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Abstract

Northern peatlands are significant terrestrial carbon stores but are increasingly threatened
by human activities. Ombrotrophic peatlands, being naturally acidic, are particularly
vulnerable to alkaline pollution. Despite their importance, the effects of alkalinisation on
peatlands remain insufficiently studied. In Estonia, alkaline pollution from a cement industry
and oil shale power plant emissions have degraded several peatlands since the 19th century.
Although some sites have recovered in recent decades, more severely impacted areas remain

in poor condition.

We investigated the effects of alkalinisation on Varudi peatland, a forested site in northeast
Estonia, which was exposed to 125 years of alkaline emissions from a nearby cement factory.
Using a multi-proxy, high-resolution palaeoecological approach combined with a precise and
reliable age-depth model, we reconstructed changes in environmental, chemical, botanical,
and hydrological conditions over the past millennium. Our findings revealed three
successional phases: during the mid-13th century CE, land clearance and increased mineral
deposition caused the site to transition from a bog to a poor fen phase between
approximately 1250-1570 CE; and while the cement factory operated without efficient filters,

the site became a pine-dominated fen between 1871-1995.

After the installation of filters in 1996, peatland pH returned to pre-disturbance levels, and
some recovery was observed. However, the site remains degraded. Our results indicate that
alkalinisation significantly disrupts peatland functioning, reducing carbon storage and altering
vegetation communities. These effects can persist for decades even after the source of
contamination is removed, underscoring the need for more comprehensive monitoring of

peatlands impacted by alkaline pollution globally.
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1. Introduction

Despite only covering c. 3% of the Earth’s surface, northern peatlands contain >500
gigatonnes of carbon (Bridgham et al., 2008; Yu et al., 2010; Yu, 2012). Their capacity to
accumulate and store carbon results from the waterlogged and acidic nature of their soils
(Clymo et al., 1998). These conditions preserve organic material, which accumulates and may
be stored indefinitely (Harenda et al., 2018). Since their initiation, peatlands have slowly
removed carbon from the atmosphere, imparting a weak but persistent cooling effect upon

global climate over millennial timescales (Frolking et al., 2006).

Despite being recognised as a valuable tool for climate change mitigation, peatlands still
receive little protection, regionally or nationally (Rawlins and Morris, 2010). As of 2018,
approximately 10% of the remaining peatlands worldwide are in a degraded state (Leifeld and
Menichetti, 2018), while in Europe this rises to 25% (Tanneberger et al., 2021). Such
disturbance can disrupt the fragile hydrological balance that maintains the carbon sink
function of peatlands and may cause them to shift from sinks to sources of atmospheric

carbon, exacerbating climate change (Leifeld and Menichetti, 2018).

Estonia is one of Europe’s most peat-rich countries, with peatlands covering c. 22.5% of its
land area (Orru and Orru, 2008). Due to this abundance, peat is a significant natural resource
for Estonia, and has been heavily exploited, particularly after the Industrial Revolution (Paal
etal., 2010; tucéw et al., 2022). The rise in anthropogenic pollution since this time has caused
substantial changes in global geochemistry such that this era is informally termed ‘the
Anthropocene’ (Fiatkiewicz-Koziet et al., 2018; Waters et al., 2023). During this time in
Estonia, emissions from industrial sources were characterised by high levels of calcium-rich
particulate matter, with most of the emissions concentrated in the northeastern industrial
region of the country (Liblik et al., 1995; Karofeld, 1996). Ombrotrophic peat bogs, which are
the dominant type of peatlands in Estonia, being naturally acidic and nutrient-poor
ecosystems are particularly sensitive to alkaline atmospheric pollution (Paal et al., 2010).
These emissions caused significant changes in the geochemical and botanical composition of
bogs adjacent to pollution sources, which resulted in dramatic increases in pore-water pH and
losses of bog-specific vegetation (including Sphagnum mosses) near affected sites (Paal et al.,

2010; Vellak et al., 2014). This was often followed by encroachment of Pinus sylvestris (Scots
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pine) onto polluted sites alongside other species typical of nutrient-rich alkaline environments

(Pensa et al., 2004, 2007; Ots and Reisner, 2006; Kaasik et al., 2008; Kask et al., 2008).

By the 1990s, industrial emissions in Estonia began to fall, following a decline in power
generation and improved filtration systems in factories (Liiv and Kaasik, 2004). Following
these reductions, polluted peatland sites began to show signs of recovery, with acidic
conditions and bog-specific vegetation returning (Karofeld, 1996; Kaasik et al., 2008; Paal et
al.,, 2010). However, in more heavily polluted sites, this recovery has been slow, and the
impact of past alkaline pollution persists to this day in some areas (Ots and Reisner, 2006). It
remains unclear whether current levels of atmospheric pollution are sufficiently low to permit
their full recovery in the future, or how long this process will take (Paal et al., 2010). Despite
growing concerns over alkaline pollution and its potential future effect on peatlands,
particularly concerning their role as carbon reservoirs, research exploring the effects of

alkalinisation upon peatland ecosystems and their subsequent recovery has been limited.

Atmospheric pollution remains a significant threat to peatland ecosystem functioning
(Bobbink et al., 1998; Turetsky and St Louis, 2006; Osborne et al., 2024). The effects of alkaline
pollution upon peatlands have been relatively overlooked relative to those of acid rain due to
its effects being more localised (Vellak et al., 2014; Sutton et al., 2020). However, nearly two
billion tonnes of alkaline residues are emitted into the atmosphere each year (Gomes et al.,
2016). Despite environmental standards curbing emissions in recent decades, in some areas
these regulations are not consistently enforced or are merely declarative (Abril et al., 2014;
Ivanov et al., 2018). Following global reductions in acid rain since the 1980s, the relative
proportion of alkaline pollutants in airborne particulate matter has increased in the UK, much
of Europe, North America and China since 1986 (Turetsky and St Louis, 2006; Sutton et al.,
2020). Additionally, climate change may exacerbate the effects of increased alkalinity in
boreal regions, as permafrost thawing may cause the expansion of areas of open water,
increasing surface runoff and infiltration in some regions (Walvoord and Kurylyk, 2016). This
may allow for longer contact times between surface water and carbonate bedrock,
accelerating weathering and raising the pH of surface waters which may then enter peatlands

in the surrounding catchment (Schindler, 1997; Osterkamp et al., 2000; Lehmann et al., 2023).
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In this study, we focus on the effects of alkalinisation resulting from over 125 years of intense
emissions from a nearby cement factory upon Varudi soo (bog), a formerly ombrotrophic
peatland in northeastern Estonia. By employing a high-resolution, multi-proxy
palaeoecological framework, we reconstruct changes in the chemical, botanical, hydrological
and environmental conditions of the site over the past millennium to address the following

questions:

1. What is the current state of a heavily polluted raised bog almost 30 years after the
reduction in alkaline pollution?

2. How has alkaline pollution altered the ecosystem functioning of the site and how does
this compare with pre-disturbance conditions?

3. To what extent has this ecosystem function recovered 30 years after removing the
point source of pollution?

4. Can we identify critical transitions that can be broadly applied to assess peatland

condition and recovery following alkaline pollution?

2. Methods and materials
2.1. Study area

Varudi bog (59°26'19"N, 26°35'13"E) is located in Ldane-Virumaa, northeastern Estonia,
consisting of fen-bog habitats. The site is approximately 10 km south of the coast of the Gulf
of Finland and Baltic Klint (Figure 1) and spans c. 12.6 km?. The site is primarily a forested
Sphagnum bog interspersed by numerous bog pools and hummocks, with an overstory of
Pinus sylvestris. Varudi peatland receives 478 mm of rainfall per year, has a mean annual
temperature of 7.3 °C, and prevailing winds are from the southwest and south. The underlying
bedrock is composed of Cambrian and Lower Ordovician siliciclastic sedimentary rocks and
Middle Ordovician limestones (Sibul et al., 2017) covered with a relatively thin layer of glacial

and post-glacial sediments.
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Figure 1: Map of study locations. A. Modern-day Estonia (in Gray). The red shaded square in map 1A
indicates the area mapped in map 1B. B. Locations of sites relevant to this study (Kunda Cement
Factory: Red, Aru-Louna Quarry: Yellow, Varudi peatland: Blue). C. Satellite image of Varudi bog (©
Microsoft) showing the extent of peat cutting and drainage that has taken place over the past century.
The red-shaded area indicates the area mapped in map 1D. D. Close-up of the location from where
core VAR1 was recovered (red star). E. Coring location.
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EFA.204.0.168924

Figure 2. Photographs of the Kunda Cement factory and locale taken during the 1980s and 1990s,
showing A. Cement dust emissions from the chimneys. B. Photograph of chimneys and factory
surroundings. C. Photograph of the factory workings, showing substantial cement dust deposition in
the surrounding area. D. Photograph showing cement dust deposition upon house near the factory.
Photography by: A and D: Atko Heinsalu taken in the early 1990s; B: Estonian National Archives Photo
Database (code EFA.204.0.268452) August 1994 Albert Truuvaart. C: Estonian National Archives Photo
Database (code EFA.204.0.168924) August 1989 Tiit Veermae.

Varudi was selected for study due to its proximity (7.5 km NW) to the Kunda Nordic Tsement
Factory (henceforth Kunda Cement Factory) (Figures 1 and 2), which has been operational
since the 1870s. During the late 1970s, cement production peaked at c. 1.2 million tonnes per
year (Figure 3). The dust emissions from the cement plant have fluctuated between 45,000
and 99,000 tonnes per year during the last decades of the 20™ century, with the highest dust
emissions recorded in 1991 (Ots and Mandre, 2012). In addition to emissions from the cement
factory, the site has also received emissions from nearby alkaline generating industries and
oil shale power plants, including the Balti power plant, located approximately 100 km west,
and the Aru-L6una limestone quarry, situated 8 km to the east (Karofeld, 1996, Figure 1)
which supplies raw materials for cement production at Kunda. However, significant emission

reductions occurred after 1996, following the installation of pollution control filters, which
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lowered emissions from 14,000 tonnes in 1996 to 530 tonnes in 2000 and 8 tonnes in 2020
(Figure 3).

The input of alkaline cement dust emissions has generated the drastic pH increase of bog’s
water. During 1996-1997, the pH levels taken from peat pools at Varudi varied from 7.6 to
8.5, whereas in natural conditions bog pools have a pH in the range of 3-4. Disturbances at
the site are compounded by drainage and peat harvesting for horticulture, which continues
to the present day, with harvesting affecting around 40% of the former centre of the site
(Figure 1C). There is limited documentary information available related to the timing of
drainage and peat cutting at Varudi, although historic maps (ETOMESTO, 2025; MAA-JA
RUUMIAMET, 2025) indicate that most of the extensive drainage took place before 1977 and
after 1944, probably relating to the large-scale drainage projects undertaken in Estonia in the
1960s under Soviet rule (Paavilainen and Pdivanen, 1995). Peat extraction matching the areal
extent of present-day works at the site by 1988. Prior to this, there is documentary evidence
for drainage in the northern, eastern and western margins of the site having taken place
around 1866 — 1911, likely indicative of the systematic forest drainage that took place in
Estonia around this time (Paavilainen and Paivanen, 1995).
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Figure 3. Cement annual production and emissions by the Cement Factory in Kunda. Data adapted from Trumm
etal., (2010), digitised from a figure at page 209 using WebPlotDigitiser: https://automeris.io/WebPlotDigitizer/
Emissions data (available from 1985 to 2023) sourced from Raukas (1993); Partma (2023) and Heidelberg
Materials Kunda AS (2023). Note the logarithmic scale for emission values.
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The chemical composition of the cement dust emissions from Kunda consists primarily of CaO
(12 = 17%), SiO2 (6 — 9%), and several other trace metals, including lead (Pb, c. 60 mg kg™),
cadmium (Cd, c. 0.9 mg kg), and zinc (Zn, 129 mg kg!) (Mandre and Ots, 1999). The pH of
the cement dust in the water solution ranged between pH 12.3 to 12.6 (Mandre and

Korsjukov, 2007).

2.2. Coring method

In August 2022, an 86 cm peat core (VAR1) was extracted from Varudi peatland using a 1-
meter-long Wardenaar peat corer (Wardenaar, 1987, coring location: 59°26'23"N,
26°35'55"E, Figure 1D). The core site was located near an actively harvested peat area but is
within an intact section of the site in what was originally the bog’s central raised dome.
Vegetation was characterised by Pinus sylvestris, with the ground cover dominated by
Eriophorum sp., Menyanthes trifoliata, Vaccinium sp. and scattered Betula nana. Both
Sphagnum and brown mosses were also present. Despite its proximity to a drainage ditch,

the coring location was representative of the overall condition of the site.

Following recovery, the core was wrapped in plastic and transported to the Faculty of
Geographical and Geological Sciences at Adam Mickiewicz University, Poznan, Poland for

analysis. The core was stored at 4 °C prior to sub-sampling.

2.2. Dating methods and age-depth model

Identifiable above-ground plant macrofossils were picked from 1 cm thick sub-samples taken
at various depths throughout the core, following frameworks by Piotrowska et al. (2011) and
Nilsson et al. (2001). Sphagnum stems, branches and leaves were preferentially used for
dating where present. Where these were not available, above-ground remains of ericaceous
plants (leaves, stems, seeds) were used instead. Initial samples were taken at 20 cm intervals
throughout the core to establish a baseline chronology, which was then used to determine
where additional samples would be selected. A total of 12 samples were sent for radiocarbon
analysis. Each sample was pre-treated using the acid-base-acid approach and analysed by

accelerator mass spectrometry (AMS) at the Poznan Radiocarbon Laboratory, Poland.

To provide a reliable chronology for recently accumulated peat, 2:°Pb and 3°*240py analyses
were used on material from the upper 40 cm of the core at 1 cm contiguous resolution,

9
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following methods outlined by Appleby (1998). Peaks in the activity of 23%*24°py, which are
linked to nuclear fallout events (e.g., 1950s atmospheric nuclear tests), were also measured
as independent time-markers to validate and supplement the age-depth model (Mroz et al.,
2017; Cwanek et al., 2021). Samples were processed at the Polish Academy of Sciences’
Institute of Nuclear Physics, Krakow, Poland using an AlphaAnalyst™ 7200 spectrometer
(Mirion Technologies). Quality control and accuracy was ensured by measuring blanks and
certified reference material (IAEA 447, |IAEA 385) alongside the core samples (results are
provided in Supplementary Table 1. The activity concentration of 21%Pb (T 1/2 =22.3 yr) was
estimated by measurement of its decay product - 2!%Po (T 1/2 = 138.4 d), while 23°*24%py was

measured directly. Activity concentrations of 21°Pb and 239240Py are reported in units of Bq

kg™

The age-depth model was constructed by integrating all 14C, 21°Pb, and 239240y data within a
Bayesian framework in R using the package ‘rplum’ (rplum package, Aquino-Lépez et al., 2018;
Blaauw et al., 2021; R working group, 2023). rplum generates maximum age probabilities at
user-defined intervals (here every 1 cm), together with maximum and minimum ages based
upon calculated 95% credible intervals. This method allows for the integration of 4C dates
with the 2%Pb dates without the need for re-modelling (Aquino-Lopez et al., 2018, 2020).
Radiocarbon dates were calibrated in rplum using the INTCAL20 curve, with post-1950
samples using the BOMBL1 curve for the Northern Hemisphere (Reimer et al., 2020; Uno et al.,
2013). In this study, the resultant ages are expressed as calendar years (cal) CE, with 0 BP

equal to 1950 cal CE.

2.3. Palaeoenvironmental proxies
2.3.1. Testate Amoebae

Samples were processed following a modified version of protocols by Hendon and Charman
(1997). Samples were placed into 50 ml centrifuge tubes filled with deionised water and
agitated for c. 10 minutes. These were sieved through a 300 um mesh and the smaller fraction
was retained. Sieved samples were centrifuged at >3000 rpm for 5 minutes and a sub-sample
of the resultant material was transferred to a microscope slide for identification at 400x
magnification. Samples were not heated or micro-sieved, to retain small but ecologically
sensitive species, as recommended by Avel and Pensa (2013). A minimum count of 100 tests
for each sample was considered statistically significant (Payne and Mitchell, 2008). Tests were

10



236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265

266
267

268

identified to the species level where possible, with reference to Siemensma (2023) and Mazei
and Tsyganov (2006), and were later pooled into taxonomic groups defined by Amesbury et
al. (2016). The relative abundance (%) of each taxa count was calculated for each sample.
Water table depth and peat pore water pH were reconstructed using the pan-European
tolerance down weighted with inverse de-shrinking transfer function model by Amesbury et
al. (2016), based on a training set of 1302 samples spanning 35° of latitude and 55° of
longitude. Reconstructions were performed using the ‘Rioja’ package in R (Juggins, 2019).
Small species (<10-25 um, broadly oval-shaped) not included in these groupings but present

in the core from Varudi were grouped under the ‘Cryptodifflugia oviformis’ group.

Stratigraphically Constrained Cluster Analysis (CONISS) was used to quantitatively define
stratigraphic zones in the sub-fossil testate amoeba data (Grimm, 1987). This method is used
to determine statistically significant zones, reflecting changes in testate amoebae community
composition. The data were square root transformed prior to applying CONISS. The numbers

of statistically significant zones were determined using Broken-Stick modelling.

We applied the framework outlined by Burge et al. (2023) to identify significant ecological
transitions in the testate amoeba communities due to disturbance. Sub-fossil data were
Hellinger transformed and analysed using the ‘prcurve’ function in the ‘analogue’ package in
R (Simpson and Oksanen, 2016). Principal response curves (PrC), which reduce multi-
dimensional community data to a single-dimensional curve, calculating the (dis)similarity
between sample scores indicative of the difference between samples (De’ath, 1999; van Den
Brink and Braak, 1999) provided the best fit for our data. A generalised additive model (GAM),
an approach effective in capturing rapid and non-linear changes in palaeoecological studies,
was applied to the PrC data to account for temporal autocorrelation (Auber et al., 2017; Beck
et al., 2018; Burge et al., 2023). Given the abrupt changes in our data, we also applied an
adaptive spline GAM following Burge et al. (2023). However, this method does not account
for temporal autocorrelation and thus remains incompatible with the GAM framework as

outlined by Simpson (2018).

2.3.2. Plant macrofossils

Plant macrofossil analysis followed procedures adapted from Mauquoy et al. (2010). Samples

of approximately 5 cm?® were sieved through a 200 um test sieve and the larger fraction was

11
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retained. Botanical composition was estimated as percentages under a low-powered
microscope at between 10-100 times magnification, using a 10 x 10 grid eyepiece graticule
to aid quantification of plant remains. Seeds, fruits, spindles, leaves, and wood were also
identified at the species level where possible and counted as individual counts. Identification
was aided by identification guides (Katz et al., 1965, 1977; Grosse-Brauckmann, 1972, 1974;
Tobolski, 2000; Mauquoy and van Geel, 2007; Bojnansky and Fargasova, 2007). Sphagnum
remains were identified to sub-generic sections, with 100 leaves examined per sample, where
possible, to calculate the relative abundance of each sub-section as a percentage of the total

leaves identified.

2.3.3. Pollen, non-pollen palynomorphs and microscopic
charcoal analyses

Past changes in vegetation cover at the landscape scale were assessed using pollen analysis
(Seppa and Bennett, 2003). A total of 22 samples were prepared following the laboratory
procedures outlined by Berglund and Ralska-Jasiewiczowa (1986). Each 1 cm thick sample,
measuring 1 cm3, was sub-sampled at 5 cm intervals throughout the core. The samples were
treated with 10% potassium hydroxide (KOH) to remove humic compounds before acetolysis.
A Lycopodium tablet (batch no: 280521291, 18,407 spores per tablet; Manufacturer: Lund
University) was added to each sample to calculate pollen concentrations, following methods
by Stockmarr (1971). Samples were transferred to microscope slides and mounted in
glycerine jelly for analysis. Pollen, spores, and selected non-pollen palynomorphs (NPPs) were
identified and counted using a high-powered stereo microscope. Identification was based on
established atlases and keys (Pollen: Moore et al., 1991; Beug, 2009; NPPs: van Geel, 1978;
van Geel and Aptroot, 2006; Miola, 2012). Although a target of 500 terrestrial pollen grains
was aimed for per sample, this count was not always achievable due to low pollen
concentrations in some core sections. The relative abundance of spores and NPPs was
calculated as a proportion of the terrestrial pollen sum (TPS), which includes both arboreal
(AP) and non-arboreal (NAP) pollen, excluding aquatic and wetland plant spores, Ericaceous

pollen, and NPPs.

In addition to pollen counts, microscopic charcoal particles (> 10 - < 100 um) were counted
from pollen slides as past fire activity, both natural and anthropogenic (Finsinger and Tinner,
2005), while spheroidal carbonaceous particles (SCPs) counted as indicators of industrial
activity (Patterson Ill et al., 1987; Swindles, 2010). Microcharcoal concentrations per cm3

12
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were calculated by dividing the number of particles counted with the number of Lycopodium
spores and multiplying this by the total number of particles counted, and accumulation rates
(reported as particles cm™ yr') were calculated by dividing the pollen concentration with the

rPlum-derived age increments per cm slice.

2.3.4. Apparent rates of carbon accumulation

To measure apparent rates of carbon accumulation (aCAR), contiguous 1 cm-thick sub-
samples were taken throughout VAR1. The volume of each wet sample was determined by
water displacement, and then the samples were dried in an oven at 105 °C until no further
weight loss occurred. Dry bulk density was calculated by dividing the wet volume by the dry
mass of each sample. Organic matter content (derived from LOI) was determined by ashing

the samples at 550 °C for six hours, following the method of Chambers et al. (2011).

The carbon content of each sample was estimated indirectly by multiplying the LOI content
by 0.52, based on the average ratio of organic carbon (OC) and LOI in ombrotrophic peat from
multiple studies (Ball, 1964; Dean, 1974; Gorham, 1991; Clymo et al., 1998). Carbon density
was calculated by multiplying the dry bulk density (g/cm3) by the percentage of carbon
content, as described by Chambers et al. (2011). Apparent carbon accumulation rates (aCAR)
were then calculated by dividing the carbon density from each peat slice by the sedimentation

rate, determined from the age-depth model (Young et al., 2019, 2021).

2.3.5.  pXRF-Core Scanning (ITRAX)

To identify the section of the core affected by cement dust pollution, we followed methods
similar to those used by Varvas and Punning (1993) to assess pollution histories from Estonian
lake sediments. They identified rapid increases in micro-element concentrations associated
with alkaline fly-ash emissions, accompanied by a decrease in organic matter, indicating the

presence of particulate emissions from oil-shale combustion by power plants.

In this study, the concentrations of geochemical elements throughout the core were
measured using an ITRAX uXRF core scanner equipped with a molybdenum X-ray tube.
Element concentrations were quantified as counts per second, based on the number of

secondary fluorescence detected for each element over a given period. Measurements were

13



332  taken at 5 mm intervals (30 kV, 50 mA, exposure time: 30 seconds per step) at the Institute
333  of Geography, University of Bremen, Germany. The scanner identified the activity of the
334 following elements: Al, Si, P, S, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Br, Rb,
335 Sr,Y, Ba, Pt, Pb, Bi, and Fe.

336

337  The mean concentrations of each element were calculated for each 1 cm slice of the core. To
338 account for variability in element concentrations due to sedimentation throughout the core,
339 the results were normalised by dividing the total counts by the sum of the coherent and
340 incoherent peaks, following the approach of Orme et al. (2015) as recommended by Longman
341  etal. (2019). The chemical signature of cement dust was identified based on the composition
342  of clinker emissions from the Kunda Cement factory, as detailed by Kldseiko et al. (2011)
343  (Clinker emissions being the emissions produced by the production of clinker, the primary
344  ingredient of cement, created by the high-temperature heating of limestone and other
345  materials). Due to the uneven and unconsolidated nature of the top 6 cm of the core, this
346  section was not scanned and was removed prior to analysis.

347

348  Principal Component Analysis (PCA) was used to summarise patterns of variation in the
349 geochemical data, using the 'vegan' package in R (Oksanen et al., 2019). To mitigate scaling
350 effects, the data were standardised to z-scores. The analysis was conducted with varimax
351 rotation in correlation mode, to explore correlations between elements and organic matter
352  percentage (Silva-Sanchez et al., 2014). The number of components to retain for analysis was

353  determined using a Broken-Stick model.

354 3. Results.

355 3.1. Dating and age-depth model.
356
357 Atotal of 13 radiocarbon dates were analysed from core VAR1, four of which were post-bomb

358 dates extending to a depth of 19.5 cm. The oldest dated section of the core produced a date
359  of > 1000 yr. Radiocarbon and calibrated dates are shown in Table 1.

360
361
362  Table 1. Uncalibrated and calibrated radiocarbon dates from core VAR, including depths and
363 materials used for dating. PMC = Percent modern carbon
364
Code Depth  Radiocarbon Material dated Calibrated dates + uncertainties
(cm) Age + error
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Poz-164520

Poz-164521

Poz-164662

Poz-161987

Poz-162663

Poz-164664

Poz-161988

5.5

9.5

15.5

19.5

26.5

34.5

39.5

104.51+0.33
pMC

110.06 £ 0.67
pMC

110.36 £ 0.48
pMC

118.8 + 0.67
pMC

80£30

80£35

105430

Seeds, ericaceous
leaves

Seeds, ericaceous
leaves

Seeds, ericaceous
leaves

Sphagnum stems,
leaves, branches

Sphagnum stems,
leaves, branches

Sphagnum stems,
leaves, branches

Sphagnum stems,
leaves, branches

68.3% probability
1950 - 1957 (5.6%)
2010-2012 (62.7%)
95.4% probability
1956 — 1957 (10.6%)
2009 — 2012 (79.9%)
2012 - 2013 (5%)
68.3% probability
1957 — 1958 (7.5 %)
1997 — 1999 (50%)
1999 - 2000 (10.8%)
95.4% probability
1958 (11.2 %)
1996 — 2001 (85.2 %)
68.3% probability
1958 (7.3%)
1997 — 1999 (56.9%)
2000 (4.1%)
95.4% probability
1958 (11.9%)
1997 — 2000 (80.3%)
68.3% probability
1986 (68.3%)
95.4% probability
1959 (5.4%)
1960 (3.4%)
1986 - 1989 (86.7%)
68.3% probability
1697 - 1724 (22.0%)
1814 - 1837 (20.1%)
1881 - 1913 (26.1%)
95.4% probability
1691 - 1729 (26.2%)
1809 - 1922 (69.3%)
68.3% probability
1695 - 1725 (21.6%)
1813 - 1839 (19.6%)
1878 — 1916 (27.1%)
95.4% probability
1686 - 1725 (26.4%)
1805 - 1929 (69.0%)
68.3% probability
1695 - 1725 (19.9%)
1813 - 1839 (17.5%)
1846 — 1853 (4%)
1869 - 1872 (1.4%)
1878 - 1916 (25.5%)
95.4% probability
1683 - 1737 (25.9%)
1803 - 1937 (69.5%)
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365
366

367

368
369
370
371

372
373
374
375
376
377

Poz-163962 49.5 540430 Sphagnum stemes, 68.3% probability
leaves, branches 1329 -1338 (8.5%)
1397 - 1428 (59.8%)

95.4 % probability

1323 - 1357 (26%)
1392 - 1437 (69.5%)

P0z-161989 59.5 865+30 Sphagnum stems, 95.4% probability
leaves, branches 1153 - 1263 (87.2%)

Poz-163963 69.5 87530 Sphagnum stemes, 95.4% probability
leaves, branches 1126 - 1231 (79.2%)

1243 - 1258 (1.8%)

Poz-161990 79.5 910430 Sphagnum stemes, 68.3% probability
leaves, branches 1047 - 1085 (28.6%)

1097 - 1103 (2.8%)

1126 - 1179 (30%)

1192 - 1205 (1.8%)

95.4% probability
1041 - 1214 (95.4%)

Poz-161992 85.5 985+30 Sphagnum stemes, 68.3% probability
leaves, branches 1022 - 1048 (26.8%)
1084 - 1128 (34.7%)

1140 - 1150 (6.8%)

95.4% probability

994 - 1055 (38.7%)
1076 — 1158 (56.7%)

2pp activity (Bq kg™ activity concentration) Cement production (1000 tonnes per year)
0 100 200 300 400 0 400 800 1200
2022+ 0-
m ~
O 20041 €10
5 L
© =
< B
1972 20
Q a
<
1909 - 30

Figure 4. Comparison between 2°Pb activity concentrations throughout core VAR1 and cement production.
Values interpolated from a GAM fitted to annual cement production data from Kunda Cement Factory (Figure
2; Trumm et al., (2010)) at the same age frequency as the VAR1 age depth model (Figure 5) using a GAMM. Age
ranges are based upon the median ages from the age-depth model.

The 21°Pb activity profile throughout core VAR1 (Figure 4) declined throughout the core,
although not in a typical monotonic pattern, with a substantial increase from 12.5 cm to 19.5
cm, indicating that the rate of 21°Pb accumulation was not constant throughout the core. This
spike is due to the enrichment of 21°Pb from fly-ash fallout from the cement factory and other

sources (Vaasma et al., 2014; 2017). Comparison of the 21°Pb activities and cement production
16
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379
380
381
382
383
384
385
386
387
388
389
390
391

392
393

394
395

396
397
398
399

rates applied to the age-depth model support this (Figure 4) with a significant correlation (1
=.487, p = <.0001), indicating that 21°Pb accumulation in the core cannot be solely attributed
to precipitation. From 32 cm core depth, ?°Pb activities achieve low levels, although they do
not reach the background activity. Unsupported 21°Pb was calculated using linear regression
of the last 5 samples, showing that the samples assumed background activities following the

final measured samples.

The 239+240py activity profile reflects the history of atmospheric deposition at the site (Figure
5). A clear peak at 28.5 cm corresponds to the onset of nuclear testing in 1945, followed by a
second, larger peak at 22.5 cm, likely associated with the peak in global fallout from bomb
testing in 1963, before the signing of the Partial Test Ban Treaty (Cwanek et al., 2021). Smaller
peaks at 16.5 cm suggest possibly the 1986 Chernobyl fallout (Ketterer et al., 2004), and at

5.5 cm potentially originate from the 2011 Fukushima disaster (Bossew, 2013).

o-lt — 2022
§ L 2011
10 — !
€ x b
s . g
£ e EPRNEP — 1986 .
Q O
8 = o
20 - bl
b =
e 1963
=
= 1945
o
30

| | | | | |

0.0 25 5.0 15 10.0 125
239:240Py activity (Bq kg ™)

Figure 5. 239*240py activity with depth in core VARL. Selected median dates from the rPlum-derived age-depth
model show good correspondence between known fallout events. Each peak may be tentatively related to a
known nuclear fallout event, as shown on the right y-axis.

The age-depth relationship for core VAR1 (Figure 6) was calculated by aligning ?'°Pb and
239+240py data with the calibrated radiocarbon dates. Considering the enrichment of 2°Pb

from industrial fallout, the assumption of a constant unsupported 2°Pb supply was violated.
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Despite this, anchoring the model with the known 1963 peak in 239*240py activity and adding
a constant but uncertain reservoir effect of c. 15 years for radiocarbon dates improved the
model alignment with the peaks in 239240pu. A radiocarbon reservoir effect is possible in
Sphagnum peatlands, due to the recycling of ‘old’ gaseous carbon by mycorrhizal fungi
associated with ericaceous plants near the peat surface. However, this does not usually occur
when individual plant remains are dated, as was the case for our study (Piotrowska et al.,
2011). A more likely explanation could be the uptake of old carbon by vegetation of dissolved
carbonates, particularly in the more recent samples (Madeja and Lafowski, 2008) where old

carbon may derive from the buried cement dust.

The resulting age-depth model (Figure 6) indicates that peat accumulation rates were stable
from the base of the core until around 1255 cal CE, after which accumulation slowed to
around 0.22 yr cm™, remaining low until around 1940 cal CE, where there was a sharp

accelerationtoc. 2 yrcm?
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Figure 6. Age-depth model for core VAR1, including calibrated radiocarbon dates and uncertainty (green) 21°Pb
activity (Bq kg?) in blue and the calendar date for the 1963 nuclear treaty peak (orange). Uncertainties for the
model are shown as the shaded area.

3.2. Peat physical and chemical properties

Figure 7 shows that activities of elements associated with clinker dust pollution began to
increase around c. 1873 cal CE, marking the beginning of cement production in Kunda. There
is evidence of increasing lithogenic dust deposition throughout the core, beginning as early
asthe mid-12th century. There is a clear negative correlation between the counts of lithogenic
elements associated with cement dust (Ti, Pb, Ca, K, Fe, Cr) and organic matter content, most
noticeably between c. 1942 - 2006 cal CE. Organic matter content falls sharply until c. 1988
cal CE, suggesting the accumulation of cement dust occurred during this period, mirroring the
results of studies in NE Estonia lakes impacted by oil shale powerplants (Varvas and Punning,

1993; Punning et al., 1996; Koff et al., 2016).
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The aCAR for the Varudi core is illustrated in Figure 7, which also shows the trends in LOI %,
bulk density, and carbon accumulation throughout the core. Over the past millennium, the
average aCAR for the entire core is 148.7 g OC m? yr™". This is especially high in the upper
section of the core, where carbon accumulation rates peak at 342.2 + 231.7 g OC m? yr™". For
most of the record (c. 1045 to 1910 cal CE), the mean aCAR is 72.9 £ 28.9 g OC m? yr™", aligning
more closely with average values reported for Northern peatlands (Roulet et al., 2007). The
rate of carbon accumulation is relatively stable from the base of the core until c. 1280 cal CE,
with aCAR averaging 94.5 £ 19.8 g OC m? yr™". After this point, aCAR falls to 51.3 £ 19.7 g OC
m? yr~', remaining low until c. 1840 cal CE. After this date, aCAR increases significantly,

reaching an average of 256.6 £ 221.2 g OC m? yr™".
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Figure 7. Comparison of selected elements detected by the uXRF core scanner, as indicated by the PCA
analysis, for the detection of dust fallout from the Kunda Cement Factory. In addition to peat physical property
parameters: Loss on ignition (LOI%), bulk density and apparent carbon accumulation rates (aCAR). uXRF Data
are presented as counts per second and normalised by dividing the sum of incoherent (inc) and coherent (coh)
activities. The shaded area represents the section of core where most of the cement dust is concentrated. The
uppermost aCAR sample was removed from the figure to aid interpretation.

The broken stick model shows that the two first components together explain a significant
proportion (48.3%) of the total variance in the peat's chemical composition (PCA1: 25.5%,
PCA2: 22.8%). These components highlighted elements associated with clinker dust
deposition from the Kunda Cement Factory and are significantly negatively correlated with

peat LOI content (Figure 8).
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Figure 8. Biplot of first and second principal components showing factor loadings of individual elements scanned
across core VARL. Positively correlated variables point to the same side of the plot, while negatively correlated
elements point to the opposite sides. Peat organic matter % (Derived from Loss on Ignition) content is shown in
blue. The colour of the lines represents the sum factor loading of each variable for both axes, representing how
strongly each variable contributes to the principal component.

3.3. Palaeoecological reconstructions
3.3.1. Plant Macrofossils

The results of plant macrofossil analysis are illustrated in Figure 9. The plant macrofossil data
show three major phases of vegetation change, corresponding broadly with shifts observed

in the testate amoeba and palynological records (Figures 10, 11 and 12).
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Figure 9. Plant macrofossil stratigraphic diagram illustrating the changes in the botanical composition

throughout core VAR1. Note the mixed data types used, percentages and total counts.

From c. 1000 cal CE, the site is dominated by Sphagnum mosses, particularly those of the
subgenus Sphagnum, although by the beginning of the 12th century, Sphagnum sub.

Acutifolia becomes the most abundant. By c. 1450 cal CE, there was an increasing abundance

of monocots, likely from Eriophorum species and Cyperaceae, owing to the presence of
spindles and fruits identified to these species. During this period, Sphagnum gradually

478

479  declined, eventually disappearing entirely by the start of the next phase.

The latter portion of the record, starting c. 1970 cal CE, is characterised by a shift towards

480
481
482
483
484
485
486
487
488

more ‘woody’ vegetation. Shrub-type taxa increase initially, followed by a rise in ligneous
remains, particularly those of Pinus sylvestris. Mycorrhizal roots, bark fragments, and pine

needles become significant components of the peat's botanical composition in the upper

section. Betula is represented in the uppermost samples by its characteristic catkin scales and
fruits, along with a Betula nana leaf recovered from the surface sample. This late phase is also
characterised by a high percentage of unidentified organic material. At the top of the core,

remains of the brown moss Tomentypnum nitens, characteristic of calcareous fens, were

identified (Hajek et al., 2021).
489 3.3.2. Testate amoeba sub-fossil communities
490

22



491
492
493
494
495
496
497
498
499
500
501
502
503
504

Throughout core VAR1, a total of 105 distinct testate amoeba taxa were identified. The results
of the testate amoeba analysis and reconstructions are presented in Figure 10. Three distinct

zones were identified throughout the record by CONISS.

The first zone, extending from the base of the core to 44.5 cm (c. 1600 cal CE) is characterised
by a mix of proteinaceous and mixotrophic species, including Archerella
flavum and Hyalosphenia papilio. Other abundant species in this zone include Difflugia
pulex, Phryganella acropodia, Assulina muscorum and Assulina seminulum. The second zone,
ending at 19.5 cm (c. 1980 cal CE), shows a replacement of the dominant species by Galeripora
discoides, Amphitrema stenostoma, and xenosomic species such as Cyclopyxis arcelloiodes.
By 35.5 cm (c. 1821 cal CE), mixotrophic species have almost disappeared, replaced
by Cyclopyxis euryostoma, Centropyxis aculeata, Difflugia ampullula, Difflugia brevicolla
and Pseudodifflugia gracilis. The final zone, at the top of the core, is dominated

by Centropyxis elongata, Centropyxis sylvatica, Plagiopyxis sp., Euglypha rotunda type,

and Euglypha leavis.
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Figure 10. Stratigraphic plot showing changes in the relative abundance (%) of testate amoebae taxa identified
throughout core VAR1, as well as reconstructed peat pore water pH and water table depths (WTD) and
uncertainties. The results of CONISS are illustrated to the right of the figure, with horizontal red lines
representing the zone boundaries defined by CONISS. Only species with maximum abundancies above 5% are

illustrated. The full dataset is available in the supplementary data.
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The relative abundance of testate amoeba taxa was used to reconstruct changes in water
table depth and peat pore water pH over time. Both reconstructions exhibit notable trends
throughout the past c. 1000 years. From the base of the core until c. 1330 cal CE, water table
depths was relatively constant, averaging 7.0 £ 2.9 cm. Conditions became progressively
wetter after this time, reaching a minimum of -2.5 cm by c¢. 1540 cal CE, possibly indicating a

period of open water at the coring location. Water table depth began to decrease gradually,

accelerating after c. 1960 cal CE and reaching a maximum by c. 2012 cal CE.
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520
Reconstructed pH values were relatively stable throughout much of the record (4.1 £ 0.5).

521
522 Around c. 1800 cal CE, pH began to rise, reaching a maximum of 5.4 + 0.5 by c. 1998 cal CE.
523 By c. 2006 cal CE until the top of the core, pH returned to pre-disturbance levels.
524 3.3.3. Pollen, spores, and non-pollen palynomorphs.
525
526  The results of the palynological analysis are illustrated in Figures 11 (Pollen and spores) and
527  Figure 12 (Non-Pollen Palynomorphs- NPPs). The pollen sequence from the core VAR1 is
528 dominated throughout by arboreal taxa, particularly Pinus sylvestris and Betula sp., with
529 lesser contributions from shrubs such as Calluna vulgaris and Vaccinium type. The high
530 dominance of these arboreal taxa and a low sampling resolution make detecting subtle shifts
531 in human activity in the palynological record difficult to infer (Favre et al., 2008). Other
532  palynological studies from Estonia also report low variation in pollen assemblages and
533 dominance of P. sylvestris and Betula across different regions, even during periods of
534  significant land-use changes (e.g., Poska et al., 2004; Veski et al., 2005; tucéw et al., 2022).
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535

536 Figure 11. Stratigraphic plot illustrating the relative abundance of selected pollen taxa from core VAR1, as well

537 as microcharcoal (expressed as the total number of counted fragments). Relative abundances of arboreal taxa
are shaded green, disturbance indicators in pink, crops in orange, herbaceous taxa in brown and shrubs in teal.

538

539  Grey shading represents 5x exaggeration. Only taxa with a minimum abundance of 2% are shown.

540
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Figure 12. Stratigraphic plot illustrating the abundance of selected non-pollen palynomorphs from core VARL,
as well as spheroidal carbonaceous particles (SCPs) and Pinus stomata, both expressed as counts. Relative
abundances of spores of aquatic taxa are shaded blue, algae: light green, fungi: red, invertebrate remains grey
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544
545 and testate amoebae in dark green. Grey shading represents 5x exaggeration. Only taxa with a minimum
546 abundance of 2% are shown.
547
548  The oldest section of the core (c. 1000-1250 cal CE) provides little evidence of anthropogenic
disturbance, indicating a largely forested landscape. This period is dominated by Pinus
sylvestris, Betula sp. and Picea abies, suggesting a stable, predominantly woodland

environment. After c. 1250 cal CE, there is a slight increase in pollen from grasses (Poaceae)

from around 3% to c. 8% of the total assemblage until c. 1680 cal CE, as well as the appearance
in low concentrations of plants indicative of disturbance, such as Plantago lanceolata,

Chenopodiaceae and Ranunculus acris type and a general increase in Secale pollen which
together may indicate agricultural activity, although wild populations of Secale are believed
to have existed in Estonia (Veski, 1998; Poska et al., 2003). Despite this, arboreal pollen
remains the dominant component of the record, with declines mainly affecting Pinus
sylvestris (49 % at c. 1310 cal CE to 34% by c. 1680 cal CE) and Picea abies (16% at c. 1220 cal
CE to 5% by c. 1680 cal CE). Tree species associated with early succession, such as Betula,
remain largely unchanged, while Alnus increases during this period from c. 6% at the start of
the record to c. 10% by c. 1680 cal CE. By c. 1680 cal CE, arboreal pollen has declined to its

lowest relative abundance (around 82% of the total pollen sum). This decline is driven mainly

by the changes in arboreal species, particularly declines in P. sylvestris, which becomes

progressively less common through the core, a trend that continues until c. 1965 cal CE. By
25
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c. 1680 cal CE a peak in cereals occurs, including Hordeum, although these are only present in
low concentrations. The pollen record is stable after this period, with only slight (<1%)
increases in Calluna vulgaris and Vaccinium type taxa occurring. These changes correspond
with a rapid increase in microcharcoal accumulation rates, rising from 311 to 1027 particles
cm3yrt following the opening of the cement factory, peaking at 9837 particles cm3yr! by c.
1970 cal CE. After this, Pinus sylvestris begins to recover, but the relative abundance of Betula
sp. continues to rise. By c.2010s cal CE, Pinus sylvestris becomes dominant once again,
while Betula declines throughout the most recent samples, and microcharcoal accumulation

reaches a maximum at c. 2010 cal CE, of 172237 particles cm3yr1,

The NPP record provides a more detailed picture of changes in the local environment than
the pollen record. In the earliest portion of the record (c. 1000 - 1220 cal CE), fungi such
as HdV-90 and HdV-13 (cf. Entophlyctis lobata) are common, and HdV-27 (Bryophytomyces
sphagni) is present throughout. These fungi are typically associated with oligotrophic and
ombrotrophic conditions, although HdV-90 can also thrive in more minerotrophic or poor-fen

environments (van Geel, 1978; Kuhry, 1985).

Between c. 1220 - 1460 cal CE, HdV-13 increases in abundance. Around 1850 cal CE, taxa
associated with the earlier section of the record start to decline, being replaced by the
microalgae Botryococcus taxa, indicative of aquatic conditions in addition to several fungi
including HdV-55A (Sordaria type), HdV-112 (Cercophora type). The most notable species in
the upper section of the core during this period is HdV-201 (cf. Xylomyces chlamydosporis), a
wood-inhabiting fungus linked to freshwater environments or pool vegetation (Goh et al.,
1997; Kuhry, 1997). This species is especially abundant c. 2006 cal CE, comprising around 34%
of the assemblage. After c. 1950s cal CE, the diversity of NPPs declines. A key species identified
in this section is Botryococcus braunii, a green alga typically found in environments with high
levels of inorganic phosphorus, which peaks around 1985 cal CE (Orpez et al., 2009)
suggesting a shift toward more nutrient-enriched conditions. Overall, the record suggests a
transition from nutrient-poor, Sphagnum-dominated peat towards an increasingly nutrient-

enriched system, followed by a change towards decomposers of ligneous material.

3.3.4. Rate of change analysis
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The principal response curves (PrC) explained 79% of the variance in the sub-fossil testate
amoeba data from Varudi and are illustrated in Figure 13. The poor fit of GAM models to the
PrCs prompted us to use adaptive splines with a GAM, which are recommended for data
exhibiting abrupt changes (Burge et al., 2023). However, adaptive spline GAMs cannot yet be
used within the GAM framework as described by Simpson (2018). One outlier was removed
due to the difference in testate amoebae composition owing to a high proportion of

Cryptodifflugia angusta (33.5 cm).

The PrC revealed two separate periods of change at Varudi, as well as highlighting periods of
rapid change associated with the onset of cement production in Kunda in 1871, and an earlier
change indicated from the palynological record to coincide with increasing human activity in
the landscape (Figure 11). Testate amoeba community composition was relatively consistent
from c. 1040 cal CE until c. 1330 cal CE and again between c. 1645 to c. 1886 cal CE. Following
c. 1998 cal CE, the direction of change in the PrC curve reverses, coinciding chronologically
with the installation of filters in the cement factory in 1996. By the end of the record, testate
amoeba community composition was characterised by the return of species such as
Cyclopyxis arcelloides, Cryptodifflugia oviformis, and Assulina muscorum, which were not

abundant since before c. 1970 cal CE.
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Figure 13. Changes in principal response curve scores derived from sub-fossil testate amoebae data, modelled
using an adaptive spline generalised additive model GAM (black line). Solid red lines indicate periods of rapid
change, identified where the modelled confidence interval of the slope does not include zero. Vertical dashed
lines denote key chronological events potentially influencing environmental conditions at Varudi: The onset of
human activity recorded in the pollen data (c. 1250 cal CE, orange), the beginning of cement production in Kunda
(1871, blue) and the installation of pollution control filters at the cement factory (1996, black).
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4. Discussion

4.1. Palaeoecological assessment of ecosystem and functional
changes before, during, and after intensive alkaline dust
pollution

The palaeoecological record of the Varudi peatland reveals three distinct phases of botanical
change occurring over the past 1,000 years: an ombrotrophic bog phase (c. 1000—1250 cal
CE), a poor fen phase (c. 1250-1570 cal CE), and a wetland forest phase that continues to the
present day. Unlike most research on peatland recovery, which has typically been conducted
on historically drained, mined, or agricultural sites (Roderfeld, 1993; Graf et al., 2008; Wagner
et al.,, 2008; Paal et al., 2010), our study presents a unique pre-disturbance context for

understanding the effects of atmospheric pollution upon Estonian peatlands.

The different phases of development exhibited by the site in contrast with the different
periods of anthropogenic activity and disturbance are summarised in Figure 14. During the
early ombrotrophic phase, low palynological richness, minimal microcharcoal counts and
abundant peat organic matter indicate a largely forested landscape with limited human
impact near the site, consistent with other palaeoecological records throughout Estonia
during this period (Veski et al., 2005). The dominance of Sphagnum mosses and mixotrophic
testate amoeba species such as Archerella flavum and Hyalosphenia papilio reflect the
relatively undisturbed and productive nature of the bog during this phase (Marcisz et al.,
2020; tucow et al.,, 2022). During this period, water table depths were high, and pH levels
were low, consistent with natural conditions for ombrotrophic bogs in the Northern

Hemisphere (Warner and Asada, 2006).

28



648

649
650
651
652
653
654
655
656
657

658
659
660
661
662
663
664
665

666
667
668
669
670

(0]
(o))
C
@
Py
o
g
o
(%]
Q@
Ry
T
Qo
o
=
C
[0
.Q
=
c
i)
(%]

my
&)
o
= B
5 3
< <
£
3 i &
o] Environmental changes <
0 ) ~ - 2022
Drier, more decomposition +
more Unidentifiable Organic
10 Matter % - 2000
Less agricultural activity
20 Increased industrial activity
Increased ericaceous and - 1950
30 forest cover -
W """""""""""""""" - 1850
etter, more monocots C 4750
40 Increasingly mineotrophic C 1650
Increasing anthropogenic = 1500
50 signal - 1400
Increased decomposition C 1300
60 - 1250
Ombrotrophic
- 1200
70 .
Sphagnum dominated bog - 1150
o - 1100
80 Low human activity L 1050

00 300 400 50

T T T " — T r d T
3 4 5 6 -10 0 10 20 30 40 0 25 0 100 2

Figure 14: Summary of key trends in the Varudi peatland record. Shown are changes in reconstructed pH and
water table depth, percentages of non-arboreal pollen (serving as a proxy for forest clearance related to
agricultural activity), apparent carbon accumulation rates (aCAR), periods of significant change (as identified by
principal response curves with Generalised Additive Models, GAMs), and a general timeline of environmental
shifts. Dashed horizontal lines represent key historical events relevant to the Varudi record: the yellow line marks
the approximate onset of human activity c. 1250 cal CE, possibly linked to the Livonian Crusades; the blue line
indicates the establishment of the Kunda Cement Factory in 1871; the black line denotes the installation of
effective filters at the Kunda Cement Factory; and the grey-shaded area highlights the section of the core with

substantial cement dust, identified through LOI and uXRF core scanning.

The beginning of agricultural activity around c. 1250 cal CE is broadly coincident with the
German-Danish crusaders occupation of Estonia starting in 1227 CE (Veski et al., 2005). From
c. 1250 to 1570 cal CE, increased Poaceae, Secale cereale, and field weed pollen indicates a
shift toward more open, meadow-like conditions (Poska and Saarse, 2002; Niinemets and
Saarse, 2009), which may relate to the environmental effects resulting from economic

changes resulting from the Teutonic order crusades, similar to those identified by Brown and

Pluskowski (2011) in a peatland record from northern Poland.

Declines in Pinus sylvestris and Picea abies, alongside increases in early successional species
such as Betula and Alnus, and minute increases in microcharcoal accumulation rates (Figure
11) suggest land clearance using slash-and-burn methods in the surrounding landscape (Jaats
et al., 2010). While arboreal pollen remained dominant, indicating continued forest cover

around the Varudi peatland, mineral soil enrichment of the peat suggests overland flow or

29



671
672
673
674
675
676
677

678
679
680
681
682
683
684
685
686
687
688
689
690

691
692
693
694
695
696
697
698
699
700
701

aeolian deposition resulting from land clearance. Similar patterns of early human-induced soil
erosion have been recorded in peatland records from central Estonia (Heinsalu and Veski,
2010). This is reflected by decreasing organic matter content and increasing concentrations
of lithogenic elements such as Ca and Ti, patterns like those observed in Estonian lake
sediment records following land clearance events (Koff et al., 2016; Vandel and Vaasma,
2018). Ti, a conservative lithogenic element, indicates soil erosion from the surrounding

catchment (Boyle, 2001; Boés et al., 2011).

By c. 1570 cal CE, the site had transitioned into a wetter, more minerotrophic fen, indicated
by the gradual replacement of Sphagnum by monocots such as Carex sp. and Eriophorum
vaginatum in the plant macrofossil record and an increase in Sphagnum section Cuspidata
remains and subsequent declines in Sphagnum subsection Acutifolia and subsection
Sphagnum (Figure 9), and a shift towards wetter conditions during this period indicated by
the testate amoebae reconstruction, possibly indicating permanent or seasonal standing
water at this time (Figure 10). This interpretation is consistent with observations from
contemporary bog pools, where Sphagnum is often rare or absent in shallow or temporary
water bodies on a peatland’s surface, while monocots such as Eriophorum species are
abundant, as exemplified by the Nritish National Vegetation Classification (NCV) bog pool
community classification (M3) (Rodwell, 1998). Nutrient enrichment due to soil
erosion resulting from forest clearance and agricultural activities in the landscape at this time

likely contributed to this shift (Hélzer and Holzer, 1998).

The establishment of the Kunda cement factory in 1871 brought significant ecological changes
to the site. Substantial increases in Ti, Ca, Fe, and other elements associated with cement dust
fallout occurred along with increased pH and declining organic matter content, indicating the
chemical influence of cement dust pollution upon the peat (Figures 7 and 8). This pollution
appears to have driven rapid changes in testate amoeba communities by c. 1890 cal CE, as
seen in the PrC record (Figures 13 and 14). These results are consistent with previous
palaeoecological studies on alkaline pollution impacts in Estonian peatlands and lakes (Varvas
and Punning, 1993; Koff et al., 2016; Vandel and Vaasma, 2018; Vellak et al., 2014). The
enrichment of the peat by cement dust is reported to have had a fertiliser-like effect on
ligneous and ericaceous species, increasing tree cover, size, and stand density within the

industrial region of Estonia at this time (Pensa et al., 2004; Ots et al., 2011).
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The concurrent hydrological changes experienced by the site, characterised by persistent
water table lowering after c. 1960, were likely driven by drainage and enhanced transpiration
rates following tree and shrub expansion onto the site (Stelling et al., 2023). The simultaneous
compounding effect of hydrological change upon the site confounds interpretation of the
effects of alkaline pollution at Varudi peatland, as it is likely that the changes that occurred at

this time were driven by the combined effects of both disturbances.

From 1955 CE onward, cement production increased, reflected in peaks of Ca, Ti, and K,
alongside rising bromine (Br) levels, coincident with increased microcharcoal accumulation
rates (increasing from c. 11 to 58 particles yr. The halogen Br is often linked to changes in
storminess in peat palaeoecological studies due to being commonly sourced from marine
aerosols (e.g., Shotyk, 1997; Turner et al., 2014). Here, elevated Br levels correlate strongly
with cement dust indicators, suggesting that increased Br in the core corresponds with
enhanced plant decay and oxidation of abiotic organic matter, resulting in the formation of
methyl bromide (Lee-Taylor and Holland, 2000; Keppler et al., 2000). The increased presence
of fungi in addition to microalgae species Botryococcus braunii in the palynological and plant
macrofossil records further suggests that the soil decomposition rate increased during this
period, coincident with periods of increased seasonal wetness (Barthelmes et al., 2012;

Defrenne et al., 2023; Buttler et al., 2023; Thorman et al., 2003) (Figure 12).

Following the restoration of Estonia's independence in 1991, more rigorous environmental
regulations resulted in a reduction of industrial emissions (Kask et al., 2008). The effect of this
decline is evident in our palaeoecological record, with declining pollution markers and pH
returning to pre-disturbance levels after 1996 (Figures 7 and 10), as well as the apparent
(albeit limited) recovery of testate amoeba communities shown by the PrC curve (Figure 13).
Despite these improvements, the site has remained densely forested and enriched, with a
persistently lowered water table. We find no evidence for botanical succession toward pre-
disturbance conditions in the plant macrofossil record (Figure 9), while the presence
of calciphilous Tomentypnum nitens at the core surface reflects the legacy of alkaline
conditions at the site (Malmer et al., 1992; Héjek et al., 2006; Apolinarska et al., 2024), likely
resulting from the movement of mineral-rich water, enriched by the buried cement dust as it
is transported upwards via capillary rise, indicating that these cement deposits continue to
influence surface water chemistry and vegetation communities at the site,

although Sphagnum has returned to the site since its disappearance, indicating a degree of
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recovery. ldentification and monitoring of the species present on the site could provide

additional insight into the extent of this recovery.

4.2. Ecosystem Recovery After Reduction in Atmospheric Alkaline
Pollution

Our study found evidence of recovery in PrC of the sub-fossil testate amoeba assemblages
(Figure 13). The community composition of these environmentally sensitive proxies showed
signs of turnover nearly 30 years after installing filters at the Kunda cement factory. However,
the extent of recovery indicated by the testate amoebae is limited, as the community
composition in the top sediment layer more closely resembles conditions from c. 1977 cal CE,

the peak period of cement production at Varudi (Figures 3 and 13).

We used adaptive spline GAMs to analyse our data, which while suitable for datasets
exhibiting abrupt changes such as the example from Varudi (Burge et al., 2023), they cannot
yet be incorporated into the Generalized Additive Mixed Model (GAMM) framework
described by Simpson et al. (2018) and are more susceptible to issues such as temporal
autocorrelation and boundary effects (Simpson, 2018; Burge et al., 2023). While the model
best fit our data, more evidence is needed to draw conclusive interpretations about recovery
than these results alone. More recently accumulated samples may be more influenced by
temporal autocorrelation (Burge et al., 2023). Some testate amoeba species may infiltrate the
sub-fossil community composition downcore, making near-surface communities appear more
similar (Liu et al., 2024). Another limitation of this study is that our results are based upon
reconstructions taken from a single core and as such do not account for the spatial
heterogeneity characteristic of peatlands. Although palaeoecological trends tend to be well
replicated across multiple cores within a given site (e.g., Barber et al., 1999; Hendon et al.,
2001), it may be that the trends reconstructed from VAR1 represent conditions specific to the
sampling site, rather than the whole site (Bacon et al., 2017). Paal et al. (2010) examined
peatland vegetation communities in eleven bogs in northeastern Estonia at varying distances
from sources of atmospheric alkaline pollution, finding evidence of Sphagnum re-
establishment and the recovery of other bog-specific plant species at several sites as surface
waters re-equilibrated to pre-pollution conditions, particularly within microforms that are
less affected by contaminated groundwater. Therefore, recovery at Varudi may be spatially
heterogenous, with some areas recovering more quickly depending upon their contact with

polluted peat layers.
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Studies investigating the recovery of vegetation communities following alkaline pollution
show that ecosystem recovery may be limited due to the present, degraded condition of the
ecosystem. For example, Vellak et al. (2014) studied bryophyte recovery following reductions
in atmospheric fly-ash pollution across Estonia and northwestern Russian sites. They found
that bryophyte species growing in more heavily affected sites tended to be adapted for
growing in low light conditions, due to competing with the larger and more dense vascular
plants that encroached on these sites, in response to the more enriched and alkaline
conditions for which they are better adapted than bog-specific vegetation (Partel et al., 2004;
Zvereva et al., 2008a, 2008b). Increased nutrient and litter supply and root exudates, coupled
with the faster growth of vascular plants and trees may further hinder the reestablishment of
bog and fen communities, delaying or preventing recovery (Konings et al., 2019). Gunnarsson
et al. (2002) demonstrated that nutrient enrichment, often accompanied by higher pH, can
give vascular plants a competitive advantage over bog-specific vegetation (Limpens et al.,

2003; Dieleman et al., 2015).

4.3. How has the pollution impacted apparent rates of carbon
accumulation at the site?

Each of the phases in ecosystem development in the palaeoecological record corresponds
with substantial changes in the apparent carbon accumulation rate (aCAR) throughout the
Varudi record (Figure 7). Between c. 1000 to 1250 cal CE, when the site was in a relatively
pristine, undisturbed condition, aCAR rates were higher (32.0 + 10.7 g C m? yr™") than the
average for northern hemisphere ombrotrophic peatlands (23 £ 2 g C m? yr™') (Korhola et al.,
1995; Yu et al., 2009). Throughout the transition from bog to poor fen, from c. 1360 to 1570
cal CE, average aCAR rates most likely initially increased (38.5 + 34.3 g C m? yr™"). However,
they were highly variable, likely reflecting the incorporation of vascular plant roots from the
overlying forested phase, introducing younger carbon into deeper sediments. Between c.
1630 and 1800 cal CE, rates fell as low as 19.0 + 5.4 g C m? yr™", aligning with reported values
for Finnish fens (Korhola et al., 1995). Overall, minerotrophic fens typically exhibit lower
carbon accumulation rates than ombrotrophic bogs (Loisel and Bunsen, 2020; Yang et al.,

2023).

Following the succession from poor fen to forested fen from c. 1871 cal CE to the present,
there is an apparent increase in aCAR, especially in the most recently accumulated peat (280.7

+211.3 g Cm?yr™). Due to the incomplete decomposition of labile organic matter at the peat
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surface, care must be taken when interpreting recently accumulated carbon from peat core
records (Young et al., 2019; 2021). This increase is likely due to high litter deposition from
trees and shrubs, and the rapid decline in aCAR downcore suggests that this labile material is
rapidly cycled back into the atmosphere rather than sequestered in the soil. Our results
suggest that the current vegetation composition, dominated by trees and shrubs, is less
effective for long-term carbon sequestration compared to earlier phases. While the water
table remains reduced, the site shows limited potential for recovery to its original
ombrotrophic condition due to ongoing drainage. At the same time, nutrient inputs and

evapotranspiration from the overlying trees compound this limiting factor.

4.4. Indicators of critical thresholds to assess peatland condition
and recovery due to alkaline pollution

By comparing our pH reconstruction with significant successional shifts at the site, we may
infer the thresholds at which transitions in the steady state of the ecosystem occurred in
response to changes in alkalinity at Varudi bog. Defining tipping points that may be broadly
applied to other sites allows for predicting ecosystem shifts in response to global change,
allowing for prediction of such shifts in the future (Munson et al., 2018). To our knowledge,
our study represents the first step towards defining thresholds for tipping points in peatland

ecosystems in response to changes in alkalinity.

Around c. 1800 cal CE, the reconstructed pH for Varudi showed an increasing trend from the
previous, relatively stable conditions, reaching a maximum of 5.4 = 0.5 by c. 1990s cal CE
(Figure 10). This value aligns with pH measurements for polluted sites in Estonia, supporting
the reliability of our reconstruction (Paal et al., 2010). We find that the transition from an
ombrotrophic bog to fen-like conditions, driven by mineral soil enrichment resulting from
land clearance for agriculture in the surrounding landscape, was associated with an increase
of pH levels from c. pH 3.8 to pH 4.1 which represents (due to the logarithmic scale of pH)
nearly a twofold increase in alkalinity. Likewise, the subsequent shift from fen-like to forested
conditions corresponded with a small average increase in pH to c. 4.3, or c. 1.5 times more
alkaline than the previous state and more than three times more alkaline than during the bog
phase. Our results suggest that relatively small increases in pH (increases in pH of 0.2 — 0.3)
may result in critical ecosystem transitions. However, we stress that the threshold values

defined here are highly uncertain, owing to the limited predictive ability of the transfer
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function models used for our pH reconstruction and the relatively significant uncertainties
associated with transfer function models in general (Amesbury et al., 2016). Higher pH values
measured from bog pools at the site in 1996 — 1997 of 7.6 - 8.5 are higher than our estimates
for this period, and by 2022 pH had only fallen to 6.3 - 6.8 (Partma, 2023), suggesting that our
reconstruction underestimates pH levels experienced by the site by a wide margin, possibly
due to the removal of high-pH samples from Amesbury et al., (2016)’s dataset, causing the
range of pH measurements to be low and biased towards more acidic conditions. This may
warrant future re-evaluation of our data using transfer functions specifically developed for
reconstructing pH in polluted peatlands. In addition, we cannot rule out the possibility that
other impacts of cement deposition (e.g., reduced photosynthesis rates due to dust
deposition) and, significantly- drainage; may have also played a role in driving botanical

changes.

Contemporary field and lab experiments that manipulate the alkalinity of peatland soils
directly may provide more precise values for ecosystem thresholds in response to alkaline
pollution. However, to date few studies have done this for alkalinisation: one example is Kang
et al. (2018) who conducted a series of field and laboratory pH manipulation experiments
across seven peatlands in the UK, Japan, Indonesia and South Korea, finding that increases in
pH resulted in significant changes in microbial composition, resulting in increased phenol
oxidase activity and enhanced DOC releases. Another is the long-term (active since 2002)
Whim Bog experiment near Edinburg, Scotland (Sheppard et al., 2011; Levy et al., 2019),
where the effects of enrichment upon a peatland by gaseous ammonia (NHs) and wet-
deposited ammonium (NH4*) and nitrate (NOs’) are compared. Analysis by Sutton et al. (2020)
indicates that vegetation declined three times more quickly when exposed to gaseous

ammonia and three times for ammonium than for a similar dose of nitrate.

A significant limitation of these studies in defining tipping points is that the long timescale
necessary for critical transitions to occur in some cases typically exceeds the lifespan of most
observational and experimental studies (Taranu et al., 2018; Lamentowicz et al., 2019).
Therefore, further palaeoecological work across a more extensive range of sites or with
multiple cores from within a single site may also advance our understanding of ecosystem
tipping points in response to alkalinisation. Furthermore, disentangling the effects of

alkalinisation from those of drainage is challenging, as both factors may influence plant
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community composition, carbon accumulation rates, overall ecosystem functioning (Word et
al., 2022) and possibly resilience to alkalinisation in peatlands. Since significant drainage and
cement production appear to have begun at roughly the same period in the site’s history,
some of the ecological variability attributed here to cement dust pollution may instead be the
result of drainage impacts. However, it is notable that despite reconstructed pH values
increasing following the cessation of significant emissions from Kunda, water table depths
have not recovered. This indicates that drainage is unlikely to have influenced the apparent

modest ecosystem recovery observed at Varudi in recent decades.

5. Conclusion

This study is the first to investigate the long-term impacts of alkaline emissions on a peatland
over centennial timescales. It establishes the first attempt to define threshold indicator values
for ecosystem tipping points in response to alkalinisation. Our findings demonstrate that
alkaline pollution, along with later drainage, has had a profound influence upon ecosystem
development at Varudi for more than 750 years, with ecosystem succession following both
low-level, sustained mineral soil enrichment due to agricultural activities and intensive fly-ash
fallout sustained over 160 years. We find that an increase in pH of 0.2 to 0.3 (corresponding
to, approximately, a two to threefold increase in alkalinity) is sufficient to trigger a critical
ecosystem shift. These can lead to a long-term decline in carbon accumulation over long
timescales, and such changes may be slow to recover or permanent, even if the point source
of pollution is eliminated. Our results, while insightful, have limitations that underscore the
need for additional experimental and palaeoecological research to assess peatland responses
and resilience to alkalinisation across a range of spatial and temporal scales. This would allow
a better understanding of the timescales required for peatland recovery and how these
ecosystem transitions influence greenhouse gas dynamics from affected sites. Alkalinisation
poses a growing threat to peatlands worldwide and is a developing challenge for the 21
century (Sutton et al., 2020). As carbon-rich ecosystems, peatlands are important in future
atmospheric greenhouse gas concentrations. Understanding how peatlands will respond to
future alkalisation is essential for predicting the role of peatlands in climate change

mitigation.
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