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Abstract

Satellite measurements of tropospheric trace gases are often only used when there are few clouds, which screens out
20 — 70% of the data, depending on geographic region. While the lack of high-quality column measurements during
cloudy conditions precludes validation of the satellite data, irn situ surface measurements and model simulations can
provide insight on the quantitative understanding of NO2 during cloudy conditions. Here, we intercompare surface
observations, meteorological reanalysis (ERAS), satellite measurements (TROPOMI and TEMPO), and a model
(WRF-Chem) during 2019 over the contiguous U.S. to quantify how NOz concentrations are different under clear
and cloudy skies. We find that in situ surface NO2 measurements are, on average, +17% larger on all days compared
to restricting to clear sky days and +36% larger during cloudy days versus clear sky days, with a wide distribution
based on geographic region and roadway proximity: largest in the Northeast U.S. and smallest in the Southwest U.S.
and near major roadways. WRF-Chem simulated surface NOz between cloudy and clear conditions is on average
much larger than the observed differences: +59% on cloudy days vs. clear days for the model. This suggests that
NOz in WRF-Chem is more responsive to sunlight and associated photochemistry than in reality. Finally, using in
situ NO2 matched to provisional TEMPO data, we find the NO2 differences between cloudy and clear conditions to
be larger in the afternoon than morning. This study quantifies some of the biases in satellite measurements

introduced by using only clear-sky data.
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1 Introduction

Nitrogen dioxide (NOz) is an air pollutant that adversely affects the human respiratory system (Health Effects Institute,
2022; Khreis et al., 2017) and can lead to premature mortality (Burnett et al., 2004; M. Z. He et al., 2020). NOz is also
an important precursor for ozone (Os3) and fine particulates (PMz.5), which also have serious health impacts. In urban
areas, the majority of ambient NOz originates from local NOx emissions (=NO+NO2; most NOx is emitted as NO
which rapidly cycles to NO2) during high-temperature fossil fuel combustion (Crippa et al., 2021). Although end-of-
pipe controls (Busca et al., 1998; Koltsakis & Stamatelos, 1997) can reduce the amount of NOx emitted from engines
and boilers, these technologies do not recover 100% of the NOx generation during combustion. As a consequence,
NO:z accumulates in our atmosphere and many urban areas have NO2 concentrations that exceed the World Health

Organization guideline of 5.3 ppb for an annual average (Anenberg et al., 2022).

Observing local air pollution is typically done by in situ surface monitors, which are spaced throughout a region with
a higher density of monitors typically in areas of high population density and known pollution sources. In the United
States, there are 1012 in situ monitoring sites measuring some combination of O3, PM2s, NO2, volatile organic

compounds (VOCs), and CO (https://www.epa.gov/ags). While the U.S. monitoring network is more comprehensive

than most other countries (Martin et al., 2019), 79% of U.S. counties lack a single monitor and an additional 10% of
counties have only a single monitor, leaving only 11% of U.S. counties with more than 1 monitor (Sullivan &
Krupnick, 2018). Although a robust and accurate ground-monitoring network is needed, the high operating cost of
these instruments can be an important barrier (Kelly et al., 2017). Spatial gaps remain in-between the regulatory
monitors, and sometimes these monitors are inadequate for understanding the true ambient air pollution exposure of
most U.S. residents, especially those that live and/or work several miles away from a regulatory monitor. Satellite data
provide a way to fill in the gaps of the in situ monitoring network. Methodologies to obtain robust surface air pollutant
measurement data from satellite instruments have improved dramatically in the past ten years (Bechle et al., 2015;
Cao, 2023; Ghahremanloo et al., 2021, 2023; Larkin et al., 2023; Nawaz et al., 2025; Shetty et al., 2024; W. Sun et
al., 2024).

NO: can be observed by remote sensing instruments due to its unique spectroscopic features (Vandaele et al., 1998).
The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) has been measuring column amounts
of NO2 pollution up to 7 x 3.5 km? before 6 August 2019 and up to 5.5 x 3.5 km? spatial resolution (van Geffen, 2016)
since 6 April 2019. Because of TROPOMI’s higher spatial resolution over predecessor instruments, such as the Ozone
Monitoring Instrument (OMI) (24 x 13 km? at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily satellite pixel
measurements within a typical city (~1000 km?) during clear skies, while OMI may have only 1-3 daily measurements
within the borders of each city. This increased measurement capacity within a city allows us to discern spatial
variability undetectable by previous instruments. Further, the data from the satellite instruments can be downscaled
using a process called oversampling (de Foy et al., 2009; K. Sun et al., 2018), which re-grids the irregular satellite
pixels to a standard and higher spatial resolution. The spatial resolution is thus effectively increased at the expense of

the temporal resolution.
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NO: satellite measurements are of the tropospheric column. In many cases, NO2 column measurements are strongly
correlated with the spatial patterns of surface NOz concentrations (Acker et al., 2025; Harkey & Holloway, 2024; Kim
et al., 2024) and surface NOx emissions (Goldberg et al., 2024). For TROPOMI, studies have shown a strong
correlation between tropospheric column measurements and collocated surface NO: for both the 13:30 average (12 =
0.67) and the 24-hour average (> = 0.68) (Goldberg et al., 2021; Kerr et al., 2023). However, there are rare instances
in which NOx emissions and NO:z enhancements stay aloft and do not affect the surface; these are often situations
associated with lightning NOx (Nault et al., 2017), wildfire NOx (Jin et al., 2021; Lin et al., 2024), and aircraft NOx
(Maruhashi et al., 2024). In these instances, it can be difficult to determine if the column NO2 enhancements are also
leading to surface NO2 enhancements. These misinterpretations are more likely to occur over rural regions and/or
individual days, as upper-tropospheric NO2 enhancements near urban regions often dwarf NO2 enhancements within

the boundary layer especially over monthly or longer timescales (Goldberg et al., 2022).

Satellite measurements of trace gases are typically only used when there are few or no clouds; this is often referred
to as the clear-sky bias of satellite data. In the U.S., this results in 20 — 70% of the satellite data being filtered out
depending on geographic region. The clear-sky bias affects NO2 moreso than other trace gases (such as CO and
CHa) because NO: is very photochemically active in the presence of strong sunlight; its effective lifetime during
summer daytime is 2 — 7 hours (F. Liu et al., 2016) and conversely can be up to 30 hours during winter daytime
(Kenagy et al., 2018). The speed at which it transforms into other chemical species is determined by the irradiation,
ambient temperature, and oxidation environment (Laughner & Cohen, 2019; Shah et al., 2020). More specifically,
strong irradiation creates the OH radical which can react with NO: to create HNO3 — a major terminal sink of NO2 —
and also accelerates the photolysis of NOz into NO and O(*P) leading to an accumulation of O3 in the presence of
VOCs; without VOCs, NOz cycles more rapidly to NO. Warm temperatures increase biogenic VOC emissions and
VOC can react with NO:z directly to create organic nitrates (e.g., peroxyacetyl nitrates and alkyl nitrates) (Zare et al.,
2018) which act as a temporary sink of NO2. Another daytime terminal sink for NO: is dry deposition; while this
removal mechanism is often secondary to photochemical loss in urban environments and is not directly affected by
sunlight, it is indirectly affected as cloudy conditions are often associated with increased relative humidity and
shallower boundary layer depths, both of which increase dry deposition. Therefore, increased NO2 dry deposition in
cloudy conditions could offset some of the decreased NO» photochemical loss rates. The net result is that NO2

concentrations are typically larger during cloudy conditions (Geddes et al., 2012).

However, outside of the Geddes et al. (2012) study, little has been done to observationally quantify the bias of NO:
being larger during cloudy conditions particularly because there are no column measurements to validate the satellite
during cloudy conditions. With that said, there are surface in sifu measurements during cloudy conditions that can
give us an idea of how the clear-sky bias may affect the estimate of surface concentrations. In this project, we
intercompare surface observations, meteorological reanalysis (ERAS), satellite measurements (TROPOMI and
TEMPO), and a model (WRF-Chem) under clear and cloudy skies to better quantify the amount of surface and
column bias of NOz concentrations that is being introduced when clouds are screened from the satellite data. Our

analysis is focused on the United States during 2019 due the high density of in sifu monitors and availability of high-
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resolution regional chemical transport models. The motivation of this project is two-fold: 1) to determine what the
scientific community may be missing when excluding clouds from TROPOMI-based NO: analyses and 2) to
understand how geostationary NO: satellite measurements may be affected by such a bias and potentially partially

remediate such a bias.

2 Methods
2.1 EPA AQS Data

Hourly in situ NO2 measurements were obtained from the pre-generated EPA Air Quality System (AQS) database:

https://ags.epa.gov/aqgsweb/airdata/download_files.html. These routine measurements are operated and maintained by

various state and federal agencies. 91% of the “NO2” measurements in 2019 were acquired through a
chemiluminescence technique which converts NO2 and some NOy species — such as alkyl nitrates, peroxynitrates
(PAN), and nitric acid (HNO3) — to NO using a heated molybdenum converter, and the NO is measured by quantifying
the luminesce of NO when reacted in excess O3 (Dickerson et al., 2019). Lamsal et al. (2008) suggested a correction
factor, Equation 1, for converting midday chemiluminescence NO2" measurements to NO> using modelled information

of PAN and HNO:s.

« NO,]+0.95[PAN]+0.35[HNO
[NO,I" = Fyne X [NO,] where Fy, = (22022 Eoml 0 3SNO) (1)

Typically, correction factors are in the range of ~1.0 for fresh urban plumes and can be as large as ~3.0 for rural areas
during summer, with averages typically in the 1 — 1.5 range for moderate and very polluted regimes, and are important
to use for model vs. monitor intercomparisons (Kuhn et al., 2024; Lamsal et al., 2008; Poraicu et al., 2023). Other
methods to measure in situ NO:2 include Cavity Attenuated Phase Shift (Kebabian et al., 2008) and Laser Induced

Fluorescence (Thornton et al., 2000), but these methods are less common (9% of all NO2 monitors in 2019).

Annual and seasonal averages at 13:30 local standard time (between 13:00 — 14:00) of the in situ data were considered
valid and used if more than 75% of the days of the year/season had valid data. There were 449 monitoring locations
in 2019 in the U.S. that achieved these criteria for an annual average, which equates to 1 monitor per ~730,000 U.S.
residents. For the baseline analysis, we further remove data from the 75 monitoring locations (17% of the locations)
that are classified as “near-road” by the EPA, which means that they are installed within 20 m from major interstates
since these in situ measurements are not representative of a ~20 km? satellite pixel measurement; we include the “near-
road” NO2 monitoring data in sensitivity analyses. NO2 measurements between cloudy and clear-sky days are
intercompared using the normalized mean change (NMC) as described in Equation 2, where X and ¥ are means of the

two datasets being analyzed.

NMC(%) = 100 x (=) )
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2.2 Satellite NO: Instruments

NO: slant column densities are derived from radiance measurements in the 405 — 465 nm spectral window of the UV-
VIS-NIR spectrometer (van Geffen et al., 2021). Satellite instruments observe NO2 by comparing observed spectra
with a reference spectrum to derive the amount of NOz in the atmosphere between the instrument and the surface; this
technique is called differential optical absorption spectroscopy (DOAS) (Platt, 1994). Tropospheric vertical column
density data, which represent the vertically integrated NO2 concentrations between the surface and the tropopause, are
then calculated by subtracting the stratospheric portion and then converting the tropospheric slant column to a vertical
column using an air mass factor (AMF) (Boersma et al., 2011). The AMF is a unitless quantity used to convert the
slant column into a vertical column and is a function of the satellite viewing angles, solar angles, the effective cloud
radiance fraction and pressure, the vertical profile shape of NO2 provided by a chemical transport model simulation,

and the surface reflectivity (Lorente et al., 2017; Palmer et al., 2001).
2.2.1 TROPOMI

TROPOMI was launched by the European Space Agency (ESA) on 13 October 2017, and data from the instrument
became available on 30 April 2018, after an approximately 6-month calibration period. The satellite follows a sun-
synchronous, low-earth (825 km) orbit with an equator overpass time of approximately 13:30 local solar time.
TROPOMI measures total column amounts of several trace gases: NO2, HCHO, O3, CO, CH4, among others. At nadir,
pixel sizes are 3.5 x 7 km? (modified to 3.5 x 5.5 km? on August 6, 2019) with the edges having slightly larger pixels
sizes (~14 km wide) across a 2600 km swath, equating to 450 rows (van Geffen et al., 2020).

For our analysis we use the TROPOMI NOz version 2.4 (V2.4) re-processed algorithm during Jan 1, 2019 — Dec 31,
2019. We also conducted a sensitivity study using the version 2.3.1 (V2.3.1) algorithm. The TROPOMI NO: V2.4
product has a documented median low bias of -34.8% in moderately polluted locations (when NO2 measurements are
between 3 — 14 x 10'° molec/cm?) when compared to a MAX-DOAS network (Lambert et al., 2023). Some of this low
bias is due to the operational AMF which uses a 1° x 1° model to assume vertical shape profiles; when vertical shape
profiles from a regional model are instead used, the bias decreases to between -1% and -23% (Nawaz et al., 2024,
Judd et al., 2020, Tack et al., 2021). Prior work has demonstrated a strong correlation between TROPOMI NO: column
measurements and NO: surface concentrations in urban areas (Demetillo et al., 2020; Dressel et al., 2022; Goldberg
et al., 2021; Nawaz et al., 2025). For our baseline, we screened TROPOMI pixels for quality assurance flag values
greater than 0.75, and conduct a sensitivity analysis of filtering only with a cloud radiative fraction filter of 0.5. The
cloud radiative fraction is calculated from the O2 A-band using the FRESCO-S algorithm. Due to differences in
wavelength between the Oz A-band and the NOz retrieval window, the cloud fraction retrieved in the Oz A-band is not

exactly representative for the cloud fraction in the NO2 window, but it is similar.

The filtered data were re-gridded to a 0.01° x 0.01° resolution, to create a custom “Level-3” data product (Goldberg
et al., 2021) during cloud-free and cloudy conditions. Single pixel TROPOMI tropospheric vertical column NO2

uncertainties have been quantified to be between 25 — 50% under clear skies and this uncertainty is dominated by
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uncertainty in the tropospheric air mass factor (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025);
uncertainties of measurements with cloud fractions > 0.5 are larger. Oversampled NO2 measurements over monthly
and annual timeframes (10s - 100s of measurements) have a smaller amount of uncertainty, approximately 10 — 20 %

depending on location and season (Glissenaar et al., 2025) .
2.2.2 TEMPO

TEMPO was launched by SpaceX on 7 April 2023 and is hosted on Maxar Intelsat 40e. Data from the instrument
became available on 2 August 2023, after an approximately 4-month dry-out, cool-down, and calibration period. The
satellite is in geostationary orbit centered over the United States with north-south coverage extending from Mexico
City (~17°N) to the Canadian Oil Sands (~58°N) and east-west coverage from Puerto Rico to the Pacific coast.
TEMPO operationally measures total column amounts of NO2, HCHO, and O3 with additional products forthcoming.
At nadir, pixel sizes are 4.75 x 2 km? with the North-east and North-west edges having slightly larger pixels sizes.

The instrument observes the full east-west swath approximately once every hour.

For our analysis we use the TEMPO NO: version 3 algorithm during 2 Aug 2023 — 31 Aug 2024. The data was filtered
to include pixels only where the effective cloud fractions are less than 0.15 and the main data quality flags are equal
to 0. The filtered data was re-gridded to a 0.01° x 0.01° resolution, to create a custom “Level-3" data product (Goldberg
et al.,, 2021) during cloud-free and cloudy conditions. Single pixel TEMPO tropospheric vertical column NO2
uncertainties can be assumed to be similar to the uncertainty of TROPOMI measurements (Glissenaar et al., 2025),
which are between 25 — 50% under clear skies for individual pixels, and 10 — 20% for oversampled averages; future

work will better quantify the uncertainties of TEMPO NO:2 measurements.
2.3 ERAS Re-analysis

We intercompare the cloud radiative fractions from TROPOMI to the ERAS re-analysis (Hersbach et al., 2020) of
total cloud fractions in the early afternoon (18Z for Eastern Time, 19Z for Central Time, 20Z for Mountain Time, 217
for Pacific Time), which approximates the overpass time of TROPOMI over the contiguous United States. The ERAS
total cloud fraction is a unitless quantity representing how much of a grid cell is covered by a cloud (e.g., condensed
water vapor) at any vertical level of the atmosphere and does not differentiate between the optical properties of those
clouds. The ERAS re-analysis data are reported at a 0.25° x 0.25° spatial resolution and the cloud fractions are

interpolated, using bilinear interpolation, to the 0.01° x 0.01° oversampled TROPOMI NO: grid.
2.4 WRF-Chem

The Weather Research and Forecasting with Chemistry (WRF-Chem) model was run at 12 km x 12 km over the
Continental U.S. for all days of 2019: 1 January 2019 — 31 December 2019 as described in He et al. (2024). For
anthropogenic emissions, the Fuel-based Inventory of Vehicle Emissions (FIVE) was used to provide on-road and off-
road mobile emissions, the Fuel-based Oil and Gas (FOG) inventory was used for emissions associated with oil and

natural gas production, power plant emissions were provided by Continuous Emissions Monitoring Systems (CEMS),
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and all other anthropogenic emissions were obtained from the 2014 or 2017 National Emissions Inventory (NEI).
Biogenic emissions were estimated using Biogenic Emissions Inventory System (BEIS) version 3.13. Gas-phase
chemistry was from the RACM_ESRL VCP scheme. Boundary conditions were provided from the Realtime Air
Quality Modeling System (RAQMS, http://ragms-ops.ssec.wisc.edu/) developed by the University of Wisconsin-

Madison. The cloud fractions used in this project are from the total cloud fraction “CLDFRA” variable.
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3 Results
3.1 CONUS Cloud Patterns

We first conduct an analysis of cloud patterns across the contiguous United States, and inter-compare clear-sky days
estimated by TROPOMI, the ERAS re-analysis, and the WRF-Chem model (Figure 1). For TROPOMI, we define
clear skies as the percentage of days with qa_value > 0.75, which almost exclusively filters based on cloud fractions
<0.5; cloud-free snow-covered scenes typically have a qa_value > 0.75 (Eskes et al., 2022). For ERAS and WRF-
Chem, we define clear skies as the percentage of days with the total cloud fractions <0.5. ERAS5 and WRF-Chem
have similar clear-sky spatial patterns as TROPOMI but show systematically lower amounts of clear-skies by 8%.
The small systematic difference between TROPOMI and ERAS when filtering for cloud fractions at 13:30 is likely
driven by how optically thin cirrus-like clouds are handled; for TROPOMI these are being observed based on optical
properties and therefore optically thin clouds are not assumed to be a cloud, whereas in weather models (ERAS and
WRF-Chem) these are being computed as vertical layers in the atmosphere with condensed water vapor. Overall,
there is very strong agreement between the three datasets in the estimation of clouds giving us confidence that
TROPOMI, ERAS, and WRF-Chem are all good estimators of daily clear-sky amounts.

0.15
TROPOMLI, ga_value >0.75
0.12} ERAS5, cloud frac <0.5
Z WRF-Chem, cloud frac <0.5
g
=)
g 0.09¢
=
-]
e
Té 0.06
5]
Z
0.03+
SanJose 63%
. 9} TROPOMI
0.00 1\ 113:30 local time

0 10 20 30 40 50 60 70 80 90 100 _ _ % ofplxels w1th qa_value>0.75
% clear-sky days in 2019 80

'/ 13:30 local time Sl 2 13:30 local time

— _ % of days in 2019 with <0.5 cloud frac _ _ % of days in 2019 with <0.5 cloud frac
20 80

Figure 1. Percentage of clear-sky days over the contiguous U.S. during 2019 from the TROPOMI NO: V2.4
product, ERAS re-analysis, and WRF-Chem. (Top left) Normalized frequency diagram of the binned percentage of
clear sky days for the three products. (Top right) Percentage of days in which the qa_value of the TROPOMI NO2
V2.4 measurement was greater than 0.75. (Bottom left) Percentage of days in which the total cloud cover (tcc) from
the ERAS was less than 0.5. (Bottom right) Percentage of days in each grid cell in which the total cloud fraction
from the WRF-Chem was less than 0.5
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For the remainder of this project, we define “clear sky” based on the TROPOMI NO: retrieval and use days with
observations exceeding a qa_value of 0.75. According to TROPOMI — which is the only true observational dataset —
the Southwest U.S. has the most amount of clear-sky days per year (~80% of days at 13:30 local time), while the
interior Northeast U.S. and coastal Northwest has the fewest (~30% of days at 13:30 local time). The major U.S. city
with the most clear-sky days is Phoenix (79% of days), while the major U.S. city with the least clear-sky days is
Seattle (29% of days).

Annualized spatial cloud patterns are similar throughout the daylight hours with marginally more clear skies in the
morning hours especially in the eastern U.S (Figure S1). Despite this, clouds are often transient, and there are
opportunities to observe a clear sky measurement at a different hour of the day if the 13:30 observation is obstructed
by clouds. In Figure 2, we demonstrate that between 68% — 93% of days have a clear sky measurement during any

hour of the daytime as compared to the 33 — 69% range at 13:30.

WRF-Chem: Cloud-free at 13:30 WRF-Chem: Cloud-free any time between 7:00 — 19:00

' 13:30 local time

7:00 - 19:00 local time|

(R % of days in 2019 with <0.5 cloud frac I R % of days in 2019 with <0.5 cloud frac
0 20 40 60 80 100 0 20 40 60 80 100

—_—
Figure 2. Percentage of days over the contiguous U.S. during 2019 with cloud fractions less than 0.5 as simulated by

WRF-Chem at various local times: (Left) 13:30, (Right) any time between 7:00 — 19:00.

3.2 Surface NOz: Clouds vs. No Clouds

We then link whether TROPOMI is observing a clear sky or not (i.e., ga_value > 0.75) to the daily ir situ ground-
level NO2 observations to determine how clouds are affecting surface NO2 concentrations (hereafter referred to as
surface NO2). In Figure 3, we show that surface NO:z at 13:30 local time is +12.9% larger (NMC = normalized mean
change) [-3.8% (10" percentile), +32.1% (90" percentile)] on days with clouds at 13:30 compared to the annualized
13:30 average when all days of data are included. We also note the very strong correlation between the NO:z on cloudy
days and all days, which suggests that the presence of clouds drives a systematic change from the mean rather than a
random change. We next show that the NO» during the average of all days is +17.2% larger [-1.8%, +38.7%] than on
days with only clear skies. The +17.2% value is our estimate of the difference of annualized surface-based NO: at
13:30 on all days as compared to only clear sky days. We further show that surface NOz at 13:30 is +36.0% larger [—

6.1%, +72.9%] on days with clouds compared to days with clear skies.



251
252

253
254
255
256
257
258

259
260
261

262
263
264

265
266

36 T T T T T )

E | Annual y / 1 E
: n=374 s »
T 24 N B
.‘-3 // z
= i /"' i <
) | v 1 =
V& 12‘/#{:: Slope =1.11 &

o b NMC=129%{ <
o | — o
Z 0 P r T 0.96 Z

0

12 24 36

NO, (ppb) all days 1IPM

36 T T T T T
| Annual s E
n=374 7. ’ ;
- 7. - e
24 % 3
! L 10
12+ i 2
wg Slope =1.09 =
o NMC=172%1 &
o, | 709 z
0 12 24 36
NO, (ppb) no clouds 1IPM

36 T T T T T
Annual s
'n=374 s
24 L _
- ‘ ‘/ Pe a ’ -
A A ‘/ .’ :
N
121 3% % Slope = 1.20
f NMC = 36.0 %
0 L 5085
0 12 24 36
NO, (ppb) no clouds 1IPM

Figure 3. Scatterplots intercomparing annualized surface NOz from the EPA AQS at 13:30 local time during all days,
cloudy days, and no cloud days. (Left) Annualized surface NO: during cloudy days compared to annualized surface
NO:z during all days. (Center) Annualized surface NO2 during all days compared to annualized surface NO2 during no
cloud days. (Right) Annualized surface NO: during cloudy days compared to annualized surface NO2 during no cloud.

A “cloudy” vs “no cloud” day is determined via the qa_value of 0.75 from the TROPOMI NO2 V2.4 product.

The difference in surface NO2 between cloudy and clear sky days can vary dramatically based on geographic region

and proximity to a major roadway (Table 1). For the purposes of the sensitivity study, we focus on the cloudy versus

no cloud days, while the directional changes of “cloudy versus all days” and “all days versus no clouds” values are
similar (Tables S1 & S2).

Table 1. Slope, r?, Normalized Mean Change (NMC), and number of sites of the “cloudy vs. no clouds” bias by
further filtering out AQS data using various additional sensitivity analyses. Tables S1 & S2 show the sensitivity
analyses for the “cloudy vs. all days” bias, and “all days vs. no clouds” bias respectively.

Normalized Mean | # sites of monitoring
Slope | r? Change (%) sites used

Baseline (V2.4) 1.20 | 0.85 +36.0% 374
V2.3.1 1.18 | 0.86 +40.4% 374

V2.4 crf<0.5 1.25 10.83 +80.8% 373
V2.4 all sites 1.05 | 0.90 +32.7% 449

V2.4 near road only 0.89 |0.84 +15.9% 76
V2.4 no chemiluminescence | 1.20 | 0.87 +53.1% 26
V2.4 Summer only 1.17 ] 0.86 +23.8% 366
V2.4 Winter only 1.14 | 0.82 +27.8% 373
V2.4 Spring only 1.28 | 0.88 +31.9% 364
V2.4 Fall only 1.07 | 0.77 +30.9% 359

V2.4 North only 1.31 | 0.89 +41.5% 217
V2.4 South only 098 |0.82 +28.5% 157
V2.4 NorthEast only 1.36 | 0.93 +61.7% 106
V2.4 SouthEast only 1.27 | 0.94 +33.8% 73
V2.4 NorthWest only 1.12 | 0.88 +22.2% 111
V2.4 SouthWest only 091 |0.79 +23.9% 84
V2.4 lowPopDensity only 1.34 | 0.86 +36.3% 216
V2.4 highPopDensity only 1.13 | 0.76 +37.5% 167
V2.4 lowRoadDensity only | 1.19 | 0.82 +33.6% 216
V2.4 highRoadDensity only | 1.18 | 0.80 +40.8% 165
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First, we find that NO2 during cloudy days is larger in the northern U.S. (+41.5%) than the southern U.S. (+28.5%)
and largest in the Northeast U.S (+61.7%) (Figure 4); for this analysis, 37°N is the dividing latitude between North
and South, 100°W is the dividing longitude between East and West. Although the calculated cloudy versus no cloud
change is independent of the number of days of clear-skies, areas of perpetually cloudy skies also have cooler
temperatures and shallower boundary layers which could cause much larger NO2 on cloudy days. Interestingly, the
Phoenix and Salt Lake City areas — two areas with large number of days with clear skies — also have a relatively large
difference between cloudy and clear sky days demonstrating that the bias is independent of the number of days with
clear skies. However, the annualized difference between cloudy and clear sky days in the Southwest U.S. is modest
(+4.8%) (Table S1) because there are fewer individual days affected by clouds. Approximately 13% of monitoring
sites, mostly concentrated in the Los Angeles and San Diego areas, have lower NO: on cloudy days, and this may be
driven by enhanced westerly winds on cloudy days bringing in cleaner marine air more than offsetting the
photochemically driven larger NO2 on cloudy days. Overall, while there are a few locations with lower NO2 on cloudy
days, 87% of locations exhibit larger NO2 on cloudy days and this is driven by the slower photochemistry on these
days.

1T

o O
Q
& &
Q ‘l Q Clouds / No Clouds
> LA\ EPA Monitors
. Surface NO,
¥ 2019 1PM

@
Q)

e

EPA Monitors

. Surface NO,
2019 1PM
] ! ] Ratio T I ! ] Ratio
0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 4. (Left) Ratio of the annualized surface NO: during cloudy and no cloud days at the EPA AQS sites not
classified as “near-road”. (Right) Same image but with an inverse distance weighting underlaid to infer geographic
distribution of the ratio.

Proximity to roadways and large sources of NOx is another driver of whether a location will experience a small (but
larger) difference in NO:z on cloudy and clear sky days. For areas in close proximity to roadways (i.e., the near-road
sites) (n=76), the difference in NO> between cloudy and clear sky days is weaker: a smaller positive change (+15.9%)
and only 77% of sites displaying a positive mean change, which is less than the difference at all other NO2 monitoring

locations (+36.0%).

We find that seasonal effects on the differences in NO2 between cloudy and clear days are modest. The NO2 on cloudy
days in the Spring is largest and marginally smaller in other seasons. Other factors that were not associated with strong

changes to the differences in NO2 between cloudy and clear days bias are: the version of the TROPOMI NOz algorithm,
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whether the site was using a chemiluminescence or Cavity Attenuated Phase Shift measurement technique, and

population / roadway density within a 0.5° radius.

3.3 TROPOMI NO:2: Clouds versus No Clouds

We then compare TROPOMI NO: measurements under varying sky conditions. For this exercise, we filter the
TROPOMI NO: data strictly based on cloud radiative fraction (crf). Although it is recommended for most applications
to use data when the crf <0.5, sometimes measurements are usable in the presence of optically thick clouds (i.e., crf
>0.5). In Figure 5, we average TROPOMI NO:> measurements below and above a crf = 0.5 threshold to gain an
understanding of how TROPOMI column NOz measurements intercompare in the presence and lack of optically thick
clouds. In the figure we show the tropospheric vertical columns on the top row, and tropospheric slant columns in the
middle row, which have been interconverted using the tropospheric air mass factor shown on the bottom row. As
discussed in Section 2.2.1, the tropospheric air mass factor can be a large source of uncertainty when calculating

tropospheric vertical columns from slant columns (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025).

' TROPOMI NO,|
CRF <0.5

1 column

s 10 molec/cm?
16+

0 1 2 3 4 8 02 04 06 08 1 2 3 4

TROPOMI NO,
CRF <0.5
Slant column

' TROPOMI NO,|
CRF >0.5
Slant column

s 10 molec/cm?
3 16+

TROPOMI NO, |
% Air Mass Factors
_CRF<05

TROPOMI NO,
Air Mass Factors

CRF >0.5

- ; . s 2 e
—— " Air Mass Factor | “ysmmsmmm Air Mass Factor
0.2 0.4 0.6 0.8 1.0 1.5 20 0.2 0.4 0.6 0.8 1.0 1.5 2.0

Figure 5. (Left column) Annual 2019 TROPOMI NO: filtered using only a cloud radiative fraction (crf) filter less
than 0.5. (Center column) Annual 2019 TROPOMI NO:x filtered using only a crf filter greater than 0.5. (Right column)
Ratio between the two annual averages. (Top row) Vertical tropospheric column NO> data. (Center row) Slant
tropospheric column NO> data. (Bottom row) Tropospheric air mass factors.
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In Figure 5, we demonstrate that the vertical column NOz spatial patterns in the presence of clouds are much different
in magnitude than the slant column NO: whereas the vertical column NO» spatial patterns in the absence of clouds are
similar to the slant column NOsz. This is primarily driven by the assumed vertical shape profiles in the model. During
measurements when the crf >0.5 as compared to measurements when crf <0.5, the model is “filling in” the missing
NO:z and causing small air mass factors as shown. This is primarily because sensitivity to the surface concentrations
is altered (lower) in the slant column measurement in the presence of clouds. Also, during measurements when the crf
>0.5, the uncertainty of the TROPOMI vertical column measurements rises, and this is driven by the difficulty in
calculating the air mass factor in the presence of clouds; in addition to needing to know the vertical NO2 profile for
its calculation, we also need to know the pressure level and thickness of the clouds. Such errors can generate nonlinear
responses. This analysis confirms that the assumed air mass factor is the driving factor causing the differences in the
tropospheric vertical column NO2 between clear and cloudy sky days, as the slant tropospheric column NOz is smaller
during cloudy skies due to a lack of instrument sensitivity to the surface during cloudy conditions. Therefore, special

care should be used when interpreting tropospheric satellite measurements in the presence of clouds.

Qualitatively, the ratio of the column NO2 with and without clouds is spatially similar to the ratio from the AQS
analysis — with the largest ratios occurring in the Northeast U.S and smallest ratios occurring in the Southwest U.S.
However, quantitatively, the column ratio observed by TROPOMI is much larger in magnitude in the eastern U.S.
than the surface ratio observed at the AQS surface sites. It is difficult to determine whether the quantitative magnitude

is correct because there are no ground-based instruments to accurately measure column NO: in the presence of clouds.

3.4 WRF-Chem NO:: Clouds vs. No Clouds

We then compare the differences in NO2 between cloudy and clear days observed by the EPA AQS surface network
to the differences in NOz between cloudy and clear days of surface NO: simulated by WRF-Chem. The 13:30 local
time differences in NOz between cloudy and clear days of surface NO2 in WRF-Chem (+58.7%) is substantially larger
than from the AQS observations (+36.0%) during collocations. This directional change is consistent among all

geographic regions suggesting that NO2 concentrations are too responsive to sunlight in WRF-Chem.

WRE-Chem: Surface NO,; 1 PM WRF-Chem: Surface NO,*; 1 PM
EPA surface Network: Surface NO,; 1 PM at EPA monitoring locations at EPA monitoring locations
36 1 1 36 L T 7 36 L T
E Annual ;o E Annual y ’ o ‘E Annual 4
— I K — r . I 1
> O > |WRFChem ~ 2 |WRFChem ,
S 24 P - T 24 . . S 24 s .
N 3 .
2 N ° /- 2 ;o
(3] o , ’.“ [3] ./ ) . : o -
s L a N 2L i - ]
B2 wfiislope=1.20 &2 . slope=143 & 127 @ Slope =134
o) ff- NMC = 36.0 % g ffz‘ NMC = 58.7 % S &' NMC = 42.1 %1
Z o, |, 7085 Z 0 . = 0.89 > o, | 7087
0 12 24 36 0 12 24 36 0 12 24 36
NO, (ppb) no clouds 1IPM NO, (ppb) no clouds 1PM NO,* (ppb) no clouds 1PM

Figure 6. Scatterplots intercomparing annualized surface NOz at 13:30 local time during cloudy days vs. no cloud
days. (Left) EPA AQS data which is a repeat of Figure 3c. (Center) WRF-Chem collocated with the AQS monitoring
sites, and using the WRF-Chem cloud filter in lieu of the TROPOMI cloud filter. (Right) WRF-Chem collocated with
the AQS monitoring sites, comparing NO2* instead of NOx.
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There could be several reasons for this discrepancy. First, 91% of monitors in the EPA monitoring network measure
using the chemiluminescence method, NO:", which quantifies NO: in addition to some fraction of HNOs. The latter
is problematic because the NO2 + OH = HNO;s reaction is often the terminal sink for NO2 during daytime and if HNOs
is additionally being measured then this would appear to buffer photolytically driven changes. We further conducted
a sensitivity test in WRF-Chem and found that the NMC is only +42.1% down from +58.7% when a
chemiluminescence correction factor from Equation 1 is used (Figure 6¢), indicating that some of the perceived
differences between WRF-Chem and EPA monitors could be due to monitor interferences from PAN and HNO:3.
Second, it is possible that OH concentrations in WRF-Chem are fluctuating too rapidly in the presence of and lack of
clouds (Duncan et al., 2024) causing NO:z to be removed to rapidly in the model. Third, there might be insufficient
NO:z recycling of organic nitrates and/or particulate nitrates in the model which could buffer photolysis-related
changes; recent work has suggested that particulate nitrate can meaningfully photolyze back to NO: (Sarwar et al.,
2024; Shah et al., 2024). Fourth, WRF-Chem may not simulate PBL depth properly and may have different biases
during cloudy and clear sky conditions (Hegarty et al., 2018; Kuhn et al., 2024; X. Liu et al., 2023). For example, if
the predicted PBL is too shallow during cloudy conditions, this could be a contributing factor to the simulated surface
NO:z bias. Errors in surface jNO2 do not appear to be a primary driver of the cloudy versus clear sky disagreements as
the jNO2 values from WRF-Chem seem reasonable as compared to UV-B measurements from the NOAA Surface
Radiation Budget (SURFRAD) monitoring network (Figure S4) and is consistent with other work showing small
biases in J]NO2 in WRF-Chem (Ryu et al., 2018). Follow-up work will address some of these shortcomings by adding
particulate nitrate photolysis into the chemical mechanism and evaluating PBL depths during cloudy conditions using

ceilometers.

We can then use WRF-Chem as a transfer standard to suggest how column NO2 may change in relation to the surface
NO2, and we find that the relative change in column NO: and surface NO: in response to clouds are very similar
(Figure 7). This makes intuitive sense because most NOz over the contiguous U.S. is located within the boundary
layer, and typically clouds (if they exist) are located at the top of the boundary layer. Any sunlight obstructed by
clouds will also obstruct the NO2 both at the surface and in the full boundary layer.
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Figure 7. Ratio of the annualized surface NO» at 13:30 local time from WRF-Chem during cloudy and no cloud days.
(Left) Surface NO2 (Right) Tropospheric column NOx.

3.5 Impacts of clouds on geostationary observations

Finally, we use provisional TEMPO NO: data, TROPOMI NO: data, and AQS NO: data from 2 August 2023 through
30 June 2024 to understand how the changes of NOz during clear and cloudy conditions may be altered at different
hours of the day (Figure 8). In this analysis, the threshold between high quality and lower quality data for both satellite
products is a cloud radiative fraction = 0.15. Any TEMPO NOz or TROPOMI NO2 measurement with crf <0.15 was
assumed to be “clear sky”, while all other measurements are assumed to be cloudy. Hours with low solar zenith angles
(before 8:00 and after 16:00) have been excluded from this analysis. We find that the difference in surface NOz

between clear and cloudy days is small in the early morning hours and increases throughout the day.
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Figure 8. Normalized mean percentage change in the surface NO: during days with cloudy skies as opposed to days
with clear skies. Red dot shows the mean percentage change using TROPOMI clouds as shown in Figure 2c. Black
line uses the same procedure for Aug 2023 — June 2024 data and TEMPO cloud data.

Surface AQS NO: at 8:30 local time is +8.3% larger on cloudy days than clear sky days, while at 15:30 it is +52.2%
larger. The calculated 13:30 difference in surface NOz between cloudy and clear sky days using TEMPO (+25.1%) is
similar to the analogous value from TROPOMI (+35.4%). Differences between TEMPO and TROPOMI are expected
because the cloud algorithms and instrument characteristics are different, even though the timeframe and cloud filter

threshold used for this analysis are the same.
4 Discussion

In this project we quantify how NO:z satellite data could be biased in estimating annualized surface NO2
concentrations due to having high quality measurements only in the absence of clouds. We find that surface in situ
NO:2 measurements are on average +17% on all days compared to restricting to clear sky days and +36% larger
during cloudy days vs. clear sky days, with a wide distribution based on geographic region and proximity to
roadway. Using the United States as a case study, we find the clear-sky bias to be largest in the Northeast U.S.;
conversely, the clear-sky bias is smallest in the Southwest U.S. and near major roadways. In some areas of the urban
Western U.S., Los Angeles and San Diego, we find that NOz is lower on cloudy days, but these instances are rare
(13% of monitoring sites) and are driven by unique transport patterns on cloudy days. Transport patterns are a
significant driver of the regional clear vs. cloudy sky differences of surface NO2 concentrations. Although the

analysis was computed for both TROPOMI and TEMPO data, it should be re-emphasized that the cloud algorithms
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used by both instruments are different. However, the qualitative finding that surface NO2 differences between
cloudy and clear conditions tend to be larger in the afternoon than morning is consistent with a hypothesis that active

photochemistry during periods of stronger afternoon sunlight would cause this change.

This work also highlights how NO2 concentrations are different on days when satellite instruments are not acquiring
a valid measurement. Our initial hypothesis of NOz being consistently larger on cloudy days was only partially
proven true. In many cases, surface NO2 concentrations and column NOz are larger, but this is not always the case.
This project demonstrates the balancing act of the reduced NO2 + OH sink and local climatological patterns (wind
speed/direction, PBL depth, etc.) driving surface NO2 during cloudy conditions. Although one of the original goals
of this study was to better gap-fill satellite tropospheric vertical column NO2 measurements in the presence of
clouds, ultimately, we were not comfortable doing this yet. Reliance on a model as a transfer standard to convert
surface concentrations into column concentrations exhibited too many biases under cloudy conditions. WRF-Chem
model simulations of surface NO2 suggest that the clear-sky bias in WRF-Chem is on average much larger than the
observed clear-sky bias: +59% on cloudy days vs. clear days for the model, and +36% for the AQS data. We
hypothesized that errors in OH chemistry, NO: recycling speeds, and PBL mixing depths could all be contributing to
this high bias. Future work should target these three research topics. Future work could also use a machine-learning

approach to account for some of these model biases.

Another consideration with the interpretation of satellite measurements is the impact of lightning NOx, wildfire
NOx, and aircraft NOx emissions, mostly staying aloft, which could be misinterpreted as surface NO2
enhancements. While lightning NOx and wildfire NOx emissions are often screened out when applying a cloud filter
because they occur in optically thick clouds/smoke, it is possible for the NO> to remain aloft for several days after
the initial thunderstorm/fire and be observed during clear skies. An algorithm to detect and screen out downwind
NO:z attributed to upwind lightning NOx and wildfire NOx emissions could be especially helpful. At minimum, care
should be taken during timeframes and regions where there are large pulses of these types of emissions, such as our

findings during summer.

In some ways, the chosen year 2019 was an ideal year to conduct the analysis because it preceded the 2020 global
pandemic and its nonlinear and lingering effects on air pollution. But in other ways, this year was less ideal because
TROPOMI pixel sizes changed in August 2019 from 7 x 3.5 km? (~25 km?) to 5.5 x 3.5 km? (~19 km?) The fraction
of clear-sky pixels likely increased by 1 — 2% after August 2019 as smaller pixel sizes can better “see around”
clouds (Krijger et al., 2007). This probably did not meaningfully affect our analysis but is nonetheless a caveat of
using 2019 data.

These results have repercussions for many applied studies that use satellite data to estimate surface NO2
concentrations or NOx emissions. First, for studies that estimate surface concentrations, it is important to ingest
surface NO2 measurements during cloudy (and nighttime) conditions in some capacity in order to appropriately
estimate 24-hour concentrations; most studies already do this. If one were to use the clear-sky satellite data coupled

with only a chemical transport model as a transfer standard to convert the column measurement into a pseudo-
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surface “measurement”, this would underestimate annualized NO2 concentration in most places. Unfortunately, there
are many global regions with few or no surface measurements, so this is an important consideration when estimating
surface NOz in these regions. But even if one were to ingest surface NOz during cloudy conditions, the spatial
patterns of surface NOz during cloudy conditions may be slightly different than implied by the clear-sky satellite
data. For example, we find that NO2 surface concentrations under cloudy conditions are much larger in the Northeast

U.S. than the Southwest U.S., and a cloud-free satellite map does not capture this.

Second, for nitrogen oxide emissions estimates it is often assumed that anthropogenic emission rates are similar
under cloudy and clear-sky conditions, but this is likely not the case in reality. Although we show that surface NO2
concentrations are typically smaller under clear-skies, it is likely that anthropogenic NOx emissions are actually
larger under regionwide clear-skies during summer and winter due to the moderating impact of clouds on surface
temperature and subsequent impacts on heating-ventilation-air conditioning (HVAC) usage/emissions (Abel et al.,
2017). If we were able to better independently estimate tropospheric vertical column NO: during cloudy conditions,

perhaps this could be investigated in the future.

Lastly, as satellite-derived NOz applications increase over the coming years, it is important to document its
successes and shortcomings. We see this project as a first-step towards better accounting for the clear-sky bias of
satellite NOz data. While future NO:z applications may use geostationary data, such as TEMPO, which may suffer
from a similar bias depending on the hour of the day, an advantage of geostationary satellite data is the ability to use
multiple measurements per day before and just after the clouds. It might be possible to isolate a two-hour window
(one with a cloud and one without) to get a better handle on the instantaneous versus long-term role of clouds

affecting NO:2 concentrations.

This work also highlights the critical role that chemical transport models can play in satellite NO2 applications.
Errors in the model assumptions can hamstring many NO: applications. For example, using a model to infer NO:
during cloudy conditions in the lack of clear-sky satellite data would yield significant errors. Therefore, future work
should concurrently focus on acquiring and using sub-orbital measurements to diagnose errors related in simulating

NO:z in chemical transport models, so that they can be used as more robust transfer standards.
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Data availability. TROPOMI NO: version 2.4 data (http://doi.org/10.5270/S5P-9bnp8q8) processed to 0.01° x
0.01° resolution (http://doi.org/10.5067/MKJG22GUOD34) and TEMPO NO: version 3 data
(http://doi.org/10.5067/1S-40e/TEMPO/NO2 _1.3.003) can be freely downloaded from NASA Earthdata. EPA AQS

surface NO: data can be downloaded from pre-generated files:
https://ags.epa.gov/agsweb/airdata/download files.html. ERAS re-analysis hourly data on single levels
(http://doi.org/10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/#!/home). NOAA SURFAD data can be downloaded from:

https://gml.noaa.gov/grad/surfrad/sitepage.html . Output from the WRF-Chem simulation is available upon request.

IDL code to process the data is available upon request.
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