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Abstract. Tracers/markers/particles are commonly used in geodynamical models to track composition and sometimes other 

quantities throughout the domain. A common problem is that over time, gaps in the tracer distribution can develop, often 

resulting in cells with no tracers as well as bunching of tracers. These arise when tracer advection does not perfectly respect 

the mass conservation equation, so here this equation is used to derive a correction method that perturbs or “nudges” the 

positions of tracers in such a way as to close gaps and eliminate bunching. Test results show that this tracer nudging method 10 

is highly effective. Starting from an extremely heterogeneous tracer distribution with large regions of the domain devoid of 

tracers, it can produce an even distribution in only a few nudge iterations. In a time-stepping situation with a nudge every 

time-step, the amplitudes of the nudges are small yet sufficient to prevent gaps and bunches, allowing a low-order tracer 

advection method to be used while maintaining a tracer distribution that is more even than that obtained using higher-order 

advection methods alone. The computational cost is small – slightly larger than that of a first-order tracer advection step 15 

alone - because the method simply requires solving a Poisson equation. If an accuracy threshold is applied, a nudge 

correction may be necessary in only a fraction of time steps, with tests indicating that it is fastest to use low order advection 

with more frequent nudges than high order advection with less frequent nudges.  

1 Introduction 

Tracers, alternatively named markers or particles, are commonly used in geodynamical models to track composition and 20 

sometimes temperature and other quantities, typically in the framework of a so-called “marker-and-cell” or “particle-in-cell” 

method, in which velocity and pressure are calculated on a fixed Eulerian grid while various other quantities are advected on 

Lagrangian tracers/markers/particles (e.g. Harlow and Welch (1965); Tackley and King (2003); Gerya and Yuen (2007)), 

because the latter has some advantages to grid-based advection methods, such as lack of numerical diffusion or dispersion 

and the possibility of representing sub-grid-scale features. All of the major geodynamical modelling codes include this 25 

option, including CitcomS (Moresi et al., 2014), Aspect (Heister et al., 2017), Stag3D/StagYY (Tackley and King, 2003; 

Tackley, 2008), TERRA (e.g. Panton et al., 2025), LaMEM (Kaus et al., 2016), and I3ELVIS (Gerya et al., 2015).  

This method relies on many tracers (e.g. 5-50) being present in each cell. Thus, it is problematic that over time, gaps 

in the tracer distribution typically develop, often resulting in cells containing no tracers. At the same time, bunching of 
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tracers builds up. Such gaps and bunches typically develop when tracer advection does not respect the mass conservation 30 

equation, which can be due to (i) interpolation of velocities from grid points to tracer points not respecting conservation of 

mass (Pusok et al., 2016) and/or (ii) inaccurate advection of tracers in regions with large velocity gradients even with perfect 

velocities. The development of such gaps and bunches can be minimized by an optimal choice of tracer advection method 

(Pusok et al., 2016; Gerya et al., 2021) but apparently not eliminated, particularly since geodynamical simulations spanning 

the age of the Earth may require millions of time steps, giving small inaccuracies plenty of time to build up. Thus, some 35 

remedy, preferably one that is based on the equations being solved, is required. One remedy is to create new tracers to fill the 

gaps (Gerya, 2019), but this is unphysical.  

Here, the mass conservation equation is used to correct mass conservation errors introduced during tracer advection 

by perturbing or “nudging” the positions of tracers. If performed frequently, such as every time step, the amplitudes of the 

nudges are small yet prevent large-scale gaps and bunches from building up. The method also works well when starting from 40 

an extremely uneven tracer distribution with large fractions of the domain initially devoid of tracers. 

 Irregularities in the spatial distribution of tracers can be quantified in terms of the number of tracers per unit 

volume (i.e. number density) calculated on a cell-by-cell basis. Alternatively, if tracers are considered to each have a mass 

(e.g. equal to the total mass of the domain divided by the number of tracers, although they could have different masses), then 

this can be thought of as a density, i.e. mass of tracers per unit volume. In the latter usage, the goal of this method is to nudge 45 

tracer positions in order to achieve, throughout the model domain, a tracer density that matches the correct physical density, 

which could vary with position if compressibility is included. The latter usage of “tracer density” is what the subsequent 

theory will mainly focus on. 

In subsequent sections the mathematical theory is presented, followed by various tests of its effectiveness using the 

accompanying MATLAB program in two and three dimensions. 50 

2 Mathematical Theory 

As the goal is to achieve the tracer density everywhere, the first step is to calculate the current tracer density 𝜌t(x,y,z)	 on	 a	

cell-by-cell	 basis.	 Tracer	 density	 can	 be	 defined	 either	 as	 the	 mass	 of	 tracers	 per	 unit	 volume	 or	 (if	 tracers	 are	

massless)	 the	 number	 of	 tracers	 per	 unit	 volume	 and	 can	 be	 dimensional	 (kg/m3	 or	 m-3,	 respectively)	 or	

nondimensional,	 as	 in	 the	 example	 MATLAB	 program.	 It	 is	 important	 that	 𝜌t	 changes	 smoothly	 as	 tracers	 move	55 

around,	which	 it	does	not	 if	 one	 simply	 counts	 the	number	of	 tracers	 in	each	 cell,	 because	a	 tracer	 crossing	a	 cell	

boundary	causes	an	abrupt	change	in	the	densities	of	the	two	cells.	Therefore,	linear	averaging	of	tracers	to	cells	is	

important	–	 termed	 “shape	 function”	averaging	by	Tackley	and	King	(2003)	and	widely	 recommended	(e.g.	Gerya,	

2019;	Ismail-Zadeh	and	Tackley,	2013).	In	this,	each	tracer	contributes	to	the	mass	in	4	(in	2-D)	or	8	(in	3-D)	cells,	

linearly	 dependent	 on	 its	 distance	 from	 the	 cell	 centres	 using	 bilinear	 (in	 2-D)	 or	 trilinear	 (in	 3-D)	 functions	60 
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analogous	 to	 the	 shape	 functions	 used	 in	 the	 finite	 element	method.	Once	 the	 tracer-based	 density	 in	 each	 cell	 is	

known,	the	tracer	density error can	then	be	calculated	as	

∆𝜌! = 𝜌" − 𝜌#		,																																																																																																																																																																																						(1)	

where 𝜌# is the correct density (e.g. of rock). This can in general vary with position, making the method applicable without 

modification to compressible flows, but for the purposes of the tests in this paper  𝜌# is assumed to be constant. 65 

 The required perturbation (“nudging”) of tracer positions can be derived starting with the equation expressing 

conservation of mass: 

$%
$"
= −∇ ∙ (𝜌𝑣⃗)	,																																																	 	 																																																																																																																							(2)	

where 𝜌 is the density field, 𝑣 is the velocity field and t is time. Multiplying (2) by a finite time interval and substituting 

∆𝑥⃗ = 𝑣∆𝑡 leads to an approximate equation relating a finite change in density to a finite perturbation in position ∆𝑥, which is 70 

here applied to the tracer density 𝜌": 

∆𝜌" ≈ −∇ ∙ (𝜌"∆𝑥⃗)	.																																																																							 																																																																																																							(3)	

∆𝑥⃗ can conveniently be expressed as the gradient of a mass flux potential 𝜙 (with units kg/m if 𝜌" has units of kg/m3 or m-1 if 

has units of m-3): 

𝜌"∆𝑥⃗ = ∇ϕ			.																																																																										 																																																																																																							(4)	75 

Substituting (4) into (3) leads to a Poisson equation for 𝜙: 

∆𝜌" = −∇&𝜙		.																																																																																																																																																																																															(5)	

The desired change in density ∆𝜌" is minus the density error, ∆𝜌!, therefore the equation to solve is  

∇&𝜙 =	∆𝜌!		.																																																																																																																																																																																																		(6)	

This can easily and efficiently be solved using standard methods such as multigrid. Assuming that the domain boundaries are 80 

impermeable, the appropriate boundary condition for 𝜙 is zero gradient perpendicular to the boundary; for other velocity 

boundary conditions equation (4) can be used to derive the appropriate condition on 𝜙. 

It is noted that another possible expression for ∆𝑥⃗ is 

∆𝑥⃗ = ∇φ																																																																																																																																																																																																								(7)	

where φ is a displacement potential (with units m2), leading to 85 

∆𝜌" = ∇ ∙ (𝜌"∇φ)		,																																																																																																																																																																																						(8)	
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which is slightly more difficult to solve and problematic in areas where 𝜌" = 0, if such areas exist. Equation (4) also seems 

problematic in areas where  𝜌" = 0 but as there are no tracers in these areas, there is no problem in practice. 

 This method does not achieve a perfectly uniform tracer distribution in a single nudge because 𝜌" changes (towards 

the correct density  𝜌# ) during the displacement of tracers: equation (2) is an approximation. In areas of too-high 𝜌" 90 

(decreasing during the correction step), equation (4) underpredicts the displacement, whereas in areas of too-low 𝜌" 

(increasing during the correction step), equation (4) overpredicts the displacement. Thus, when calculating the displacement 

from equation (4) it is best to use an average of the initial density and the correct density, rather than only the initial density. 

Tests indicate that a geometric average gives slightly better convergence than an arithmetic average, but both perform 

considerably better than using just the starting 𝜌". In summary, when calculating displacement, equation (4) is replaced by:  95 

∆𝑥⃗ = ∇(
√(%!%")

			.																																																															 	 																																																																																																		(9)	

A	single	application	of	this	algorithm	achieves	a	considerable	reduction	of	the	density	error	(quantified	using	the	L1	

or	L2	norm),	which	is	sufficient	during	a	time-stepping	situation.	If,	however,	starting	from	an	extremely	non-uniform	

tracer	distribution	with	large	portions	of	the	domain	being	devoid	of	tracers,	several	iterations	of	the	algorithm	may	

be	needed,	as	documented	in	Section	4.	100 

3 Accompanying MATLAB scripts 

This method is implemented in two and three dimensions in the accompanying MATLAB scripts (Tackley and ETH Zurich, 

2025) (main program NUDGE.m), which can run the various test cases documented and discussed in Section 4. MATLAB 

scripts have the advantage of being easy to translate into other science and engineering-oriented high-level languages that 

include multi-dimensional arrays and array algebra, such as Julia (Bezanson, 2017) or modern Fortran (Metcalf et al., 2024). 105 

Indeed, the method has already been implemented in the Fortran geodynamical modelling code StagYY (Tackley, 2008) and 

is in regular use.  

The accompanying program uses a multigrid solver to obtain the displacement potential field. This is highly 

efficient but does require that the number of cells be a power-of-2 in each direction, or a power-of-2 times a small integer. 

Resolution is set by the number of cells in each direction nx, ny and nz, and the number of tracers by tracers_per_cell. Two-110 

dimensional cases can be run by setting the number of y-points ny=1. Densities are calculated at cell centres, while 

displacements and velocities are defined at cell boundaries in the standard staggered-grid finite volume arrangement (e.g. 

Harlow and Welch 1965; Patankar, 1980) as used by many codes in the geodynamical modelling community (e.g. Ogawa et 

al., 1991; Tackley, 1993; Trompert and Hansen, 1996; Gerya and Yuen, 2007; Kameyama et al. 2008; Tackley, 2008; Kaus 

et al., 2016). Domain boundaries are coincident with the perpendicular displacement/velocity points. Tracer positions are 115 

initialised either on a regular grid (with a smaller grid spacing than that on which the velocities/displacements are 

calculated), on a regular grid with random perturbations of up to half a grid spacing, or completely randomly. Initialising 
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tracers on a regular grid causes artefacts with tracer alignment when they are advected, so regular + random is optimal. 

Completely random positions cause a density error that is typically a factor of 2 larger than regular + random, as shown later. 

The domain depth is assumed to be 1.0 and the grid spacing is the same in all three physical directions, meaning that the 120 

domain width in the x and y directions is given by (nx/nz) and (ny/nz), respectively. 

The MATLAB m-files are:  

• NUDGE.m: The main program that runs and plots individual tests or test suites. 
• correct_tracer_density.m: Performs the "nudging" algorithm detailed in Section 2. 
• tracer_density.m: Calculates the cell-based tracer density field.  125 
• Poisson_solve.m: Solves Poisson equation in 2-D or 3-D assuming zero-gradient boundary conditions. 
• advect_tracers.m: Performs 1st-order Euler, 2nd-order or 4th-order Runge-Kutta tracer advection. 

 

The core of the nudging algorithm in correct_tracer_density.m is compact, consisting of only four lines (Fig. 1). 

 130 
Figure 1. MATLAB implementation of the algorithm in Section 2, in file correct_tracer_density.m 

4 Tests 

Four test cases are presented. The first starts with various extremely non-uniform tracer distributions and tests how rapidly 

(in terms of number of nudging iterations) the method can create a uniform tracer distribution. The other three test cases 

involve time stepping, with the first two of these using analytical flow fields (cellular flow and shear flow along an interface) 135 

but the third being full thermal convection. After these, timings of the various routines are presented. Finally, adaptive use of 

the nudge correction (i.e. using when needed rather than once every time step) is tested. 

4.1 Highly non-uniform tracer distribution tests 

Various idealized initial tracer distributions are tested: 

(i) Half-empty. Half of the domain is empty of tracers. 140 
(ii) Rectangular hole. A rectangular region in the middle of the domain is empty of tracers.  
(iii) Spherical hole. A spherical region in the centre of the domain is empty of tracers.  
(iv) Sphere. All tracers are in a sphere in the centre of the domain, the rest being empty. 
(v) Random. Tracers are placed randomly in the entire domain. 

 145 

Figure 2 (top row) shows these initial conditions and Fig. 2 (rows 2-5) shows the results of the first four correction nudges. 

After two nudges (a "nudge-nudge"; Fig. 2 middle row) tracers fill the domain; the subsequent nudge-nudge evens them out 

further. The evenness of the tracer distribution is quantified by tracer density plots in Fig. 3. After one nudge-nudge there is 
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still significant unevenness, but this becomes difficult to discern after a further nudge-nudge. Random initial tracer positions 

(right column) lead to substantial initial unevenness in tracer density.  150 

 Figure 4 shows how the L1 norm of tracer density error decreases with number of nudges for the 2-D tests (Figs. 2 

and 3) and for 3-D versions of the tests. For highly non-uniform initial conditions the reduction in tracer density error is 

more than an order of magnitude after 2 nudges, then becomes less rapid. Again, the random initial condition has substantial 

tracer density error approaching 0.2. 3-D cases are similar but with slightly slower convergence for the "sphere" case. 

 A problem in initial tests of the “sphere” case was that many tracers were nudged through the domain boundaries. 155 

This is due to the extreme nature of this test and is not a problem in a normal time-stepping application, but nevertheless a 

solution has been found. An approach that does not work is to place these tracers at the closest point inside the domain, 

although this does work for normal tracer advection by a velocity field that does not cross the boundaries. However, in this 

application the displacement field can substantially cross the boundaries, leading to a build-up of tracers at the boundaries, 

tracers that are not easily nudged away from there (close to the boundaries the perpendicular displacement is 0). What does 160 

work is to detect tracers that are nudged beyond external boundaries and instead apply only a fraction of the displacement to 

them. A fraction of 70% was found to be optimal. That is, tracers that are initially calculated as crossing boundaries are 

instead moved only 70% of the calculated distance. 
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Figure 2. Tracer positions in the five highly nonuniform tests performed in 2-D with 32x32 cells and 10 tracers per cell on average. 165 
Each column is one test case and each blue dot is a tracer. Shown are (top row) the initial condition and (rows 2 - 5) nudges 1-4.   
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Figure 3. Tracer density error fields for the tracer distributions shown in Figure 2. The colour bar is the same for all frames. 
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 170 

Figure 4. L1 norm of tracer density error versus number of nudges for the 5 initial tracer distributions in (left) 2-D 32x32 cells and 
(right) 3-D 32x32x32 cells, in both cases with 10 tracers per cell on average. 

4.2 Time-stepping cellular-flow test 

The goal in this test is to determine whether the tracer nudging method can prevent gaps and bunches from building up in a 

time-stepping situation, as this is what is typically used in geodynamical simulations. Tracers are advected according to an 175 

analytically defined velocity field given by the curl of a two-dimensional stream function S(x,z): 

𝑣, =
$-
$.
						𝑣/ = 0							𝑣. = − $-

$,
					.										 	 	 	 	 	 	 	 	 		(10)	

The resulting flow field is divergence-free for any S. In the presented tests, S is defined by  

𝑆(𝑥, 𝑧) = 0
1
𝑠𝑖𝑛 o𝜋 ,

2#
q 𝑠𝑖𝑛 o𝜋 .

2$
q											 	 	 	 	 	 	 																		 		(11)	

where Lx is the length of the domain in the x-direction and Lz is the length of the domain in the z-direction. This gives a one-180 

cell circulation pattern with no flow through the boundaries and velocities given by: 

𝑣, =
0
2$
𝑠𝑖𝑛 o𝜋 ,

2#
q 𝑐𝑜𝑠 o𝜋 .

2$
q												𝑣. = − 0

2#
𝑐𝑜𝑠 o𝜋 ,

2#
q 𝑠𝑖𝑛 o𝜋 .

2$
q			 	 	 	 	 	 	(12)	

In order to maximize the challenge of maintaining a uniform tracer distribution, tracers are advected using the first order 

forward Euler method, which usually makes them spiral outwards and concentrate towards the outside of the domain. This 

combination (Euler advection, 1 nudge per time step) is compared to three advection methods without any nudging: Euler, 185 

2nd-oder Runge-Kutta and 4th-order Runge-Kutta methods. Velocities at the staggered grid points are calculated using 

Equation (12) and linearly interpolated to tracer positions. Tracers are initialized on a (regular+random) grid as discussed 



10 
 

earlier, except in an additional (Euler advection, 1 nudge per time step) case with tracers initialized in completely random 

positions, to test what difference that makes. 

 Figure 5 shows tracer distributions and density error fields after 100 time-steps of nondimensional time 0.05 on a 190 

32x32 grid with an average of 10 tracers per cell. As the maximum velocity given by equation (12) is 1, tracers move a 

maximum distance of 0.05 in one step. As expected, the Euler method (1st column) is quite inaccurate, with tracers spiraling 

outwards and building up towards the domain boundaries and corners. With the addition of a single nudge per step (right two 

columns), however, the tracer distribution remains even and negligible tracer density error is visible. The 2nd- and 4th-order 

Runge-Kutta methods produce similar results to each other, with significant unevenness visible in the tracer density error 195 

field.  

 
Figure 5. Tracer distributions (top row) and associated density error fields (bottom row) for the 4 advection methods on a 32x32 
grid with an average of 10 tracers per cell. The right-most combination (Euler advection plus nudge correction) is performed with 
both completely random initial tracer positions (4th column) as well as the default positions. The colour bar is the same for all 200 
density error fields. 

 The time-evolution of tracer density error is quantified in Fig. 6, which shows the L1-norm versus time step. The 

"Euler" case rapidly develops a large density error, whereas in both Runge-Kutta cases the error increases steadily from the 

initial condition, surprisingly at a similar rate for the 2nd- and 4th-order schemes. Adding a single nudge per step to Euler 

advection causes a reduction of density error to a low value, which is subsequently maintained. A completely random initial 205 

condition has a density error of ~a factor of 4 higher than (even + random), indicating that the latter initial condition is much 

better. Even so, adding a nudge correction per step rapidly reduces the error. 



11 
 

 
Figure 6. L1-norm of tracer density error versus time step for the tests in Figure 5. 

4.3. Opposing flow on an interface test 210 

Pusok et al. (2017) thoroughly tested many marker advection methods using four different tests, of which arguably the most 

challenging was the first one, in which two rigid blocks move in opposite directions along an interface oriented at 45 degrees 

to the grid, mimicing to a subduction interface, for example. Material above the interface has a velocity (vx, vz) = (1,1) while 

material below the interface has a velocity of (-1,-1), thus creating a large (shear) velocity change over one grid spacing. 

Tracers advected out of the domain are wrapped around at the appropriate place on a 45 degree line from where they left the 215 

domain. The advection methods tested in Pusok et al. (2017) almost all created a gap along the interface. It is here tested 

whether the nudge correction can avoid the gap along the interface.  

 



12 
 

 
Figure 7. Tracer positions (blue) and tracer density error fields for the opposing flow on an interface test after 500 time steps and a 220 
32x32 grid. See Pusok et al. (2017) for details of this test and comparisons with additional advection methods.  

 

Figure 7 shows the tracers and tracer density error fields using Euler, Runge-Kutta 2nd-order or Runge-Kutta advection, 

either on their own or with a single nudge correction per time step. Euler or 2nd-order Runge-Kutta methods indeed create a 

gap, while with the 4th-order Runge-Kutta method there is a band of tracers inside the gap. Away from the interface, the 225 

initial relative positions of tracers are preserved.  

 With one nudge correction each time step, tracer density error maps are greatly improved by eliminating the gap as 

well as reducing errors away from the gap. However, examination of tracer positions does show artifacts around the 

interface. The Euler and 2nd-order Runge-Kutta cases now display a series of small gaps oriented at 45 degrees instead of 

one big gap.  These are sub-grid-scale features that do not affect the cell-based tracer density field and so are not eliminated 230 

by tracer nudging. It could be that the rather artificial 45 degree angle of the interface allows these features to persist. The 

4th-order Runge-Kutta test is much better. This is the only test in this study in which the 4th-order Runge-Kutta shows a 

distinct advantage over 2nd-order Runge-Kutta.  

 Graphs of tracer density error vs. time for advection (Figure 8) show a rapid increase in error to begin with, 

subsequently stabilising and increasing only slowly. In the nudge-corrected cases, the error decreases then stabilises at a 235 

value roughly an order of magnitude lower than that of the uncorrected cases.  
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Figure 8. L1 norm of the tracer density error versus time step for the tests in Figure 7. 

4.4. Thermal convection test 240 

The final test setup is that of thermal convection in an infinite Prandtl number fluid with strongly temperature-dependent 

viscosity and is thus representative of an actual geodynamical simulation. The Boussinesq approximation is assumed, with 

the fluid heated from below (nondimensional temperature T=1.0), cooled from above (T=0), having no internal heating and 

an exponentially varying viscosity 𝜂(𝑇) = 𝑒𝑥𝑝[−13.8155(𝑇 − 0.5)], which gives a factor of 106 viscosity variation. The 

Rayleigh number (at T=0.5) is 106 and the mechanical boundary conditions are all free slip. The initial condition has 245 

	𝑇(𝑥) = 0.5 + 0.01sin {𝜋 o0
&
+ 3 ,

2#
q|,																																										 	 	 	 	 	 													(13)	

which leads to the formation of two hot plumes from the lower thermal boundary layer, as shown in Figure 9. Flow is more 

rapid in these plumes due to their low viscosity. The time step is limited by the Courant condition because a finite-volume 

scheme is used for temperature advection and for thermal diffusion. The test is run for 500 time steps on a 32x32 grid with 

an average of 10 tracers per cell. 250 
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Figure 9. Temperature and viscosity fields for the thermal convection test after 500 time steps. They are the same regardless of 
tracer advection method because tracers are purely passive. 

Tracer positions and density errors (Figure 10) show large artifacts for the Euler advection method, which are much reduced 255 

by using Runge-Kutta advection. With one nudge iteration per time step, tracer density errors are greatly reduced for all 

three advection schemes. 

 

 
Figure 10. Tracer distributions (top row) and associated density error fields (bottom row) for the three advection methods without 260 
(left 3 columns) or with (right 3 columns) a nudge correction each time step. 

The L1-norm of density error (Figure 11) shows a rapid and continuing increase for the Euler scheme, but a much less rapid 

increase for the Runge-Kutta schemes. 4th order and 2nd order schemes give almost the same result, as is also visible by 

comparing the tracer distributions in Figure 10. With a single nudge iteration per step, tracer density error is reduced to a 

much lower value than that of the initial condition, where it remains stable at around an order of magnitude lower than the 265 

Runge-Kutta advection schemes. The error has the same magnitude for Euler and Runge-Kutta schemes. Thus, for pure 



15 
 

advection there is no advantage to using 4th order instead of 2nd order, while with a nudge correction each step there is no 

advantage to using Runge-Kutta instead of Euler. 

 

 270 
Figure 11. L1 norm of the tracer density error versus time step for the tests in Figure 10. The RK 4th order curves mostly overlie 
the RK 2nd order curves, which are therefore not visible. 

 

4.5 Timing analysis 

 Euler RK2 RK4 Nudge Stokes solve 

32x 32 10/cell 43.08 69.35 124.2 50.66 16.4 

128x128 20/cell 1187 2057 3935 1384 360.1 

Table 1. Timings (in milliseconds) for first-order Euler tracer advection, 2nd- and 4th-order Runge-Kutta tracer advection, a 275 
nudge correction, and a 2-D Stokes (v,p) solve, at two different resolutions: 32x32 cells with 10 tracers/cell and 128x128 cells with 
20 tracers/cell. Measured on a single core of a 3.8 GHz Intel Core i5 in a 2017 iMac, averaged over 100 time steps. 

Table 1 lists the CPU time taken for various order tracer advection steps, compared to one nudge correction and a 2D Stokes 

(v,p) solve. The increase in CPU time from 1st order (Euler) to 2nd-order Runge-Kutta to 4th-order Runge-Kutta is notable, 

with the latter taking about three times as long as first-order Euler. A nudge correction takes slightly more CPU time than an 280 

Euler advection step, indicating that moving the tracers dominates the time; calculating the displacement field is relatively 
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fast. The Stokes solve (see Matlab script direct_solve_Stokes_2D.m) solves for (vx, vy, p) on a staggered grid using Matlab's 

built-in "\" sparse direct solver, which uses UMFPACK. While the Stokes solve here seems fast compared to tracer 

advection, it is important to note that this is using a compiled, highly optimised solver while the tracer routines here use 

interpreted Matlab - if implemented in a compiled language like C, Fortran or Julia than they would likely be much faster, 285 

while the Stokes solve would not be.  

 Comparing the two different resolutions indicates that, as expected, the time taken for tracer operations scales in 

proportion to the number of tracers: the higher resolution has 32 times as many tracers and requires proportionally more 

time. In contrast (also as expected) the time required for the Stokes solve increases more rapidly than the number of 

unknowns: the higher resolution has 16 times as many unknowns but takes 22 times longer.  290 

4.6 Adaptive nudging 

Instead of making one nudge correction every time step, another idea is to specify the required level of accuracy (in terms of 

L1 norm of tracer density error) and make a correction only when needed, or multiple iterations per step if a particularly low 

error is desired. This approach has been tested using the cellular advection test and the convection test, with results listed in 

Table 2. The error of 3.5e-2 corresponds to the tracer density error associated with the initial condition (i.e., tracers 295 

initialised on a grid plus random perturbations), which therefore seems like a reasonable value to stay below. For the cellular 

advection test with this choice, a nudge needs to be made in 82% of time steps with 1st order (Euler) advection, dropping to 

70% then 67% for 2nd- and 4th-order Runge Kutta, respectively. If the error criterion is relaxed to 5.0e-2 then the required 

number of nudges drops considerably (38%, 25%, 25%), whereas if it is made stricter at 2.0e-2, then almost three nudges are 

required per time step regardless of the advection method.  300 

 Euler RK2 RK4 

Cell; dt=0.05; 100 steps; error=5.0e-2 

Nudges/step 38% 25% 25% 

ttotal (s) 6.298 8.218 13.48 

Cell; dt=0.05; 100 steps; error=3.5e-2 

Nudges/step 82% 70% 67% 

ttotal (s) 8.614 11.13 15.94 

Cell; dt=0.05; 100 steps; error=2.0e-2 

Nudges/step 292% 291% 291% 

ttotal (s) 19.48 22.07 29.86 

Convection; dt=Courant; 500 steps; error=3.5e-2 

Nudges/step 14.8% 13.8% 13.8% 

ttotal (s) 7.170 11.02 18.47 
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Table 2. Average number of nudge corrections per time step required to keep tracer density error below a specified threshold, and 
total execution time of tracer operations for all time steps (in seconds), for the cell test with three different accuracies and the 
convection test with one accuracy. Timed on an Apple M4 Pro CPU (MacBook Pro Nov 2024). 

Thus, there is a trade-off between increasing accuracy of advection and decreasing frequency of needed nudge corrections. In 

terms of execution time, however, it is in every case fastest overall to use the lowest advection accuracy (Euler) with 305 

somewhat more frequent nudge corrections. The increase in advection accuracy from 2nd-order to 4th-order Runge-Kutta is 

not justified, because the total execution time rises considerably but the frequency of nudges remains almost the same.  

 In the convection test (Table 2 lowest section), nudges are needed considerably less often (in 14.8-13.8% of steps) 

than in the cellular advection test with the same error criterion of 3.5e-2, despite the increased complexity of the flow. This is 

because the time step is smaller in the convection test: it is limited by the Courant condition such that the advection distance 310 

is a maximum of half a grid spacing, whereas in the cell test there is no such limitation and a time step of 0.05 is used, during 

which tracers may be advected several grid spacings (up to 1.6 for nz=32).  

 In summary, the results of these tests indicate that significant execution time can be saved by taking a nudge only 

when needed, and that the fastest approach is to use first-order advection, even though nudge corrections are needed slightly 

more frequently. 315 

5. Conclusions 

The tracer nudging method presented here, which uses the mass conservation equation to calculate tracer position 

perturbations (“nudges”) that correct mass conservation errors introduced by tracer advection, is an effective way of 

eliminating and preventing gaps and bunching of tracers in geodynamical models/simulations. Starting from an extremely 

heterogeneous distribution with large regions of the domain devoid of tracers, it can produce an even distribution in only a 320 

few nudge iterations. In a time-stepping situation it allows a low-order tracer advection method to be used while maintaining 

a tracer distribution that is more even than that obtained using high-order advection methods alone. The computational cost 

is small and dominated by performing a first-order tracer advection operation, because the other part simply involves solving 

a Poisson equation. A nudge correction may not be needed every time step, which further reduces computational cost. It is 

more time-efficient to use nudge corrections in conjunction with low order tracer advection rather than high order tracer 325 

advection, even though the latter reduces the needed frequency of corrections. 

Code availability. The exact version of the MATLAB code used to produce the results and figures used in this paper is 
archived on Zenodo under the MIT license under DOI 10.5281/zenodo.15065273 (Tackley and ETH Zurich, 2025). No input 
data or additional scripts are required. 
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