
The two RCs are extremely helpful in pointing out clarifications, further explanations and further 
tests that would make the manuscript more helpful to the community, so I certainly thank the 
referees for their efforts. 

There are two recommendations in common to both RCs: to include a test or tests that directly 
resemble geodynamic problems, and to examine the trade-off in execution time between this 
method versus high-accuracy advection methods, so I have added two more tests and studied 
the CPU time trade-off.  

 

---------------------------------------------------------- RC1 ----------------------------------------------------- 

This manuscript tackles an important numerical difficulty in geodynamic modelling: the 
development of uneven tracer distributions during Lagrangian particle advection. The authors 
propose a tracer-nudging algorithm, derived from the requirement that material density remain 
constant, which iteratively redistributes tracers until a uniform spatial density is achieved. The 
idea is elegant and, if widely adopted, could mitigate one of the longest-standing practical 
problems in high-resolution mantle-convection and lithosphere-deformation studies. While I 
acknowledge the novelty and potential impact of the work, several aspects of the presentation 
and validation need to be strengthened before the paper is suitable for publication. 

Major comments 

1. Demonstrate the method on realistic geodynamic problems 
 
The manuscript shows simple circulation tests only. Please include at least one 
geologically meaningful application—e.g. a high-viscosity-contrast convection benchmark 
or a 2-D subduction experiment—to illustrate how tracer nudging behaves in complex, 
time-dependent flow fields and when and how often the nudging is needed. 

I have added two more tests, one of which is a “realistic geodynamic problem”, namely high-
viscosity-contrast thermal convection. 

     2. Compare with established schemes 
 
The paper states that the computational cost of  tracer nudging is  small,  yet no comparison is 
provided. As far as I can see from the manuscript, the additional computational cost is probably 
higher than the existing remedies that only add a correction items to the velocity interpolation. It 
would be nice if the author make a comparison with other method and emphasize the 
advantages (and limitations) of this method 

I have added a timing analysis (new Section 4.5). This shows that a nudge correction takes 
slightly more CPU time than performing first-order tracer advection. Since the correction 
procedure includes performing first-order tracer advection, it means that calculating the 
displacements takes a relatively short time. Examining the trade-off between order of advection 
(1st, 2nd or 4th) and how frequently a nudge correction is made to keep tracer density error 
lower than its original value indicates that optimal CPU time efficiency is obtained using 1st 
order advection with relatively more frequent nudges, rather than using higher order advection 
with less frequent nudges (new Section 4.6).  



 I am not aware of any other scheme that can reduce the error in tracer density (distribution). It’s 
usually a question of minimising how rapidly things get worse; they all start failing at some point. 
Age-of-Earth global geodynamical simulations often require of order (1 million) time steps 
making it virtually impossible to find an uncorrected scheme that can prevent substantial 
degredation in tracer distribution.   

3. Clarify applicability to compressible versus incompressible flow 
 
Lines 34–35 imply the method corrects non-divergence-free advection errors. However, many 
geodynamic models employ compressible Stokes flow, where ∇·v ≠ 0 by definition. 

1.  
o State explicitly that the current formulation targets incompressible Stokes 

problems. 

o Discuss whether, and how, the nudging algorithm could be adapted to 
compressible flow, and what errors might arise if it were used without 
modification.                   

o  

The algorithm works for compressible flows without modification. This is because 𝜌c in Equation 
(1) can be an arbitary function of position, which was already stated - but the earlier sentence 
that the referee pointed out indeed implies something different. Gone through the manuscript 
making sure that this is clear. 

                                                                                                                                                                              
                                                                                                                                                                             
4. Streamline the figures 
 
Figures 2 and 3 convey nearly the same information. I suggest keeping the one that best 
illustrates the tracer-density evolution and moving the other to the supplement or removing it 
entirely. 

Figures 2 and 3 are really complementary because by comparing the two figures the reader can 
see clearly how a tracer distribution converts to a tracer density field (something that is not 
normally plotted in publications and therefore unfamiliar to the readers). So I would argue that 
it's best to keep both figures close to each other in the main text.  

 

---------------------------------------------------------- RC2 ----------------------------------------------------- 

The study by P. Tackley presents a new algorithm for tracer advection for the marker-in-cell 
method. The algorithm corrects the displacement of tracers by solving for mass conservation of 
tracers. It is a neat, physics-based approach; however, I find that the choice of the potential 
function requires more discussion, and, if this algorithm is to be useful to the geodynamics 
community—or more broadly, to anyone using the marker-in-cell method, the writing can be 
improved and more tests would be useful. I detail these points below. Considering that the 
revision work I propose is considerable, I recommend a major revision of the manuscript. 

  



1. Choice of the potential function for displacement vector in Eq. 3.  

It is not clear why the author chose Eq. 4 (instead of Eq. 7) besides convenience to solve a linear 
Poisson equation. The justification is not there. I agree that it is more convenient to define 
dx=grad(phi)/rho_t, but what is the physical meaning of this equation? What would be the 
physical units of such a displacement? Maybe the author has thought about this, but the 
displacement should not depend on tracer density, and only Eq. 7 is a physical choice. Neither 
Eq. 4 nor Eq. 9 is balanced in terms of units. Has the author tried solving the non-linear Poisson 
equation in Eq. 8? 

The meaning of Equation (4) is clearer if written as 

  

The left-hand side is mass flux, thus 𝜙 is a mass flux potential. I have renamed it in the text and 
rewritten equation (4) in this form.  

As the continuity equation is about div(mass_flux) and this correction algorithm redistributes 
mass (to acheive the correct density), it is logical and physical to use a mass flux potential. The 
(SI) unit of displacement is metres and the units of mass flux above are kg/m2, the physical 
meaning being kilograms flowing through a 1 m2 area in one correction step. (In the continuity 
equation, mass flux is per second rather than per correction step). The units of 𝜙 are kg/m and 
equations (4) and (9) are dimensionally consistent with this. I have added the units to the text. 

The alternative definition of 𝜙 used in equations (7) and (8) is a displacement potential with units 
of m2. I have changed the symbol to φ so that it's a clearly different quantity.  

The example code is nondimensional so there are no units.  

 

L77, Eqs. 7-8: Why is the non-linear equation problematic in areas where rho_t is zero? Not sure 
this is an issue because in the marker-in-cell method, zero tracer density in control volume is a 
violation, so this is avoided (which makes the models in Fig. 2 somewhat artificial). 

Discretization of partial differential equations such as (8) generally leads to a matrix problem of 
the form:  

 [coefficients][unkowns] = [rhs] 

where [coefficients] is a square matrix, [unknowns] is a column vector containing the quantity 
being solved for at each grid point (in this case 𝜙) and [rhs] is a column vector of the know fixed 
right-hand-side. If too many coefficients are 0 then the matrix is singular and thus no solution is 
possible. That is the case here. The presence of rho_t=0 in one or more cells results in a singular 
matrix and thus no solution.  

Yes in principle the marker-in-cell method should have at least one marker in each cell, 
something that this method is intended to enforce. But after an advection step, it can be that 
there are cell(s) with no tracers and therefore this method would not work. 
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Minor comments regarding mathematical theory: 

L46, Eq. 1: Need definition (equation) for tracer density in the main text. It was obtained from the 
code but was not obvious. Density = #nlocal_mark * nx*ny*nz / #ntracers 

Equally, for the mean density, which is taken equal to 1 here.  

Mean density = nmarkx_cell*nmarkz_cell * nx*ny*nz / #ntracers = 1 

It was already stated that tracer density is mass of tracers per unit volume. Depending on the 
application, this could be nondimensional mass and density (as in the example code, this is why 
the mean value is 1.0) or dimensional mass and density (kg/m3), in which case the code line 
pasted by the referee would be different.  I have added more explanation of this. 

L47: tracer density is "defined as the mass (or number) of tracers per unit volume". This 
statement is correct only if it is assumed that all tracers have the same mass, and the density 
relates to the number of tracers. This needs to be clarified.  

This is an “or” statement, it’s not both at the same time.  

People use the marker-in-cell approach in different ways. Sometimes markers do not have mass, 
in which case the "number density" is the relevant quantity, and this is what Pusok et al. (2016) 
plot, for example; actually they used number per cell rather than number per volume. 
Sometimes markers do have mass, in which case the usual "mass density" is the relevant 
quantity. In the latter case, markers can have different masses. The method works for all of 
these possibilities without changing the equations in the manuscript. The only difference would 
be that the units of 𝜙 are different if using "number density" instead of "mass density", as I now 
point out. I have clarified these things. 

Eq. 2 to Eq. 3: the discrete version is missing for v=dx/dt. 

 Most likely the reader can follow this step, but I now point this out just in case. 

L55-57, Eq. 1: rho_c is mean density of tracers in this study. To generalise, better to use 'initial' 
instead of 'correct' (i.e., rho_0). Also for the purpose of this study, rho (without the t subscript) 
can be used for the tracer density. 

In general, rho_c can vary with position (see response to RC1 above) and can also change with 
time - it does not have to be the initial or the mean density. Therefore it is best to leave the 
subscripting as is. I have made this clearer in the text. 

2. Generalisation and stopping criterion for nudging 

L111: would the equations change for variable grid spacing?  

No change. Equations (1)-(9) are physical so there is no change to them when the grid spacing 
varies, just as there is no change to the continuity, Stokes or energy equations.  

Also, is the scheme generalisable for other boundary conditions, other than impermeable (L72)? 
Can the boundary conditions for Poisson be generalised from the velocity boundary conditions?  



Yes. Given some equation(s) for the velocity boundary condition, equation (4) can be used to 
derive the relevant equation(s) for 𝜙. I now point this out. 

The number of 'nudges' required seems arbitrary and it is not clear what is the computational 
cost of each nudge. I wonder if a stopping criterion can be derived? Example, norm(density 
error)<=tolerance, where tolerance = 1e-1 or 1e-2 from Fig. 4. Is that an overkill for using the 
algorithm? 

A good idea, as a nudge might not be necessary every time step. 

People don't normally complain about the initial tracer distribution in geodynamic models so a 
good tolerance to use seems to be the initial L1-norm of the tracer density error, which for the 
second test is about 3.5e-2 (see Figure 6). Thus, I have added tests (new Section 4.6) to see how 
frequently a correction needs to be made for the prescribed-cell-flow test (Section 4.2) and the 
new convection test (Section 4.5). Indeed, for this tolerance a correction is not needed every time 
step, saving CPU time. 

3. Geodynamic and performance tests 

The tests presented are highly simplified, and maybe artificial (Fig. 2). To demonstrate better the 
impact of the algorithm, I recommend adding another test showing a geodynamic problem—
with sharp velocity interfaces or rotational flows near corners. It would be interesting to see, for 
example, the problem cited in L27 on eruption/intrusion, which was stated, but not explained, 
and how this algorithm deals with it.   

Two more tests have been added (Section 4.3-4.4). Eruption/intrusion algorithms will be the topic 
of a future manuscript. 

Then, there is the issue of the computational cost of this algorithm (with nudges). Simple Matlab 
scripts run fast, but the marker-in-cell method becomes expensive for 2-D and 3-D problems. 
What is the cost of this algorithm? How does it vary with grid size (resolution)? 

 L201-202: says the computational cost of solving Poisson is small, but need to demonstrate. For 
example, using a geodynamics test case, show time to solve for Stokes and time for tracer 
correction (Poisson*number_nudges).  

Now done (Sections 4.5-4.6). 

4. Focus and style of writing 

The algorithm corrects the displacement of markers by solving for conservation of tracer mass. 
This does not transpire from the nudging and bunching described. The writing is too focused on 
the algorithm (which comes out almost as a trick to deal with marker dispersion/clustering), and 
not so much on the physics or why is it better than other methods. I think it is not doing a great 
job advertising why this could be a useful technique for geodynamics, and the informal style of 
writing does not help (e.g. usage of regular+, Euler+nudge+random without clear definition).  

 Other examples, 



L40: the goal shouldn't be to nudge the tracers, but to correct their displacement in order to 
keep uniform density.  

L46: the goal is to preserve the initial tracer distribution.  

 The Abstract should also be revised because I had the following questions: 

L9: is the correction method physics-based? A sentence describing the method is lacking. Only 
results are described.  

L14: what does the author refer to as non-conservation errors? How do they occur? They are 
introduced somewhat late, even in the abstract.  

Excellent idea to start by stating that the mass conservation equation is used to derive the 
corrections, which are needed because of tracer advection not perfectly respecting the mass 
conservation equation. So I have now reworked the relevant introductory sections and all these 
points should be addressed now. 

The details on the content of the Matlab routines in Section 3 (L112-118) and Fig 1. should be in 
an appendix. Instead, the author can outline a pseudo-algorithm such as 

• Initialise tracer distribution, rho = rho_0 

• Time loop: 

- advect tracers with velocity field v, 
- calculate rho and density error, 

- correct tracer location by solving for displacement dx (Poisson equation). 

I'd like to do what is normal and customary. Some published GMD papers have actual code (not 
pseudo-code) in the main text as well as details of how the code works, so this does seem 
acceptable. Examples: 

 Räss et al. (2022): https://doi.org/10.5194/gmd-15-5757-2022  

 Cheng et al. (2025): https://doi.org/10.5194/gmd-18-5311-2025 

Therefore I leave it as it is. 

Minor comments 

L6-7, 17: tracers may track other fields besides composition and temperature throughout the 
domain. Their advantage is that they may perform better at advecting these fields compared to 
grid-based methods. L7: why does the problem occur? i.e., rotating fields in a box domain or at 
sharp interfaces. Addressed in the reworked introductory sections. 

L8: Suggest to use 'clustering' or 'accumulation' instead of 'bunching'. I’m not finding a reason 
why one of these is better => leave as is. 

L20: (e.g., \cite not \citep) Changed 



L21: why all the major codes use marker-in-cell? It is better to justify advantages rather than 
state a common practice. Addressed in the reworked introductory sections. 

L24: (e.g. 5-50) not necessary. The accuracy of the marker in cell technique relies on having a 
high density of tracers in each cell. I disagree, as someone who is new to the method might 
wonder whether "high density" means e.g. 10 or 100000. 

L29: why the errors occur in the first place? L30: physics-based remedy is required Addressed in 
the reworked introductory sections. 

L31: one previous solution is to create new tracers, but why is this not a good remedy? It's 
unphysical. 

L44, L96: just because it is already implemented in StagYY, it is not a statement of validation or 
verification. StagYY should cite the work in the current manuscript to demonstrate the method, 
not the other way around. Already-published StagYY papers cannot cite this paper, so the point 
here is mainly to reassure the reader that some already-published papers benefit from this 
method. Anyway I reduced it to one statement. 

L109: first time density bounds are given; this should occur earlier when density is defined. The 
magnitude of tracer density error is very application-dependent, so belongs where the results 
are presented. 

L149: unclear statement. Tracers at the boundaries were nudged only a fraction of the calculated 
displacement to avoid crossing the boundaries. Not quite. Tracers that are initially calculated as 
crossing boundaries are instead moved only 70% of the calculated distance. Now stated like this. 

Eqs. 11-12: could plot either the stream function or plot the velocity field to understand why the 
center particles might get dispersed. The stream function is a sine (0->pi) in x multiplied by the 
same in z so looks almost circular giving a simple “one cell circulation pattern”.  This seems too 
simple to be worth plotting particularly as I already doubled the number of figures. 

Section 4.2 notation: need partial differentials (\partial). Equation (10) changed accordingly. 

Eq. 12: mistake Vx = 1/Lz sin() cos()  Fixed 

L172: define Euler+nudge+random Defined 

L174: calculated as in Eq. 12 (not above) Changed 

Figures 2 and 3 do not have colorbars or state that blue points represent tracers. Figure 2: 
Colorbar not needed. Added that each blue dot is a tracer. Figure 3: Added colorbar 

Fig 5: what is the computational cost or runtime between the cases? Add colorbars. See Sections 
4.5-4.6. Colorbar added. 

Fig 6: all cases should start with the same initial condition, and then additionally a case with 
completely random distribution. The missing case was added. 

 Matlab: Add in readme how to run the script. I.e. change ntest = 1; choice between 1-11. Added 
a README.txt 


