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Abstract  12 

Satellite measurements of tropospheric trace gases are often only used when there are few clouds, which screens out 13 

20 – 70% of the data, depending on geographic region. While the lack of high-quality column measurements during 14 

cloudy conditions precludes validation of the satellite data, in situ surface measurements and model simulations can 15 

provide insight on the quantitative understanding of NO2 during cloudy conditions. Here, we intercompare surface 16 

observations, meteorological reanalysis (ERA5), satellite measurements (TROPOMI and TEMPO), and a model 17 

(WRF-Chem) during 2019 over the contiguous U.S. to quantify how NO2 concentrations are different under clear 18 

and cloudy skies. We find that in situ surface NO2 measurements are, on average, +17% larger on all days compared 19 

to restricting to clear sky days and +36% larger during cloudy days versus clear sky days, with a wide distribution 20 

based on geographic region and roadway proximity: largest in the Northeast U.S. and smallest in the Southwest U.S. 21 

and near major roadways. WRF-Chem simulated surface NO2 between cloudy and clear conditions is on average 22 

much larger than the observed differences: +59% on cloudy days vs. clear days for the model. This suggests that 23 

NO2 in WRF-Chem is more responsive to sunlight and associated photochemistry than in reality. Finally, using in 24 

situ NO2 matched to provisional TEMPO data, we find the NO2 differences between cloudy and clear conditions to 25 

be larger in the afternoon than morning. This study quantifies some of the biases in satellite measurements 26 

introduced by using only clear-sky data.  27 
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1 Introduction 28 

Nitrogen dioxide (NO2) is an air pollutant that adversely affects the human respiratory system (Health Effects Institute, 29 

2022; Khreis et al., 2017) and can lead to premature mortality (Burnett et al., 2004; M. Z. He et al., 2020). NO2 is also 30 

an important precursor for ozone (O3) and fine particulates (PM2.5), which also have serious health impacts. In urban 31 

areas, the majority of ambient NO2 originates from local NOx emissions (=NO+NO2; most NOx is emitted as NO 32 

which rapidly cycles to NO2) during high-temperature fossil fuel combustion (Crippa et al., 2021). Although end-of-33 

pipe controls (Busca et al., 1998; Koltsakis & Stamatelos, 1997) can reduce the amount of NOx emitted from engines 34 

and boilers, these technologies do not recover 100% of the NOx generation during combustion. As a consequence, 35 

NO2 accumulates in our atmosphere and many urban areas have NO2 concentrations that exceed the World Health 36 

Organization guideline of 5.3 ppb for an annual average (Anenberg et al., 2022). 37 

Observing local air pollution is typically done by in situ surface monitors, which are spaced throughout a region with 38 

a higher density of monitors typically in areas of high population density and known pollution sources. In the United 39 

States, there are 1012 in situ monitoring sites measuring some combination of O3, PM2.5, NO2, volatile organic 40 

compounds (VOCs), and CO (https://www.epa.gov/aqs). While the U.S. monitoring network is more comprehensive 41 

than most other countries (Martin et al., 2019), 79% of U.S. counties lack a single monitor and an additional 10% of 42 

counties have only a single monitor, leaving only 11% of U.S. counties with more than 1 monitor (Sullivan & 43 

Krupnick, 2018). Although a robust and accurate ground-monitoring network is needed, the high operating cost of 44 

these instruments can be an important barrier (Kelly et al., 2017). Spatial gaps remain in-between the regulatory 45 

monitors, and sometimes these monitors are inadequate for understanding the true ambient air pollution exposure of 46 

most U.S. residents, especially those that live and/or work several miles away from a regulatory monitor. Satellite data 47 

provide a way to fill in the gaps of the in situ monitoring network. Methodologies to obtain robust surface air pollutant 48 

measurement data from satellite instruments have improved dramatically in the past ten years (Bechle et al., 2015; 49 

Cao, 2023; Ghahremanloo et al., 2021, 2023; Larkin et al., 2023; Nawaz et al., 2025; Shetty et al., 2024; W. Sun et 50 

al., 2024). 51 

NO2 can be observed by remote sensing instruments due to its unique spectroscopic features (Vandaele et al., 1998). 52 

The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) has been measuring column amounts 53 

of NO2 pollution up to 7 × 3.5 km2 before 6 August 2019 and up to 5.5 × 3.5 km2 spatial resolution (van Geffen, 2016) 54 

since 6 April 2019. Because of TROPOMI’s higher spatial resolution over predecessor instruments, such as the Ozone 55 

Monitoring Instrument (OMI) (24 × 13 km2 at nadir) (Levelt et al., 2018), TROPOMI has ~50 daily satellite pixel 56 

measurements within a typical city (~1000 km2) during clear skies, while OMI may have only 1-3 daily measurements 57 

within the borders of each city. This increased measurement capacity within a city allows us to discern spatial 58 

variability undetectable by previous instruments. Further, the data from the satellite instruments can be downscaled 59 

using a process called oversampling (de Foy et al., 2009; K. Sun et al., 2018), which re-grids the irregular satellite 60 

pixels to a standard and higher spatial resolution. The spatial resolution is thus effectively increased at the expense of 61 

the temporal resolution.  62 

https://www.epa.gov/aqs
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NO2 satellite measurements are of the tropospheric column. In many cases, NO2 column measurements are strongly 63 

correlated with the spatial patterns of surface NO2 concentrations (Acker et al., 2025; Harkey & Holloway, 2024; Kim 64 

et al., 2024) and surface NOx emissions (Goldberg et al., 2024). For TROPOMI, studies have shown a strong 65 

correlation between tropospheric column measurements and collocated surface NO2 for both the 13:30 average (r2 = 66 

0.67) and the 24-hour average (r2 = 0.68) (Goldberg et al., 2021; Kerr et al., 2023). However, there are rare instances 67 

in which NOx emissions and NO2 enhancements stay aloft and do not affect the surface; these are often situations 68 

associated with lightning NOx (Nault et al., 2017), wildfire NOx (Jin et al., 2021; Lin et al., 2024), and aircraft NOx 69 

(Maruhashi et al., 2024). In these instances, it can be difficult to determine if the column NO2 enhancements are also 70 

leading to surface NO2 enhancements. These misinterpretations are more likely to occur over rural regions and/or 71 

individual days, as upper-tropospheric NO2 enhancements near urban regions often dwarf NO2 enhancements within 72 

the boundary layer especially over monthly or longer timescales (Goldberg et al., 2022).  73 

Satellite measurements of trace gases are typically only used when there are few or no clouds; this is often referred 74 

to as the clear-sky bias of satellite data. In the U.S., this results in 20 – 70% of the satellite data being filtered out 75 

depending on geographic region. The clear-sky bias affects NO2 moreso than other trace gases (such as CO and 76 

CH4) because NO2 is very photochemically active in the presence of strong sunlight; its effective lifetime during 77 

summer daytime is 2 – 7 hours (F. Liu et al., 2016) and conversely can be up to 30 hours during winter daytime 78 

(Kenagy et al., 2018). The speed at which it transforms into other chemical species is determined by the irradiation, 79 

ambient temperature, and oxidation environment (Laughner & Cohen, 2019; Shah et al., 2020). More specifically, 80 

strong irradiation creates the OH radical which can react with NO2 to create HNO3 – a major terminal sink of NO2 – 81 

and also accelerates the photolysis of NO2 into NO and O(3P) leading to an accumulation of O3 in the presence of 82 

VOCs; without VOCs, NO2 cycles more rapidly to NO. Warm temperatures increase biogenic VOC emissions and 83 

VOC can react with NO2 directly to create organic nitrates (e.g., peroxyacetyl nitrates and alkyl nitrates) (Zare et al., 84 

2018) which act as a temporary sink of NO2. Another daytime terminal sink for NO2 is dry deposition; while this 85 

removal mechanism is often secondary to photochemical loss in urban environments and is not directly affected by 86 

sunlight, it is indirectly affected as cloudy conditions are often associated with increased relative humidity and 87 

shallower boundary layer depths, both of which increase dry deposition. Therefore, increased NO2 dry deposition in 88 

cloudy conditions could offset some of the decreased NO2 photochemical loss rates. The net result is that NO2 89 

concentrations are typically larger during cloudy conditions (Geddes et al., 2012). 90 

However, outside of the Geddes et al. (2012) study, little has been done to observationally quantify the bias of NO2 91 

being larger during cloudy conditions particularly because there are no column measurements to validate the satellite 92 

during cloudy conditions. With that said, there are surface in situ measurements during cloudy conditions that can 93 

give us an idea of how the clear-sky bias may affect the estimate of surface concentrations. In this project, we 94 

intercompare surface observations, meteorological reanalysis (ERA5), satellite measurements (TROPOMI and 95 

TEMPO), and a model (WRF-Chem) under clear and cloudy skies to better quantify the amount of surface and 96 

column bias of NO2 concentrations that is being introduced when clouds are screened from the satellite data. Our 97 

analysis is focused on the United States during 2019 due the high density of in situ monitors and availability of high-98 
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resolution regional chemical transport models. The motivation of this project is two-fold: 1) to determine what the 99 

scientific community may be missing when excluding clouds from TROPOMI-based NO2 analyses and 2) to 100 

understand how geostationary NO2 satellite measurements may be affected by such a bias and potentially partially 101 

remediate such a bias.  102 

2 Methods 103 

2.1 EPA AQS Data 104 

Hourly in situ NO2 measurements were obtained from the pre-generated EPA Air Quality System (AQS) database: 105 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. These routine measurements are operated and maintained by 106 

various state and federal agencies. 91% of the “NO2” measurements in 2019 were acquired through a 107 

chemiluminescence technique which converts NO2 and some NOy species – such as alkyl nitrates, peroxynitrates 108 

(PAN), and nitric acid (HNO3) – to NO using a heated molybdenum converter, and the NO is measured by quantifying 109 

the luminesce of NO when reacted in excess O3 (Dickerson et al., 2019). Lamsal et al. (2008) suggested a correction 110 

factor, Equation 1, for converting midday chemiluminescence NO2* measurements to NO2 using modelled information 111 

of PAN and HNO3.  112 

[𝑁𝑂!]∗ =	𝐹#$% × [𝑁𝑂!]  where 𝐹#$% =
['(!]*+.-.[/0']*+.1.[2'("]

['(!]
   (1) 113 

Typically, correction factors are in the range of ~1.0 for fresh urban plumes and can be as large as ~3.0 for rural areas 114 

during summer, with averages typically in the 1 – 1.5 range for moderate and very polluted regimes, and are important 115 

to use for model vs. monitor intercomparisons (Kuhn et al., 2024; Lamsal et al., 2008; Poraicu et al., 2023). Other 116 

methods to measure in situ NO2 include Cavity Attenuated Phase Shift (Kebabian et al., 2008) and Laser Induced 117 

Fluorescence (Thornton et al., 2000), but these methods are less common (9% of all NO2 monitors in 2019).  118 

Annual and seasonal averages at 13:30 local standard time (between 13:00 – 14:00) of the in situ data were considered 119 

valid and used if more than 75% of the days of the year/season had valid data. There were 449 monitoring locations 120 

in 2019 in the U.S. that achieved these criteria for an annual average, which equates to 1 monitor per ~730,000 U.S. 121 

residents. For the baseline analysis, we further remove data from the 75 monitoring locations (17% of the locations) 122 

that are classified as “near-road” by the EPA, which means that they are installed within 20 m from major interstates 123 

since these in situ measurements are not representative of a ~20 km2 satellite pixel measurement; we include the “near-124 

road” NO2 monitoring data in sensitivity analyses. NO2 measurements between cloudy and clear-sky days are 125 

intercompared using the normalized mean change (NMC) as described in Equation 2, where 𝑥̅ and 𝑦, are means of the 126 

two datasets being analyzed. 127 

𝑁𝑀𝐶(%) = 100 × 43456̅
6̅
5      (2) 128 

 129 

 130 
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2.2 Satellite NO2 Instruments 131 

NO2 slant column densities are derived from radiance measurements in the 405 – 465 nm spectral window of the UV-132 

VIS-NIR spectrometer (van Geffen et al., 2021). Satellite instruments observe NO2 by comparing observed spectra 133 

with a reference spectrum to derive the amount of NO2 in the atmosphere between the instrument and the surface; this 134 

technique is called differential optical absorption spectroscopy (DOAS) (Platt, 1994). Tropospheric vertical column 135 

density data, which represent the vertically integrated NO2 concentrations between the surface and the tropopause, are 136 

then calculated by subtracting the stratospheric portion and then converting the tropospheric slant column to a vertical 137 

column using an air mass factor (AMF) (Boersma et al., 2011). The AMF is a unitless quantity used to convert the 138 

slant column into a vertical column and is a function of the satellite viewing angles, solar angles, the effective cloud 139 

radiance fraction and pressure, the vertical profile shape of NO2 provided by a chemical transport model simulation, 140 

and the surface reflectivity (Lorente et al., 2017; Palmer et al., 2001).  141 

2.2.1 TROPOMI 142 

TROPOMI was launched by the European Space Agency (ESA) on 13 October 2017, and data from the instrument 143 

became available on 30 April 2018, after an approximately 6-month calibration period. The satellite follows a sun-144 

synchronous, low-earth (825 km) orbit with an equator overpass time of approximately 13:30 local solar time. 145 

TROPOMI measures total column amounts of several trace gases: NO2, HCHO, O3, CO, CH4, among others. At nadir, 146 

pixel sizes are 3.5 × 7 km2 (modified to 3.5 × 5.5 km2 on August 6, 2019) with the edges having slightly larger pixels 147 

sizes (~14 km wide) across a 2600 km swath, equating to 450 rows (van Geffen et al., 2020).  148 

For our analysis we use the TROPOMI NO2 version 2.4 (V2.4) re-processed algorithm during Jan 1, 2019 – Dec 31, 149 

2019. We also conducted a sensitivity study using the version 2.3.1 (V2.3.1) algorithm. The TROPOMI NO2 V2.4 150 

product has a documented median low bias of -34.8% in moderately polluted locations (when NO2 measurements are 151 

between 3 – 14 x 1015 molec/cm2) when compared to a MAX-DOAS network (Lambert et al., 2023). Some of this low 152 

bias is due to the operational AMF which uses a 1° × 1° model to assume vertical shape profiles; when vertical shape 153 

profiles from a regional model are instead used, the bias decreases to between -1% and -23% (Nawaz et al., 2024, 154 

Judd et al., 2020, Tack et al., 2021). Prior work has demonstrated a strong correlation between TROPOMI NO2 column 155 

measurements and NO2 surface concentrations in urban areas (Demetillo et al., 2020; Dressel et al., 2022; Goldberg 156 

et al., 2021; Nawaz et al., 2025). For our baseline, we screened TROPOMI pixels for quality assurance flag values 157 

greater than 0.75, and conduct a sensitivity analysis of filtering only with a cloud radiative fraction filter of 0.5. The 158 

cloud radiative fraction is calculated from the O2 A-band using the FRESCO-S algorithm. Due to differences in 159 

wavelength between the O2 A-band and the NO2 retrieval window, the cloud fraction retrieved in the O2 A-band is not 160 

exactly representative for the cloud fraction in the NO2 window, but it is similar. 161 

The filtered data were re-gridded to a 0.01° × 0.01° resolution, to create a custom “Level-3” data product (Goldberg 162 

et al., 2021) during cloud-free and cloudy conditions. Single pixel TROPOMI tropospheric vertical column NO2 163 

uncertainties have been quantified to be between 25 – 50% under clear skies and this uncertainty is dominated by 164 
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uncertainty in the tropospheric air mass factor (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025); 165 

uncertainties of measurements with cloud fractions > 0.5 are larger. Oversampled NO2 measurements over monthly 166 

and annual timeframes (10s - 100s of measurements) have a smaller amount of uncertainty, approximately 10 – 20 % 167 

depending on location and season (Glissenaar et al., 2025) . 168 

2.2.2 TEMPO 169 

TEMPO was launched by SpaceX on 7 April 2023 and is hosted on Maxar Intelsat 40e. Data from the instrument 170 

became available on 2 August 2023, after an approximately 4-month dry-out, cool-down, and calibration period. The 171 

satellite is in geostationary orbit centered over the United States with north-south coverage extending from Mexico 172 

City (~17°N) to the Canadian Oil Sands (~58°N)  and east-west coverage from Puerto Rico to the Pacific coast. 173 

TEMPO operationally measures total column amounts of NO2, HCHO, and O3 with additional products forthcoming. 174 

At nadir, pixel sizes are 4.75 × 2 km2 with the North-east and North-west edges having slightly larger pixels sizes. 175 

The instrument observes the full east-west swath approximately once every hour. 176 

For our analysis we use the TEMPO NO2 version 3 algorithm during 2 Aug 2023 – 31 Aug 2024. The data was filtered 177 

to include pixels only where the effective cloud fractions are less than 0.15 and the main data quality flags are equal 178 

to 0. The filtered data was re-gridded to a 0.01° × 0.01° resolution, to create a custom “Level-3” data product (Goldberg 179 

et al., 2021) during cloud-free and cloudy conditions. Single pixel TEMPO tropospheric vertical column NO2 180 

uncertainties can be assumed to be similar to the uncertainty of TROPOMI measurements (Glissenaar et al., 2025), 181 

which are between 25 – 50% under clear skies for individual pixels, and 10 – 20% for oversampled averages; future 182 

work will better quantify the uncertainties of TEMPO NO2 measurements.   183 

2.3 ERA5 Re-analysis 184 

We intercompare the cloud radiative fractions from TROPOMI to the ERA5 re-analysis (Hersbach et al., 2020) of 185 

total cloud fractions in the early afternoon (18Z for Eastern Time, 19Z for Central Time, 20Z for Mountain Time, 21Z 186 

for Pacific Time), which approximates the overpass time of TROPOMI over the contiguous United States. The ERA5 187 

total cloud fraction is a unitless quantity representing how much of a grid cell is covered by a cloud (e.g., condensed 188 

water vapor) at any vertical level of the atmosphere and does not differentiate between the optical properties of those 189 

clouds. The ERA5 re-analysis data are reported at a 0.25° × 0.25° spatial resolution and the cloud fractions are 190 

interpolated, using bilinear interpolation, to the 0.01° × 0.01° oversampled TROPOMI NO2 grid. 191 

2.4 WRF-Chem 192 

The Weather Research and Forecasting with Chemistry (WRF-Chem) model was run at 12 km × 12 km over the 193 

Continental U.S. for all days of 2019: 1 January 2019 – 31 December 2019 as described in He et al. (2024). For 194 

anthropogenic emissions, the Fuel-based Inventory of Vehicle Emissions (FIVE) was used to provide on-road and off-195 

road mobile emissions, the Fuel-based Oil and Gas (FOG) inventory was used for emissions associated with oil and 196 

natural gas production, power plant emissions were provided by Continuous Emissions Monitoring Systems (CEMS), 197 
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and all other anthropogenic emissions were obtained from the 2014 or 2017 National Emissions Inventory (NEI). 198 

Biogenic emissions were estimated using Biogenic Emissions Inventory System (BEIS) version 3.13. Gas-phase 199 

chemistry was from the RACM_ESRL_VCP scheme. Boundary conditions were provided from the Realtime Air 200 

Quality Modeling System (RAQMS, http://raqms-ops.ssec.wisc.edu/) developed by the University of Wisconsin-201 

Madison.  The cloud fractions used in this project are from the total cloud fraction “CLDFRA” variable. 202 
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3 Results 203 

3.1 CONUS Cloud Patterns 204 

We first conduct an analysis of cloud patterns across the contiguous United States, and inter-compare clear-sky days 205 

estimated by TROPOMI, the ERA5 re-analysis, and the WRF-Chem model (Figure 1). For TROPOMI, we define 206 

clear skies as the percentage of days with qa_value > 0.75, which almost exclusively filters based on cloud fractions 207 

<0.5; cloud-free snow-covered scenes typically have a qa_value > 0.75 (Eskes et al., 2022). For ERA5 and WRF-208 

Chem, we define clear skies as the percentage of days with the total cloud fractions <0.5. ERA5 and WRF-Chem 209 

have similar clear-sky spatial patterns as TROPOMI but show systematically lower amounts of clear-skies by 8%. 210 

The small systematic difference between TROPOMI and ERA5 when filtering for cloud fractions at 13:30 is likely 211 

driven by how optically thin cirrus-like clouds are handled; for TROPOMI these are being observed based on optical 212 

properties and therefore optically thin clouds are not assumed to be a cloud, whereas in weather models (ERA5 and 213 

WRF-Chem) these are being computed as vertical layers in the atmosphere with condensed water vapor. Overall, 214 

there is very strong agreement between the three datasets in the estimation of clouds giving us confidence that 215 

TROPOMI, ERA5, and WRF-Chem are all good estimators of daily clear-sky amounts.  216 

 217 
Figure 1. Percentage of clear-sky days over the contiguous U.S. during 2019 from the TROPOMI NO2 V2.4 218 
product, ERA5 re-analysis, and WRF-Chem. (Top left) Normalized frequency diagram of the binned percentage of 219 
clear sky days for the three products. (Top right) Percentage of days in which the qa_value of the TROPOMI NO2 220 
V2.4 measurement was greater than 0.75. (Bottom left) Percentage of days in which the total cloud cover (tcc) from 221 
the ERA5 was less than 0.5. (Bottom right) Percentage of days in each grid cell in which the total cloud fraction 222 
from the WRF-Chem was less than 0.5 223 

  224 
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For the remainder of this project, we define “clear sky” based on the TROPOMI NO2 retrieval and use days with 225 

observations exceeding a qa_value of 0.75. According to TROPOMI – which is the only true observational dataset – 226 

the Southwest U.S. has the most amount of clear-sky days per year (~80% of days at 13:30 local time), while the 227 

interior Northeast U.S. and coastal Northwest has the fewest (~30% of days at 13:30 local time). The major U.S. city 228 

with the most clear-sky days is Phoenix (79% of days), while the major U.S. city with the least clear-sky days is 229 

Seattle (29% of days). 230 

Annualized spatial cloud patterns are similar throughout the daylight hours with marginally more clear skies in the 231 

morning hours especially in the eastern U.S (Figure S1). Despite this, clouds are often transient, and there are 232 

opportunities to observe a clear sky measurement at a different hour of the day if the 13:30 observation is obstructed 233 

by clouds. In Figure 2, we demonstrate that between 68% – 93% of days have a clear sky measurement during any 234 

hour of the daytime as compared to the 33 – 69% range at 13:30.  235 

 236 
Figure 2. Percentage of days over the contiguous U.S. during 2019 with cloud fractions less than 0.5 as simulated by 237 
WRF-Chem at various local times: (Left) 13:30, (Right) any time between 7:00 – 19:00. 238 
 239 
3.2 Surface NO2: Clouds vs. No Clouds  240 

We then link whether TROPOMI is observing a clear sky or not (i.e., qa_value > 0.75) to the daily in situ ground-241 

level NO2 observations to determine how clouds are affecting surface NO2 concentrations (hereafter referred to as 242 

surface NO2). In Figure 3, we show that surface NO2 at 13:30 local time is +12.9% larger (NMC = normalized mean 243 

change) [–3.8% (10th percentile), +32.1% (90th percentile)] on days with clouds at 13:30 compared to the annualized 244 

13:30 average when all days of data are included. We also note the very strong correlation between the NO2 on cloudy 245 

days and all days, which suggests that the presence of clouds drives a systematic change from the mean rather than a 246 

random change. We next show that the NO2 during the average of all days is +17.2% larger [–1.8%, +38.7%] than on 247 

days with only clear skies. The +17.2% value is our estimate of the difference of annualized surface-based NO2 at 248 

13:30 on all days as compared to only clear sky days. We further show that surface NO2 at 13:30 is +36.0% larger [–249 

6.1%, +72.9%] on days with clouds compared to days with clear skies. 250 
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 251 
Figure 3. Scatterplots intercomparing annualized surface NO2 from the EPA AQS at 13:30 local time during all days, 252 
cloudy days, and no cloud days. (Left) Annualized surface NO2 during cloudy days compared to annualized surface 253 
NO2 during all days. (Center) Annualized surface NO2 during all days compared to annualized surface NO2 during no 254 
cloud days. (Right) Annualized surface NO2 during cloudy days compared to annualized surface NO2 during no cloud. 255 
A “cloudy” vs “no cloud” day is determined via the qa_value of 0.75 from the TROPOMI NO2 V2.4 product.  256 
 257 
The difference in surface NO2 between cloudy and clear sky days can vary dramatically based on geographic region 258 

and proximity to a major roadway (Table 1). For the purposes of the sensitivity study, we focus on the cloudy versus 259 

no cloud days, while the directional changes of “cloudy versus all days” and “all days versus no clouds” values are 260 

similar (Tables S1 & S2).  261 

Table 1. Slope, r2, Normalized Mean Change (NMC), and number of sites of the “cloudy vs. no clouds” bias by 262 
further filtering out AQS data using various additional sensitivity analyses. Tables S1 & S2 show the sensitivity 263 
analyses for the “cloudy vs. all days” bias, and “all days vs. no clouds” bias respectively. 264 

 Slope r2 
Normalized Mean 

Change (%) 
# sites of monitoring 

sites used 
Baseline (V2.4) 1.20 0.85 +36.0% 374 

V2.3.1 1.18 0.86 +40.4% 374 
V2.4 crf<0.5  1.25 0.83 +80.8% 373 
V2.4 all sites 1.05 0.90 +32.7% 449 

V2.4 near road only 0.89 0.84 +15.9% 76 
V2.4 no chemiluminescence 1.20 0.87 +53.1% 26 

V2.4 Summer only 1.17 0.86 +23.8% 366 
V2.4 Winter only 1.14 0.82 +27.8% 373 
V2.4 Spring only 1.28 0.88 +31.9% 364 

V2.4 Fall only 1.07 0.77 +30.9% 359 
V2.4 North only 1.31 0.89 +41.5% 217 
V2.4 South only 0.98 0.82 +28.5% 157 

V2.4 NorthEast only 1.36 0.93 +61.7% 106 
V2.4 SouthEast only 1.27 0.94 +33.8% 73 
V2.4 NorthWest only 1.12 0.88 +22.2% 111 
V2.4 SouthWest only 0.91 0.79 +23.9% 84 

V2.4 lowPopDensity only 1.34 0.86 +36.3% 216 
V2.4 highPopDensity only 1.13 0.76 +37.5% 167 
V2.4 lowRoadDensity only 1.19 0.82 +33.6% 216 
V2.4 highRoadDensity only 1.18 0.80 +40.8% 165 

 265 
 266 
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First, we find that NO2 during cloudy days is larger in the northern U.S. (+41.5%) than the southern U.S. (+28.5%) 267 

and largest in the Northeast U.S (+61.7%) (Figure 4); for this analysis, 37°N is the dividing latitude between North 268 

and South, 100°W is the dividing longitude between East and West. Although the calculated cloudy versus no cloud 269 

change is independent of the number of days of clear-skies, areas of perpetually cloudy skies also have cooler 270 

temperatures and shallower boundary layers which could cause much larger NO2 on cloudy days. Interestingly, the 271 

Phoenix and Salt Lake City areas – two areas with large number of days with clear skies – also have a relatively large 272 

difference between cloudy and clear sky days demonstrating that the bias is independent of the number of days with 273 

clear skies. However, the annualized difference between cloudy and clear sky days in the Southwest U.S. is modest 274 

(+4.8%) (Table S1) because there are fewer individual days affected by clouds. Approximately 13% of monitoring 275 

sites, mostly concentrated in the Los Angeles and San Diego areas, have lower NO2 on cloudy days, and this may be 276 

driven by enhanced westerly winds on cloudy days bringing in cleaner marine air more than offsetting the 277 

photochemically driven larger NO2 on cloudy days. Overall, while there are a few locations with lower NO2 on cloudy 278 

days, 87% of locations exhibit larger NO2 on cloudy days and this is driven by the slower photochemistry on these 279 

days. 280 

 281 
Figure 4. (Left) Ratio of the annualized surface NO2 during cloudy and no cloud days at the EPA AQS sites not 282 
classified as “near-road”. (Right) Same image but with an inverse distance weighting underlaid to infer geographic 283 
distribution of the ratio. 284 
 285 
Proximity to roadways and large sources of NOx is another driver of whether a location will experience a small (but 286 

larger) difference in NO2 on cloudy and clear sky days. For areas in close proximity to roadways (i.e., the near-road 287 

sites) (n=76), the difference in NO2 between cloudy and clear sky days is weaker: a smaller positive change (+15.9%) 288 

and only 77% of sites displaying a positive mean change, which is less than the difference at all other NO2 monitoring 289 

locations (+36.0%).  290 

We find that seasonal effects on the differences in NO2 between cloudy and clear days are modest. The NO2 on cloudy 291 

days in the Spring is largest and marginally smaller in other seasons. Other factors that were not associated with strong 292 

changes to the differences in NO2 between cloudy and clear days bias are: the version of the TROPOMI NO2 algorithm, 293 
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whether the site was using a chemiluminescence or Cavity Attenuated Phase Shift measurement technique, and 294 

population / roadway density within a 0.5° radius.   295 

 296 
3.3 TROPOMI NO2: Clouds versus No Clouds 297 

We then compare TROPOMI NO2 measurements under varying sky conditions. For this exercise, we filter the 298 

TROPOMI NO2 data strictly based on cloud radiative fraction (crf). Although it is recommended for most applications 299 

to use data when the crf <0.5, sometimes measurements are usable in the presence of optically thick clouds (i.e., crf  300 

>0.5). In Figure 5, we average TROPOMI NO2 measurements below and above a crf = 0.5 threshold to gain an 301 

understanding of how TROPOMI column NO2 measurements intercompare in the presence and lack of optically thick 302 

clouds. In the figure we show the tropospheric vertical columns on the top row, and tropospheric slant columns in the 303 

middle row, which have been interconverted using the tropospheric air mass factor shown on the bottom row. As 304 

discussed in Section 2.2.1, the tropospheric air mass factor can be a large source of uncertainty when calculating 305 

tropospheric vertical columns from slant columns (Glissenaar et al., 2025; S. Liu et al., 2021; Rijsdijk et al., 2025). 306 

 307 
Figure 5. (Left column) Annual 2019 TROPOMI NO2 filtered using only a cloud radiative fraction (crf) filter less 308 
than 0.5. (Center column) Annual 2019 TROPOMI NO2 filtered using only a crf filter greater than 0.5. (Right column) 309 
Ratio between the two annual averages. (Top row) Vertical tropospheric column NO2 data. (Center row) Slant 310 
tropospheric column NO2 data. (Bottom row) Tropospheric air mass factors. 311 
 312 
 313 
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In Figure 5, we demonstrate that the vertical column NO2 spatial patterns in the presence of clouds are much different 314 

in magnitude than the slant column NO2 whereas the vertical column NO2 spatial patterns in the absence of clouds are 315 

similar to the slant column NO2. This is primarily driven by the assumed vertical shape profiles in the model. During 316 

measurements when the crf  >0.5 as compared to measurements when crf <0.5, the model is “filling in” the missing 317 

NO2 and causing small air mass factors as shown. This is primarily because sensitivity to the surface concentrations 318 

is altered (lower) in the slant column measurement in the presence of clouds. Also, during measurements when the crf  319 

>0.5, the uncertainty of the TROPOMI vertical column measurements rises, and this is driven by the difficulty in 320 

calculating the air mass factor in the presence of clouds; in addition to needing to know the vertical NO2 profile for 321 

its calculation, we also need to know the pressure level and thickness of the clouds. Such errors can generate nonlinear 322 

responses. This analysis confirms that the assumed air mass factor is the driving factor causing the differences in the 323 

tropospheric vertical column NO2 between clear and cloudy sky days, as the slant tropospheric column NO2 is smaller 324 

during cloudy skies due to a lack of instrument sensitivity to the surface during cloudy conditions. Therefore, special 325 

care should be used when interpreting tropospheric satellite measurements in the presence of clouds. 326 

 327 

Qualitatively, the ratio of the column NO2 with and without clouds is spatially similar to the ratio from the AQS 328 

analysis – with the largest ratios occurring in the Northeast U.S and smallest ratios occurring in the Southwest U.S. 329 

However, quantitatively, the column ratio observed by TROPOMI is much larger in magnitude in the eastern U.S. 330 

than the surface ratio observed at the AQS surface sites. It is difficult to determine whether the quantitative magnitude 331 

is correct because there are no ground-based instruments to accurately measure column NO2 in the presence of clouds.  332 

3.4 WRF-Chem NO2: Clouds vs. No Clouds 333 

We then compare the differences in NO2 between cloudy and clear days observed by the EPA AQS surface network 334 

to the differences in NO2 between cloudy and clear days of surface NO2 simulated by WRF-Chem. The 13:30 local 335 

time differences in NO2 between cloudy and clear days of surface NO2 in WRF-Chem (+58.7%) is substantially larger 336 

than from the AQS observations (+36.0%) during collocations. This directional change is consistent among all 337 

geographic regions suggesting that NO2 concentrations are too responsive to sunlight in WRF-Chem.  338 

 339 
Figure 6. Scatterplots intercomparing annualized surface NO2 at 13:30 local time during cloudy days vs. no cloud 340 
days. (Left) EPA AQS data which is a repeat of Figure 3c. (Center) WRF-Chem collocated with the AQS monitoring 341 
sites, and using the WRF-Chem cloud filter in lieu of the TROPOMI cloud filter. (Right) WRF-Chem collocated with 342 
the AQS monitoring sites, comparing NO2* instead of NO2.  343 
 344 

EPA surface Network: Surface NO2; 1 PM
WRF-Chem: Surface NO2; 1 PM

at EPA monitoring locations
WRF-Chem: Surface NO2*; 1 PM

at EPA monitoring locations
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There could be several reasons for this discrepancy. First, 91% of monitors in the EPA monitoring network measure 345 

using the chemiluminescence method, NO2*, which quantifies NO2 in addition to some fraction of HNO3. The latter 346 

is problematic because the NO2 + OH à HNO3 reaction is often the terminal sink for NO2 during daytime and if HNO3 347 

is additionally being measured then this would appear to buffer photolytically driven changes. We further conducted 348 

a sensitivity test in WRF-Chem and found that the NMC is only +42.1% down from +58.7% when a 349 

chemiluminescence correction factor from Equation 1 is used  (Figure 6c), indicating that some of the perceived 350 

differences between WRF-Chem and EPA monitors could be due to monitor interferences from PAN and HNO3. 351 

Second, it is possible that OH concentrations in WRF-Chem are fluctuating too rapidly in the presence of and lack of 352 

clouds (Duncan et al., 2024) causing NO2 to be removed to rapidly in the model. Third, there might be insufficient 353 

NO2 recycling of organic nitrates and/or particulate nitrates in the model which could buffer photolysis-related 354 

changes; recent work has suggested that particulate nitrate can meaningfully photolyze back to NO2 (Sarwar et al., 355 

2024; Shah et al., 2024). Fourth, WRF-Chem may not simulate PBL depth properly and may have different biases 356 

during cloudy and clear sky conditions (Hegarty et al., 2018; Kuhn et al., 2024; X. Liu et al., 2023). For example, if 357 

the predicted PBL is too shallow during cloudy conditions, this could be a contributing factor to the simulated surface 358 

NO2 bias. Errors in surface jNO2 do not appear to be a primary driver of the cloudy versus clear sky disagreements as 359 

the jNO2 values from WRF-Chem seem reasonable as compared to UV-B measurements from the NOAA Surface 360 

Radiation Budget (SURFRAD) monitoring network (Figure S4) and is consistent with other work showing small 361 

biases in jNO2 in WRF-Chem (Ryu et al., 2018). Follow-up work will address some of these shortcomings by adding 362 

particulate nitrate photolysis into the chemical mechanism and evaluating PBL depths during cloudy conditions using 363 

ceilometers.  364 

 365 
 366 
We can then use WRF-Chem as a transfer standard to suggest how column NO2 may change in relation to the surface 367 

NO2, and we find that the relative change in column NO2 and surface NO2 in response to clouds are very similar 368 

(Figure 7). This makes intuitive sense because most NO2 over the contiguous U.S. is located within the boundary 369 

layer, and typically clouds (if they exist) are located at the top of the boundary layer. Any sunlight obstructed by 370 

clouds will also obstruct the NO2 both at the surface and in the full boundary layer.  371 
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 372 
Figure 7. Ratio of the annualized surface NO2 at 13:30 local time from WRF-Chem during cloudy and no cloud days. 373 
(Left) Surface NO2 (Right) Tropospheric column NO2.  374 
 375 

3.5 Impacts of clouds on geostationary observations  376 

Finally, we use provisional TEMPO NO2 data, TROPOMI NO2 data, and AQS NO2 data from 2 August 2023 through 377 

30 June 2024 to understand how the changes of NO2 during clear and cloudy conditions may be altered at different 378 

hours of the day (Figure 8). In this analysis, the threshold between high quality and lower quality data for both satellite 379 

products is a cloud radiative fraction = 0.15. Any TEMPO NO2 or TROPOMI NO2 measurement with  crf < 0.15 was 380 

assumed to be “clear sky”, while all other measurements are assumed to be cloudy. Hours with low solar zenith angles 381 

(before 8:00 and after 16:00) have been excluded from this analysis. We find that the difference in surface NO2 382 

between clear and cloudy days is small in the early morning hours and increases throughout the day.  383 
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 384 
Figure 8. Normalized mean percentage change in the surface NO2 during days with cloudy skies as opposed to days 385 
with clear skies. Red dot shows the mean percentage change using TROPOMI clouds as shown in Figure 2c. Black 386 
line uses the same procedure for Aug 2023 – June 2024 data and TEMPO cloud data. 387 
 388 

Surface AQS NO2 at 8:30 local time is +8.3% larger on cloudy days than clear sky days, while at 15:30 it is +52.2% 389 

larger. The calculated 13:30 difference in surface NO2 between cloudy and clear sky days using TEMPO (+25.1%) is 390 

similar to the analogous value from TROPOMI (+35.4%). Differences between TEMPO and TROPOMI are expected 391 

because the cloud algorithms and instrument characteristics are different, even though the timeframe and cloud filter 392 

threshold used for this analysis are the same.  393 

 394 
4 Discussion 395 

In this project we quantify how NO2 satellite data could be biased in estimating annualized surface NO2 396 

concentrations due to having high quality measurements only in the absence of clouds. We find that surface in situ 397 

NO2 measurements are on average +17% on all days compared to restricting to clear sky days and +36% larger 398 

during cloudy days vs. clear sky days, with a wide distribution based on geographic region and proximity to 399 

roadway. Using the United States as a case study, we find the clear-sky bias to be largest in the Northeast U.S.; 400 

conversely, the clear-sky bias is smallest in the Southwest U.S. and near major roadways. In some areas of the urban 401 

Western U.S., Los Angeles and San Diego, we find that NO2 is lower on cloudy days, but these instances are rare 402 

(13% of monitoring sites) and are driven by unique transport patterns on cloudy days. Transport patterns are a 403 

significant driver of the regional clear vs. cloudy sky differences of surface NO2 concentrations. Although the 404 

analysis was computed for both TROPOMI and TEMPO data, it should be re-emphasized that the cloud algorithms 405 
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used by both instruments are different. However, the qualitative finding that surface NO2 differences between 406 

cloudy and clear conditions tend to be larger in the afternoon than morning is consistent with a hypothesis that active 407 

photochemistry during periods of stronger afternoon sunlight would cause this change. 408 

This work also highlights how NO2 concentrations are different on days when satellite instruments are not acquiring 409 

a valid measurement. Our initial hypothesis of NO2 being consistently larger on cloudy days was only partially 410 

proven true. In many cases, surface NO2 concentrations and column NO2 are larger, but this is not always the case. 411 

This project demonstrates the balancing act of the reduced NO2 + OH sink and local climatological patterns (wind 412 

speed/direction, PBL depth, etc.) driving surface NO2 during cloudy conditions. Although one of the original goals 413 

of this study was to better gap-fill satellite tropospheric vertical column NO2 measurements in the presence of 414 

clouds, ultimately, we were not comfortable doing this yet. Reliance on a model as a transfer standard to convert 415 

surface concentrations into column concentrations exhibited too many biases under cloudy conditions. WRF-Chem 416 

model simulations of surface NO2 suggest that the clear-sky bias in WRF-Chem is on average much larger than the 417 

observed clear-sky bias: +59% on cloudy days vs. clear days for the model, and +36% for the AQS data. We 418 

hypothesized that errors in OH chemistry, NO2 recycling speeds, and PBL mixing depths could all be contributing to 419 

this high bias. Future work should target these three research topics. Future work could also use a machine-learning 420 

approach to account for some of these model biases. 421 

Another consideration with the interpretation of satellite measurements is the impact of lightning NOx, wildfire 422 

NOx, and aircraft NOx emissions, mostly staying aloft, which could be misinterpreted as surface NO2 423 

enhancements. While lightning NOx and wildfire NOx emissions are often screened out when applying a cloud filter 424 

because they occur in optically thick clouds/smoke, it is possible for the NO2 to remain aloft for several days after 425 

the initial thunderstorm/fire and be observed during clear skies. An algorithm to detect and screen out downwind 426 

NO2 attributed to upwind lightning NOx and wildfire NOx emissions could be especially helpful. At minimum, care 427 

should be taken during timeframes and regions where there are large pulses of these types of emissions, such as our 428 

findings during summer. 429 

In some ways, the chosen year 2019 was an ideal year to conduct the analysis because it preceded the 2020 global 430 

pandemic and its nonlinear and lingering effects on air pollution. But in other ways, this year was less ideal because 431 

TROPOMI pixel sizes changed in August 2019 from 7 × 3.5 km2 (~25 km2) to 5.5 × 3.5 km2 (~19 km2) The fraction 432 

of clear-sky pixels likely increased by 1 – 2% after August 2019 as smaller pixel sizes can better “see around” 433 

clouds (Krijger et al., 2007). This probably did not meaningfully affect our analysis but is nonetheless a caveat of 434 

using 2019 data.  435 

These results have repercussions for many applied studies that use satellite data to estimate surface NO2 436 

concentrations or NOx emissions. First, for studies that estimate surface concentrations, it is important to ingest 437 

surface NO2 measurements during cloudy (and nighttime) conditions in some capacity in order to appropriately 438 

estimate 24-hour concentrations; most studies already do this. If one were to use the clear-sky satellite data coupled 439 

with only a chemical transport model as a transfer standard to convert the column measurement into a pseudo-440 
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surface “measurement”, this would underestimate annualized NO2 concentration in most places. Unfortunately, there 441 

are many global regions with few or no surface measurements, so this is an important consideration when estimating 442 

surface NO2 in these regions. But even if one were to ingest surface NO2 during cloudy conditions, the spatial 443 

patterns of surface NO2 during cloudy conditions may be slightly different than implied by the clear-sky satellite 444 

data. For example, we find that NO2 surface concentrations under cloudy conditions are much larger in the Northeast 445 

U.S. than the Southwest U.S., and a cloud-free satellite map does not capture this.   446 

Second, for nitrogen oxide emissions estimates it is often assumed that anthropogenic emission rates are similar 447 

under cloudy and clear-sky conditions, but this is likely not the case in reality. Although we show that surface NO2 448 

concentrations are typically smaller under clear-skies, it is likely that anthropogenic NOx emissions are actually 449 

larger under regionwide clear-skies during summer and winter due to the moderating impact of clouds on surface 450 

temperature and subsequent impacts on heating-ventilation-air conditioning (HVAC) usage/emissions (Abel et al., 451 

2017). If we were able to better independently estimate tropospheric vertical column NO2 during cloudy conditions, 452 

perhaps this could be investigated in the future. 453 

Lastly, as satellite-derived NO2 applications increase over the coming years, it is important to document its 454 

successes and shortcomings. We see this project as a first-step towards better accounting for the clear-sky bias of 455 

satellite NO2 data. While future NO2 applications may use geostationary data, such as TEMPO, which may suffer 456 

from a similar bias depending on the hour of the day, an advantage of geostationary satellite data is the ability to use 457 

multiple measurements per day before and just after the clouds. It might be possible to isolate a two-hour window 458 

(one with a cloud and one without) to get a better handle on the instantaneous versus long-term role of clouds 459 

affecting NO2 concentrations.  460 

This work also highlights the critical role that chemical transport models can play in satellite NO2 applications. 461 

Errors in the model assumptions can hamstring many NO2 applications. For example, using a model to infer NO2 462 

during cloudy conditions in the lack of clear-sky satellite data would yield significant errors. Therefore, future work 463 

should concurrently focus on acquiring and using sub-orbital measurements to diagnose errors related in simulating 464 

NO2 in chemical transport models, so that they can be used as more robust transfer standards.  465 



 19 

Data availability. TROPOMI NO2 version 2.4 data (http://doi.org/10.5270/S5P-9bnp8q8) processed to 0.01° × 466 

0.01° resolution (http://doi.org/10.5067/MKJG22GUOD34) and TEMPO NO2 version 3 data 467 

(http://doi.org/10.5067/IS-40e/TEMPO/NO2_L3.003) can be freely downloaded from NASA Earthdata. EPA AQS 468 

surface NO2 data can be downloaded from pre-generated files: 469 

https://aqs.epa.gov/aqsweb/airdata/download_files.html. ERA5 re-analysis hourly data on single levels 470 

(http://doi.org/10.24381/cds.adbb2d47) can be downloaded from Copernicus Climate Data Store 471 

(https://cds.climate.copernicus.eu/#!/home). NOAA SURFAD data can be downloaded from: 472 

https://gml.noaa.gov/grad/surfrad/sitepage.html . Output from the WRF-Chem simulation is available upon request. 473 

IDL code to process the data is available upon request. 474 

 475 

Author contribution. D.G., A.C., S.K., and S.A. developed the project design. J.H. and C.L. set-up and conducted 476 

the WRF-Chem simulations. D.G downloaded and processed the TROPOMI NO2, TEMPO NO2, ERA5, and 477 

SURFRAD data and re-gridded all data to a standardized grid. M.O.N. helped to process the surface NO2 data. D.G. 478 

developed all figures for the manuscript and wrote the paper. All authors edited the manuscript. 479 

 480 

Competing interests. The contact author has declared that none of the authors have any competing interests.  481 

 482 

Acknowledgments. Preparation of this manuscript was funded by grants from the NOAA GeoXO program 483 

(1305M323PNRMA0668) and the NASA Health and Air Quality Applied Sciences Team (HAQAST) 484 

(80NSSC21K0511). NOAA Cooperative Agreement (NA17OAR4320101 and NA22OAR4320151) funded C. Lyu 485 

and J. He. The WRF-Chem simulation was supported by NOAA’s High Performance Computing Program. The 486 

authors would also like to thank Brian McDonald and Laura Judd for very helpful feedback during preparation of this 487 

manuscript.  488 

 489 

Supporting Information. The supporting information includes: 1) a spatial plot of the annual average of days with 490 

total cloud fraction less 0.5 as simulated by WRF-Chem during 8 AM, 1 PM, and 5 PM local time, 2) scatterplots of 491 

various 2019 annual averages of surface NO2 and TROPOMI NO2 measurements, 3) jNO2 from WRF-Chem and an 492 

intercomparison with the NOAA SURFRAD network, 4) Tables of “cloudy vs. all days” and “all days vs. no 493 

clouds” analogous to Table 1 which shows “cloudy vs. no clouds”. 494 

 495 

 496 

http://doi.org/10.5270/S5P-9bnp8q8
http://doi.org/10.5067/MKJG22GUOD34
http://doi.org/10.5067/IS-40e/TEMPO/NO2_L3.003
https://aqs.epa.gov/aqsweb/airdata/download_files.html
http://doi.org/10.24381/cds.adbb2d47
https://cds.climate.copernicus.eu/#!/home
https://gml.noaa.gov/grad/surfrad/sitepage.html


 20 

References 497 

Abel, D. W., Holloway, T., Kladar, R. M., Meier, P., Ahl, D., Harkey, M., & Patz, J. (2017). Response of Power 498 
Plant Emissions to Ambient Temperature in the Eastern United States. Environmental Science and 499 
Technology, 51(10), 5838–5846. https://doi.org/10.1021/acs.est.6b06201 500 

Acker, S. J., Holloway, T., & Harkey, M. K. (2025, February 13). Satellite Detection of NO2 Distributions and 501 
Comparison with Ground-Based Concentrations. EGUsphere. https://doi.org/10.5194/egusphere-2025-226 502 

Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., et al. (2022). Long-term trends 503 
in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. The 504 
Lancet Planetary Health, 6(1), e49–e58. https://doi.org/10.1016/S2542-5196(21)00255-2 505 

Bechle, M. J., Millet, D. B., & Marshall, J. D. (2015). National Spatiotemporal Exposure Surface for NO2: Monthly 506 
Scaling of a Satellite-Derived Land-Use Regression, 2000-2010. Environmental Science and Technology, 507 
49(20), 12297–12305. https://doi.org/10.1021/acs.est.5b02882 508 

Boersma, K. F., Eskes, H. J., Dirksen, R. J., Van Der A, R. J., Veefkind, J. P., Stammes, P., et al. (2011). An 509 
improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric 510 
Measurement Techniques, 4(9), 1905–1928. https://doi.org/10.5194/amt-4-1905-2011 511 

Burnett, R. T., Stieb, D., Brook, J. R., Cakmak, S., Dales, R., Raizenne, M., et al. (2004). Associations between 512 
short-term changes in nitrogen dioxide and mortality in Canadian cities. Archives of Environmental Health, 513 
59(5), 228–236. https://doi.org/10.3200/AEOH.59.5.228-236 514 

Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic 515 
reduction of NO(x) by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18(1–2), 516 
1–36. https://doi.org/10.1016/S0926-3373(98)00040-X 517 

Cao, E. L. (2023). National ground-level NO2 predictions via satellite imagery driven convolutional neural 518 
networks. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1285471 519 

Crippa, M., Guizzardi, D., Pisoni, E., Solazzo, E., Guion, A., Muntean, M., et al. (2021). Global anthropogenic 520 
emissions in urban areas: patterns, trends, and challenges. Environmental Research Letters, 16(7), 074033. 521 
https://doi.org/10.1088/1748-9326/AC00E2 522 

Demetillo, M. A. G., Navarro, A., Knowles, K. K., Fields, K. P., Geddes, J. A., Nowlan, C. R., et al. (2020). 523 
Observing Nitrogen Dioxide Air Pollution Inequality Using High-Spatial-Resolution Remote Sensing 524 
Measurements in Houston, Texas. Environmental Science & Technology, 54(16), 9882–9895. 525 
https://doi.org/10.1021/acs.est.0c01864 526 

Dickerson, R. R., Anderson, D. C., & Ren, X. (2019). On the use of data from commercial NOx analyzers for air 527 
pollution studies. Atmospheric Environment, 214, 116873. https://doi.org/10.1016/j.atmosenv.2019.116873 528 

Dressel, I. M., Demetillo, M. A. G., Judd, L. M., Janz, S. J., Fields, K. P., Sun, K., et al. (2022). Daily Satellite 529 
Observations of Nitrogen Dioxide Air Pollution Inequality in New York City, New York and Newark, New 530 
Jersey: Evaluation and Application. Environmental Science and Technology, 2022. 531 
https://doi.org/10.1021/ACS.EST.2C02828/ASSET/IMAGES/LARGE/ES2C02828_0006.JPEG 532 

Duncan, B. N., Anderson, D. C., Fiore, A. M., Joiner, J., Krotkov, N. A., Li, C., et al. (2024). Opinion: Beyond 533 
global means – novel space-based approaches to indirectly constrain the concentrations of and trends and 534 



 21 

variations in the tropospheric hydroxyl radical (OH). Atmospheric Chemistry and Physics, 24(22), 13001–535 
13023. https://doi.org/10.5194/acp-24-13001-2024 536 

Eskes, H., van Geffen, J., Boersma, F., Eichman, K., Apituley, A., Pedergnana, M., et al. (2022). Sentinel-5 537 
precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide. 538 

de Foy, B., Krotkov, N. A., Bei, N., Herndon, S. C., Huey, L. G., Martínez, A.-P., et al. (2009). Hit from both sides: 539 
tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals 540 
during the MILAGRO field campaign. Atmospheric Chemistry and Physics, 9(24), 9599–9617. 541 
https://doi.org/10.5194/acp-9-9599-2009 542 

Geddes, J. A., Murphy, J. G., O’Brien, J. M., & Celarier, E. A. (2012). Biases in long-term NO2 averages inferred 543 
from satellite observations due to cloud selection criteria. Remote Sensing of Environment, 124(2), 210–216. 544 
https://doi.org/10.1016/j.rse.2012.05.008 545 

van Geffen, J. (2016). TROPOMI ATBD of the total and tropospheric NO2 data products, (2). Retrieved from 546 
https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products 547 

van Geffen, J., Boersma, K. F., Eskes, H. J., Sneep, M., ter Linden, M., Zara, M., & Veefkind, J. P. (2020). S5P 548 
TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI. 549 
Atmospheric Measurement Techniques, 13(3), 1315–1335. https://doi.org/10.5194/amt-13-1315-2020 550 

van Geffen, J., Eskes, H. J., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., et al. (2021). Sentinel-5P 551 
TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based 552 
data. Atmospheric Measurement Techniques, 15(7), 2037–2060. https://doi.org/10.5194/AMT-15-2037-2022 553 

Ghahremanloo, M., Lops, Y., Choi, Y., & Yeganeh, B. (2021). Deep Learning Estimation of Daily Ground-Level 554 
NO2 Concentrations From Remote Sensing Data. Journal of Geophysical Research: Atmospheres, 126(21), 555 
e2021JD034925. https://doi.org/10.1029/2021JD034925 556 

Ghahremanloo, M., Lops, Y., Choi, Y., Mousavinezhad, S., & Jung, J. (2023). A Coupled Deep Learning Model for 557 
Estimating Surface NO2 Levels from Remote Sensing Data: 15-Year Study Over the Contiguous United 558 
States. Journal of Geophysical Research: Atmospheres, e2022JD037010. 559 
https://doi.org/10.1029/2022JD037010 560 

Glissenaar, I., Folkert Boersma, K., Anglou, I., Rijsdijk, P., Verhoelst, T., Compernolle, S., et al. (2025). TROPOMI 561 
Level 3 tropospheric NO2 Dataset with Advanced Uncertainty Analysis from the ESA CCI+ ECV Precursor 562 
Project. EGUsphere. https://doi.org/10.21944/CCI-NO2-TROPOMI-L3 563 

Goldberg, D. L., Anenberg, S. C., Kerr, G. H., Mohegh, A., Lu, Z., & Streets, D. G. (2021). TROPOMI NO2 in the 564 
United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and 565 
Correlation With Surface NO 2 Concentrations. Earth’s Future, 9(4), e2020EF001665. 566 
https://doi.org/10.1029/2020EF001665 567 

Goldberg, D. L., Harkey, M., de Foy, B., Judd, L., Johnson, J., Yarwood, G., & Holloway, T. (2022). Evaluating 568 
NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO. Atmospheric 569 
Chemistry and Physics, 22(16), 10875–10900. https://doi.org/10.5194/acp-22-10875-2022 570 

Goldberg, D. L., Tao, M., Kerr, G. H., Ma, S., Tong, D. Q., Fiore, A. M., et al. (2024). Evaluating the spatial 571 
patterns of U.S. urban NOx emissions using TROPOMI NO2. Remote Sensing of Environment, 300, 113917. 572 
https://doi.org/10.1016/j.rse.2023.113917 573 



 22 

Harkey, M., & Holloway, T. (2024). Simulated Surface‐Column NO2 Connections for Satellite Applications. 574 
Journal of Geophysical Research: Atmospheres, 129(21). https://doi.org/10.1029/2024JD041912 575 

He, J., Harkins, C., O’Dell, K., Li, M., Francoeur, C., Aikin, K. C., et al. (2024). COVID-19 perturbation on US air 576 
quality and human health impact assessment. PNAS Nexus, 3(1). https://doi.org/10.1093/pnasnexus/pgad483 577 

He, M. Z., Kinney, P. L., Li, T., Chen, C., Sun, Q., Ban, J., et al. (2020). Short- and intermediate-term exposure to 578 
NO2 and mortality: A multi-county analysis in China. Environmental Pollution, 261, 114165. 579 
https://doi.org/10.1016/j.envpol.2020.114165 580 

Health Effects Institute. (2022). Systematic Review and Meta-analysis of Selected Health Effects of Long-Term 581 
Exposure to Traffic-Related Air Poll. Retrieved from https://www.healtheffects.org/system/files/hei-special-582 
report-23-executive-summary_0.pdf 583 

Hegarty, J. D., Lewis, J., McGrath-Spangler, E. L., Henderson, J., Scarino, A. J., DeCola, P., et al. (2018). Analysis 584 
of the Planetary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with Lidar and 585 
High-Resolution WRF Modeling. Journal of Applied Meteorology and Climatology, 57(11), 2679–2696. 586 
https://doi.org/10.1175/JAMC-D-18-0014.1 587 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global 588 
reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. 589 
https://doi.org/10.1002/qj.3803 590 

Jin, X., Zhu, Q., & Cohen, R. C. (2021). Direct estimates of biomass burning NOx emissions and lifetimes using 591 
daily observations from TROPOMI. Atmospheric Chemistry and Physics, 21(20), 15569–15587. 592 
https://doi.org/10.5194/acp-21-15569-2021 593 

Kebabian, P. L., Wood, E. C., Herndon, S. C., & Freedman, A. (2008). A practical alternative to 594 
chemiluminescence-based detection of nitrogen dioxide: Cavity attenuated phase shift spectroscopy. 595 
Environmental Science and Technology, 42(16), 6040–6045. https://doi.org/10.1021/es703204j 596 

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., et al. (2017). Ambient and laboratory 597 
evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. 598 
https://doi.org/10.1016/j.envpol.2016.12.039 599 

Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker, F. D., Lee, B. H., et al. (2018). NOx 600 
Lifetime and NOy Partitioning During WINTER. Journal of Geophysical Research: Atmospheres, 123(17), 601 
9813–9827. https://doi.org/10.1029/2018JD028736 602 

Kerr, G. H., Goldberg, D. L., Harris, M. H., Henderson, B. H., Hystad, P., Roy, A., & Anenberg, S. C. (2023). 603 
Ethnoracial Disparities in Nitrogen Dioxide Pollution in the United States: Comparing Data Sets from 604 
Satellites, Models, and Monitors. Environmental Science & Technology. 605 
https://doi.org/10.1021/acs.est.3c03999 606 

Khreis, H., Kelly, C., Tate, J., Parslow, R., Lucas, K., & Nieuwenhuijsen, M. (2017). Exposure to traffic-related air 607 
pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environment 608 
International, 100, 1–31. https://doi.org/10.1016/j.envint.2016.11.012 609 

Kim, E. J., Holloway, T., Kokandakar, A., Harkey, M., Elkins, S., Goldberg, D. L., & Heck, C. (2024). A 610 
Comparison of Regression Methods for Inferring Near‐Surface NO 2 With Satellite Data. Journal of 611 
Geophysical Research: Atmospheres, 129(16). https://doi.org/10.1029/2024JD040906 612 



 23 

Koltsakis, G., & Stamatelos, A. (1997). Catalytic automotive exhaust aftertreatment. Progress in Energy and 613 
Combustion Science, 23(1), 1–39. https://doi.org/10.1016/s0360-1285(97)00003-8 614 

Krijger, J. M., Van Weele, M., Aben, I., & Frey, R. (2007). Atmospheric Chemistry and Physics Technical Note: 615 
The effect of sensor resolution on the number of cloud-free observations from space. Atmos. Chem. Phys (Vol. 616 
7). Retrieved from www.atmos-chem-phys.net/7/2881/2007/ 617 

Kuhn, L., Beirle, S., Kumar, V., Osipov, S., Pozzer, A., Bösch, T., et al. (2024). On the influence of vertical mixing, 618 
boundary layer schemes, and temporal emission profiles on tropospheric NO2 in WRF-Chem – comparisons 619 
to in situ, satellite, and MAX-DOAS observations. Atmospheric Chemistry and Physics, 24(1), 185–217. 620 
https://doi.org/10.5194/acp-24-185-2024 621 

Lambert, J.-C., Claas, J., Stein-Zweers, D., Ludewig, A., Loyola, D., Sneep, M., & Dehn, A. (2023). Quarterly 622 
Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #19. 623 

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E. J., et al. (2008). 624 
Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. 625 
Journal of Geophysical Research Atmospheres, 113(16), 1–15. https://doi.org/10.1029/2007JD009235 626 

Larkin, A., Anenberg, S., Goldberg, D. L., Mohegh, A., Brauer, M., & Hystad, P. (2023). A global spatial-temporal 627 
land use regression model for nitrogen dioxide air pollution. Frontiers in Environmental Science, 11, 484. 628 
https://doi.org/10.3389/FENVS.2023.1125979 629 

Laughner, J. L., & Cohen, R. C. (2019). Direct observation of changing NOx lifetime in North American cities. 630 
Science, 366(6466), 723–727. https://doi.org/10.1126/science.aax6832 631 

Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Zweers, D. C. S., et al. (2018). The Ozone 632 
Monitoring Instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8), 5699–633 
5745. https://doi.org/10.5194/acp-18-5699-2018 634 

Lin, M., Horowitz, L. W., Hu, L., & Permar, W. (2024). Reactive Nitrogen Partitioning Enhances the Contribution 635 
of Canadian Wildfire Plumes to US Ozone Air Quality. Geophysical Research Letters, 51(15). 636 
https://doi.org/10.1029/2024GL109369 637 

Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOx lifetimes and emissions of cities and 638 
power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 639 
16(8), 5283–5298. https://doi.org/10.5194/acp-16-5283-2016 640 

Liu, S., Valks, P., Pinardi, G., Xu, J., Chan, K. L., Argyrouli, A., et al. (2021). An improved TROPOMI 641 
tropospheric NO2 research product over Europe. Atmospheric Measurement Techniques, 14(11), 7297–7327. 642 
https://doi.org/10.5194/amt-14-7297-2021 643 

Liu, X., Wang, Y., Wasti, S., Li, W., Soleimanian, E., Flynn, J., et al. (2023). Evaluating WRF-GC v2.0 predictions 644 
of boundary layer height and vertical ozone profile during the 2021 TRACER-AQ campaign in Houston, 645 
Texas. Geoscientific Model Development, 16(18), 5493–5514. https://doi.org/10.5194/gmd-16-5493-2023 646 

Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., et al. (2017). Structural uncertainty in 647 
air mass factor calculation for NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 648 
10(3), 759–782. https://doi.org/10.5194/amt-10-759-2017 649 



 24 

Martin, R. V., Brauer, M., van Donkelaar, A., Shaddick, G., Narain, U., & Dey, S. (2019). No one knows which city 650 
has the highest concentration of fine particulate matter. Atmospheric Environment: X, 100040. 651 
https://doi.org/10.1016/J.AEAOA.2019.100040 652 

Maruhashi, J., Mertens, M., Grewe, V., & Dedoussi, I. C. (2024). A multi-method assessment of the regional 653 
sensitivities between flight altitude and short-term O3 climate warming from aircraft NOx emissions. 654 
Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad376a 655 

Nault, B. A., Laughner, J. L., Wooldridge, P. J., Crounse, J. D., Dibb, J., Diskin, G., et al. (2017). Lightning NOx 656 
Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry. Geophysical 657 
Research Letters, 44(18), 9479–9488. https://doi.org/10.1002/2017GL074436 658 

Nawaz, M. O., Goldberg, D. L., Kerr, G. H., & Anenberg, S. C. (2025). TROPOMI Satellite Data Reshape NO2 Air 659 
Pollution Land-Use Regression Modeling Capabilities in the United States. ACS ES&T Air. 660 
https://doi.org/10.1021/acsestair.4c00153 661 

Palmer, P. I., Jacob, D. J., Chance, K. V., Martin, R. V., Spurr, R. J. D., Kurosu, T. P., et al. (2001). Air mass factor 662 
formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the 663 
Global Ozone Monitoring Experiment. Journal of Geophysical Research: Atmospheres, 106(D13), 14539–664 
14550. https://doi.org/10.1029/2000JD900772 665 

Platt, U. (1994). Differential Optical Absorption Spectroscopy (DOAS). In Air monitoring by spectroscopic 666 
techniques (p. 531). Wiley-IEEE. 667 

Poraicu, C., Müller, J.-F., Stavrakou, T., Fonteyn, D., Tack, F., Deutsch, F., et al. (2023). Cross-evaluating WRF-668 
Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium. Geosci. Model Dev, 669 
16, 479–508. https://doi.org/10.5194/gmd-16-479-2023 670 

Rijsdijk, P., Eskes, H., Dingemans, A., Boersma, K. F., Sekiya, T., Miyazaki, K., & Houweling, S. (2025). 671 
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation. 672 
Geoscientific Model Development, 18(2), 483–509. https://doi.org/10.5194/gmd-18-483-2025 673 

Ryu, Y. H., Hodzic, A., Barre, J., Descombes, G., & Minnis, P. (2018). Quantifying errors in surface ozone 674 
predictions associated with clouds over the CONUS: A WRF-Chem modeling study using satellite cloud 675 
retrievals. Atmospheric Chemistry and Physics, 18(10), 7509–7525. https://doi.org/10.5194/acp-18-7509-2018 676 

Sarwar, G., Hogrefe, C., Henderson, B. H., Mathur, R., Gilliam, R., Callaghan, A. B., et al. (2024). Impact of 677 
particulate nitrate photolysis on air quality over the Northern Hemisphere. Science of The Total Environment, 678 
917, 170406. https://doi.org/10.1016/j.scitotenv.2024.170406 679 

Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., et al. (2020). Effect of changing NOx lifetime on the 680 
seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmospheric 681 
Chemistry and Physics Discussions, 20(3), 1483–1495. https://doi.org/10.5194/acp-2019-670 682 

Shah, V., Keller, C. A., Knowland, K. E., Christiansen, A., Hu, L., Wang, H., et al. (2024). Particulate Nitrate 683 
Photolysis as a Possible Driver of Rising Tropospheric Ozone. Geophysical Research Letters, 51(5). 684 
https://doi.org/10.1029/2023GL107980 685 

Shetty, S., Schneider, P., Stebel, K., David Hamer, P., Kylling, A., & Koren Berntsen, T. (2024). Estimating surface 686 
NO2 concentrations over Europe using Sentinel-5P TROPOMI observations and Machine Learning. Remote 687 
Sensing of Environment, 312, 114321. https://doi.org/10.1016/j.rse.2024.114321 688 



 25 

Sullivan, D. M., & Krupnick, A. (2018). Using Satellite Data to Fill the Gaps in the US Air Pollution Monitoring 689 
Network. NW. Retrieved from https://www.rff.org/publications/working-papers/using-satellite-data-to-fill-the-690 
gaps-in-the-us-air-pollution-monitoring-network/ 691 

Sun, K., Zhu, L., Cady-Pereira, K. E., Chan Miller, C., Chance, K. V., Clarisse, L., et al. (2018). A physics-based 692 
approach to oversample multi-satellite, multi-species observations to a common grid. Atmospheric 693 
Measurement Techniques Discussions, 11(12), 1–30. https://doi.org/10.5194/amt-2018-253 694 

Sun, W., Tack, F., Clarisse, L., Schneider, R., Stavrakou, T., & Van Roozendael, M. (2024). Inferring Surface NO2 695 
Over Western Europe: A Machine Learning Approach With Uncertainty Quantification. Journal of 696 
Geophysical Research: Atmospheres, 129(20). https://doi.org/10.1029/2023JD040676 697 

Thornton, J. A., Wooldridge, P. J., & Cohen, R. C. (2000). Atmospheric NO2: In Situ Laser-Induced Fluorescence 698 
Detection at Parts per Trillion Mixing Ratios. Analytical Chemistry, 72(3), 528–539. 699 
https://doi.org/10.1021/ac9908905 700 

Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., et al. (1998). Measurements of the 701 
NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K. Journal 702 
of Quantitative Spectroscopy and Radiative Transfer, 59(3–5), 171–184. https://doi.org/10.1016/S0022-703 
4073(97)00168-4 704 

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA 705 
Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air 706 
quality and ozone layer applications. Remote Sensing of Environment, 120(2012), 70–83. 707 
https://doi.org/10.1016/j.rse.2011.09.027 708 

Zare, A., Romer, P. S., Nguyen, T., Keutsch, F. N., Skog, K., & Cohen, R. C. (2018). A comprehensive organic 709 
nitrate chemistry: Insights into the lifetime of atmospheric organic nitrates. Atmospheric Chemistry and 710 
Physics, 18(20), 15419–15436. https://doi.org/10.5194/acp-18-15419-2018 711 

  712 

 713 

 714 


