
Response to the comments of Reviewer 1 (Maarten Blaauw) 

We thank the reviewer for his time and helpful feedback. Our responses to the 
reviewer’s comments (black) are recorded below in blue. 

Reviewer 1 

This manuscript proposes a new method to align multiple proxy records based on 
assumed synchroneity (e.g. appearance of key trilobite fossils); additional data such as 
radiometric dates or known ages of fossils can also be added. The model draws a 
Bayesian cubic spline (Heaton et al., 2020) per to-be-aligned proxy, using evenly-
spaced knots and smoothness parameters. The model is applied to some synthetic and 
real-world examples.  

I like the fact that not just one alignment is chosen, displayed and discussed, but a 
range of alignments (e.g., Fig. 6 and section 5.1). This clearly shows the probabilistic 
and uncertain nature of aligning multiple records, and thus the need and potential for a 
Bayesian framework. Could the age-depth relationships of the three solutions from Fig. 
6 also be shown in a Figure akin to Fig. 7, to see how variable the reconstructed rates 
and hiatuses are?   

We thank the reviewer for this positive assessment and have included an additional 
figure in Appendix B to show the age-depth relationships of the three different solutions 
from Fig. 6. (i.e. Fig. B2). 

Sometimes stratigraphical correlation is the only way to obtain a chronology for a proxy 
record, e.g. where no absolute/radiometric age estimates are available. However, it 
would be good to also highlight potential problems with aligning records based on their 
assumed synchroneity, e.g. problems with circular reasoning, possible erroneous 
choice of tie-points, and the introduction of a dependence between records. These 
problems are reviewed by Blaauw 2012 (doi:10.1016/j.quascirev.2010.11.012). 

We expanded the discussion in section 5.2.3 to point out those challenges: 

A more fundamental problem is posed when similar patterns in a proxy curve are 
asynchronous in different sections: Shifting and stretching proxy data from multiple 
sites may result in a strongly correlated composite curve, but this correlation does not 
prove that the patterns or excursions observed at different sites were in fact 
synchronous (Blaauw 2012). Unless supported by independent evidence such as 
precise radiometric dates, relative age estimates derived from proxy correlations (e.g. 
δ13C) are conditional on the assumption of synchronicity.  

Line 76, would it be useful to mention Trayler et al. 2024's Astrobayes age-model, which 
includes hiatuses (doi:10.5194/gchron-6-107-2024)? 



Reference added in lines 68-70: A Bayesian age-depth modelling approach by Trayler et 
al. (2024) considers hiatuses and uses astrochronological interpretations to inform 
sedimentation rate priors. 

Lines 228-32 and 646-52 list an important limitation of the proposed model; assumed 
linear sedimentation rates will not cause chronological uncertainties to widen further 
away from age constraints. Some of the reconstructed age-model uncertainties seem 
very narrow indeed, e.g. 7d. Does setting spline knots at regular intervals not help? 

The age model uncertainties at 7d (Siberia) are low because of the high-amplitude 
variations in  δ13C which are matched with similar high-amplitude signals at Oued Sdas, 
leading to comparatively low uncertainties. Spline knots are placed at regular intervals, 
but for age uncertainties to widen away from age constraints, additional sedimentation 
rate changes would have to be included (see discussion in section 5.2.3, lines 
672 – 690).  

For a frequently-used Bayesian age-depth model that includes priors on sedimentation 
rates and variability, please cite Bacon (Blaauw & Christen 2011, 
https://projecteuclid.org/euclid.ba/1339616472). Bacon is a piece-wise linear model 
much like what is proposed here; it also includes time hiatuses, slumps (depth 
'hiatuses') and changes in sedimentation rates. It uses the t-walk, a flexible MCMC 
(Christen & Fox 2010, http://projecteuclid.org/euclid.ba/1340218339). Although Bacon 
is most often used on radiocarbon-dating timescales, it has also been applied to much 
longer time-scales. That said, the usage of dozens of parameters per site (owing to long 
cores with thin sections) would probably cause the MCMC to run much, much slower 
than the 5 days reported here.  

We thank the reviewer for pointing out this oversight and have expanded the 
introduction to refer to Bacon and other Bayesian age-depth modelling tools (lines 65 – 
68): Bayesian approaches are commonly employed in age-depth models that 
interpolate between absolute age constraints or tie points, e.g. Bchron (Haslett and 
Parnell, 2008) and Oxcal (Ramsey 1995); Bacon (Blaauw and Christen 2011) also 
includes priors on sedimentation rates and variability.  

I ran a quick toy age-model in R using the vignette provided and all ran fine. This is 
important, because other recently proposed methods I've seen rely on many additional 
packages and on software external to R such as JAGS to run (often resulting in failure). 
Pity though that only binary versions are provided - could the source c++ code also be 
provided? That would enable users on other operating platforms to also run the code, 
would enable users to get a better idea of what exactly is done, and would be much 
more future-proof.  



We are glad that the reviewer found that the package ran smoothly. We agree that 
releasing the source code would be beneficial, and plan to do so once we have more 
clarity on the long-term direction of this software project. 

The MCMC runs multiple chains but only retains the samples from one chain (both a 
burn-in and thinning are applied afterward). Is this a standard approach? 

The discarded chains are tempered chains; we are using a parallel tempering framework 
for easier sampling of multimodal posteriors. We have expanded the explanation in 
lines 136 – 139 to clarify this: 

To ensure thorough exploration of the parameter space, we employ parallel tempering, 
i.e. we run multiple chains in parallel, flattening the likelihood of the tempered (hot) 
chains which can therefore move between different posterior modes, and frequently 
propose swaps between chains.  For the posterior estimates, we retain samples only 
from the primary (cold) chain. 

Could you clarify $\mu$ in section 2.1: is this a hypothetical target to which all sites are 
tuned, or is this akin to target/reference Site 1 as in Fig. 1? 

µ in section 2.1 is a hypothetical target, to which all sites except the reference site are 
tuned (the reference site remains fixed in this scenario, but is informing µ alongside the 
tuned sites). We have added a clarification in section 2.1 (avoiding the term “target” and 
referring to a hypothetical composite curve instead):  Here, 𝜇 can be interpreted as an 
underlying common signal of which the observations from each site, including the 
reference site, are noisy realisations. (lines 154 – 155) 

Fig. 1 of the hypothetical sample: can the $\alpha$ and $\gamma$ values of the 
placement in c) be depicted as vertical lines overlying the prior distributions of panel b)? 
This because in this example, site 2 is compressed a lot (2.8 times faster than site 1), 
and it would be nice to see where it falls on the log-normal prior (as well as of course the 
placement on the uniform prior, 12.5 m). In this example, site 2 accumulates linearly 
over time. 

This is a helpful improvement of Fig. 1, we’ve added the reviewer’s suggestion to the 
updated version of Fig. 1.  

Eq. 8, shouldn't the hiatuses $\delta$ be expressed as gaps/jumps in time, not 
depth/height? 

In Eq. 8, correlation is done on a reference height (or reference depth) scale, rather than 
a time scale, so hiatuses are expressed as an interval of heights on the reference scale 
that is not represented in the correlated section. A clarification has been added to 



section 2.2.3 (lines 216 – 217): In a correlation on an absolute age scale (Sect. 2.2.5), 
hiatuses would instead be expressed as durations, not heights. 

Citation: https://doi.org/10.5194/egusphere-2025-1355-RC1 

 



Response to the comments of Reviewer 2 (Andrew Curtis) 

We thank the reviewer for his time and helpful feedback. Our responses to the 
reviewer’s comments (black) are recorded below in blue.  

Reviewer 2 

This manuscript proposes a Monte Carlo based method to assess quantitative Bayesian 
uncertainties in the statigraphic correlation between data transects recorded at 
different locations. It applies the method to both synthetic and real data, to highlight 
strengths and weaknesses of the method. Overall I feel that this work will make a 
significant advance over manual correlation methods and some other algorithmic 
methods. I nevertheless have a few comments which all concern the methodology 
rather than the applications.  

Main comments:  

1. In principle, a hiatus may occur between any two measurement locations in a 
geochemical transect (Sadler, 1981), as the authors acknowledge in the discussion at 
the top of page 29. For example, hiatuses certainly occur in age records at grain scale, in 
any grainy depositional setting. The reason that age correlation still has some validity 
derives from an assumption that these types of hiatus are insignificant, or can be 
represented in aggregate as smooth increases in age, when averaged over the time 
scales at which data sets are correlated.  

Nevertheless, when we try to assess uncertainty in correlations, any possibility that 
hiatuses exist which are significant even at these longer time scales should produce a 
variation in the resulting age curves along the measurement axis or transect, and so 
should be considered in uncertainty estimates. In a Bayesian context, information 
(beliefs or constraints) on inter-datum hiatuses should therefore ideally be expressed 
explicitly as so-called prior information, embodied in prior probability distributions. 
Such prior information may come from, for example, the fact that at some scale of 
observation we have / have not observed a sedimentological sign of hiatus in the rock 
record along the transect or in neighbouring synchronously deposited sediments, a 
sedimentary process or statistical model that embodies such beliefs, or any other type 
of pertinent observation. In the current algorithm, the uncertainty in these sources of 
information is not included – the locations of hiatuses are defined definitively a priori. 
The authors do acknowledge the possibility that hiatuses may occur anywhere on page 
29, but they leave that problem unsolved.  

I feel that it is important to make this prior probability distribution (the probability that a 
hiatus exists at any point in the transect) explicit in, what the authors propose is, a 
general correlation method: this will force practitioners to consider properly the quality 
of information, and the degree of expert belief or received opinion, that are fed into the 



process. Ideally all of the number, locations/age and length of hiatuses would be 
subject to uncertainties, and practitioners would therefore be forced to decide not only 
whether/where they can definitively fix a hiatus, but also where they might have missed 
one or more, and how likely that was to have happened.  

I would also admit that translating geological observations into prior probabilities that 
can be incorporated into the Bayesian inference is not at all straightforward! It requires 
a process of expert elicitation, which is itself a significant challenge and source of 
epistemic uncertainty. Polson and Curtis (2010), Bond et al., (2012), Curtis (2012) and 
Bond (2015) describe some of the biases that affect geological interpretations by 
experts, and techniques that might be adopted to minimise these. While these papers 
are concerned with different types of observations, similar types of biases and 
uncertainties can be expected in the cases described above – perhaps in addition to 
other biases that are particular to those cases.  

We thank the reviewer for the thorough exploration of the problem of hiatuses. We admit 
that the treatment of hiatuses in the current version of the StratoBayes algorithm is 
limited: It requires specifying horizons at which hiatuses are suspected to occur a priori. 
However, as the duration of a hiatus can be expressed as a prior probability distribution, 
this can allow the algorithm to identify either the duration of the hiatus, or identify that 
there was no substantial hiatus after all (posterior estimate of the duration of the hiatus 
close to zero). 

We agree that it would be preferable to place a prior distribution on the number of 
hiatuses, as well as on their position (rather than specifying a fixed number of potential 
hiatuses at fixed positions). Although extending the model to infer both the number and 
positions of hiatuses is mathematically feasible, doing so would greatly enlarge the 
parameter space of the model and demand substantial improvements to the MCMC 
scheme to achieve convergence within practical run-times. The current version of our 
method therefore does not allow for including uncertainty about the number and 
position of hiatuses.  

We have slightly expanded the discussion in section 5.2.3 to reference hiatuses (lines 
679 – 681):  

Similarly, our method currently only allows for specifying potential hiatuses with an 
unknown duration at fixed, predetermined heights.  

In principle, our method could be used to divide stratigraphic sections into an arbitrary 
number of segments with differing sedimentation rates, and with an arbitrary number of 
potential hiatuses. 

 



2. This method, along with most others employed for stratigraphic correlation, contains 
the implicit assumption that signals in the data from each synchronous sedimentary 
package exhibit similar data values. However, this is clearly not always the case, for 
example when comparing records in shallow and deeper water settings, or any other 
settings in which one record is more prone to have missing sections than another. This 
is discussed by the authors at the top of p.29. One approach to address this is to 
incorporate explicit relationships between the patterns that one might expect in 
different contemporaneous settings, such as might be embodied in a geological 
process model (e.g., Bloem et al., 2024); the authors rightly say that the latter approach 
has not been tested on real data, but then leave this problem hanging, with no other 
suggested solution.  

Yet this effect may not be minor, and similar to comment 1 above, might introduce 
significant epistemic uncertainty that is not currently accounted for in the authors' 
algorithm. If the authors aim to assess uncertainty then ideally they would think about 
how to embody, or at least make explicit, all sources of uncertainty that affect age 
correlations, so I suggest that some further discussion would be valuable, about how 
one might address this in future.  

We agree with the reviewer that offsets in the proxy values or asynchronous proxy 
patterns interfere with the model assumptions. We point out these issues in section 
5.2.3, and have now added a paragraph on the synchronicity assumption following the 
comments from reviewer 1 (lines 646 – 651):  

A more fundamental problem is posed when similar patterns in a proxy curve are 
asynchronous in different sections: Shifting and stretching proxy data from multiple 
sites may result in a strongly correlated composite curve, but this correlation does not 
prove that the patterns or excursions observed at different sites were in fact 
synchronous (Blaauw 2012). Unless supported by independent evidence such as 
precise radiometric dates, relative age estimates derived from proxy correlations (e.g. 
δ13C) are conditional on the assumption of synchronicity.  

We suggest in section 5.2.3 that the user may account for known proxy offsets by  
subtracting or adding the estimated offset relative to global values (lines 640 – 641). 
Alternatively, the model could be expanded to model anticipated offsets as additional 
unknown variables (lines 642 – 643).  

3. In a number of previous studies, each geochemical proxy data set is often scaled in 
magnitude, in order to better match one transect to another. Was this not done in the 
current study (or did I miss it)? Differences in depositional environment, as mentioned 
in comment 2, may result in signals having different magnitudes, so is there a need to 
include such a scaling (perhaps a priori) to match the magnitudes of signals from one 
transect to another?  



In this study, we did not scale the δ13C data. Whilst scaling may improve the correlation 
of transects from different sites, this may also introduce spurious fits of asynchronous 
peaks of a different magnitude. We would caution against scaling data a priori unless 
there is independent evidence for a systematic offset, e.g. due to different depositional 
environments. We have added a clarification that no scaling was done in lines 360 – 
361: 

δ13C values were used as reported by the authors of the respective publications without 
any scaling or other adjustments. 

4. There is almost no way that a geologist can assess suitable values, or even ranges of 
values, for some of the parameters employed in the authors’ algorithm (e.g., lambda) a 
priori – without looking at any outputs of the process). It is therefore not possible to 
define the corresponding prior information. I would guess that anyone applying this 
algorithm will use a trial and error approach to vary such parameters, running the 
algorithm each time, looking at the results until they get a good result, where 'good' then 
becomes entirely subjective. The parameter is then in fact defined a posteriori in a 
pseudo-hierarchical way – but without ever defining its prior distribution. I think that an 
example of this is even given by the authors themselves, in lines 281 to 285. As a result, 
while this method looks Bayesian mathematically, in practical use I fear that it might not 
be.  

How can the authors change or differently embody these parameters to provide 
geologists with an intuitive way to define them a priori? One possibility might be to use 
the inverse approach to define prior information from Curtis and Wood (2004) or Walker 
and Curtis (2014), but are there others? Generally, it seems to me that if this 
methodology is to make a significant impact, in making the quantification of uncertainty 
in correlations more objective, then more research (perhaps in other papers) and 
discussion (in this paper) is needed to develop structured methods to define the prior 
distributions; otherwise this method may well be used in a similarly subjective manner 
to manual correlation, and while the results will be quantitative, they could end up 
being little more objective and well defined than previous results.  

The priors on lambda and sigma, and the overlap prior, are indeed difficult to justify. We 
agree that future work on how to specify these priors in a more principled way would be 
valuable. As this is beyond the scope of this manuscript, we have added a word of 
caution on the potential circularity of tuning priors with the same data that will be used 
in the analysis, and a suggestion on how suitable priors may be identified in future work 
in section 5.2.2 (lines 628 – 634): 

While it is relatively straightforward to express prior beliefs on the alignment parameters 
𝛼, 𝛾, 𝜁 𝑎𝑛𝑑 𝛿, it is hard to specify suitable priors for 𝜆, 𝜎 and 𝐶𝑜𝑣𝑒𝑟𝑙𝑎𝑝, as they do not 
correspond to measures used by geologists. The default priors on 𝜆, 𝜎 and 𝐶𝑜𝑣𝑒𝑟𝑙𝑎𝑝 in the 



StratoBayes software were chosen iteratively by working with various test data sets. 
Users should avoid fine-tuning these priors directly on the data sets to which they intend 
to apply StratoBayes, as this could introduce unintended circularity. Instead, analogous 
independent data sets could be used to identify suitable priors for 𝜆, 𝜎 and 𝐶𝑜𝑣𝑒𝑟𝑙𝑎𝑝. For 
example, priors on 𝜆 and 𝜎 for correlating δ13C curves could be meaningfully specified 
from pre-existing reconstructed δ13C composite curves.  

5. Lines 228-232 indicate that uncertainty may not increase with distance from absolute 
age constraints. I agree with the previous reviewer that this seems to indicate a 
significant flaw in the methodology. It may again be due to the particular 
implementation – perhaps the density of spline knots should increase with distance 
away from the absolute age constraints (although it is not clear how quickly).  

A similar issue arises close to sequence boundaries, around which time tends to be 
compressed in the stratigraphic record. Spline knots might be more densely distributed 
around such boundaries, but again it is not clear how dense they should be. This is 
another case where defining prior information is difficult, and requires more study 
(similar to the comment above).  

We agree with both reviewers that the lack of increasing uncertainty away from the 
absolute age constraints is a flaw that needs to be addressed in future improvements to 
the StratoBayes methodology and software. We do not think that increasing (or 
decreasing) the number of knots away from age constraints or sequence boundaries 
could reliably solve this, especially since, as the reviewer points out, it is not clear how 
quickly the knot density should change.   

We believe that our existing, slightly modified discussion of challenges related to the 
proxy and sedimentary record (section 5.2.3) sufficiently addresses the reviewer’s 
comment:  

StratoBayes introduces a simplification in modelling sedimentary histories by forcing 
uniform sedimentation rates within pre-defined segments of a stratigraphic section. An 
effect of this simplification can be seen in the age-depth plots in Fig. 7: Due to 
sedimentation rates being modelled as uniform within stratigraphic partitions, the 
uncertainty of age estimates does not necessarily increase away from the radiometric 
dates. We acknowledge that this may underestimate the uncertainty associated with 
potential sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially 
when allowing for few sedimentation rate changes. Similarly, our method currently only 
allows for specifying potential hiatuses with an unknown duration at fixed, 
predetermined heights.  

In principle, our method could be used to divide stratigraphic sections into an arbitrary 
number of segments with differing sedimentation rates, and with an arbitrary number of 



potential hiatuses. In practice, estimating the parameters of a model with more than a 
low double-digit number of alignment parameters (shift parameters, sedimentation 
rates, hiatuses) represents a challenge for the current implementation of the MCMC 
algorithm within StratoBayes, as finding and exploring the posterior becomes 
increasingly difficult as more parameters are added. This limitation could be alleviated 
by incorporating MCMC methods suited for higher dimensional problems and difficult 
posterior geometries. Alternatively, a continuous process model such as the compound 
Poisson-gamma process of BChron (Haslett and Parnell, 2008) might be integrated with 
our model for the proxy signal, but again the complexity of the MCMC would increase. 
Another approach would be to divide the alignment problem into sub-problems, e.g. by 
multiple pairwise correlation of sites (e.g. Hagen et al., 2024; Sylvester, 2023), or by 
correlating shorter subsections. 

Minor Comments: 

 Line 130-131: This sentence needs some explanation; the main text should be 
understandable without having to read the Appendices.  

We have expanded this sentence to make it clearer (lines 136 – 139), but still refer to the 
Appendices for a more thorough explanation, as a detailed description of the MCMC 
implementation will not be of interest for most readers:  

To ensure thorough exploration of the parameter space, we employ parallel tempering, 
i.e. we run multiple chains in parallel, flattening the likelihood of the tempered (hot) 
chains which can therefore move between different posterior modes, and frequently 
propose swaps between chains.  For the posterior estimates, we retain samples only 
from the primary (cold) chain. 

Fig. 1 caption: as far as I can tell, both alpha and gamma are used in the main text 
before they are defined, other than in this figure caption.  

We have corrected this oversight and added a definition for alpha and gamma where 
they first appear in the main text (lines 163 – 164):  

The knots for the spline can be distributed across the reference height range that the 
converted measurement heights occupy for a specific combination of shift parameters 
(𝛼) and scale parameters (𝛾, i.e. relative sedimentation rates). 

 

REFERENCES  

C. E. Bond. Uncertainty in structural interpretation: Lessons to be learnt, Journal of 
Structural Geology, 74, 2015, https://doi.org/10.1016/j.jsg.2015.03.003  

https://doi.org/10.1016/j.jsg.2015.03.003


C. E. Bond, R.J. Lunn, Z.K. Shipton, A.D. Lunn; What makes an expert effective at 
interpreting seismic images?. Geology 2012;; 40 (1): 75–78. doi: 
https://doi.org/10.1130/G32375.1  

A. Curtis, 2012. The science of subjectivity. Geology. 40, pp. 95-96. doi: 
10.1130/focus012012.1  

Andrew Curtis, Hugo Bloem, Rachel Wood, Fred Toby Bowyer, Graham Anthony Shields, 
Ying Zhou, Mariana Yilales, Daniel Tetzlaff, 2025. Natural sampling and aliasing of 
marine geochemical signals. Scientific Reports, 15:760, DOI: 10.1038/s41598-024-
84871-6  

A. Curtis and R. Wood 2004. Optimal elicitation of probabilistic information from 
experts. In, Geological Prior Information, A. Curtis and R. Wood ed’s. Geol. Soc. Lond. 
Special Publication, Vol. 239; pp. 127-145; DOI 10.1144/GSL.SP.2004.239.01.09  

D. Polson and A. Curtis, 2010. Dynamics of uncertainty in geological interpretation. 
Journal of the Geological Society, London, Vol. 167, pp. 5-10. doi: 10.1144/0016-
76492009-055 M.  

Walker and A. Curtis, 2014. Expert elicitation of geological spatial statistics using 
genetic algorithms. Geophys. J. Int., 198, pp.342–356, doi: 10.1093/gji/ggu132 

https://doi.org/10.1130/G32375.1

