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Abstract. The ocean takes up over 90% of the excess heat stored in the Earth system as a result of anthropogenic climate

change, which has led to sea level rise and an intensification of marine extreme events. However, despite their importance for

informing climate policy, future ocean heat uptake (OHU) projections still strongly differ between climate models. Here, we

provide improved global OHU projections by identifying a relationship between present-day Antarctic sea ice extent and future

OHU across an ensemble of 28 state-of-the-art climate models.
::::::
Models

:::::
with

::::
more

::::
sea

:::
ice

::
at

::::::
present

::::
also

::::::::
simulate

:
a
::::::
colder5

:::::::
Southern

:::::::::::
Hemisphere

::::::
climate

::::
state

:::
in

:::::::
general,

:::::::
allowing

:::
for

::
a
:::::
larger

::::
shift

:::
in

::::::::::
atmospheric

::::
and

:::::
ocean

::::::::
warming.

:::::
This

:::::::
regional

::::::
change

::::::
affects

:::::
global

::::::::
warming

::::
and

::::
heat

::::::
uptake

:::
via

::
a
:::::::::
northward

::::::::::
propagating

::::::
cloud

::::::::
feedback.

:
Combining this relationship

:::::::
between

::::::::
historical

::::::::
Antarctic

:::
sea

:::
ice

:::::
extent

::::
and

:::::
future

:::::
global

:::::
OHU

:
with satellite observations of Antarctic sea ice reduces the

uncertainty of OHU projections under future emissions scenarios by 12–33%. Moreover, we show that an underestimation of

present-day Antarctic sea ice in the latest generation of climate models results in an underestimation of future OHU by 3–14%,10

of global cloud feedback by 19–32%, and of global atmospheric warming by 6–7%. This emergent constraint is based on a

strong coupling between Antarctic sea ice, deep ocean temperatures, and Southern Hemisphere sea surface temperatures and

cloud cover in climate models. Our study reveals how the present-day Southern Ocean state impacts future climate change,

and contrasts with
:::::::
suggests

:::
that

:
previous constraints based on past warming trends .

:::::::
warming

:::::
trends

::::
over

::::::
recent

:::::::
decades

::::
have

::::::::::::
underestimated

:::::
future

::::::::
warming

:::
and

::::::
ocean

:::
heat

:::::::
uptake.15

1 Introduction

Since the beginning of the industrial period, the ocean has taken up over 90% of the excess heat generated by human-caused

climate change (Forster et al., 2021). This ocean heat uptake (OHU) has limited the rate of atmospheric temperature increase

(Liu et al., 2016), but the widespread warming of the ocean (Johnson and Lyman, 2020) has had cascading negative conse-

quences for humans and marine ecosystems. Ocean warming contributes to sea level rise through thermal expansion and the20

melting of marine-terminating glaciers (Cazenave and Llovel, 2010). Sea level rise and ocean warming create risks for coastal
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communities due to increased flooding and more destructive tropical cyclones (Sun et al., 2017; Pörtner et al., 2022). Higher

upper ocean temperatures also lead to changes in stratification and the supply of nutrients and oxygen to marine ecosystems

(Sallée et al., 2021; Bopp et al., 2013; Morée et al., 2023), impacting fish stocks (Cheung et al., 2016) and perturbing the

global carbon cycle (Joos et al., 1999)
::::::::::::::::::::::::::::::::::::
(Joos et al., 1999; McNeil and Matear, 2013). Furthermore, ocean warming drives more25

frequent and intense marine heatwaves, potentially causing widespread collapses of foundation species including corals, kelps,

and seagrasses (Frölicher et al., 2018; Smith et al., 2023).

These direct negative impacts of ocean warming imply a need for accurate projections of OHU under future climate change.

The magnitude of future OHU primarily depends on cumulative greenhouse gas emissions, and thus on the effectiveness

of mitigation policies (Fox-Kemper et al., 2021). However, for any given level of greenhouse gas emissions, OHU is also30

influenced by atmospheric feedbacks and warming rates
::
the

::::::::
strength

::
of

::::::
climate

:::::::::
feedbacks as well as oceanic ventilation and

overturning (Zelinka et al., 2020; Marshall et al., 2015). Climate feedbacks such as cloud and albedo feedbacks alter the

radiative balance of the Earth and thus affect the transient climate response, climate sensitivity, and future ocean heat storage

(Zelinka et al., 2020; Williams et al., 2020). In turn, the efficiency at which the ocean transports heat from the surface layer

to the deep ocean influences its capacity for heat storage and can modulate climate feedbacks by affecting surface warming35

patterns (Winton et al., 2010; Armour et al., 2013; Andrews et al., 2022).

Regionally, the majority of OHU occurs in the Southern Ocean (Frölicher et al., 2015), which
:
.
::
In

:::
an

:::::::::::::::
observation-based

::::::::::::
reconstruction,

:::
the

::::::::
Southern

::::::
Ocean

::::
south

:::
of

:::::::
roughly

::::
40°S

:
accounts for around 67% of global OHU between 1871 and 2017

in an observation-based reconstruction (Zanna et al., 2019). In climate model simulations from phase 6 of the Coupled Model

Intercomparison Project (CMIP6; Methods), the Southern Ocean south of 30°S is responsible for 84% (68–99%) of the global40

historical OHU from 1850 to 2024, 53% (38–62%) of future OHU from 2024 to 2100 under the low-emissions SSP1-2.6

scenario, and 48% (42–52%) under the high-emissions SSP5-8.5 scenario (inter-model uncertainty is expressed as 66% likely

ranges) (Frölicher et al., 2015; Shi et al., 2018). The disproportionately large heat uptake in the Southern Ocean is a direct

consequence of the vigorous deep-reaching overturning in this region (Armour et al., 2016). The overturning in the high-

latitude Southern Ocean is driven by strong westerly winds which provoke upwelling of large volumes of cold water from the45

deep ocean (Marshall and Speer, 2012). Much of this upwelled water is warmed by the atmosphere before being subducted

back into the ocean interior further northward as mode and intermediate waters, following the upper cell of the Southern Ocean

meridional overturning circulation (Armour et al., 2016; Sallée, 2018)
:::::::::::::::::::::::::::::::::::::::
(Armour et al., 2016; Sallée, 2018; Talley, 2013).

Although robust and precise projections of OHU are paramount for informing climate mitigation and adaptation measures,

accurately projecting OHU remains challenging (Cheng et al., 2022) (Fig. 1). The uncertainty of the future cumulative global50

OHU from 2024 to 2100 is 23–28% of the multi-model mean (depending on emissions scenario), and the ranges of cumulative

OHU projections for 2100 overlap across scenarios (Fig. 1). Uncertainties in future OHU are large because cloud feedbacks

and oceanic heat sequestration by ocean ventilation and mixing remain notoriously challenging to correctly simulate (Frölicher

et al., 2015; Ceppi et al., 2017; Zelinka et al., 2020; Terhaar et al., 2021). The Southern Ocean overturning is particularly diffi-

cult to faithfully simulate in Earth system models (ESMs) such as those participating in CMIP6 (Beadling et al., 2020). Biases55

in the baseline state of ESMs are known to have global repercussions on projected climate change, notably by preconditioning
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Figure 1. Ocean heat uptake in CMIP6 models. Globally integrated cumulative historical and future ocean heat uptake relative to the

year 2024 under different scenarios and the associated global mean sea level rise through thermal expansion (see Methods). Thin lines are

individual models, while the thick lines and shading depict respectively the ensemble mean and standard deviation for each scenario. The

coloured bars on the right indicate the 95% confidence interval around the mean OHU in 2100 for each scenario. Coloured bars are shown

for four scenarios (SSP5-8.5 in dark red, SSP3-7.0 in bright red, SSP2-4.5 in orange, SSP1-2.6 in dark blue), whereas the time series are

shown only for the historical period and the SSP1-2.6 and SSP5-8.5 scenarios. The black curve and grey shading show the observed changes

over 1960–2020 (Minière et al., 2023).

future cloud feedback (Kajtar et al., 2021; Shin et al., 2023; Siler et al., 2018) and Southern Ocean ventilation (Terhaar et al.,

2021; Bourgeois et al., 2022).

One approach to reducing inter-model uncertainties is the method of emergent constraints (Hall et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::
(Hall and Qu, 2006; Hall et al., 2019; Eyring et al., 2019)

. An emergent constraint identifies a physically grounded relationship between an observable historical climate variable and60

an uncertain future climate variable, across an ensemble of models. Combining this quantitative relationship with observations

of the historical variable yields a constrained estimate of the uncertain future variable. Emergent constraints can be broadly

divided into three categories (Sanderson et al., 2021): (i) trend-on-trend constraints that assume a time invariant model bias

that has existed over the historical period and will continue in the future (e.g., Tokarska et al., 2020; Lyu et al., 2021; Nijsse

et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019), (ii) process-based constraints that identify a physical or biochemical65

bias that causes a mechanistically linked bias in projections of the considered variable (e.g., Terhaar et al., 2021, 2020; Bour-

geois et al., 2022), and (iii) sensitivity-based constraints where the sensitivity of a system to changes on short timescales, such

as seasonal changes, is related to the response of a system to climate change (e.g., Hall and Qu, 2006; Kwiatkowski et al.,

2017). Trend-on-trend constraints have previously indicated smaller future OHU and atmospheric warming compared to the

unconstrained mean of CMIP6 projections (Lyu et al., 2021; Tokarska et al., 2020). However, trend-on-trend constraints can70

fail if the historically-observed trend is not representative of a time invariant bias. This can occur either because the past trend

has been strongly affected by a particular phase of natural variability (England et al., 2014; Marvel et al., 2018; Armour et al.,
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2024), or because the climate system undergoes a profound change under forcing such that the identified past bias does not

persist in the future or becomes dwarfed by a larger bias that only emerges in a changing climate (Sanderson et al., 2021). In

particular, climate change over recent decades has been characterized by relatively muted radiative feedbacks, likely biasing75

low constrained estimates of future warming based on observed warming trends (Andrews et al., 2022; Armour et al., 2024).

Here we show that model biases in past OHU may indeed be unable to explain differences in projected OHU, and that

previously published constraints were likely influenced by internal climate variability. To narrow the spread in projected OHU

we propose a process-based and mechanistically interpretable emergent relationship. This relationship makes it possible to

reduce uncertainties in future OHU by accounting for ESM biases in the baseline state of the Southern Hemisphere as quantified80

by Antarctic summer sea ice extent.

2 Methods

2.1 Model output

We use output from 28 Earth system models participating in CMIP6 (Table A1) (Eyring et al., 2016). We selected one ensemble

member per model based on the availability of necessary output variables in the preindustrial, historical and SSP5-8.5 CMIP685

experiments, although .
::::::

When
::::::::
available,

:
output from SSP1-2.6, SSP2-4.5 and SSP3-7.0 scenario experiments is

:::
was

:
also

used. Anomalies relative to the preindustrial state for variables such as heat fluxes, sea ice extent, or thermal expansion were

computed by subtracting the matching preindustrial-experiment period from the historical and future variable output starting

from the correct experiment branch point. Note that the
::::
This

:::::::::
procedure

:::::::
removes

:::
the

:::::
effect

:::
of

:::::
model

:::::
drift

::
in

:::
the

:::::::::
calculated

::::::
changes

:::::::::::::::::
(Gupta et al., 2013).

::::
The raw preindustrial model output was directly subtracted from the historical and SSP output,90

without prior processing such as fitting a polynomial regression (Silvy et al., 2022). This procedure removes the effect of model

drift in the calculated changes (Gupta et al., 2013).

Past and future OHU are defined as OHU over the periods 1850–2023 and 2024–2100, respectively. Since the CMIP6

historical scenario covers 1850–2014 and the SSP scenarios start from 2015, the historical OHU is extended until 2023 using

the SSP5-8.5 scenario. Using different future scenarios yields similar results as the differences across SSP experiments are95

small over the 2015-2023 period (Riahi et al., 2017).

OHU is
::::
OHU

::
is defined as the anomalous net air-sea heat flux (CMIP6 variable hfds) integrated in space and cumulatively

integrated in time
:
,
:::::::
resulting

::
in

:::::
units

::
of

:::::
Joules:

OHU(t) =

t∫
t0

∫
A

ϕ(x,y, t′) dx dy dt′, (1)

where ϕ is the anomalous net heat flux into the ocean relative to the preindustrial period (units of Wm−2), x and y are longitude100

and latitude, A is the surface area of the ocean, and
::::::::
t0 = 1850

::
for

::::
past

:::::
OHU

:::
and

:
t0 = 2024 for future OHU.

:::
Past

::::
and

::::::
future

:::::
OHU

:::
are

::::::
defined

:::
as

:::::
OHU

::::
over

::::
the

::::::
periods

::::::::::
1850–2023

::::
and

::::::::::
2024–2100,

:::::::::::
respectively.

:::::
Since

:::
the

:::::::
CMIP6

:::::::
historical

::::::::
scenario

:::::
covers

::::::::::
1850–2014

:::
and

:::
the

::::
SSP

::::::::
scenarios

::::
start

:::::
from

:::::
2015,

:::
the

::::::::
historical

::::
OHU

::
is
::::::::
extended

::::
until

:::::
2023

:::::
using
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::
the

:::::::::
SSP5-8.5

::::::::
scenario.

:::
We

:::::
chose

:::::::::
SSP5-8.5

:::::::
because

::
it

::
is

:::
the

:::::::
scenario

:::
for

::::::
which

:::::
most

::::::
models

:::::::
provide

::::::
results

::::
and

:::::::
because

:::::::::
differences

:::::
across

::::
SSP

::::::::::
experiments

:::
are

:::::
small

::::
over

:::
the

:::::::::
2015-2023

::::::
period

:::::::::::::::
(Riahi et al., 2017)

:
.105

Antarctic sea ice extent is defined as the total area in which the monthly mean sea ice concentration (CMIP6 variable

siconc) exceeds 15%.

2.2 Estimation of sea level rise due to thermal expansion

We use global mean thermal expansion (CMIP6 variable zostoga) as
:::
As a measure of the direct effect of OHU on sea level

:
,

::
we

::::
used

:::
the

::::::
global

::::
mean

:::::::
thermal

:::::::::
expansion

:::::::
(CMIP6

::::::
variable

:::::::::
zostoga

:
). This variable is available for 20 out of the 28 models.110

Future global mean thermosteric sea level rise is strongly correlated to future OHU across the model ensemble (r = 0.97,

p < 0.05 two-sided), allowing a direct conversion of OHU to sea level rise based on their ratio of 1.22× 10−25 mJ−1.

2.3 Climate feedback parameters

::::::
Climate

::::::::
feedback

::::::::::
parameters

:::::
(units:

:::::::::::
Wm−2K−1

:
)
:::::::
quantify

:::
the

:::::::
strength

:::
of

::::::
climate

:::::::::
feedbacks

:::
that

::::::
either

::::::
amplify

:::
or

:::::::
dampen

::
the

:::::::
climate

:::::::
system’s

::::::::::
temperature

::::::::
response

::
to

:::::::
radiative

:::::::
forcing

:::::::::::::::::::
(e.g., Ceppi et al., 2017)

:
.
::::::
Among

:::::::
various

::::::::
feedback

::::::::::
components115

::::
such

::
as

:::::::
surface

::::::
albedo

::
or

:::::
lapse

::::
rate

::::::::
feedback,

::::
the

:::::
cloud

::::::::
feedback

::
is

::
of

:::::::::
particular

::::::::::
importance

:::
due

:::
to

::
its

:::::
large

::::::::::
uncertainty

:::::::::::::::::
(Zelinka et al., 2020).

::::::
Cloud

:::::::
feedback

::::::
arises

:::
due

::
to

:::::::
changes

::
in

:
a
:::::::
number

::
of

:::::
cloud

:::::::::
properties

::::::::
including

:::::
cloud

:::::::
amount,

:::::::
altitude,

:::
and

::::::
optical

:::::
depth.

:
For the quantification of cloud feedback and other radiative feedbacks

::
in

:::
this

:::::
study, we compute spatially re-

solved climate feedback parameters under the SSP5-8.5 scenario using the radiative kernel method (Soden and Held, 2006) with

kernels based on the ERA5 reanalysis (Huang and Huang, 2023). The cloud feedback parameter is computed by correcting120

the cloud radiative effect (CRE) for non-cloud contributions from other feedback terms such as surface albedo and water

vapor (Soden et al., 2008).
:::::
kernel

:::::::
method

:::::::
consists

::
of

::::::::::::
systematically

::::::::
applying

:::::::::::
perturbations

:::
in

:::::::
variables

:::
of

::::::
interest

:::::
(such

:::
as

::::::::::
temperature,

::::::::
humidity,

:::
or

:::::::
albedo)

::
in

:::
the

::::::::
radiation

:::::
code

::
of

:::
an

:::::::::::
atmospheric

:::::
model

::::
and

::::::::::
diagnosing

:::
the

::::::::
resulting

::::::
change

:::
in

::::::::
shortwave

::::
and

::::::::
longwave

:::::::
radiation

:::::::::::::::::
(Soden et al., 2008).

:

:::
For

::::
each

:::::::
variable

:::
X

::::::::::
(specifically:

:::::::::::
temperature,

:::::
water

::::::
vapor,

:::
and

:::::::
surface

:::::::
albedo),

:::
this

:::::::::
procedure

:::::
yields

::
a
::::::
kernel

:::
KX:::::

such125

:::
that

∆RX =KX ·∆X,
:::::::::::::::

(2)

:::::
where

::::
RX ::

(in
:::::::
Wm−2

:
)
::
is

:::
the

:::::::
radiative

::::::::
response

:::
for

:::::::
variable

::
X

::::
with

::::::::
anomaly

::::
∆X

:::::::::::::::::::::
(Huang and Huang, 2023)

:
.
:::::
From

::::
this,

:::
the

::::::
climate

::::::::
feedback

:::::::::
parameter

:::
for

:::::::
variable

:::
X

:::
can

:::
be

:::::::::
calculated

::
as

:::::::::::::::
λX =∆RX/∆T ,

::::::
where

::::
∆T

::
is

:::
the

::::::
global

:::::
mean

:::::::
surface

::::::::::
temperature

:::::::
anomaly.

:
130

:::
The

:::::
cloud

::::::::
feedback

:::::::::
parameter

::
is
::

a
::::::
special

::::
case

::::
and

::::
can

:::
not

:::
be

:::::::
directly

::::::::
computed

:::::
from

::::::::
radiative

:::::::
kernels.

:::::::
Instead,

::
it

::
is

::::::::
computed

::
as

:
a
:::::::
residual

::
of

:::
all

:::::
other

::::
terms

:::
via

:

∆Rcloud =∆R−
∑
X

∆RX − res0,

::::::::::::::::::::::::::::

(3)
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:::::
where

::::
∆R

:
is
:::
the

::::
total

::::::::
radiative

::::::::
response,

:::
and

:

res0 =∆R0 −
∑
X

∆R0
X

:::::::::::::::::::

(4)135

:
is
:::
the

:::::::
residual

::::::::
radiative

:::::::
response

:::::
under

::::
clear

::::
sky

:::::::::
conditions

:::::::
indicated

:::
by

:::
the

:::::::::
superscript

::
0

:::::::::::::::::::::
(Huang and Huang, 2023).

:

2.4 Emergent constraint

The posterior probability density functions (PDFs) of ocean heat uptake constrained by sea ice extent observations were cal-

culated using a previously established method (Cox et al., 2013, 2018; Kwiatkowski et al., 2017). Given a set of N response

variables yi with the predictors xi and
::::::::::
realizations

::
of

:::
the

::::::::
response

:::::::
variable

::
y

:::
and

::::
the

:::::::
predictor

::::::::
variable

:
x
:::

as
::::
well

::
as

:
their140

least-squares linear fit f(x) = a+ by , the
::
(in

:::
the

::::::
present

:::::
case,

::::::
N = 28

:::::::
climate

::::::
models

:::::::
provide

:::::
values

:::
for

:::
the

::::::::
Antarctic

:::
sea

:::
ice

:::::
extent

::::::::
predictor

:
x
::::
and

:::
the

:::::
global

:::::
OHU

:::::::
response

:::
y),

:::
the

:
prediction error is (Cox et al., 2018)

σf (x) = s

√
1+

1

N
+

(x− x̄)2

Nσ2
x

. (5)

In the above equation, s2 is the quantity minimized by the linear fit,

s2 =
1

N − 2

N∑
i=1

(yi − f(xi))
2
, (6)145

while x̄ and σ2
x are the ensemble mean and variance of the predictors, respectively. Finally, the constrained PDF P (y) can be

calculated as

P (y) =

∞∫
−∞

P (y|x)P (x) dx, (7)

where P (x) is the observational distribution of the predictor, and

P (y|x) = 1√
2πσf (x)

exp

(
− (y− f(x))2

2σf (x)2

)
(8)150

is the conditional probability density of y given x.

The observational distribution P (x) is assumed to be normal with mean and standard deviation from observations. Where

the uncertainty of the observations is not available, an uncertainty is conservatively estimated. For the emergent constraint on

future OHU using summer sea ice extent from OSI SAF satellite observations (Fig. 7), we use σobs = 1× 106 km2(see below

for a discussion of this uncertainty). Our
:
,
:::
and

::::
our results are robust to reasonable changes of this parameter (

::
see

:::::::
section

:::
2.5155

:::::
below

:::
and

:
Fig. A9d

:::
for

:
a
:::::::::
discussion

::
of

:::
this

::::::::::
uncertainty).

2.5 Observational data

Our principal source of sea ice extent observations for use in the emergent constraint is the OSI SAF Sea Ice index (OSI SAF,

2024) which is based on Advanced Microwave Scanning Radiometer (AMSR) and Special Sensor Microwave Imager/Sounder

6



(SSMIS) instruments, with daily data available starting in 1978. For the sensitivity analysis (Fig. A9), we use two additional160

satellite microwave radiometry products covering the period 1978–2023 (the NASA Team (DiGirolamo et al., 2022) and

Bootstrap (Comiso and Gersten, 2023) products), as well as reconstructions of past sea ice extent from HadISST2.2 (Titchner

and Rayner, 2014; Hobbs et al., 2016) and two recent studies (Fogt et al., 2022; Dalaiden et al., 2023).

Interior ocean temperature and salinity were obtained from the World Ocean Atlas 2018 (Garcia et al., 2019), and potential

density calculated from these variables using the Gibbs Seawater (GSW) toolbox for Python (McDougall and Barker, 2011).165

Ocean heat uptake estimates are from a recent analysis of ocean heat content products (Minière et al., 2023) including an

estimate from the international assessment conducted within the Global Climate Observing System (von Schuckmann et al.,

2023).

2.6 Uncertainty in sea ice extent observations

An estimate of the total uncertainty in daily sea ice concentration due to algorithm and ‘smearing’ effects from grid interpolation170

is provided in the gridded OSI SAF sea ice concentration data (OSI SAF, 2017). However, this uncertainty cannot be simply

propagated to the calculation of sea ice extent due to spatial and temporal error correlations (?)
:::::::::::::::::::
(Wernecke et al., 2024). An

assessment of Arctic sea ice extent uncertainty from a similar satellite observation product has found that the uncertainty in

minimum sea ice area in the Arctic is only half of the inter-product spread
:::::::::::::::::::
(Wernecke et al., 2024). Additionally, instrument

uncertainties have previously been found to be only 0.036× 106 km2 for Antarctic February sea ice extent in comparable175

satellite-based sea ice products (Meier and Stewart, 2019).

An alternative approach to gauge the uncertainty of the sea ice extent estimate is to assess the spread of estimates computed

from different products. The three satellite-based sea ice concentration products we tested, which use the OSI SAF (OSI

SAF, 2017), Bootstrap (Comiso and Gersten, 2023), and NASA Team (DiGirolamo et al., 2022) algorithms, only differ by

0.38± 0.23× 106 km2 in their January-February sea ice extent on average.180

Reconstructions of sea ice extent covering decades and centuries preceding the satellite era have larger uncertainties, as

illustrated by the spread across the three products (Fig. A10). Nonetheless, there is good agreement between the reconstruction

of Fogt et al. (2022) and that of Dalaiden et al. (2023) over the overlapping period, whereas the HadISST2.2 reconstruction

shows large, likely spurious step-like variability. We therefore deem the former two reconstructions (Fogt et al., 2022; Dalaiden

et al., 2023) to be the most reliable. We use these two reconstructions of annual mean sea ice extent to estimate the range of185

multi-decadal variability across 40-year periods. We find a maximum difference in sea ice extent between 40-year periods

of 0.23× 106 km2 for the period 1850–1980 in the reconstruction of Dalaiden et al. (2023), and a maximum difference of

0.13× 106 km2 for the period 1905–1980 in the reconstruction of Fogt et al. (2022). This is comparable to the CMIP6 multi-

model average of historical sea ice extent standard deviation across 40-year periods between 1850–1980 of 0.26× 106 km2.

This measure of sea ice multi-decadal internal variability in observations and models is an order of magnitude smaller than the190

inter-model standard deviation of 1850–1980 mean sea ice extent of 3.3× 106 km2.

In summary, our best estimate of the uncertainty of sea ice extent would be the sum of the uncertainty estimated from the

spread between different products (0.38± 0.23× 106 km2) and the uncertainty that arises from internal variability (0.23×

7



106 km2). Here we choose a rather large observational uncertainty of σobs = 1× 106 km2 to derive a conservative emergent

constraint. Varying this parameter does not change the central constrained estimate but influences the uncertainty reduction195

(Fig. A9d).

2.7 Alternative predictors

The robustness of the constrained result could further be tested by using Southern Ocean cloud cover or deep-ocean tempera-

tures as predictors to constrain OHU, as both are mechanistically linked to Antarctic sea ice extent (Fig. 2). However, a direct

comparison between observed and modelled cloud cover requires sampling the CMIP6 ESMs at the same time and location200

as satellites do. Although this can be done with satellite simulators in ESMs, only 5 out of the 28 ESMs considered here

provide this output. In the case of mean deep-ocean temperature, the limited spatio-temporal density of historical temperature

measurements below 2000 meters depth entails that such a predictor would have sizeable uncertainty. Moreover, we find that

the relationship between mean deep-ocean temperature and future OHU across the model ensemble (r =−0.44, p < 0.05) is

not as strong and linear as the presently used emergent relationship.205

3 Results

3.1 Antarctic sea ice as an indicator of Southern Hemisphere climate

Antarctic sea ice extent is an indicator of the climate state of the extratropical Southern Hemisphere. Models with greater sea ice

extent under preindustrial conditions tend to have colder sea surface temperatures across the Southern Ocean (Fig. 2b) as well

as more cloud cover over the mid-latitude Southern Ocean (Kajtar et al., 2021; Shin et al., 2023; Cesana et al., 2025) (Fig. 2a),210

which modulates radiative heat transfer by reducing downwelling shortwave radiation and enhancing downwelling longwave

radiation. Greater sea ice extent is also associated with colder temperatures across the global deep ocean (Fig. 2b), including in

deep Atlantic layers mainly ventilated from the North Atlantic (Fig. A1). Given the mean ocean circulation pathways and the

long timescales associated with the deep ocean circulation, the plausible causality explaining these correlations is that biases

in the temperature of deep ocean waters, much of which ultimately upwell in the high-latitude Southern Ocean, have cascading215

effects on Southern Hemisphere sea ice, surface temperatures, and clouds (Luo et al., 2023; Sherriff-Tadano et al., 2023).

Under future global warming, ESMs with higher present-day sea ice extent have the potential to lose more sea ice (Kajtar

et al., 2021). In particular, under the SSP5-8.5 scenario, many ESMs lose virtually all of their Antarctic summer (January–

February) sea ice by 2100, so that summer sea ice loss in 2100 is almost equivalent to baseline sea ice extent (Fig. 3a).

Similarly, models with greater preindustrial extratropical and equatorial cloud cover simulate a greater future reduction in220

cloud cover at these latitudes (Fig. A2), consistent with previous studies (e.g., Thackeray et al., 2024). As a consequence of

these links between preindustrial baseline climate and future changes, ESMs with higher preindustrial Antarctic sea ice extent

tend to experience a greater shift in their simulated Southern Hemisphere climate in the future. This shift in climate manifests

itself through greater warming of the surface atmosphere and ocean
::
in

:::
the

::::::::
Southern

::::::::::
Hemisphere

:
(Fig. 3b,c), a more positive
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(b)

(a)

Figure 2. Atmospheric and oceanic connections to Antarctic sea ice extent in the preindustrial state. (a), Inter-model correlation

between preindustrial annual-mean Antarctic sea ice extent and preindustrial total cloud cover in the Southern Hemisphere. In red areas,

local cloud cover is increased for models with higher sea ice extent. b, Inter-model correlation between preindustrial annual-mean Antarctic

sea ice extent and preindustrial zonal mean ocean temperature across all ocean basins. In blue areas, local seawater is colder for models with

higher sea ice extent. Black contours show zonal mean potential density relative to a reference pressure of 2000 dbar from observations

(Garcia et al., 2019). In both panels, stippling indicates regions where the correlation is not significant (p≥ 0.05, two-sided).
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(a) (b)

(c) (d)

Figure 3. Links between preindustrial Antarctic sea ice and Southern Hemisphere climate change. CMIP6 inter-model relationship

between preindustrial Antarctic summer (January–February) sea ice extent and future sea ice extent loss (a), Southern Hemisphere surface

air temperature increase (b), Southern Hemisphere sea surface temperature increase (c), and global mean cloud feedback parameter (d).

In each panel, the black line shows the least squares linear regression fit, and the Pearson correlation coefficient r and two-sided p-value

are given in the upper left corner. The y-axis of all panels represents anomalies between years 2080–2100 of the high-emissions SSP5-8.5

scenario and the preindustrial state.
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global cloud feedback (Fig. 3d), and consequently greater
:::::
global

:
OHU (Fig. 7). This additional OHU in models with higher225

preindustrial Antarctic sea ice extent is particularly pronounced in the Southern Hemisphere mode and intermediate waters

(Fig. 4) which tend to transport heat northwards and into the interior ocean (Armour et al., 2016).
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Figure 4. Zonal mean ocean warming related to preindustrial sea ice extent. Correlation coefficient across the ensemble of CMIP6

models between preindustrial annual mean Antarctic sea ice extent and zonal mean ocean warming in 2080–2100 under SSP5-8.5 relative

to preindustrial. Red shading indicates regions where models with more preindustrial sea ice tend to have more ocean warming in the future

scenario. Stippling indicates regions where the correlation is not significant (p≥ 0.05, two-sided). Black contours show zonal mean potential

density referenced to 2000 dbars from observations (Garcia et al., 2019).

The cloud feedback connects
::::
links

:::::::::::
preindustrial Antarctic sea ice extent loss and

:::
and

:::::
future

:
global OHU. Across the ESM

ensemble, this connection is globally apparent by the end of the 21st century as strong correlations between cloud feedback

and Antarctic sea ice extent loss (Fig. A3a), and between cloud feedback and global OHU (Fig. A3b). The global extent of230

this relationship between Antarctic sea ice loss, cloud feedback and OHU is the result of a northward propagation
::
of

::::
this

:::::::::
relationship

:
originating in the Southern Ocean. The surface warming signal in the ocean and atmosphere related to sea ice

loss
::::::::::
preindustrial

:::
sea

:::
ice

:::::
extent first emerges in the southern high latitudes around 1990–2010, gradually spreading northwards

and covering most of the Southern Hemisphere by 2030–2050 under SSP5-8.5 (Fig. 5). This causes a concomitant spreading

of sea ice–related local cloud feedback starting from the Southern Ocean and attaining its near-global extent by mid-century235

(Fig. A4). Although cloud feedback is in general controlled by a number of contributions including cloud amount, altitude, and

optical depth (Zelinka et al., 2016; Ceppi et al., 2017), the signal is apparent in total cloud amount (Fig. A2). The northward

propagation of these significant inter-model relationships likely results from anomalous heat transport in the ocean and/or the

atmosphere (England et al., 2020b, a; Ayres et al., 2022; Luo et al., 2025) resulting in a teleconnection from the Southern Ocean

to the tropical oceans via midlatitude cloud feedback (e.g., Zhang et al., 2021; Zhang and Deser, 2024; Ford et al., 2025).240

Decomposing cloud feedback into its shortwave and longwave radiative components reveals that the global relationship

between sea ice loss and cloud feedback is mostly mediated by the shortwave component (Fig. A3c–d), whereas the longwave

11



Figure 5. Time evolution of sea ice–related surface warming and cloud feedback. Inter-model correlation across CMIP6 models under

SSP5-8.5 between preindustrial Antarctic summer sea ice extent and (top row) local sea surface temperature anomaly, (bottom row) local

total cloud feedback parameter λcloud, during different 20-year periods between 1970 and 2100. In all panels, stippling indicates regions

where the correlation is not significant (p≥ 0.05, two-sided).

component remains restricted to the Southern Ocean by the end of the 21st century. Furthermore, partitioning the excess OHU

into its individual air-sea heat flux components demonstrates that the higher OHU in models with greater Antarctic sea ice

loss is mainly due to increased shortwave-driven OHU in the Southern Hemisphere and globally increased sensible OHU245

(Fig. A5). The increased sensible OHU is a direct consequence of the stronger atmospheric warming in models with more

Antarctic sea ice loss. The increased shortwave-induced and sensible OHU associated with larger Antarctic sea ice loss is

slightly counteracted by a reduced latent air-sea heat flux at low latitudes (Fig. A5h). As sea ice loss strongly accelerates

after 2024, these relationships emerge only for future (2024–2100) OHU and are not apparent for OHU over the historical

(1850–2024) period.250

We emphasize that changes in summer Antarctic sea ice extent are not the direct
::::
likely

:::
not

:::
the

::::::::
primary cause of global

cloud and temperature changes. Rather, Antarctic sea ice extent is an indicator
:::
and

:::::::
integral

:::
part

:
of the baseline state of

:::
the

extratropical Southern Hemisphere climate (Fig. 2)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Fig. 2; Kajtar et al., 2021; Luo et al., 2025; Ford et al., 2025), which itself

conditions
:::::::::::
preconditions projected global climate warming(Kajtar et al., 2021; Luo et al., 2025; Ford et al., 2025).

:
.
::::
This

::::
idea

:
is
::::::::::::

schematically
:::::::::
illustrated

::
in

::::
Fig.

::
6
::::::
which

:::::
shows

::::
how

::::
the

::::::::
amplitude

:::
of

:::::::
climate

:::::::
warming

:::
is

::::::::::::
preconditioned

:::
by

:::
the

::::::
initial255

::::::
climate

:::::
state. The summer extent of Antarctic sea ice can thus be regarded as measuring a potential for future change (Fig. 3).

Nonetheless, the loss of Antarctic sea ice does have direct local influences (Kay et al., 2014). Any reduction of white sea

ice cover exposes the underlying ocean, allowing more heat to be absorbed. While the additional OHU under the previously

covered sea ice is small compared to the global OHU (about 6% in the multi-model mean), this additional warming close to the

sea ice edge further accelerates the loss of sea ice cover through surface albedo feedback and contributes to the link between260

present-day sea ice and future climate change (Stolpe et al., 2019).
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Figure 6.
::::::::
Schematic

::::::::::::
representation

::
of

:::
the

:::
link

:::::::
between

::::::::
historical

::::::::
Antarctic

:::
sea

::
ice

::::::
extent

:::
and

:::::
future

:::::
ocean

::::
heat

::::::
uptake.

::::
Under

::::
21st

:::::
century

::::::
climate

::::::
change,

:::
the

:::::::
Southern

:::::::::
Hemisphere

::::::
climate

::::::
system

::::::::
transitions

::::
from

::
an

:::::
initial

::::
state

::
(a)

:
to
::
a

:::::::
perturbed

::::
state

:::
(b)

::::::::::
characterized

::
by

::::::
reduced

:::
sea

:::
ice,

::::::
surface

:::::
ocean

:::
and

:::::::::
atmospheric

::::::::
warming,

:::
and

::::::
reduced

:::::
lower

::::
cloud

:::::
cover.

::::::::
Crucially,

::
the

::::::::
amplitude

::
of

:::
this

::::::::
transition

::
in

:::
each

::::::
climate

:::::
model,

:::
and

:::::::
therefore

:::
the

::::::::
magnitude

::
of

:::::
future

::::
ocean

::::
heat

::::::
uptake,

::::::
depends

::
on

:::
the

::::::
model’s

:::::
initial

:::::
climate

:::::
state:

:
a
:::
cold

:::::
initial

::::
state

::::::::::
characterized

::
by

::::
large

:::
sea

::
ice

:::::
extent

::::
leads

::
to

:
a
:::::
strong

:::::::
transition

::::
with

:::
high

::::
heat

:::::
uptake

::
(c)

:
,
::::
while

:
a
::::
mild

:::::
initial

:::
state

::::::::::
characterized

:::
by

::::
small

:::
sea

::
ice

:::::
extent

::::
leads

::
to

:
a
::::::
weaker

:::::::
transition

::::
with

:::
less

:::
heat

::::::
uptake

::
(d)

:
.
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3.2 Emergent constraints on future change

The mechanistic understanding and inter-model relationships presented show that model bias in baseline sea ice extent in austral

summer is a physical indicator of future sea ice loss, surface warming, and cloud feedback (Fig. 3). As cloud feedback mediates

future OHU (Fig. A3), historical observations of Antarctic sea ice can be used to constrain future OHU (Fig. 7). Using the265

1980–2020 summer sea ice extent from the OSI SAF satellite observational product (OSI SAF, 2017) of 4.41±1.00×106 km2

to constrain future OHU results in an estimate of future global OHU between 2024–2100 of 1244± 141 ZJ under SSP1-2.6

(Fig. 7a-b) and 2595±209 ZJ under SSP5-8.5 (Fig. 7c-d, results for SSP2-4.5 and SSP3-7.0 are shown in Fig. A6 and detailed

in Table A2). The constrained median estimate is 3% higher and 14% less uncertain than the CMIP6 ensemble prior median

under SSP1-2.6, and 14% higher and 33% less uncertain under SSP5-8.5.270

In all four SSPs considered, the correlation between 1980–2020 sea ice extent and future OHU is above 0.6 and statistically

significant at the p < 0.05 level according to a two-sided Student’s t-test (Table A2). This suggests that the identified rela-

tionships are robust and explain a substantial fraction of inter-model spread in future OHU irrespective of the scenario. Given

our conservative choice of predictor uncertainty and available model ensemble sizes (Methods), the difference between uncon-

strained and constrained OHU mean values is statistically significant under SSP2-4.5 and SSP5-8.5 but not under SSP1-2.6275

(p= 0.11) and SSP3-7.0 (p= 0.09) according to a two-sided two-sample Student’s t-test (Table A2).

The higher OHU estimates directly translate to greater than currently anticipated future sea level rise due to thermal expan-

sion. Under SSP1-2.6 the constrained thermosteric global mean sea level rise from 2024 to 2100 is 15.2± 1.7 cm, assuming a

constant conversion factor between OHU and thermosteric sea level rise (see Methods). Under SSP5-8.5, the constrained esti-

mate is 31.6±2.5 cm. Both estimates are higher and less uncertain than the respective unconstrained estimates of 14.5±2.0 cm280

and 29.5± 3.8 cm (Table A2).

The relationships uncovered here can also help to constrain the strength of cloud feedback and the magnitude of global

warming by the end of the 21st century. Present-day Antarctic sea ice extent is significantly correlated with future cloud

feedback and global warming in all four SSPs considered (Table A2). Using 1980–2020 summer sea ice extent as a predictor,

global mean cloud feedback is constrained to be 19% and 31% higher than the CMIP6 median under SSP1-2.6 and SSP5-8.5,285

respectively (Fig. 8b). Future global mean surface air warming is constrained to be 3–7% greater than the CMIP6 median

(Fig. 8c). The uncertainty in the estimates is reduced by 18% for cloud feedback and by 11% for surface warming under SSP5-

8.5 (results for other SSPs are shown in Fig. A7 and detailed in Table A2). Present-day
:::
The

:::::::::
uncertainty

::::::::
reduction

:::
for

::::::::
warming

:::
and

:::::
cloud

::::::::
feedback

::
is

::::::
smaller

::::
than

:::
for

:::::
OHU

:::::::
because

::::::::::
present-day sea ice extent is more strongly correlated with future OHU

(r = 0.87 under SSP5-8.5) than with end-of-century cloud feedback (r = 0.71) or surface air warming (r = 0.61), which is290

why the uncertainty reduction is larger for OHU.

The tighter constraint on OHU may be explained by two factors. First, the correlation between Antarctic sea ice extent and

local cloud feedback is particularly strong over the southern mid-latitudes where OHU is most efficient (Armour et al., 2016)

(Fig. A3) and where much of the additional OHU occurs (Fig. 4). Second, larger baseline Antarctic sea ice is associated with
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(d)

(b)

(c)

(a)

Figure 7. Emergent constraint on future global ocean heat uptake. a, Inter-model relationship between 1980-2020 Antarctic summer

(January–February) sea ice extent and cumulative global OHU over 2024–2100 under the SSP1-2.6 scenario. The blue line and shading show

the least squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation coefficient r and two-sided p-value

given in the upper left corner. The dashed vertical line shows satellite observations of Antarctic summer sea ice extent averaged over 1980–

2020 (OSI SAF, 2017) and the grey shading shows the associated uncertainty of 1× 106 km2; this relatively large observational uncertainty

ensures we derive a conservative emergent constraint (Methods). b, Unconstrained prior (black) and constrained posterior (blue) probability

density functions of 2024–2100 global OHU. In grey we show the prior histogram for 2024–2100 OHU (Methods). c, as panel a but for the

SSP5-8.5 scenario. d, as panel b but for the SSP5-8.5 scenario.
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(a) (b) (c)

Figure 8. Constrained distributions of global OHU, cloud feedback, and warming. Prior and constrained distributions of (a) cumulative

global OHU from 2024 to 2100, (b) global mean cloud feedback parameter in 2080–2100, and (c) global mean surface air temperature

(GSAT) anomaly in 2080–2100 relative to the preindustrial. In each panel, distributions are shown for SSP1-2.6 (left) and SSP5-8.5 (right).

The grey circles and grey boxplots show the prior distribution of model values, and the blue and red boxplots show the constrained distri-

butions for SSP1-2.6 and SSP5-8.5, respectively. In each boxplot, the white line shows the median, the central box spans the likely range

(66%), and the whiskers extend to a 95% confidence interval. The constrained values are normally distributed by construction (Methods).

Note that the y-axis scale is different between the two SSPs in panels a and c.

colder deep waters (Fig. 2b), whose exposure to the warming atmosphere in the Southern Ocean can promote OHU through295

sensible heat flux (Fig. A5).

For completeness, we also test whether sea ice extent can be used to constrain past (1850–2024) OHU. We find no significant

emergent relationship between baseline Antarctic sea ice and historical OHU. The inter-model correlation coefficient between

January-February Antarctic sea ice extent and 1850–2024 OHU is r =−0.03 for preindustrial mean sea ice extent and r =

−0.04 for 1980–2020 mean sea ice extent.
:::
The

:::::::::::
non-existing

:::::::::
correlation

::::
over

:::
the

::::
past

:::::::
indicates

::::
that

:::
the

::::::
sea-ice

:::::
linked

::::::::
feedback300

::
we

:::::::
identify

:::
has

:::
not

:::
yet

:::::::::
influenced

::::
past

:::::
OHU,

::::::::
warming,

::
or

:::::
cloud

:::::::::
feedback,

:::::::
although

::
it

:::
will

:::::
affect

::::
their

::::::
future.

:

To facilitate comparison with previous studies which used past warming trends as predictors to constrain future OHU (Lyu

et al., 2021) or global surface warming (Tokarska et al., 2020), we now apply our emergent constraint to the same uncertain

variables considered in these two studies. For future 0–2000m OHU under SSP5-8.5 in 2081–2100 relative to 2005–2019 as in

Lyu et al. (2021), we obtain a constrained estimate which is 16% (9%) higher than the unconstrained CMIP6 median (mean),305

in contrast to Lyu et al. (2021) whose constrained OHU estimate was
::::
10% lower than the prior mean (Fig. A8a–b). Historical

Antarctic sea ice extent provides higher predictive skill for future 0–2000m OHU (r = 0.9) than does past 0–2000m OHU

(r = 0.72 in Lyu et al. (2021)). For future global surface air temperature warming under SSP5-8.5 in 2081–2100 relative to

1850–1900 as in Tokarska et al. (2020), we obtain a constrained estimate which is 5% (7%) higher than the unconstrained

CMIP6 median (mean), again in contrast to the constrained estimate from Tokarska et al. (2020) which was
::
14

:::
% lower than310

the prior mean (Fig. A8c–d).

16



3.3 Robustness of the emergent constraint

In these constrained projections we used the satellite-observed summer (January-February) sea ice extent averaged over 1980-

2020 as the observable climate variable. Similar results are obtained when alternative definitions of the observable variable

are employed (Fig. A9). Different satellite observational products lead to very minor shifts in the constrained OHU projection,315

indicating that observational uncertainty in present-day sea ice extent is sufficiently small (much less than the specified uncer-

tainty of 1×106 km2 in Fig. 7) to obtain robust uncertainty reduction (Fig. A9a,d and Methods). Using annual mean
::
or

::::::
austral

:::::
winter

:
sea ice extent or different definitions of the summer season also yield broadly consistent uncertainty reductions (from

−13% to −38%) and OHU increases (from +3% to +11%) under SSP5-8.5 (Fig. A9c).

Antarctic sea ice cover shows both inter-annual and multi-decadal variability over the satellite record (Fig. A10), so that320

the choice of baseline period can affect our emergent constraint. Choosing 1980-2000, 1990-2010 or 2000-2020 instead of

1980-2020 as baseline periods within the satellite record yields constrained OHU estimates of +5%, +8% or +9% above the

unconstrained mean, respectively. This relatively small sensitivity stems from the large inter-model spread in Antarctic sea

ice extent
:::::
across

:::::::
CMIP6

::::::
models compared to observed variability since 1980 (Fig. A10). Reconstructions of Antarctic sea ice

cover over earlier parts of the 20th century and preceding centuries possess larger uncertainties (Dalaiden et al., 2023; Fogt325

et al., 2022; Titchner and Rayner, 2014), yet they also indicate a negative bias of the multi-model mean annually averaged

extent (Fig. A10). Consequently, choosing different 40-year baseline periods between 1920 and 2000 in these reconstructions

(Methods) leads to a constrained heat uptake between 3–12% higher than the CMIP6 mean under the SSP5-8.5 scenario

(Fig. A9b).

For further robustness testing, we examine the correlation between historical sea ice extent and future OHU (Fig. 7a,c) in an330

out-of-sample test using 16 models from the CMIP5 ensemble, and we probe the sensitivity of this correlation to the chosen

OHU time period and sea ice seasonality in both CMIP5 and CMIP6 ensembles (Fig. A11). In the CMIP6 ensemble, maximal

correlation between historical sea ice extent and future OHU under SSP5-8.5 is obtained for summer sea ice extent together

with an OHU time period starting at any year after 1850 and ending after approximately 2070 (Fig. A11a–b). For time periods

ending prior to 2030 the correlation becomes statistically insignificant, underlining the fact that the mechanism underlying the335

emergent relationship occurs only under future forcing. In the CMIP5 ensemble, correlations are higher for annual mean sea

ice extent, but the temporal structure is similar to CMIP6 with maximal correlations for OHU periods extending towards the

end of the 21st century (Fig. A11c–d).

The correlation between historical sea ice extent and future OHU is not an artifact of outliers or caused by individual

model values of sea ice extent or OHU far from the center of the multi-model distribution (Fig. A12). A significant positive340

correlation persists across all considered SSPs even when discarding several models with the highest or lowest values of sea

ice extent (Fig. A12a,c) and OHU (Fig. A12b,d). Furthermore, using a Huber loss function instead of ordinary least squares

(OLS) in order to reduce the influence of outliers yields an almost identical regression slope (131× 10−6ZJ/km2 for OLS,

130× 10−6ZJ/km2 for Huber) and coefficient of determination (r2 = 0.75 for both methods under SSP5-8.5).
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The robustness of the constrained results can further be corroborated by observations of cloud cover and deep-ocean temper-345

atures. Though these observations are not readily used as formal predictors in an emergent constraint (see Methods), they show

that ensemble mean simulated global deep-ocean temperatures are 7% higher than observations and that simulated mid-latitude

Southern Ocean (30–50°S) cloud cover is 7% less than in satellite observations. The underestimation of cloud cover and over-

estimation of deep ocean temperatures in ESMs concur with a negative bias in Antarctic sea ice extent (Fig. 2), and with

underestimated cloud feedback, atmospheric warming, and OHU over the 21st century in the unconstrained CMIP6 ensemble350

mean (Figs. 3 and 8).

Schematic representation of the link between historical Antarctic sea ice extent and future ocean heat uptake. Under

21st century climate change, the Southern Hemisphere climate system transitions from an initial state (a) to a perturbed state

(b) characterized by reduced sea ice, surface ocean and atmospheric warming, and reduced lower cloud cover. Crucially, the

amplitude of this transition in each climate model, and therefore the magnitude of future ocean heat uptake, depends on the355

model’s initial climate state: a cold initial state characterized by large sea ice extent leads to a strong transition with high heat

uptake (c), while a mild initial state characterized by small sea ice extent leads to a weaker transition with less heat uptake (d).

4 Conclusions

The increased estimates of OHU,
::::::

cloud
::::::::
feedback,

:
and global warming found here are consistent with

::::::::
increased

:::::::::
low-cloud

:::::::
feedback

::::::::
estimates

::
by

:
recent observational constraints on low-cloud feedback (Ceppi et al., 2024; Wu et al., 2025)

:::::::::::::::::::::::::::::
(Ceppi et al., 2024; Wu et al., 2025)360

:
, but contrast with previous studies that suggest an overestimation of the future warming by CMIP6 ESMs based on past warm-

ing and OHU trends (Tokarska et al., 2020; Lyu et al., 2021; Nijsse et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019). A

possible explanation for this difference is the limited length and representativeness of the observational records from 1980 to

2015 employed in these studies for the underlying long-term climate change (Andrews et al., 2022; Armour et al., 2024). The

1980-2015 period has been marked by patterns of sea surface temperature change associated with weaker climate feedbacks365

than expected under long-term climate change (Andrews et al., 2022). These patterns, which include surface cooling in the

eastern tropical Pacific and parts of the Southern Ocean, are less likely than 5% across CMIP5 and CMIP6 simulations (Wills

et al., 2022). This mismatch between models and observations can bias emergent constraints that use trends over the 1980-2015

period (Andrews et al., 2022; Armour et al., 2024). More generally, climate variability is a critical confounding factor when

short-length observational records are employed to constrain projections. As an example, shifting the 2005–2019 observational370

period for past OHU trends used in Lyu et al. (2021) only six years earlier (1999–2013) results in statistically insignificant

relationship between past OHU trend and future OHU (Fig. A13).

By the same token
::::::::
Similarly, satellite observations of Antarctic sea ice could coincide with a period of anomalously large

or small sea ice extent, biasing our emergent constraint. To test our results for such potential bias, we used different baseline

periods for sea ice extent, including periods before the satellite era for which reconstructions of Antarctic sea ice are available375

(Dalaiden et al., 2023; Fogt et al., 2022; Titchner and Rayner, 2014). We find that our mechanism-based emergent constraint

consistently reduces uncertainty and increases OHU projections, even with the substantial uncertainty we attribute to the
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predictor (Methods). This robustness of our constraint stems from the use of an observable mean-state variable—instead of

observable trends, which tend to be more sensitive to transient (decadal) anomalies—and from the strength of the emergent

relationship of Fig. 7c (r = 0.87). Furthermore, a recent study showing that CMIP5/6 models are capable of reproducing380

observed Antarctic sea ice trends (Liu, 2025) lends confidence to the use of this model ensemble in sea ice–based emergent

constraints.

Another potential factor for the difference between
::
the

:
present and previous estimates of OHU and atmospheric warming

(Tokarska et al., 2020; Lyu et al., 2021; Nijsse et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019) is the inability of past

trends to account for a future regime shift in the climate system (Marvel et al., 2018; Armour et al., 2024; Liang et al., 2024).385

The climatic relationships and feedbacks underpinning our emergent constraint are dependent on a shift in the Southern Hemi-

sphere climate state under pronounced greenhouse forcing (Fig. 6), epitomized
:::::::::
exemplified

:
by the near-total disappearance of

Antarctic summer sea ice under a high-emissions scenario (Fig. 3a). Indeed, the constraint is stronger for higher emissions sce-

narios (Fig. 7), and is invalid for past OHU, indicating that the processes presented here dominate inter-model spread only under

moderate to strong forcing. Similarly, the OHU constraint based on past warming trends (Lyu et al., 2021) is insignificant for390

initial time periods ending before 2010 but becomes stronger for time periods chosen later in the 21st century (Fig. A13), which

suggests that the potential regime shift connected to cloud feedback (Fig. 5) is necessary for obtaining a strong constraint. Al-

though Antarctic sea ice extent has long seemed relatively unresponsive to anthropogenic forcing, the recently observed abrupt

sea ice loss in 2016 and the historical minimum extent anomaly in 2023 have highlighted the possibility of an ongoing regime

shift (Hobbs et al., 2024). These observed sea-ice changes could foreshadow stronger Southern Hemisphere climate feedbacks395

and ocean warming in coming decades (Kang et al., 2023).

While our results suggest higher
::::
Our

:::::
results

:::::::
suggest

:::::
more warming and heat uptake than the CMIP6 multi-model meanand

not smaller warming and heat uptake as previously suggested (Lyu et al., 2021; Tokarska et al., 2020; Nijsse et al., 2020), they

:
,
::
in

::::::
contrast

::
to
::::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::
(Tokarska et al., 2020; Lyu et al., 2021; Nijsse et al., 2020)

:
.
:::
Our

::::::
results

::::
thus

::::::
confirm

:::
the

::::::
recent

::::::
finding

:::
that

:::::
these

::::::
studies

::::
may

::::
have

:::::::::::::
underestimated

:::::
future

:::::::
warming

::::
and

:::
that

:::
the

::::
very

:::
low

::::::::::
equilibrium

:::::::
climate

::::::::
sensitivity

::::::
(ECS)400

:::::::
estimates

:::
of

:::::
some

::::::
climate

:::::::
models

:::
are

:::::::
unlikely

:::::::::::::::::
(Myhre et al., 2025).

::::::::::::
Nevertheless,

:::
our

::::::
results

:
do not invalidate previous re-

sults indicating that the very strong warming , cloud feedback and climate sensitivity of high-end
:::
that

::::
the

:::::::
extreme

:::
end

:::
of

:::::
strong

::::::::
warming

:::
and

:::::
cloud

::::::::
feedback

::
of

::::::::
high-ECS CMIP6 projections is unlikely (Tokarska et al., 2020; Lyu et al., 2021; Nijsse

et al., 2020; Jiménez-de-la Cuesta and Mauritsen, 2019; Myers et al., 2021; Cesana and Del Genio, 2021). Instead, our results

show that accounting for biases in the Southern Ocean mean state in the latest generation of climate models implies larger405

future climate warming. Other
::::::::::
Furthermore,

:::::
other

:
shared biases in CMIP6 models could potentially imply additional positive

or negative biases in CMIP6 climate
:::::::::
corrections

::
to

:::::
future

:::::
OHU

:
projections (e.g., Wang et al., 2024).

::::::
Ideally,

::
if

::::
other

:::::
such

:::::
biases

:::
are

::::::::
identified

::
in

:::
the

::::::
future,

::::
they

:::::
could

:::
be

::::::::
combined

::::
with

::::
our

:::::::
findings

::
to

:::::
arrive

::
at

:
a
:::::::::

combined
:::::::::::
observational

:::::::::
constraint

::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bretherton and Caldwell, 2020; Terhaar et al., 2022)

:
.
:
Endeavours to identify and correct such biases thus remain of ut-

most importance.410

The relationships between oceanic, cryospheric and atmospheric variables revealed in this study provide guidance for the

reduction of important mean state biases in ESMs. Specifically, they highlight the need for an accurate representation of
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clouds in ESMs, as well as the importance of minimizing
:::::::
reducing

::::::::::::
uncomfortably

:::::
large biases in the deep ocean hydrography.

Deep
::::::
Similar

::
to

::::::
clouds,

::::
deep

:
ocean temperatures explain an important part of differences in present-day Antarctic sea ice and

clouds (Fig. 2) and thereby influence the future climate change in CMIP6 models .
::::
(Fig.

:::
6).

:
Improving ocean circulation and415

hydrography for climate projections therefore requires additional attention (Luo et al., 2023; Sherriff-Tadano et al., 2023),

alongside efforts to improve the simulation of clouds (Hyder et al., 2018; Zelinka et al., 2020).

Overall, our results imply that potent feedback mechanisms at mid to high southern latitudes may cause future ocean heat

uptake to be higher than expected from previous assessments. Increased ocean heat uptake would cause more thermosteric sea

level rise ,
:::
(our

::::::
central

::::::::
estimates

:::
for

::::
total

:::::::::::::
end-of-century

:::
sea

::::
level

::::
rise

:::
are

:::::::
between

::::::
15–31

:::
cm,

:::::::::
depending

:::
on

::::::::
scenario),

:
more420

damage to marine ecosystems and create additional risks to socio-economic systems.
:::::::::
Moreover,

::::::::
increased

:::::
cloud

:::::::
feedback

::::
and

:::::::::::
consequently

:::::
larger

:::::
future

::::::::
warming

::::
will

::::
make

::
it
:::::
even

:::::
harder

::
to
:::::
limit

:::::::
warming

:::
in

::::
order

:::
to

:::::
reach

::::::
climate

::::::
targets,

:::
for

::::::::
example

::::
those

:::
set

::
by

:::
the

:::::
Paris

:::::::::
Agreement.

:
This prospect calls for improved projections of coupled ocean-atmosphere climate feedbacks,

as well as continued monitoring of variability and trends across the Southern Ocean
:
,
::
as

::::
well

::
as

::::::::
imminent

:::
and

::::::
strong

:::::::::
reductions

::
in

:::::::::
greenhouse

:::
gas

:::::::::
emissions.425

Data availability. Preprocessed time series of Antarctic sea ice extent, ocean heat uptake, global mean sea surface temperature and atmo-

spheric temperature used in this study are available at: https://doi.org/10.5281/zenodo.15693980.

Observational and model data used in this study are available at the following locations:

– CMIP6 model output: https://esgf-node.llnl.gov/projects/cmip6/

– World Ocean Atlas ocean temperature and salinity data: https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18430

– Radiative kernels from Huang and Huang (2023): https://doi.org/10.17632/vmg3s67568

– Ocean heat content dataset
::::
time

:::::
series from Minière et al. (2023): available from the corresponding author upon request

:::::::
included

::
in

:::
this

::::::
study’s

:::::::
Zenodo

::::::::
repository

:
(https://doi.org/10.5281/zenodo.15693980).

– Cloud cover observational data: https://doi.org/10.24381/cds.68653055

– OSI SAF sea ice extent data: https://doi.org/10.24381/cds.3cd8b812435

– HadISST2.2 sea ice extent data: https://www.metoffice.gov.uk/hadobs/hadisst2/data/download.html

– Sea ice extent reconstruction from Fogt et al. (2022): https://doi.org/10.6084/m9.figshare.c.5709767.v1.

– Bootstrap algorithm sea ice extent data: https://nsidc.org/data/nsidc-0079/versions/4#anchor-1.

– NASA Team algorithm sea ice extent data: https://climatedataguide.ucar.edu/climate-data/sea-ice-concentration-data-nasa-goddard-and-nsidc-based-nasa-team-algorithm
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Appendix A440

Local deep temperature
vs. sea ice extentA

Global mean deep temperature
vs. local cloud coverB
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Figure A1. Relationship between deep ocean temperature and preindustrial surface climate. a, Inter-model correlation between prein-

dustrial local deep ocean temperature (averaged over 2000-4000 m depth) and preindustrial Antarctic annual mean sea ice extent. b, Inter-

model correlation between preindustrial global mean deep ocean temperature (averaged over 2000-4000 m depth) and preindustrial local

total cloud cover. In both panels, stippling indicates regions where the correlation is not significant (p≥ 0.05, two-sided).
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Cloud cover changeA
Preindustrial cloud cover
vs. cloud cover changeB
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Figure A2. Changes in cloud cover. a, Change in total cloud cover in 2080-2100 under SSP5-8.5 relative to preindustrial. b, Inter-model

correlation between local preindustrial cloud cover and local cloud cover change. Blue regions indicate that models with high local initial

cloud cover lose more local cloud cover. In panel a, the unit of % is the unit of total cloud cover and does not refer to a relative change. In

panel b, stippling indicates regions where the correlation is not significant (p≥ 0.05, two-sided).
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Sea ice vs. total cloud feedbackA OHU vs. total cloud feedbackB

Sea ice vs. SW cloud feedbackC Sea ice vs. LW cloud feedbackD
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Figure A3. Relationship between the local cloud feedback and anomalies in sea ice extent and OHU. Inter-model correlation across

CMIP6 models under SSP5-8.5 between a, local net cloud feedback parameter and Antarctic summer sea ice extent loss by 2080-2100; b,

local net cloud feedback parameter and total ocean heat uptake from 2024–2100; c, as for a but with shortwave cloud feedback parameter;

and d, as for a but with longwave cloud feedback parameter. Stippling indicates regions where the correlation is not significant (p≥ 0.05,

two-sided). In panels a, c and d, red areas indicate locations where models with greater Antarctic sea ice loss tend to have more positive local

cloud feedback. In panel b, red areas indicate locations where models with more positive local cloud feedback tend to have greater global

2024–2100 OHU.
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Figure A4. Time evolution of sea ice–related climate change. Inter-model correlation across CMIP6 models under SSP5-8.5 between

preindustrial Antarctic summer sea ice extent (SIE) and (left column) local surface air temperature anomaly, (middle column) local sea

surface temperature anomaly, and (right column) local cloud feedback parameter during progressive 20-year periods between 1970 and

2050. In all panels, stippling indicates regions where the correlation is not significant (p≥ 0.05, two-sided).
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Total OHU 1850 2024A Total OHU 2024 2100B

Shortwave OHU 1850 2024C Shortwave OHU 2024 2100D

Longwave OHU 1850 2024E Longwave OHU 2024 2100F

Latent OHU 1850 2024G Latent OHU 2024 2100H
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Figure A5. Relationship between sea ice loss and historical and future OHU components. Left column: Inter-model correlation between

total Antarctic summer sea ice loss and historical 1850–2024 total OHU (a) as well as OHU from shortwave (c), longwave (e), latent (g), and

sensible heat fluxes (i). Right column: As left column, but for the future 2024–2100 period. In all panels, stippling indicates regions where

the correlation is not significant (p≥ 0.05, two-sided).
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Figure A6. Emergent constraint on future global ocean heat uptake under SSP2-4.5 and SSP3-7.0. a, Inter-model relationship between

1980-2020 Antarctic summer (January–February) sea ice extent and cumulative global OHU over 2024–2100 under the SSP2-4.5 scenario.

The orange line and shading show the least squares linear regression fit and its uncertainty (see Methods), with the Pearson’s correlation

coefficient r and two-sided p-value given in the upper left corner. The dashed vertical line shows satellite observations of Antarctic summer

sea ice extent averaged over 1980–2020 OSI SAF (2017) and the grey shading shows the associated uncertainty of 1× 106 km2; this rela-

tively large observational uncertainty ensures we derive a conservative emergent constraint (Methods). b, Unconstrained prior (black) and

constrained posterior (orange) probability density functions of 2024–2100 global OHU. In grey we show the prior histogram for 2024–2100

OHU (Methods). c, as panel a but for the SSP3-7.0 scenario. d, as panel b but for the SSP3-7.0 scenario.
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Figure A7. Constrained distributions of global OHU, cloud feedback, and warming under SSP2-4.5 and SSP3-7.0. Prior and con-

strained distributions of (a) cumulative global OHU from 2024 to 2100, (b) global mean cloud feedback parameter in 2080–2100, and (c)

global mean surface air temperature (GSAT) anomaly in 2080–2100 relative to the preindustrial. In each panel, distributions are shown for

SSP2-4.5 (left) and SSP3-7.0 (right). The grey circles and grey boxplots show the prior distribution of model values, and the yellow and

red boxplots show the constrained distributions for SSP2-4.5 and SSP3-7.0, respectively. In each boxplot, the white line shows the median,

the central box spans the likely range (66%), and the whiskers extend to a 95% confidence interval. The constrained values are normally

distributed by construction (Methods). Note that the y-axis scale is different between the two SSPs in panels a and c.
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Figure A8. Emergent constraints on previously published metrics. a, Inter-model relationship between 1980-2020 Antarctic summer

(January–February) sea ice extent and 0–2000m OHU in 2081–2100 relative to 2005–2019 under the SSP5-8.5 scenario (as in Lyu et al.

(2021)). The red line and shading show the least squares linear regression fit and its uncertainty (see Methods), with the Pearson’s corre-

lation coefficient r and two-sided p-value given in the upper left corner. The dashed vertical line shows satellite observations of Antarctic

summer sea ice extent averaged over 1980–2020 OSI SAF (2017) and the grey shading shows the associated uncertainty of 1× 106 km2. b,

Unconstrained prior (black) and constrained posterior (red) probability density functions of 0–2000m global OHU. In grey we show the prior

histogram for 0–2000m OHU. c, as panel a but for global mean atmospheric surface warming in 2081–2100 relative to 1850–1900 under the

SSP5-8.5 scenario (as in Tokarska et al. (2020)). d, as panel b but for global mean atmospheric surface warming as in panel c.
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Figure A9. Robustness of emergent constraint to parameter choices. Prior OHU histograms and probability density functions (PDFs) as

in Fig. 7, and posterior PDFs obtained from different parameter choices. a, Different satellite January–February sea ice extent observation

sources: OSI SAF (blue), Bootstrap (orange), and NASA Team (green) using different time periods (solid: 1980–2000, dashed: 1990–

2010, dotted: 2000–2020). b, Different pre-satellite era yearly sea ice extent observation sources: HadISST2.2 (blue), and reconstructions

from Dalaiden et al. (2023) (red) and Fogt et al. (2022) (orange), using different time periods (solid: 1920–1960, dashed: 1940–1980,

dotted: 1960–2000). c, Different season definitions for sea ice extent baseline from the OSI SAF satellite product OSI SAF (2017): yearly

(blue), January-February–March (orange), February-March (green), January-February (red), July-August-September (purple). d, Different

observational uncertainties for January–February sea ice extent from the OSI SAF satellite product: 0.2× 106 km2 (blue), 0.5× 106 km2

(orange), 1× 106 km2 (green), 1.5× 106 km2 (red), 2× 106 km2 (purple), 3× 106 km2 (brown).
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Figure A10. Time series of observed and simulated Antarctic sea ice extent. Antarctic sea ice extent simulated by individual CMIP6

models (thin grey lines) and in the ensemble mean (bold black line), and in observational products (colored lines). Model time series extend

to 2100 under SSP1-2.6 (a,b) and SSP5-8.5 (c,d). Yearly values are calculated for (left column) January–February, and (right column) the

annual mean.
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Figure A11. Sea ice – OHU correlation in CMIP5 and CMIP6 for different values of OHU time period. Heatmaps of the correlation

coefficient between 1980–2020 Antarctic (left column) annual or (right column) January–February sea ice extent and global OHU in (a–b)

CMIP5 under RCP8.5 forcing and (c–d) CMIP6 under SSP5-8.5 forcing, for different OHU time periods. Stippling indicates parameter

values where the sea ice – OHU correlation is not statistically significant (p >= 0.05, two-sided).
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Figure A12. Robustness of sea ice – OHU correlation to removing extreme model values. Heatmaps of the correlation coefficient between

1980–2020 Antarctic summer sea ice extent and future (2024–2100) global OHU under (a–b) SSP1-2.6 and (c–d) SSP5-8.5 when removing

a number of models with the highest or lowest sea ice extent (left column), and the highest or lowest future OHU (right column). Stippling

indicates parameter values where the sea ice – OHU correlation is not statistically significant (p >= 0.05, two-sided).

32



1990 1995 2000 2005 2010 2015
 

2000

2010

2020

2030

2040
 

1-to-1 line (period length zero)
Periods of length 14yr as in Lyu et al. (2021)
Lyu et al. (2021): 2005-2019

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

Start year of period

En
d 

ye
ar

 o
f p

er
io

d

Figure A13. Sensitivity of OHU constraint based on past warming. Heatmap of the correlation coefficient between past OHU and future

(2081–2100 vs. past) OHU among CMIP6 models under SSP5-8.5 forcing for different choices of the start and end year of the past time

period.
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Table A1. CMIP6 models used in this study. 1Models for which essential output variables (hfds and siconc) are unavailable for any of

the SSP1-2.6, SSP2-4.5, or SSP3-7.0 scenarios.

Model Modeling center Reference missing SSPs1

CanESM5 CCCma Swart et al. (2019) —

CanESM5-CanOE2 —

CMCC-CM2-SR5 CMCC Cherchi et al. (2019) —

CMCC-ESM2 Lovato et al. (2022) —

CNRM-CM6-1 CNRM-CERFACS Voldoire et al. (2019) —

CNRM-CM6-1-HR —

CNRM-ESM2-1 Séférian et al. (2019) —

ACCESS-ESM1-5 CSIRO Ziehn et al. (2020) —

ACCESS-CM2 CSIRO-ARCCSS Bi et al. (2020) —

EC-Earth3 EC-Earth-Consortium Döscher et al. (2022) —

EC-Earth3-CC ssp126, ssp245, ssp370

EC-Earth3-Veg —

EC-Earth3-Veg-LR —

IPSL-CM6A-LR IPSL Boucher et al. (2020) —

MIROC6 MIROC Tatebe et al. (2019) —

HadGEM3-GC31-LL MOHC Andrews et al. (2020) ssp370

HadGEM3-GC31-MM ssp245, ssp370

UKESM1-0-LL Sellar et al. (2019) —

MPI-ESM1-2-HR MPI-M Gutjahr et al. (2019) —

MPI-ESM1-2-LR —

MRI-ESM2-0 MRI Yukimoto et al. (2019) —

GISS-E2-1-G NASA-GISS Kelley et al. (2020) —

CESM2 NCAR Danabasoglu et al. (2020) —

CESM2-WACCM —

NorESM2-LM NCC Seland et al. (2020) —

NorESM2-MM —

GFDL-CM4 NOAA-GFDL Held et al. (2019) ssp126, ssp370

GFDL-ESM4 Dunne et al. (2020) ssp126
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Table A2. Emergent constraints across scenarios. For each variable and each SSP, this table gives the inter-model correlation (Pearson’s

r-value) between 1980–2020 Antarctic summer sea ice extent (SIE) and the respective future variable (X), as well as the unconstrained and

constrained median values of X . Correlation r-values with an asterisk indicate significant correlations at the p < 0.05 level according to a

two-sided Student’s t-test. Constrained values with an asterisk indicate significant difference between unconstrained and constrained mean

values at the p < 0.05 level according to a two-sided Student’s t-test. Uncertainty ranges express the 66% likely range. Variable abbreviations

stand for ocean heat uptake (OHU), global mean sea level rise from thermal expansion (SLR), global mean surface air temperature warming

(∆GSAT), and global mean cloud feedback parameter (λcloud); see Methods.

Future scenario OHU (ZJ) SLR (cm) ∆GSAT (◦C) λcloud (Wm−2K−1)

SSP1-2.6

(n= 25)

corr(X, SIE) r = 0.66∗ r = 0.66∗ r = 0.45∗ r = 0.64∗

prior 1205± 163 14.7± 2.0 2.25± 0.52 0.43± 0.47

constrained 1244± 141 15.2± 1.7 2.36± 0.51 0.51± 0.41

SSP2-4.5

(n= 26)

corr(X, SIE) r = 0.82∗ r = 0.82∗ r = 0.56∗ r = 0.66∗

prior 1528± 178 18.6± 2.2 3.20± 0.63 0.40± 0.43

constrained 1678∗ ± 129 20.5∗ ± 1.6 3.36± 0.58 0.48± 0.37

SSP3-7.0

(n= 24)

corr(X, SIE) r = 0.64∗ r = 0.64∗ r = 0.62∗ r = 0.63∗

prior 1981± 308 24.2± 3.8 4.17± 0.82 0.24± 0.48

constrained 2193± 270 26.7± 3.3 4.48± 0.73 0.42± 0.42

SSP5-8.5

(n= 28)

corr(X, SIE) r = 0.87∗ r = 0.87∗ r = 0.61∗ r = 0.71∗

prior 2273± 314 27.7± 3.8 5.36± 0.93 0.48± 0.42

constrained 2595∗ ± 208 31.6∗ ± 2.5 5.52± 0.83 0.63∗ ± 0.35
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