Response to the comments of Reviewer 1 (Maarten Blaauw)

We thank the reviewer for his time and helpful feedback. Our responses to the
reviewer’s comments (black) are recorded below in blue.

Reviewer 1

This manuscript proposes a new method to aligh multiple proxy records based on
assumed synchroneity (e.g. appearance of key trilobite fossils); additional data such as
radiometric dates or known ages of fossils can also be added. The model draws a
Bayesian cubic spline (Heaton et al., 2020) per to-be-aligned proxy, using evenly-
spaced knots and smoothness parameters. The model is applied to some synthetic and
real-world examples.

I like the fact that not just one alignment is chosen, displayed and discussed, but a
range of alignments (e.g., Fig. 6 and section 5.1). This clearly shows the probabilistic
and uncertain nature of aligning multiple records, and thus the need and potential for a
Bayesian framework. Could the age-depth relationships of the three solutions from Fig.
6 also be shown in a Figure akin to Fig. 7, to see how variable the reconstructed rates
and hiatuses are?

We thank the reviewer for this positive assessment and have included an additional
figure in Appendix B to show the age-depth relationships of the three different solutions
from Fig. 6. (i.e. Fig. B2).

Sometimes stratigraphical correlation is the only way to obtain a chronology for a proxy
record, e.g. where no absolute/radiometric age estimates are available. However, it
would be good to also highlight potential problems with aligning records based on their
assumed synchroneity, e.g. problems with circular reasoning, possible erroneous
choice of tie-points, and the introduction of a dependence between records. These
problems are reviewed by Blaauw 2012 (doi:10.1016/j.quascirev.2010.11.012).

We expanded the discussion in section 5.2.3 to point out those challenges:

A more fundamental problem is posed when similar patterns in a proxy curve are
asynchronous in different sections: Shifting and stretching proxy data from multiple
sites may result in a strongly correlated composite curve, but this correlation does not
prove that the patterns or excursions observed at different sites were in fact
synchronous (Blaauw 2012). Unless supported by independent evidence such as
precise radiometric dates, relative age estimates derived from proxy correlations (e.g.
0"3C) are conditional on the assumption of synchronicity.

Line 76, would it be useful to mention Trayler et al. 2024's Astrobayes age-model, which
includes hiatuses (doi:10.5194/gchron-6-107-2024)7?



Reference added in lines 68-70: A Bayesian age-depth modelling approach by Trayler et
al. (2024) considers hiatuses and uses astrochronological interpretations to inform
sedimentation rate priors.

Lines 228-32 and 646-52 list an important limitation of the proposed model; assumed
linear sedimentation rates will not cause chronological uncertainties to widen further
away from age constraints. Some of the reconstructed age-model uncertainties seem
very narrow indeed, e.g. 7d. Does setting spline knots at regular intervals not help?

The age model uncertainties at 7d (Siberia) are low because of the high-amplitude
variations in 8'°C which are matched with similar high-amplitude signals at Oued Sdas,
leading to comparatively low uncertainties. Spline knots are placed at regular intervals,
but for age uncertainties to widen away from age constraints, additional sedimentation
rate changes would have to be included (see discussion in section 5.2.3, lines

672 -690).

For a frequently-used Bayesian age-depth model that includes priors on sedimentation
rates and variability, please cite Bacon (Blaauw & Christen 2011,
https://projecteuclid.org/euclid.ba/1339616472). Bacon is a piece-wise linear model
much like what is proposed here; it also includes time hiatuses, slumps (depth
'hiatuses') and changes in sedimentation rates. It uses the t-walk, a flexible MCMC
(Christen & Fox 2010, http://projecteuclid.org/euclid.ba/1340218339). Although Bacon
is most often used on radiocarbon-dating timescales, it has also been applied to much
longer time-scales. That said, the usage of dozens of parameters per site (owing to long
cores with thin sections) would probably cause the MCMC to run much, much slower
than the 5 days reported here.

We thank the reviewer for pointing out this oversight and have expanded the
introduction to refer to Bacon and other Bayesian age-depth modelling tools (lines 65 -
68): Bayesian approaches are commonly employed in age-depth models that
interpolate between absolute age constraints or tie points, e.g. Bchron (Haslett and
Parnell, 2008) and Oxcal (Ramsey 1995); Bacon (Blaauw and Christen 2011) also
includes priors on sedimentation rates and variability.

I ran a quick toy age-model in R using the vignette provided and all ran fine. This is
important, because other recently proposed methods I've seen rely on many additional
packages and on software external to R such as JAGS to run (often resulting in failure).
Pity though that only binary versions are provided - could the source c++ code also be
provided? That would enable users on other operating platforms to also run the code,
would enable users to get a better idea of what exactly is done, and would be much
more future-proof.



We are glad that the reviewer found that the package ran smoothly. We agree that
releasing the source code would be beneficial, and plan to do so once we have more
clarity on the long-term direction of this software project.

The MCMC runs multiple chains but only retains the samples from one chain (both a
burn-in and thinning are applied afterward). Is this a standard approach?

The discarded chains are tempered chains; we are using a parallel tempering framework
for easier sampling of multimodal posteriors. We have expanded the explanation in
lines 136 — 139 to clarify this:

To ensure thorough exploration of the parameter space, we employ parallel tempering,
i.e. we run multiple chains in parallel, flattening the likelihood of the tempered (hot)
chains which can therefore move between different posterior modes, and frequently
propose swaps between chains. For the posterior estimates, we retain samples only
from the primary (cold) chain.

Could you clarify $\mu$ in section 2.1: is this a hypothetical target to which all sites are
tuned, or is this akin to target/reference Site 1 as in Fig. 1?

M in section 2.1 is a hypothetical target, to which all sites except the reference site are
tuned (the reference site remains fixed in this scenario, but is informing p alongside the
tuned sites). We have added a clarification in section 2.1 (avoiding the term “target” and
referring to a hypothetical composite curve instead): Here, i can be interpreted as an
underlying common signal of which the observations from each site, including the
reference site, are noisy realisations. (lines 154 — 155)

Fig. 1 of the hypothetical sample: can the $\alpha$ and $\gamma$ values of the
placementin c) be depicted as vertical lines overlying the prior distributions of panel b)?
This because in this example, site 2 is compressed a lot (2.8 times faster than site 1),
and it would be nice to see where it falls on the log-normal prior (as well as of course the
placement on the uniform prior, 12.5 m). In this example, site 2 accumulates linearly
over time.

This is a helpful improvement of Fig. 1, we’ve added the reviewer’s suggestion to the
updated version of Fig. 1.

Eqg. 8, shouldn't the hiatuses $\delta$ be expressed as gaps/jumps in time, not
depth/height?

In Eq. 8, correlation is done on a reference height (or reference depth) scale, rather than
a time scale, so hiatuses are expressed as an interval of heights on the reference scale
that is not represented in the correlated section. A clarification has been added to



section 2.2.3 (lines 216 —217): In a correlation on an absolute age scale (Sect. 2.2.5),
hiatuses would instead be expressed as durations, not heights.

Citation: https://doi.org/10.5194/egusphere-2025-1355-RC1



Response to the comments of Reviewer 2 (Andrew Curtis)

We thank the reviewer for his time and helpful feedback. Our responses to the
reviewer’s comments (black) are recorded below in blue.

Reviewer 2

This manuscript proposes a Monte Carlo based method to assess quantitative Bayesian
uncertainties in the statigraphic correlation between data transects recorded at
different locations. It applies the method to both synthetic and real data, to highlight
strengths and weaknesses of the method. Overall | feel that this work will make a
significant advance over manual correlation methods and some other algorithmic
methods. | nevertheless have a few comments which all concern the methodology
rather than the applications.

Main comments:

1. In principle, a hiatus may occur between any two measurement locationsin a
geochemical transect (Sadler, 1981), as the authors acknowledge in the discussion at
the top of page 29. For example, hiatuses certainly occur in age records at grain scale, in
any grainy depositional setting. The reason that age correlation still has some validity
derives from an assumption that these types of hiatus are insignificant, or can be
represented in aggregate as smooth increases in age, when averaged over the time
scales at which data sets are correlated.

Nevertheless, when we try to assess uncertainty in correlations, any possibility that
hiatuses exist which are significant even at these longer time scales should produce a
variation in the resulting age curves along the measurement axis or transect, and so
should be considered in uncertainty estimates. In a Bayesian context, information
(beliefs or constraints) on inter-datum hiatuses should therefore ideally be expressed
explicitly as so-called prior information, embodied in prior probability distributions.
Such prior information may come from, for example, the fact that at some scale of
observation we have / have not observed a sedimentological sign of hiatus in the rock
record along the transect or in neighbouring synchronously deposited sediments, a
sedimentary process or statistical model that embodies such beliefs, or any other type
of pertinent observation. In the current algorithm, the uncertainty in these sources of
information is not included - the locations of hiatuses are defined definitively a priori.
The authors do acknowledge the possibility that hiatuses may occur anywhere on page
29, but they leave that problem unsolved.

| feel that it is important to make this prior probability distribution (the probability that a
hiatus exists at any point in the transect) explicit in, what the authors propose is, a
general correlation method: this will force practitioners to consider properly the quality
of information, and the degree of expert belief or received opinion, that are fed into the



process. Ideally all of the number, locations/age and length of hiatuses would be
subject to uncertainties, and practitioners would therefore be forced to decide not only
whether/where they can definitively fix a hiatus, but also where they might have missed
one or more, and how likely that was to have happened.

I would also admit that translating geological observations into prior probabilities that
can be incorporated into the Bayesian inference is not at all straightforward! It requires
a process of expert elicitation, which is itself a significant challenge and source of
epistemic uncertainty. Polson and Curtis (2010), Bond et al., (2012), Curtis (2012) and
Bond (2015) describe some of the biases that affect geological interpretations by
experts, and techniques that might be adopted to minimise these. While these papers
are concerned with different types of observations, similar types of biases and
uncertainties can be expected in the cases described above — perhaps in addition to
other biases that are particular to those cases.

We thank the reviewer for the thorough exploration of the problem of hiatuses. We admit
that the treatment of hiatuses in the current version of the StratoBayes algorithm is
limited: It requires specifying horizons at which hiatuses are suspected to occur a priori.
However, as the duration of a hiatus can be expressed as a prior probability distribution,
this can allow the algorithm to identify either the duration of the hiatus, or identify that
there was no substantial hiatus after all (posterior estimate of the duration of the hiatus
close to zero).

We agree that it would be preferable to place a prior distribution on the number of
hiatuses, as well as on their position (rather than specifying a fixed number of potential
hiatuses at fixed positions). Although extending the model to infer both the number and
positions of hiatuses is mathematically feasible, doing so would greatly enlarge the
parameter space of the model and demand substantial improvements to the MCMC
scheme to achieve convergence within practical run-times. The current version of our
method therefore does not allow for including uncertainty about the number and
position of hiatuses.

We have slightly expanded the discussion in section 5.2.3 to reference hiatuses (lines
679 -681):

Similarly, our method currently only allows for specifying potential hiatuses with an
unknown duration at fixed, predetermined heights.

In principle, our method could be used to divide stratigraphic sections into an arbitrary
number of segments with differing sedimentation rates, and with an arbitrary number of
potential hiatuses.



2. This method, along with most others employed for stratigraphic correlation, contains
the implicit assumption that signals in the data from each synchronous sedimentary
package exhibit similar data values. However, this is clearly not always the case, for
example when comparing records in shallow and deeper water settings, or any other
settings in which one record is more prone to have missing sections than another. This
is discussed by the authors at the top of p.29. One approach to address this is to
incorporate explicit relationships between the patterns that one might expectin
different contemporaneous settings, such as might be embodied in a geological
process model (e.g., Bloem et al., 2024); the authors rightly say that the latter approach
has not been tested on real data, but then leave this problem hanging, with no other
suggested solution.

Yet this effect may not be minor, and similar to comment 1 above, might introduce
significant epistemic uncertainty that is not currently accounted for in the authors'
algorithm. If the authors aim to assess uncertainty then ideally they would think about
how to embody, or at least make explicit, all sources of uncertainty that affect age
correlations, so | suggest that some further discussion would be valuable, about how
one might address this in future.

We agree with the reviewer that offsets in the proxy values or asynchronous proxy
patterns interfere with the model assumptions. We point out these issues in section
5.2.3, and have now added a paragraph on the synchronicity assumption following the
comments from reviewer 1 (lines 646 —651):

A more fundamental problem is posed when similar patterns in a proxy curve are
asynchronous in different sections: Shifting and stretching proxy data from multiple
sites may result in a strongly correlated composite curve, but this correlation does not
prove that the patterns or excursions observed at different sites were in fact
synchronous (Blaauw 2012). Unless supported by independent evidence such as
precise radiometric dates, relative age estimates derived from proxy correlations (e.g.
0'3C) are conditional on the assumption of synchronicity.

We suggest in section 5.2.3 that the user may account for known proxy offsets by
subtracting or adding the estimated offset relative to global values (lines 640 — 641).
Alternatively, the model could be expanded to model anticipated offsets as additional
unknown variables (lines 642 — 643).

3. In a number of previous studies, each geochemical proxy data set is often scaled in
maghnitude, in order to better match one transect to another. Was this not done in the
current study (or did | miss it)? Differences in depositional environment, as mentioned
in comment 2, may result in sighals having different magnitudes, so is there a need to
include such a scaling (perhaps a priori) to match the magnitudes of signals from one
transect to another?



In this study, we did not scale the 6'°C data. Whilst scaling may improve the correlation
of transects from different sites, this may also introduce spurious fits of asynchronous
peaks of a different magnitude. We would caution against scaling data a priori unless
there is independent evidence for a systematic offset, e.g. due to different depositional
environments. We have added a clarification that no scaling was done in lines 360 -
361:

0"3C values were used as reported by the authors of the respective publications without
any scaling or other adjustments.

4. There is almost no way that a geologist can assess suitable values, or even ranges of
values, for some of the parameters employed in the authors’ algorithm (e.g., lambda) a
priori — without looking at any outputs of the process). It is therefore not possible to
define the corresponding prior information. | would guess that anyone applying this
algorithm will use a trial and error approach to vary such parameters, running the
algorithm each time, looking at the results until they get a good result, where 'good' then
becomes entirely subjective. The parameter is then in fact defined a posterioriin a
pseudo-hierarchical way — but without ever defining its prior distribution. | think that an
example of this is even given by the authors themselves, in lines 281 to 285. As a result,
while this method looks Bayesian mathematically, in practical use | fear that it might not
be.

How can the authors change or differently embody these parameters to provide
geologists with an intuitive way to define them a priori? One possibility might be to use
the inverse approach to define prior information from Curtis and Wood (2004) or Walker
and Curtis (2014), but are there others? Generally, it seems to me that if this
methodology is to make a significant impact, in making the quantification of uncertainty
in correlations more objective, then more research (perhaps in other papers) and
discussion (in this paper) is needed to develop structured methods to define the prior
distributions; otherwise this method may well be used in a similarly subjective manner
to manual correlation, and while the results will be quantitative, they could end up
being little more objective and well defined than previous results.

The priors on lambda and sigma, and the overlap prior, are indeed difficult to justify. We
agree that future work on how to specify these priors in a more principled way would be
valuable. As this is beyond the scope of this manuscript, we have added a word of
caution on the potential circularity of tuning priors with the same data that will be used
in the analysis, and a suggestion on how suitable priors may be identified in future work
in section 5.2.2 (lines 628 — 634):

While it is relatively straightforward to express prior beliefs on the alignment parameters
a,v,{ and 6, it is hard to specify suitable priors for A, o and Coverlap, as they do not
correspond to measures used by geologists. The default priors on A, 0 and Cyyeriqp in the



StratoBayes software were chosen iteratively by working with various test data sets.
Users should avoid fine-tuning these priors directly on the data sets to which they intend
to apply StratoBayes, as this could introduce unintended circularity. Instead, analogous
independent data sets could be used to identify suitable priors for A, 0 and Cyyeriqp- FOr
example, priors on A and o for correlating 8'°C curves could be meaningfully specified
from pre-existing reconstructed §°C composite curves.

5. Lines 228-232 indicate that uncertainty may not increase with distance from absolute
age constraints. | agree with the previous reviewer that this seems to indicate a
significant flaw in the methodology. It may again be due to the particular
implementation — perhaps the density of spline knots should increase with distance
away from the absolute age constraints (although it is not clear how quickly).

A similar issue arises close to sequence boundaries, around which time tends to be
compressed in the stratigraphic record. Spline knots might be more densely distributed
around such boundaries, but again it is not clear how dense they should be. This is
another case where defining prior information is difficult, and requires more study
(similar to the comment above).

We agree with both reviewers that the lack of increasing uncertainty away from the
absolute age constraints is a flaw that needs to be addressed in future improvements to
the StratoBayes methodology and software. We do not think that increasing (or
decreasing) the number of knots away from age constraints or sequence boundaries
could reliably solve this, especially since, as the reviewer points out, it is not clear how
quickly the knot density should change.

We believe that our existing, slightly modified discussion of challenges related to the
proxy and sedimentary record (section 5.2.3) sufficiently addresses the reviewer’s
comment:

StratoBayes introduces a simplification in modelling sedimentary histories by forcing
uniform sedimentation rates within pre-defined segments of a stratigraphic section. An
effect of this simplification can be seen in the age-depth plots in Fig. 7: Due to
sedimentation rates being modelled as uniform within stratigraphic partitions, the
uncertainty of age estimates does not necessarily increase away from the radiometric
dates. We acknowledge that this may underestimate the uncertainty associated with
potential sedimentation rate variability (De Vleeschouwer and Parnell, 2014), especially
when allowing for few sedimentation rate changes. Similarly, our method currently only
allows for specifying potential hiatuses with an unknown duration at fixed,
predetermined heights.

In principle, our method could be used to divide stratigraphic sections into an arbitrary
number of segments with differing sedimentation rates, and with an arbitrary number of



potential hiatuses. In practice, estimating the parameters of a model with more than a
low double-digit number of alignment parameters (shift parameters, sedimentation
rates, hiatuses) represents a challenge for the current implementation of the MCMC
algorithm within StratoBayes, as finding and exploring the posterior becomes
increasingly difficult as more parameters are added. This limitation could be alleviated
by incorporating MCMC methods suited for higher dimensional problems and difficult
posterior geometries. Alternatively, a continuous process model such as the compound
Poisson-gamma process of BChron (Haslett and Parnell, 2008) might be integrated with
our model for the proxy signal, but again the complexity of the MCMC would increase.
Another approach would be to divide the alignment problem into sub-problems, e.g. by
multiple pairwise correlation of sites (e.g. Hagen et al., 2024, Sylvester, 2023), or by
correlating shorter subsections.

Minor Comments:

Line 130-131: This sentence needs some explanation; the main text should be
understandable without having to read the Appendices.

We have expanded this sentence to make it clearer (lines 136 — 139), but still refer to the
Appendices for a more thorough explanation, as a detailed description of the MCMC
implementation will not be of interest for most readers:

To ensure thorough exploration of the parameter space, we employ parallel tempering,
i.e. we run multiple chains in parallel, flattening the likelihood of the tempered (hot)
chains which can therefore move between different posterior modes, and frequently
propose swaps between chains. For the posterior estimates, we retain samples only
from the primary (cold) chain.

Fig. 1 caption: as far as | can tell, both alpha and gamma are used in the main text
before they are defined, other than in this figure caption.

We have corrected this oversight and added a definition for alpha and gamma where
they first appear in the main text (lines 163 - 164):

The knots for the spline can be distributed across the reference height range that the
converted measurement heights occupy for a specific combination of shift parameters
(a) and scale parameters (v, i.e. relative sedimentation rates).
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