameters: 624 

relative or absolute sedimentation rates (𝜈𝛾, 𝜁), the shifts of sections relative to one another (𝛼), the duration 625 

of hiatuses (𝛿), the degree of smoothing of the spline (𝜆), the extent to which overlap of signal points should 626 

be favoured (𝐶௢௩௘௥௟௔௣), and optionally the residual standard deviation of the spline (𝜎). Although the choice 627 

of any of those parameters has the potential to affect posterior alignments and age models, they also offer 628 

a chance to explicitly include geological information that could otherwise only be incorporated by 629 

discarding or modifying alignment solutions after the algorithmic alignment. 630 

While it is relatively straightforward to express prior beliefs on the alignment parameters 𝛼, 𝜈, 𝜁 𝑎𝑛𝑑 𝛿, it 631 

is hard to specify suitable priors for 𝜆, 𝜎 and 𝐶௢௩௘௥௟௔௣, as they do not correspond to measures used by 632 

geologists. The default priors on 𝜆, 𝜎 and 𝐶௢௩௘௥௟௔௣ in the StratoBayes software were chosen iteratively by 633 

working with various test data sets. Users should avoid fine-tuning these priors directly on the data sets to 634 

which they intend to apply StratoBayes, as this could introduce unintended circularity. Instead, analogous 635 

independent data sets could be used to identify suitable priors for 𝜆, 𝜎 and 𝐶௢௩௘௥௟௔௣. For example, priors on 636 

𝜆 and 𝜎 for correlating δ13C curves could be meaningfully specified from pre-existing reconstructed δ13C 637 

composite curves.  638 

5.2.3 Challenges with the δ13C proxy and sedimentary record 639 

Chemostratigraphy, and, more broadly, correlating geological sections based on proxy data relies on the 640 

proxies accurately reflecting a common, underlying signal. Several processes may disrupt this assumption. 641 
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For example, δ13C recorded in carbonates differs between different depositional environments, water 642 

depths, and grain types (Geyman and Maloof, 2021), while the δ13C recorded in restricted basins may be 643 

offset significantly relative to contemporary carbonates elsewhere (Uhlein et al., 2019). Where known, such 644 

offsets could be accounted for by subtracting or adding the estimated offset relative to global values. 645 

Alternatively, anticipated offsets could be modelled as additional unknown variables, as in Edmonsond and 646 

Dyer (2024). This approach will likely require substantial prior knowledge on the potential magnitude and 647 

direction of offsets; otherwise, the combination of variation along the height or time axis and along the 648 

proxy value axis may result in a large range of mathematically feasible alignments. 649 

A more fundamental problem is posed when similar patterns in a proxy curve are asynchronous in different 650 

sections: Shifting and stretching proxy data from multiple sites may result in a strongly correlated composite 651 

curve, but this correlation does not prove that the patterns or excursions observed at different sites were in 652 

fact synchronous (Blaauw, 2012). Unless supported by independent evidence such as precise radiometric 653 

dates, relative age estimates derived from proxy correlations (e.g. δ13C) are conditional on the assumption 654 

of synchronicity.  655 

Several challenges arise from the variability of sedimentation and the incompleteness of the sedimentary 656 

record. Sediment accumulation rates vary with measurement scale (Sadler, 1981): closer spacing between 657 

measurements allows more variability to be identified, with actual sedimentation rate histories displaying 658 

fractal properties (Miall, 2015). This implies that depositional ages tend to vary non-linearly along a 659 

vertically sampled sedimentary section, with substantial incompleteness in shallow-water records (Curtis 660 

et al., 2025). These discontinuities can lead to drastically altered shapes of proxy curves from different 661 

depositional settings, and cycles from periodic proxy fluctuations may be missed due to insufficient 662 

preservation or sampling (Curtis et al., 2025). This issue is evident in the Sukharikha section, where it is 663 

somewhat ambiguous whether the hiatus represents a fraction of a δ13C excursion (alignment 1 and 2) or 664 

extends over more than one full cycle (alignment 3, Fig. 6). For correlations within sedimentary basins, the 665 

method of Bloem and Curtis (2024) could help resolve ambiguous alignments by reconstructing 666 

depositional histories through geological process modelling, but this method requires exceptionally high-667 

resolution sampling and its utility has yet to be demonstrated with real-world data sets. 668 

Besides the completeness, the sampling density of proxy records may influence correlations. In 669 

StratoBayes, densely sampled sections or parts of sections exert more influence on the shape of the spline 670 

than those that are thinly sampled, which can be seen in the spline curve primarily following the densely 671 

sampled Oued Sdas and Talat n’Yissi records in Fig. 6. Despite this, our Cambrian case study demonstrates 672 

that sections with differing sampling densities – both between and within sites – can still be effectively 673 
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aligned. Varying sampling density would, however, pose a challenge for reconstructing a global average 674 

proxy curve from local records, as the global curve would primarily reflect the more densely sampled sites. 675 

StratoBayes introduces a simplification in modelling sedimentary histories by forcing uniform 676 

sedimentation rates within pre-defined segments of a stratigraphic section. An effect of this simplification 677 

can be seen in the age-depth plots in Fig. 7: Due to sedimentation rates being modelled as uniform within 678 

stratigraphic partitions, the uncertainty of age estimates does not necessarily decrease increase away from 679 

the radiometric dates. We acknowledge that this may underestimate the uncertainty associated with 680 

potential sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially when allowing for 681 

few sedimentation rate changes. Similarly, our method currently only allows for specifying potential 682 

hiatuses with an unknown duration at fixed, predetermined heights.  683 

In principle, our method could be used to divide stratigraphic sections into an arbitrary number of segments 684 

with differing sedimentation rates, and with an arbitrary number of potential hiatuses. In practice, estimating 685 

the parameters of a model with more than a low double-digit number of alignment parameters (shift 686 

parameters, sedimentation rates, hiatuses) represents a challenge for the current implementation of the 687 

MCMC algorithm within StratoBayes, as finding and exploring the posterior becomes increasingly difficult 688 

as more parameters are added. This limitation could be alleviated by incorporating MCMC methods suited 689 

for higher dimensional problems and difficult posterior geometries. Alternatively, a continuous process 690 

model such as the compound Poisson-gamma process of BChron (Haslett and Parnell, 2008) might be 691 

integrated with our model for the proxy signal, but again the complexity of the MCMC would increase. 692 

Another approach would be to divide the alignment problem into sub-problems, e.g. by multiple pairwise 693 

correlation of sites (e.g. Hagen et al., 2024; Sylvester, 2023), or by correlating shorter subsections. 694 

5.3 Towards quantitative stratigraphy 695 

Quantitative stratigraphic correlation and age modelling of diverse geological data represent a long-696 

standing challenge in stratigraphic research. Although many algorithms exist for correlating geochemical 697 

and geophysical stratigraphic data (e.g. Baville et al., 2022; Bloem and Curtis, 2024; Hay et al., 2019; 698 

Sylvester, 2023); few can readily provide uncertainty estimates or incorporate different types of data 699 

simultaneously (e.g. Al Ibrahim, 2022; Edmonsond and Dyer, 2024; Lee et al., 2022). Consequently, 700 

integrated statistical approaches have only rarely been applied to complex real-world stratigraphic problems 701 

(Hagen et al., 2024; Lee et al., 2022). 702 

Our new method has the potential to be applied to diverse datasets; examples range from shallow borehole 703 

data from the Holocene (Finlay et al., 2022) to Proterozoic carbonates (Halverson et al., 2010). The ability 704 
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of our model to incorporate multiple proxy records simultaneously opens new possibilities for refining 705 

stratigraphic correlations. For instance, correlations involving both δ13C and δ87Sr records could benefit 706 

from a probabilistic framework that accounts for their respective uncertainties (Bowyer et al., 2022). The 707 

integration of multiple proxies, e.g. multiple element ratios, in the StratoBayes framework could allow 708 

correlations based on the entire record of all proxies, rather than a few visually distinct transitions (Craigie, 709 

2015). 710 

Beyond geochemical records, our approach could also be applied e.g. to geophysical well-logs such as 711 

gamma ray or density logs, and magnetostratigraphic records could be correlated directly rather than relying 712 

on visually interpreted polarity reversals (Langereis et al., 2010). While index fossils can currently be 713 

integrated as tie points, the modelling framework could be expanded to explicitly model first and last 714 

occurrences to better incorporate biostratigraphic uncertainty. Similarly, astrochronological constraints can 715 

be expressed as priors on sedimentation rates, but an additional model component would be needed to 716 

incorporate all astrochronological information from a given site (Sinnesael et al., 2024). 717 

Conclusions 718 

StratoBayes is a Bayesian modelling framework for the probabilistic alignment of stratigraphic proxy 719 

records and age modelling. It correlates quantitative proxy signals such as isotope ratios, and integrates 720 

additional stratigraphic information such radiometric dates, to construct probabilistic age models. Applying 721 

our model to both simulated data and real-world stratigraphic records from the lower Cambrian of Morocco 722 

and Siberia, we have demonstrated its ability to account for uncertainty from all model components and to 723 

identify multiple plausible alignment solutions. Our lower Cambrian case study provides a fully 724 

probabilistic estimate for the first appearance of trilobites in Siberia, and quantifies the temporal gap 725 

between their first occurrence and the oldest Moroccan trilobites. While our results remain dependent on 726 

model assumptions, they represent a step towards a more objective and reproducible approach to early 727 

Palaeozoic stratigraphy; they also highlight sources of uncertainty and identify targets for future research. 728 

Beyond this case study, StratoBayes has broad applicability to stratigraphic problems across all time 729 

intervals that involve the correlation of quantitative proxy records. 730 
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Appendix A: Markov chain Monte Carlo sampling scheme 731 

Appendix A details the Metropolis-within-Gibbs sampling scheme and the parallel tempering framework 732 

that are used within the StratoBayes software to sample from the posterior of the unknown model 733 

parameters. 734 

Sampling strategy 735 

The MCMC sampling scheme used in this study includes an adaptive phase. During this phase, proposal 736 

distributions and the probabilities with which different proposal types are selected for the Metropolis-737 

Hastings updates are adjusted based on the history of the MCMC chains to improve acceptance rates and 738 

mixing. Additionally, the temperature ladder of the parallel tempering framework is updated to improve the 739 

swap rates of chains. After the adaptive phase, the proposal distributions and probabilities, as well as chain 740 

temperatures, remain fixed for the remainder of the run to ensure proper sampling from the posterior. 741 

In the current implementation, the length of the adaptive phase is pre-determined by the user, specified as 742 

a fixed number of iterations. However, the user has the option to extend the adaptation period by continuing 743 

the run if needed. More generally, adaptation could also be stopped automatically based on criteria such as 744 

mixing within chains (Yang and Rosenthal, 2017) or convergence criteria. 745 

Adaptive MCMC algorithms do not always preserve the stationarity of the target distribution during the 746 

adaptive phase (Roberts and Rosenthal, 2009). Therefore, all samples from the adaptive phase are discarded 747 

as burn-in. Additionally, if diagnostic checks suggest that the MCMC has not converged by the end of the 748 

adaptive phase, further samples may need to be discarded. 749 

Gibbs sampling scheme for the cubic B-splines 750 

The following sampling scheme was adapted from Heaton et al. (2020). The spline coefficients are sampled 751 

from a multivariate normal distribution of the form: 752 

𝛽 ∼ 𝑀𝑉𝑁(𝑏𝐐, 𝐐) ,  (16) 753 

where 𝑏 is given by . 754 

𝑏 = ൫𝐁(ℎ)൯
் 𝑦

𝜎ଶ
,  (17) 755 

𝐁(ℎ) are cubic B-splines (Eilers and Marx, 1996) at a set of 𝑘 knots evaluated at heights ℎ at which 𝑦, the 756 

composite stratigraphic signal of all sites, was observed. Here, 𝜎 is the residual standard deviation. 757 
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The other element needed for sampling from the posterior of 𝑏 is 𝑄, given by 758 

𝐐 = (𝐇 + 𝜆𝐃)ିଵ,  (18) 759 

where 𝜆 is a smoothing parameter, 𝐃 is a penalty matrix to prevent the spline from overfitting the data, and 760 

𝐇 = ቆ
𝐁(ℎ)

𝜎
ቇ

்
𝐁(ℎ)

𝜎
  (19) 761 

The standard deviation 𝜎 can be fixed as 762 

𝜎 =
1

𝑆
෍ 𝜎௦

ௌ

௦ୀଵ

,    (20) 763 

where 𝑆 is the number of sites, and 𝜎௦ is the standard deviation of individual splines fitted to the data of site 764 

𝑠. This often provides a good approximation of 𝜎, while removing an unknown model parameter, potentially 765 

facilitating quicker convergence of the model run. 766 

Alternatively, 𝜎 can be estimated within the Gibbs sampling scheme from the data, by placing a conjugate 767 

gamma prior on the inverse of the variance (precision, 𝜏 = 1/𝜎ଶ): 768 

𝜎ିଶ ∼ 𝐺𝑎𝑚𝑚𝑎 ቌ𝑎ఙ +
𝑛௬

2
, 𝑏ఙ +

1

2
෍൫𝑦 − 𝛽𝐁(ℎ)൯

ଶ

௡೤

ቍ  (21) 769 

The smoothing parameter 𝜆 is estimated by placing a gamma prior on 𝜆: 770 

𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎 ൮𝑎ఒ +
𝑘

2
,

1

1
𝑏ఒ

+
1
2

∑ 𝛽𝐃 × 𝛽௞
൲  (22) 771 

Metropolis-Hastings step 772 

The starting heights or ages 𝛼, sedimentation rates 𝜈𝛾, site multipliers 𝜁 and gaps 𝛿 are updated in a 773 

Metropolis-Hastings step. For each unknown parameter, a new value is randomly sampled from a proposal 774 

distribution. Initially, proposals are sampled independently for each parameter from its respective prior, or 775 

alternatively from a custom proposal distribution. 776 



37 

 

In the following, the current set of parameter values is labelled 𝜃, and the proposed set is labelled 𝜃′. To 777 

decide whether to accept or reject the new set of parameters, an acceptance probability 𝐴 is calculated, and 778 

the proposal is randomly accepted or rejected with a probability of 𝐴. This probability is calculated as 779 

𝐴 = 𝑚𝑖𝑛 ቆ1,
𝜋(𝜃′)

𝜋(𝜃)
ቇ ,  (23) 780 

where 𝜋(𝜃) is the unnormalised posterior probability of the current values, and 𝜋(𝜃′) is the unnormalised 781 

posterior probability of the proposed values. These can be calculated as 782 

𝜋(𝜃) = 𝑝(𝜃) × 𝐿(𝑑𝑎𝑡𝑎|𝜃),  (24) 783 

where 𝑝(𝜃) is the prior probability of 𝜃, and 𝐿(𝑑𝑎𝑡𝑎|𝜃) the likelihood of the data given 𝜃. 784 

We calculate the likelihood of the data given 𝜃 as a product of the probability densities of each data point 785 

of the signal 𝑦 (recorded at two or more sites) and of all absolute age information. For the signal, we assume 786 

that the observed values 𝑦 are normally distributed and centred around the values predicted by the splines, 787 

𝜇, at height ℎ, with a standard deviation 𝜎 which has been introduced earlier. The likelihood of a data point 788 

𝑖 from the signal 𝑦 is thus 789 

𝐿(𝑦௜|𝜃) =
1

√2𝜋𝜎ଶ
× 𝑒

൬ି
(௬೔ିఓ೔)మ

ଶఙమ ൰
  (25) 790 

and the log-likelihood for all data points of the signal is calculated as 791 

ln𝐿(𝑦|𝜃) = ෍ ln𝐿(𝑦௜|𝜃)

௜

  (26) 792 

If more than one type of signal is used, the log-likelihood of additional signals can be calculated analogously 793 

and added in Equation 29. 794 

Age constraints are incorporated by using an age estimate from radiometric dates 𝑑 with, for example, mean 795 

ages 𝑎௠௘௔௡ and uncertainties given by standard deviations 𝑎௦ௗ. The probability density of a date 𝑑௜ is then 796 

calculated as 797 

𝐿(𝑑௜|𝜃) =
1

ඥ2𝜋𝑎௦ௗ,௜
ଶ

× 𝑒
ቆି

௔೘೐ೌ೙,೔ି௔೛ೝ೐೏೔೎೟೐೏,೔

ଶ௔ೞ೏,೔
మ ቇ

  (27) 798 

where 𝑎௣௥௘ௗ௜௖௧௘ௗ,௜ is the age predicted by the age-height transform at the height ℎ௦,௜, the height at the site 799 

at which date 𝑑௜ was obtained. 800 
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The log-likelihood for all age constraints is calculated as 801 

ln𝐿(𝑑|𝜃) = ෍ ln𝐿(𝑑௜|𝜃)

௜

  (28) 802 

and the overall likelihood, if absolute age constraints are included, is 803 

ln𝐿(𝑦, 𝑑|𝜃) = ln𝐿(𝑦|𝜃) + ln𝐿(𝑑|𝜃)  (29) 804 

Proposal types 805 

In order to allow for a broad search of the parameter space, proposals are initially selected independently 806 

for each parameter, and are selected independently of the current parameter values. These proposals lead to 807 

a decreasing acceptance rate over time, and the chain tends to arrive at a single set of values with high 808 

posterior probability, 𝜋(𝜃), remaining there for many iterations due to frequent rejections. Therefore, 809 

different types of proposals are used after an initial period: 810 

1) Proposing from the prior or a custom distribution: This proposal is used exclusively for a small 811 

number of initial iterations and is alternated with other proposals later on. 812 

2) Adaptive independent (univariate) proposals: Proposals for each parameter are selected 813 

independently from other parameter values. Proposals are dependent on the current state of the 814 

parameter 𝜃௜, and sampled from a normal distribution 𝑁(𝜃௜, 𝜎௜), where 𝜎௜ is a standard deviation 815 

that is estimated based on the history of the MCMC chain, i.e. based on the sampled 𝜃௜ from 816 

previous iterations. 817 

3) Adaptive dependent (multivariate) proposals (Roberts and Rosenthal, 2009): Proposals for the 818 

parameters are selected jointly and are dependent on the current state of the parameters 𝜃. 819 

Proposals are sampled from a multivariate normal distribution 𝑀𝑉𝑁(𝜃, 𝛴), where 𝛴 is a 820 

covariance matrix that is estimated based on the history of the MCMC chain, i.e. based on the 821 

sampled 𝜃௜ from previous iterations. 822 

4) Shifting some or all 𝛼 and or 𝛿 parameters while keeping the other parameters constant. This can 823 

accelerate the convergence of the MCMC in cases where some sites are aligned with each other, 824 

but offset relative to other sites. 825 

Proposal types are chosen with a probability that broadly corresponds to the relative acceptance probability 826 

of the respective proposal type, i.e. proposal types that are rejected often are chosen less frequently. 827 

Adaptation for types 2) and 3), and the adjustment of proposal type probabilities ends after the adaptive 828 
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phase. Posterior samples from the adaptive phase have to be discarded as burn-in, to ensure the correct 829 

convergence of the chain. 830 

Parallel tempering 831 

To avoid the MCMC chain becoming trapped at isolated peaks of the posterior probability distribution, we 832 

implement a parallel tempering framework, following Sambridge (2014). This involves running multiple 833 

chains in parallel. The target chain, the chain from which the posterior samples will be taken, is left 834 

unaltered (“cold chain”). The other chains are tempered, i.e. their unnormalised log posterior probabilities 835 

are raised to the power of 1/𝑇, with 𝑇 being the temperature. The higher 𝑇, the more “flattened” the posterior 836 

probability landscape becomes, and the easier it is for the chain to explore the landscape. Frequently, chain 837 

swaps are proposed, during which the model parameter values of different chains are exchanged with a 838 

Metropolis-Hastings acceptance probability based on the ratios of posterior probabilities of the states of the 839 

two chains, evaluated at both temperatures as in Appendix A2 of Sambridge (2014). 840 

The initial temperatures for a number of chains 𝑛௖ are selected using a geometric spacing, with 𝑇ଵ = 1 (cold 841 

chain) and 𝑇௡೎
= ∞ (hottest chain). The infinite temperature of the hottest chain implies that all proposals 842 

during the MCMC will be accepted, and we let that chain sample from the prior probability distributions of 843 

the parameters. If 𝑛௖ > 2, intermediate chain temperatures are selected as 844 

𝑇௖ = 10∑ ௗೕ
೎
ೕసమ  ,  (30) 845 

where 846 

𝑑௖ =
(𝑛௖ − 1)(ଶ/ଷ)

𝑛௖ − 2
+

𝑐 − 1 − (𝑛௖ − 1)/2

1.5 ∗ 𝑛௖
,     𝑐 = 2. . . 𝑛௖ − 1  (31) 847 

This leads to the spacing of temperatures decreasing with increasing number of chains, and temperature 848 

spacing is narrower for lower temperatures on the log scale. A small amount of white noise from a normal 849 

distribution with zero mean and a standard deviation of (5 × 𝑛௖)ିଵ is added to each 𝑑௖ to vary the initial 850 

temperature ladders between independent model runs. Temperatures are updated in the adaptive phase of 851 

the MCMC to increase the swap rates of chains (Vousden et al., 2016). 852 
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Appendix B: Inspecting the posterior of the lower Cambrian case 853 

study 854 

Appendix B provides additional details on the posterior of the inference with lower Cambrian δ13C data and 855 

radiometric dates. 856 

Trace plots 857 

Trace plots visualise the evolution of chains from an MCMC and, together with tools such as the potential 858 

scale reduction factor (Gelman and Rubin, 1992; Vats and Knudson, 2021), allow for assessing convergence 859 

of model runs. The trace plot indicative of a well-behaved model run should be stationary after the burn-in 860 

phase, with different chains mixing well (Gelman et al., 1995). An example of a well-behaved trace plot is 861 

the first panel of Fig. B1. Inspecting the trace plots of the 18 model parameters of the lower Cambrian case 862 

study reveals that all parameters seem to have reached stationarity, this said; some chains occasionally visit 863 

distinctly different values (e.g. Fig. B1, column 1, row 2). The chains are not mixing well in those regions 864 

of the parameter space. Running the model for considerably more iterations is likely to overcome this 865 

problem. However, this affects only the less likely alignments; the most likely alignment (alignment cluster 866 

1) is well explored across all parameters. 867 



41 

 

 



42 

 

Figure 8: Figure B1: Trace plots of the 18 alignment parameters. Each colour corresponds to a distinct 

run. For visual clarity, only 250 samples are displayed per run. The burn-in phase (the first 150,000 

iterations) is omitted. 

Age-depth models for different alignments 

The age-depth models for each of the four sites are shown for each alignment cluster separately in Fig. B2 

(instead of for all samples combined as in Fig. 7). 

 

Figure B2: Age-depth model for each of the four sites. The solid lines indicate the median posterior 

ages corresponding to the respective heights; the shaded interval denotes the 95% credible interval 

of posterior ages. Colours correspond to the three different alignment clusters and outlier samples. 

Circles indicate the mean age estimates of radiometric dates, with vertical lines spanning two 

standard deviations around the mean of these age estimates. Crosses denote the first appearances of 

trilobites in Morocco and Siberia. 
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Variation within aAlignment clusters 868 

Summarising the posterior by grouping samples into clusters of similar alignments facilitates discussion of 869 

the results but risks oversimplifying the variation within each cluster. Each cluster represents a set of 870 

posterior samples that share similar inferred ages for the partition boundaries, but differences still exist 871 

between individual samples within the same cluster. As an example, three distinct alignments from 872 

cluster  1 are visualised in Fig. B2B3. An alignment from a sample not assigned to any cluster is shown in 873 

Fig. B2dB3d. 874 

 

Figure 9: Figure B2B3: Alternative alignments, each corresponding to a single sample from the 

posterior. (a) A sample from the most likely cluster 1, corresponding to that shown in Fig. 6a. (b, c) 

Alignments corresponding to other samples from cluster 1. (d) Alignment corresponding to an outlier 

sample that was not assigned to any cluster. The curved dark lines show the cubic B-splines 

corresponding to each alignment. 

Posterior of alignment parameters 875 

The posterior distributions of the alignment parameters are summarised in histograms in Fig. B3B4. 876 
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Figure 10: Figure B3B4: Comparison of prior and posterior probability densities. Histograms in colour 

denote the posterior probability densities of the 18 alignment parameters; the grey, smooth shadings 

represent prior probability densities. The four colours correspond to the four independent model runs. 
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