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Abstract. The Sahel region faces increasing drought variability, driven by complex interactions between climatic indices and 

hydrological extremes. This study explores the correlation between the Standardized Precipitation Evapotranspiration Index 

(SPEI) and multiple climatic indices—including the Global Mean Temperature (GMT), Indo-Pacific Warm Pool (IPWP), 

Atlantic Multidecadal Oscillation (AMO), and North Tropical Atlantic Index (NTA)—using trend analysis, cross-correlation, 

and an innovative SHAP-driven (SHapley Additive exPlanations) clustering approach. The Seasonal Kendall (SK) test 10 

identified statistically significant decreasing SPEI-12 trends in 57.5% of the grid cells, especially in the western (Senegal, 

Mauritania) and southeastern Sahel (South Sudan), while 19.3%, mainly in central-western areas (Burkina Faso, Niger), 

showed significant increases. Correlation analysis revealed strong negative relationships between SPEI-12 and GMT (up to -

0.76) and IPWP (-0.71), underscoring their role in drought intensification. Conversely, AMO (0.40) showed a positive 

correlation, meaning that during its warm phase rainfall tends to increase, alleviating drought severity, while its cold phase 15 

intensifies drought. This reflects a spatially heterogeneous influence distinct from the consistently negative effects of GMT 

and IPWP. Using the SHAP-driven clustering, AMO and NTA emerged as key discriminators of regional drought regimes. 

Thus, correlation analysis and RF/SHAP highlight complementary perspectives: parameters such as GMT and IPWP drive 

overall drought intensification, while parameters such as AMO and NTA govern the regional differentiation of drought 

patterns. This study introduces a novel framework that integrates explainable Artificial Intelligence (AI) into drought 20 

assessment, offering actionable insights for climate adaptation and water resource management in the Sahel. 
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1 Introduction 

Drought represents one of the most critical environmental threats in the Sahel, where chronic water scarcity profoundly 25 

influences agricultural productivity, food security, and socio-economic stability (Nicholson, 2013). The region’s climate is 

characterized by pronounced interannual rainfall variability, with monsoonal precipitation confined to a brief seasonal window 

each year (Guilbert et al., 2024). However, climate change is intensifying this variability, triggering more frequent, prolonged, 

and severe droughts that disrupt hydrological cycles and amplify water stress (Taylor et al., 2013). 
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These extreme events diminish water availability, accelerate land degradation, and intensify desertification, particularly 30 

affecting groundwater reserves that are vital for local resilience (Cuthbert et al., 2019). Rainfall deficits now often persist for 

years or decades, as witnessed during the devastating droughts of the 1970s and 1980s, which led to widespread famine, 

displacement, and long-term ecological degradation (Sarr et al., 2024). Although some rainfall recovery has occurred in recent 

decades, it remains highly erratic and often takes the form of short, intense storms that cause surface runoff but fail to replenish 

groundwater effectively (Panthou et al., 2014). 35 

Rising temperatures further exacerbate drought severity by increasing evapotranspiration, depleting soil moisture, and reducing 

groundwater recharge (Hao et al., 2018; Nigatu et al., 2022). As a result, the Sahel faces an increasingly unpredictable 

hydrological future, where traditional water management strategies may no longer suffice to mitigate the impacts of prolonged 

dry periods. 

The socio-economic repercussions of these droughts are profound, affecting millions who rely on rain-fed agriculture and 40 

pastoralism for their livelihoods (MacDonald et al., 2012). As surface water sources become increasingly unreliable, 

communities are forced to extract groundwater at unsustainable rates, accelerating resource depletion (Hamdi et al., 2020). 

This over-extraction, coupled with diminished recharge opportunities due to shifting precipitation patterns, raises serious 

concerns about long-term water security and the sustainability of groundwater-dependent ecosystems (Döll and Fiedler, 2008; 

Gleeson et al., 2012). Furthermore, the intensifying scarcity of water resources has been linked to escalating social tensions, 45 

forced migration, and regional conflicts, underscoring the urgent need for adaptive and sustainable drought management 

strategies. 

Understanding the cascading effects of drought on agriculture, ecosystems, and livelihoods requires a comprehensive analytical 

framework. Drought patterns are shaped by a complex interplay of climatic variables influencing atmospheric circulation, 

precipitation, and temperature anomalies. Large-scale climate drivers can exacerbate droughts, altering hydrological cycles 50 

and intensifying water deficits. Prolonged dry spells reduce soil moisture, river discharge, and reservoir levels, threatening 

irrigation, drinking water supply, and ecosystem stability. 

Traditional methods for analyzing drought trends, such as the Mann-Kendall (MK) test, are widely used but have limitations 

in detecting non-monotonic changes and seasonal variability. To address these constraints, this study employs the Seasonal 

Kendall (SK) test—an extension of the MK test that stratifies data into seasonal components prior to trend detection, thereby 55 

reducing bias from periodic fluctuations (Hirsch and Slack, 1984). This enhances the detection of long-term trends in the 

Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010) and ensures that seasonality does not 

distort drought assessments. 

Beyond trend detection, examining how large-scale climate drivers influence drought requires methods capable of capturing 

complex, potentially nonlinear interactions. While traditional correlation-based approaches offer insights, they often miss these 60 

subtleties. Therefore, this study uses cross-correlation analysis to quantify the strength and direction of associations between 

SPEI and key climatic indices, enabling a more nuanced understanding of the dominant teleconnections shaping drought 

variability in the Sahel. 
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A critical yet frequently overlooked aspect of drought characterization involves identifying spatially homogeneous regions 

that exhibit consistent drought-climate relationships. Traditionally, clustering techniques such as K-means and Hierarchical 65 

clustering have been used to delineate these regions based on hydroclimatic features. K-means, while computationally efficient, 

assumes spherical clusters and equal variance, often oversimplifying complex spatial patterns. Hierarchical clustering, 

although more flexible in capturing nested relationships, can be sensitive to noise and lacks scalability for large datasets. 

Moreover, both methods operate as unsupervised learning algorithms, providing little insight into the underlying climatic 

drivers that influence cluster formation. As a result, these techniques often fall short in interpretability and in explaining the 70 

climatic processes shaping spatial drought variability. 

To overcome these limitations, this study introduces an innovative SHAP-driven clustering framework, which integrates RF 

classification with SHAP analysis. In this approach, RF is used to classify observations into drought-prone clusters identified 

during the unsupervised phase, while SHAP quantifies the contribution of each climatic variable to the predicted cluster 

membership. This combination offers a transparent and interpretable alternative to traditional clustering by uncovering not 75 

only the spatial patterns of drought but also the relative importance of different climate drivers in shaping those patterns. The 

framework shifts from a purely data-partitioning paradigm to one that integrates explainable AI, significantly enhancing the 

understanding of how climatic variability governs regional drought dynamics. 

This study introduces a pioneering multi-method framework that transcends conventional drought analysis by integrating trend 

detection, climate-drought interactions, and an interpretable Machine Learning (ML)-based clustering approach. Unlike 80 

traditional methodologies, which often rely on linear assumptions and overlook seasonal complexities, this approach employs 

the Seasonal Kendall test to capture nuanced hydrological trends, cross-correlation analysis to identify dominant climate 

drivers, and an innovative SHAP-driven clustering technique to reveal the underlying mechanisms governing spatial drought 

variability. By quantifying the contribution of individual climatic variables, this framework advances beyond conventional 

classification techniques, offering an unprecedented level of transparency and interpretability. These methodological 85 

advancements not only refine the characterization of drought dynamics in the Sahel but also provide a robust foundation for 

data-driven climate adaptation strategies, enabling more precise risk assessment and sustainable water resource management 

in vulnerable regions. 

2 Materials and Methods 

2.1 Study Area and Dataset 90 

The Sahel (Figure 1) is a vast semi-arid region in Africa, extending across the continent from the Atlantic Ocean in the west 

to the Red Sea in the east. It forms a transitional zone between the arid Sahara Desert to the north and the more humid savannas 

to the south. Geographically, the Sahel spans parts of the main African Basins, including Senegal, Niger, Volta, Lake Chad 

and Nile rivers. Its topography is characterized by flat plains interspersed with rocky outcrops, dunes, and seasonal river 

systems. Morphologically, the Sahel is marked by sparse vegetation, dominated by drought-resistant grasses, shrubs, and 95 
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scattered trees, which are adapted to its harsh conditions. Soil types vary but are generally sandy and nutrient-poor, further 

constraining agricultural productivity. The climate of the Sahel is hot and dry, with a short and highly variable rainy season, 

typically lasting from June to September. Annual rainfall ranges between 100 and 600 millimeters, decreasing from south to 

north. The region is highly susceptible to prolonged droughts and erratic rainfall patterns, exacerbated by climate change. 

These conditions have profound impacts on water availability, agriculture, and the livelihoods of the predominantly rural 100 

population, making the Sahel one of the most vulnerable regions to climatic and environmental stressors. 

For this study, the SPEI gridded data from the Global SPEI Database (GSD) were utilized (details at https://spei.csic.es/). The 

GSD provides global coverage of SPEI data for the period from January 1901 to December 2023, with a spatial resolution of 

0.5° and time scales ranging from 1 to 48 months. The spatial resolution of the GSD has been shown to be suitable for accurate 

drought analyses in regions with diverse climates, including the Northeastern United States (Krakauer et al., 2019), Iran 105 

(Roushangar and Ghasempour, 2021), Somalia (Musei et al., 2021), Turkey (Danandeh Mehr and Attar, 2021), Southwest 

China (Sun et al., 2022), India (Vishwakarma et al., 2022), and Southern Italy (Di Nunno and Granata, 2023). This makes the 

GSD a valuable tool for studying drought in areas with limited or incomplete weather data. Figure 1 illustrates the study area 

and the 1335 SPEI gridded data points covering the Sahel region. The SPEI is advantageous as it incorporates the effects of 

evapotranspiration on drought severity. Specifically, it is based on the climatic water balance between precipitation (P) and 110 

potential evapotranspiration (ETp). In the dataset used, ETp was computed using the well-established FAO-56 Penman-

Monteith equation (Allen et al., 1998). 

The SPEI can be calculated at various time scales, capturing both short- and long-term drought effects. For agricultural drought 

monitoring, 3- or 6-month scales are commonly used, whereas scales of 12 months or longer are applied for hydrological 

droughts (Tan et al., 2015). In this study, a 12-month time scale (SPEI-12) was used. The choice of the 12-month timescale in 115 

this analysis is grounded in the need to capture both seasonal and inter-annual variations in the Sahel's climate system, which 

are essential for understanding drought dynamics and water availability. The Sahel, characterized by a highly variable climate, 

experiences significant shifts between wet and dry periods. The 12-month timescale is particularly well-suited to account for 

these fluctuations, as it integrates both the seasonal rainfall patterns (which typically occur during the rainy season) and the 

cumulative effect of evapotranspiration, offering a more comprehensive measure of drought conditions over a yearly cycle. 120 

Based on SPEI values, drought or wetness severity is classified from extreme drought (SPEI < -2) to extremely wet conditions 

(SPEI > 2). 

Drought assessment in the Sahel is complicated by the complex, nonlinear, and dynamic nature of atmospheric processes, 

which challenge the accurate representation of spatial–temporal patterns, multi-scale interactions, and the influence of extreme 

events and topographic variability. To address these complexities, this study incorporates time series of various climate indices 125 

into the modeling framework. 

In this context, climate indices refer to large-scale indicators of atmospheric and oceanic variability derived from standardized 

measurements such as sea surface temperature (SST), sea-level pressure, and wind anomalies over specific regions. Examples 

include the AMO, GMT and North Atlantic Oscillation (NAO). Unlike drought indicators such as SPEI, which quantify 

https://spei.csic.es/
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regional hydroclimatic conditions, climate indices capture broader patterns of variability that serve as external drivers of local 130 

drought dynamics. 

These indices offer critical insights into the mechanisms regulating regional drought variability. For instance, warm phases of 

the AMO are associated with increased rainfall in the Sahel, whereas El Niño events often lead to drier conditions (Okonkwo, 

2014). The 12-month SPEI timescale was selected to reflect both seasonal and interannual climate variability, enabling the 

detection of annual hydrological responses to the prevailing phases of large-scale climate drivers. While some indices, such as 135 

the AMO, operate on multidecadal timescales, their current phase can still exert influence on precipitation patterns within a 

given year. Thus, the 12-month period is not intended to resolve long-term climate variability itself, but rather to integrate its 

effects as expressed in a single year's climate system. This timescale effectively captures the cumulative influence of slow-

acting processes such as oceanic and atmospheric anomalies, allowing SPEI to reflect integrated climate impacts on 

precipitation and evapotranspiration. As a result, the use of climate indices alongside long-term SPEI enhances the ability to 140 

identify meaningful correlations, detect persistent drought trends, and better understand the climatic forces shaping drought 

conditions in the region. 

Although the analysis incorporated 31 climate indices, the historical period from 1951 to 2018 was deemed appropriate for 

this study. This timeframe balances the need for a sufficiently long record to capture long-term climatic variability with the 

availability of consistent and overlapping data for a large set of indices. While the inclusion of many indices can pose 145 

challenges—such as reduced temporal overlap, increased multicollinearity, and potential noise in statistical relationships—the 

1951–2018 period provided a common baseline that ensured temporal consistency across most indices. As a result, it was 

possible to conduct a robust analysis of long-term climate-drought relationships while minimizing data limitations associated 

with differing index availability.  

Table 1 summarizes the climate indices considered, emphasizing their relevance to drought variability. In the context of SPEI 150 

analysis, these indices are crucial for understanding temporal patterns and variations. 
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Figure 1: Location of the selected SPEI grid in the Sahel region with the Köppen-Geiger Climate Classification. 

Table 1: Definition of the climatic indices with data source. 

Climate 

index 
Abbr. Definition Data source 

Atlantic 

Meridional 

Mode 

AMM 

The AMM describes north-south SST differences in the tropical Atlantic. Its 

positive phase shifts rainfall northward, increasing Sahel precipitation and 

reducing drought risk. The negative phase causes southward rainfall shifts, 

leading to Sahel drought. AMM also affects Atlantic hurricane activity, 

influencing regional climate variability. 

https://psl.noaa.go

v/data/timeseries/

month/DS/AMM/ 

Atlantic 

Multidecadal 

Oscillation 

AMO 

The Atlantic Multidecadal Oscillation refers to natural variations in North 

Atlantic Ocean sea surface temperatures that occur over periods of 20 to 40 

years. In its positive phase, North Atlantic temperatures are above average, 

leading to hotter summers along the eastern U.S., increased hurricane activity 

in the tropical Atlantic, and enhanced rainfall in Africa. In its negative phase, 
cooler Atlantic temperatures are associated with weaker hurricane activity, 

drought in Africa's Sahel region, and cooler, wetter summers in Europe. The 

https://www.psl.no

aa.gov/data/timese

ries/AMO/ 
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AMO plays a significant role in shaping global climate systems and regional 

weather patterns, particularly in the North Atlantic region. 

Arctic 

Oscillation 
AO 

The AO influences atmospheric circulation patterns that can extend to the 

Sahel region by affecting the strength and position of the African Easterly Jet 

and mid-latitude weather systems. Its negative phase can weaken the jet stream, 

altering rainfall patterns in West Africa and contributing to Sahel drought or 

variability in seasonal precipitation. 

https://psl.noaa.go

v/data/timeseries/

month/DS/AO/ 

Berkeley 

Earth 
Surface 

Temperature 

BEST 

The BEST dataset provides global and regional surface temperature trends, 

including detailed temperature anomalies across Africa. These trends are 
crucial for understanding how warming influences Sahel hydroclimate, as 

rising temperatures can exacerbate drought conditions and impact rainfall 

variability in the region. 

https://psl.noaa.go
v/data/correlation/

censo.data 

Caribbean 

Index 
CAR 

The CAR index captures climate variability in the Caribbean, including SST 

and atmospheric patterns. It influences Atlantic tropical cyclone activity, which 

can affect West African monsoon dynamics and Sahel rainfall through 

atmospheric teleconnections. 

https://psl.noaa.go

v/data/correlation/

CAR_ersst.data 

Eastern 

Pacific 

Oscillation 

Index  

EPO 

The EPO describes atmospheric pressure anomalies in the eastern North 

Pacific. Its phases influence the jet stream and temperature patterns in North 

America, which can indirectly affect West African climate by modulating 

large-scale atmospheric circulation and teleconnections linked to Sahel rainfall 

variability. 

https://psl.noaa.go

v/data/correlation/

epo.data 

Greenland 

Blocking 
Index  

GBI 

The GBI measures persistent high-pressure systems over Greenland. Its 

positive phase alters North Atlantic circulation, which can influence the West 
African monsoon and Sahel rainfall by affecting atmospheric patterns that 

modulate moisture transport into the region. 

https://psl.noaa.go

v/data/correlation/
gbi.ncep.day 

Global Mean 

Temperature 
GMT 

GMT tracks overall atmospheric and ocean warming or cooling trends. Rising 

global temperatures influence the Sahel by intensifying droughts, altering 

rainfall patterns, and impacting regional water resources through shifts in the 

hydrological cycle. 

https://psl.noaa.go

v/data/correlation/

gmsst.data 

Indo-Pacific 

Warm Pool 
IPWP 

The IPWP, with some of the warmest tropical ocean temperatures, drives 

global atmospheric circulation, including monsoons. Its warming phase 

enhances convection and rainfall, indirectly influencing Sahel rainfall through 

shifts in the Walker circulation and global moisture transport. 

https://psl.noaa.go

v/data/correlation/

pacwarm.data 

The North 

Atlantic 

Oscillation 

NAO 

The NAO index measures sea-level pressure differences between the Azores 

High and the Subpolar Low. Its phases modulate the North Atlantic jet stream 

and storm tracks, affecting heat and moisture transport. These changes 

influence West African monsoon strength and Sahel precipitation by altering 

atmospheric circulation patterns over the Atlantic. 

https://psl.noaa.go

v/data/correlation/

nao.data 

The North 
Atlantic 

Oscillation 

(Jones) 

NAO 

(Jones) 

Defined by Jones (1997), this NAO index measures the sea-level pressure 
difference between the Azores High and Icelandic Low. Its phases influence 

Atlantic atmospheric circulation patterns that affect West African monsoon 

dynamics and Sahel rainfall variability. 

https://psl.noaa.go

v/data/correlation/j

onesnao.data 

Niño-1.2 - 

This index covers sea surface temperatures in the eastern equatorial Pacific 

(80°W–90°W, 10°S–0°), where El Niño and La Niña events typically originate. 

In its positive phase (El Niño), warmer waters lead to increased rainfall and 

floods along South America’s northwest coast; in its negative phase (La Niña), 

cooler waters cause drought and promote cold-water upwelling. While its 

direct effects are regional, Niño-1+2 influences large-scale atmospheric 

circulation patterns, which can alter the West African monsoon strength and 

consequently affect Sahel precipitation variability. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 
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Niño 3 - 

The Niño-3 index tracks sea surface temperatures in the eastern equatorial 

Pacific (150°W–90°W, 5°S–5°N) to monitor El Niño and La Niña events. 

During El Niño (positive phase), warmer waters cause increased rainfall in 

western South America, drought in Asia-Pacific, and reduced rainfall in the 

Sahel. La Niña (negative phase) brings cooler waters, increased storms in Asia-

Pacific, and enhanced rainfall in the Sahel. This index influences global 

atmospheric circulation and tropical rainfall patterns. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 

Niño-3.4 - 

The Niño-3.4 index measures sea surface temperatures in the central equatorial 
Pacific (120°W–170°W, 5°S–5°N) and is a key indicator of El Niño and La 

Niña events. During El Niño (positive phase), warmer waters lead to increased 

rainfall along South America’s coast, drought and heatwaves in the Asia-

Pacific, and reduced rainfall in the Sahel. La Niña (negative phase) brings 

cooler waters, heavy rains and floods in Asia-Pacific, drought in South 

America, and enhanced rainfall in the Sahel. Niño-3.4 strongly influences 

global atmospheric circulation and tropical weather patterns. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 

Niño-4 - 

The Niño-4 index measures sea surface temperature variations in the central 

Pacific (160°E–150°W, 5°S–5°N) during El Niño and La Niña events. In its 

positive phase (El Niño), warmer waters enhance convection in the tropical 

western Pacific, influencing atmospheric circulation and monsoon patterns, 

often linked to reduced rainfall in the Sahel. In the negative phase (La Niña), 
cooler waters lead to drought in the western Pacific and increased rainfall in 

the central Pacific, sometimes boosting Sahel precipitation. Niño-4 is key for 

understanding tropical circulation and regional climate variability. 

https://www.cpc.n

cep.noaa.gov/data/ 

indices/ersst5.nino
.mth.91-20.ascii 

Northern 

Oscillation 

Index 

NOI 

The NOI measures sea level pressure differences between Tahiti (eastern 

tropical Pacific) and Darwin (western subtropical Pacific). In its positive phase, 

high pressure dominates the eastern Pacific and low pressure the western 

Pacific, causing drought in the east and wetter conditions in the west. The 

negative phase reverses this pattern. The NOI is essential for understanding 

tropical climate phenomena such as El Niño-Southern Oscillation (ENSO) 

impacts. 

https://psl.noaa.go

v/data/correlation/

noi.data 

North 
Pasific Index 

NP 

The NP reflects average sea level pressure over the North Pacific, indicating 

the strength of the Aleutian Low. In its positive phase, a stronger Aleutian Low 

brings more rainfall to western North America and cooler eastern Pacific 

waters. In the negative phase, the system weakens, leading to drier conditions 
and warmer sea surface temperatures. The NP Index is key to understanding 

Pacific atmospheric circulation and its effects on North American and, to a 

lesser extent, African climate patterns 

https://psl.noaa.go

v/data/correlation/
np.data 

North 

Tropical 

Atlantic SST 

Index 

NTA 

The NTA index represents SSTs in the North Tropical Atlantic. In its positive 

phase, warmer SSTs enhance convection and tropical cyclone activity, while 

influencing rainfall patterns across the Atlantic basin. This phase is often 

linked to increased precipitation in the Sahel. In the negative phase, cooler 

SSTs reduce cyclone activity and can lead to drought conditions in West 

Africa. The NTA index is crucial for understanding Atlantic climate variability 

and its impacts on regional weather systems. 

https://psl.noaa.go

v/data/correlation/

NTA_ersst.data 

Oceanic 

Niño Index 
ONI 

The ONI measures the three-month running average of sea surface temperature 

anomalies in the Niño-3.4 region of the central tropical Pacific. It is the primary 

indicator of El Niño and La Niña events within the ENSO cycle. Positive ONI 
values (El Niño) are linked to drought in regions like Australia and the Sahel, 

while negative values (La Niña) can enhance rainfall in these areas. The ONI 

https://psl.noaa.go

v/data/correlation/
oni.data 
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is essential for monitoring ENSO’s global impacts on temperature, rainfall, and 

atmospheric circulation 

Pasific 

Decadal 

Oscillation 

PDO 

The PDO describes long-term shifts in sea surface temperatures and 

atmospheric pressure across the North Pacific. In its positive phase, the eastern 

Pacific cools while the western Pacific warms, bringing wetter conditions to 

western North America and warmer weather in Alaska. In the negative phase, 

the pattern reverses, causing drought in western North America and reduced 

marine productivity. The PDO influences multi-decadal climate variability, 
affecting agriculture, fisheries, and water resources globally, including rainfall 

patterns in Africa 

https://psl.noaa.go

v/data/correlation/

pdo.data 

Pacific 

Meridional 

Mode 

PMM 

The PMM is a climate pattern driven by interactions between sea surface 

temperatures and surface winds in the tropical Pacific. In its positive phase, 

warmer waters enhance convection and rainfall across the Pacific, often 

preconditioning El Niño events. In its negative phase, cooler waters suppress 

convection, leading to drier tropical conditions. The PMM influences the onset 

of ENSO events and plays a key role in shaping tropical and global climate 

variability, including rainfall over Africa. 

https://psl.noaa.go

v/data/timeseries/

month/data/pmm.d

ata 

Pacific–
North 

American 

Pattern 

PNA 

The PNA pattern is a major mode of atmospheric variability in the Northern 

Hemisphere, reflecting recurring pressure anomalies over the North Pacific and 

North America. The PNA index is based on standardized 500 hPa geopotential 

height anomalies at four specific locations. Its phases correlate with 
temperature and precipitation anomalies across North America. The PNA 

influences regional weather by modulating the strength and position of the East 

Asian jet stream, affecting storm tracks and climate patterns. Through 

atmospheric teleconnections, the PNA can also impact tropical circulations, 

with potential links to rainfall variability in the Sahel and parts of northern 

Africa. 

https://psl.noaa.go
v/data/correlation/

pna.data 

Quasi-

Biennial 

Oscillation 

QBO 

The QBO is a regular oscillation of easterly and westerly winds in the tropical 

stratosphere, with a cycle of about 28–30 months. In its westerly phase, tropical 

cyclone activity increases, especially in the Pacific and Atlantic. In the easterly 

phase, cyclone formation weakens, and stratospheric ozone distribution shifts. 

The QBO modulates stratosphere–troposphere interactions and can influence 

tropical convection, potentially affecting rainfall variability in regions such as 

the Sahel and equatorial Africa. 

https://psl.noaa.go

v/data/correlation/

qbo.data 

Sahel 

Precipitation 
Sahel P 

Sahel Precipitation refers to the annual rainfall in Africa’s Sahel region (south 
of the Sahara Desert) and is influenced by tropical Atlantic Sea surface 

temperatures and atmospheric circulation. Positive phases (increased rainfall) 

improve agriculture and water resources, while negative phases (drought) lead 

to famine and heightened socio-economic impacts. 

https://psl.noaa.go

v/data/correlation/

sahelrain.data 

Southern 

Oscillation 

Index 

SOI 

The SOI is calculated from the air pressure difference between Tahiti (central 

Pacific) and Darwin, Australia (western Pacific). Positive SOI values indicate 

La Niña conditions with high pressure over Tahiti and low pressure over 

Darwin, often linked to increased rainfall in the Sahel. Negative SOI values 

correspond to El Niño conditions, typically associated with drier Sahel 

conditions and shifts in global climate patterns. 

https://psl.noaa.go

v/data/correlation/

soi.data 

Solar Flux - 

Solar flux measures the amount of solar energy reaching Earth, reflecting solar 

activity cycles. Increased solar flux can lead to warming and changes in 

atmospheric circulation, which may influence rainfall patterns in Africa. Lower 
solar flux periods tend to coincide with cooler and more stable climate 

conditions, potentially affecting the Sahel rainfall variability indirectly. 

https://psl.noaa.go

v/data/correlation/
solar.data 
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Tropical 

Northern 

Atlantic 

Index (TNA) 

TNA 

The TNA measures sea surface temperature anomalies in the tropical North 

Atlantic (5°N–25°N, 15°W–60°W). Positive phases with warmer SSTs are 

associated with increased rainfall along the West African coast and enhanced 

tropical cyclone activity. Negative phases correspond to cooler SSTs, reduced 

tropical rainfall, and weaker cyclone activity, often linked to drought 

conditions in the Sahel. 

https://psl.noaa.go

v/data/correlation/t

na.data 

Trans Nino 

Index 
TNI 

The TNI analyzes spatial shifts in El Niño and La Niña events by measuring 

SST differences between the eastern tropical Pacific (Niño-1+2) and central 
tropical Pacific (Niño-4). Positive TNI phases indicate eastward-shifted El 

Niño effects, increasing rainfall in the eastern Pacific and often suppressing 

rainfall in the Sahel. Negative phases reflect eastward shifted La Niña effects, 

which can enhance Sahel precipitation by influencing tropical atmospheric 

circulation. 

https://psl.noaa.go

v/data/correlation/t

ni.data 

Tropical 

Southern 

Atlantic 

Index 

TSA 

The TSA measures SST anomalies in the tropical South Atlantic (0°–20°S, 

10°E–30°W). Warmer SSTs in the positive phase lead to increased rainfall 

along eastern South America and shifts in the Atlantic Hadley circulation, 

which can influence West African monsoon intensity. Cooler SSTs during the 

negative phase are linked to drought and reduced convection, potentially 

weakening Sahel rainfall. 

https://psl.noaa.go

v/data/correlation/t

sa.data 

Tropical 
Western 

Hemisphere 

warm pool  

WHWP 

The WHWP covers the Caribbean, Gulf of Mexico, and eastern tropical Pacific 

where SSTs exceed 28°C. Positive phases are characterized by increased 
temperatures, leading to stronger tropical cyclone activity and enhanced 

rainfall in surrounding regions. Negative phases correspond to cooler SSTs and 

reduced storm intensity. WHWP variability affects Atlantic atmospheric 

circulation and can modulate rainfall in the Sahel and West Africa. 

https://psl.noaa.go
v/data/correlation/

whwp.data 

West Pacific 

Index 
WPI 

The WPI measures atmospheric pressure differences in the tropical and 

subtropical western Pacific. In its positive phase, a strong high-pressure system 

weakens Asian monsoons and tropical cyclone activity. The negative phase, 

dominated by low pressure, enhances Asian monsoon strength and storm 

activity. Changes in the WPI influence tropical climate dynamics and can 

indirectly affect the Sahel by modulating global atmospheric circulation 

patterns. 

https://psl.noaa.go

v/data/correlation/

wp.data 

2.2 Modeling procedure 155 

To better understand the complex dynamics of drought fluctuations, this study adopted a comprehensive analytical framework 

that incorporated the SK test, along with correlation and clustering analyses (Figure 2). The SK test was selected due to its 

ability to account for seasonal variations in SPEI and climatic indices time series, addressing the shortcomings of conventional 

methods like the MK test, which often fail to consider the seasonality inherent in groundwater dynamics.  In the case of SPEI, 

a negative Z-value obtained from the SK test signals a decline typically linked to drought conditions, whereas a positive Z-160 

value indicates an increase often associated with wetter climatic scenarios. In this study, the SK test was conducted with a 

strict 95% confidence level (p-value ≤ 0.05) to enhance the reliability of the identified trends. For further details, refer to the 

foundational works of Hirsch and Slack (1984) and a recent application by Di Nunno et al. (2023). 

Then, to gain a deeper understanding of how climatic indices influence drought conditions, this study analyzed the correlation 

between SPEI and various climatic indices. This analysis is crucial because climatic indices play a significant role in shaping 165 
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drought dynamics. By examining these relationships, it becomes possible to identify the key drivers behind drought variability 

and their relative contributions over time. Such insights are essential not only for advancing scientific knowledge but also for 

informing targeted mitigation and adaptation strategies, particularly in regions where hydrological cycles are highly sensitive 

to climatic fluctuations. 

Furthermore, by focusing on the climatic indices most strongly correlated with the SPEI, a clustering analysis was performed 170 

to divide the Sahel into homogeneous regions based on the correlation between SPEI and these climatic indices. This approach 

is entirely innovative, as it allows for the identification of distinct zones where specific climatic factors have a pronounced 

influence on drought dynamics. By delineating these homogeneous regions, this methodology provides valuable insights into 

localized drought drivers and their variability across the Sahel.  

In general, clustering is the process of classifying a large dataset into a smaller number of groups, or clusters. Data within the 175 

same cluster shares common features, while data from different clusters exhibit some degree of heterogeneity (Barton et al., 

2016). In this study, two widely recognized clustering algorithms, K-means and Hierarchical clustering, were preliminarily 

tested to divide the study area into homogeneous regions with shared characteristics. These algorithms have been previously 

applied in drought analyses to identify such regions. A detailed description of both algorithms can be found in the work of Di 

Nunno and Granata (2023). 180 

It is important to note that the optimal clustering algorithm and the number of clusters are not predetermined. To address this, 

the Silhouette technique was applied. This widely recognized method is used for interpreting and validating the consistency of 

clustering results, offering a measure of how well an object fits within its assigned cluster compared to other clusters (Shutaywi 

and Kachouie, 2021). The Silhouette score ranges from -1, indicating that clusters are poorly assigned, to 1, signifying well-

separated and distinct clusters. A score close to 0 suggests that the separation between clusters is negligible or ambiguous. 185 

However, this criterion does not allow for a clear assessment of the impact of each climatic index on the clustering process. 

To enhance the interpretability of clustering analyses in hydrological studies, particularly concerning drought patterns, this 

study integrates SHAP (values with RF models). This approach addresses the limitations of traditional clustering methods, 

which often lack explanatory power regarding the influence of individual climatic variables on cluster formation. 

SHAP, grounded in cooperative game theory, assigns each feature an important value for a particular prediction, offering a 190 

unified measure of feature influence across the model. In this study, SHAP values are employed to interpret the output of an 

RF classifier trained to predict cluster assignments based on climatic indices (Lundberg and Lee, 2017). The process involves:  

− Model Training: An RF classifier is trained using climatic indices as input features and the cluster labels (obtained from 

initial clustering analyses) as the target variable. 

− SHAP Value Computation: Post-training, SHAP values are computed for each feature, quantifying the contribution of 195 

each climatic index to the model's prediction for each data point. This computation considers all possible combinations of 

features, ensuring a fair distribution of importance among them . 
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− Interpretation: The resulting SHAP values provide insights into how each climatic index influences the assignment of data 

points to specific clusters. Positive SHAP values indicate a feature's positive contribution to predicting a particular cluster, 

while negative values suggest a negative contribution. 200 

By employing this SHAP-driven approach, the study transforms clustering from a purely statistical exercise into an 

interpretable framework that reveals the underlying climatic drivers of drought patterns. This enhanced interpretability 

facilitates more informed decision-making and targeted adaptation strategies, especially in regions like the Sahel, where 

drought dynamics are influenced by complex interactions among multiple climatic factors. 

This methodology aligns with recent advancements in explainable AI, where SHAP values have been utilized to enhance the 205 

interpretability of clustering analyses in various domains (Cohen et al., 2023). By integrating SHAP with RF models, the study 

not only identifies homogeneous drought regions but also elucidates the specific climatic variables driving these patterns, 

thereby contributing to more effective drought mitigation and resource management strategies. 

 

Figure 2: Modeling procedure. 210 
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3 Results 

3.1 Trend analysis 

The SK test analyzed SPEI-12 trends across the Sahel, highlighting patterns of drought and wetness (Figure 3a). Results 

showed that Z-values between -1.96 and 1.96 indicate no significant trends at the 95% confidence level, while values outside 

this range denote statistically significant trends. Furthermore, Z-values between -2.58 and 2.58 indicate no significant trends 215 

at the 99% confidence level, with values beyond this range reflecting highly significant trends. Significant trends were 

identified in various regions. Specifically, 57.5% of the cells exhibited statistically significant decreasing trends (Z < - 1.96), 

while 19.3% showed statistically significant increasing trends (Z > 1.96). The remaining 23.2% displayed increasing or 

decreasing trends that were not statistically significant (Z between ±1.96). Statistically significant decreasing trends were 

observed in the western Sahel, spanning from Senegal’s Atlantic Coast and Gambia to Mali, as well as in the southeastern 220 

region, including South Sudan. Another area experiencing marked increases in drought is the northern-central Sahel, 

particularly in Chad. These findings should be potentially linked to reduced rainfall and rising temperatures. On the other hand, 

the Sahel region between Burkina Faso and Nigeria exhibited increasing SPEI-12 trends, indicating a tendency toward wetter 

conditions. These wetter tendencies highlight the heterogeneous nature of climatic changes across the Sahel, where some areas 

may benefit from increased rainfall while others face mounting water stress. 225 

The SK test was also performed for the climatic indices (Figure 3b). The predominance of statistically significant increasing 

trends, particularly for the IPWP (Z = 27.83) and GMT (Z = 28.70), underscores the substantial role of global warming and 

oceanic heat distribution in shaping regional climate dynamics. These upward trends reflect broader increases in sea surface 

temperatures and global temperature anomalies, which are generally associated with reduced precipitation and enhanced 

drought conditions in the Sahel due to shifts in atmospheric circulation and moisture availability. 230 

Conversely, statistically significant decreasing trends were observed in three indices: TNI (Z = -7.83), Solar Flux (Z = -3.18), 

and Sahel P (Z = -4.13), each suggesting mechanisms that contribute to regional drying. The decline in TNI implies a 

weakening of tropical convection and changes in atmospheric circulation patterns that can reduce moisture transport toward 

the Sahel. The decrease in Solar Flux may be indicative of increased aerosol concentrations or cloud cover, both of which tend 

to reduce surface solar radiation, leading to lower evaporation and altered atmospheric dynamics that often result in reduced 235 

rainfall. Finally, the negative trend in Sahel P reflects a direct decline in regional precipitation, consistent with the observed 

intensification and persistence of drought conditions in recent decades. 
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(a) 

 240 

(b) 

Figure 3: Z parameter of the SK test: SPEI-12 map (a); climatic indices, with the blue and red dashed lines that indicate the 

statistically significant trend (Z = ± 1.96 – p-value = 0.05). 

3.2 Cross-correlation analysis 

The cross-correlation analysis between the SPEI-12 and the different climatic indices was conducted to evaluate the influence 245 

of large-scale atmospheric and oceanic patterns on drought variability and intensity. This approach enables a deeper 

understanding of how global phenomena modulate Sahel’s regional hydrological extremes.  

Figure 4 reports a combined box and violin plots representation of the correlations for all climatic indices, while Figure 5 

provides the maps of correlations between SPEI-12 gridded data and a subset of 12 climatic indices, selected either for their 

high mean absolute correlations (IPWP, TSA, GMT, PDO, Sahel P, Niño-4, NTA and WHWP) with SPEI-12 or for their 250 

distinctive spatial patterns across the Sahel (e.g., AMO, AMM, CAR, TNA). In addition, Tables S1 and S2 (see supplementary 
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material) report the correlation coefficient and the p-value, respectively, computed between climatic indices. Finally, Table S3 

provides the mean, maximum, minimum values, standard deviation of the correlations, and mean of the absolute correlations, 

calculated between SPEI-12 gridded data and climatic indices. 

The cross-correlation analysis between SPEI-12 and various climatic indices for the Sahel region reveals a complex interplay 255 

of global atmospheric and oceanic drivers on regional drought variability. The AMM (Interquartile range – IQR = 0.16) showed 

a moderate positive influence, with a mean correlation of 0.12 and peaks reaching 0.39. This suggests that the AMM’s 

modulation of sea surface temperatures in the Atlantic plays a significant role in shaping precipitation patterns in the Sahel. 

Similarly, the AMO (IQR = 0.23) displayed a wide range of correlation values, from -0.59 to 0.40, with a modest mean of 

0.06. Specifically, the western regions of the Sahel, from Senegal’s Atlantic coast to western Mali, exhibited a positive 260 

correlation with the SPEI-12. However, the strongest positive correlations were observed in the Sahel region along the border 

between Chad and Sudan. In contrast, the central-western region, including countries like Burkina Faso and Niger, showed a 

negative correlation. Figure 6 presents a detailed analysis of the correlation between SPEI-12 for Cell 2042 and the AMO. 

Among all analyzed locations, Cell 2042, located in the aforementioned border region between Chad and Sudan, exhibited the 

highest positive correlation with the AMO index. This relationship is reflected in the long-term trends, where both SPEI-12 265 

and AMO remained predominantly positive from the 1950s to the 1970s, turned negative from the 1970s to the late 1990s, and 

shifted positive again from the late 1990s to the present. This region, significantly affected by the oscillations of the 

Intertropical Convergence Zone (ITCZ), is characterized by highly seasonal rainfall, primarily governed by the West African 

Monsoon, and is highly sensitive to fluctuations in sea surface temperatures. The strong correlation with AMO suggests that 

warmer North Atlantic conditions enhance monsoonal precipitation, while cooler phases contribute to drought conditions. 270 

The GMT (IQR = 0.14, mean = -0.33) and IPWP (IQR = 0.13, mean = -0.39) indices exhibited strong negative correlations, 

reaching values of -0.76 and -0.71, respectively. These results underscore the adverse effects of warming in these regions, 

likely to intensify evapotranspiration and reduce soil moisture availability in the Sahel. The significant influence of GMT 

further highlights the overarching impact of global warming on regional hydrological cycles. Figure 7 presents a detailed 

analysis of the correlation between SPEI-12 for Cell 2319 and the GMT. Among all analyzed locations, Cell 2319 exhibited 275 

the strongest negative correlation with the GMT index. This relationship is evident in the opposing trends of SPEI-12 and 

GMT: SPEI-12 was predominantly positive from 1950 to the late 1990s and negative from 2000 to the present, whereas GMT 

showed an inverse pattern, remaining mostly negative until the late 1990s before turning positive from 2000 onward. Cell 2319 

is situated at the northern boundary of the Sahel in central Sudan, bordering the hyper-arid Sahara Desert. This region is highly 

sensitive to climate variability, as it marks the transition between semi-arid and arid conditions. Rainfall is scarce and primarily 280 

influenced by the northward penetration of the West African Monsoon, which is highly susceptible to global temperature shifts. 

The strong negative correlation with GMT suggests that global warming has exacerbated aridity in this zone, likely by reducing 

monsoonal rainfall and intensifying evapotranspiration.  

In contrast, the Sahel P (IQR = 0.08, mean = 0.22) index stood out with a maximum correlation of 0.35, reinforcing its role as 

a local climatic driver that directly reflects rainfall conditions in the region. Meanwhile, indices such as the AO (IQR = 0.05, 285 
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mean = -0.02) and NAO (IQR = 0.06, mean = -0.03) exhibited weaker correlations compared to the previously discussed 

indices, indicating that while these global-scale patterns might influence the Sahel indirectly, their direct impact on drought 

variability is limited or less consistent. 

The variability in correlations, as indicated by standard deviations (see Table S3), was notable across indices. For instance, the 

AMO (Dev.st = 0.16) and CAR (Dev.st = 0.14) reflected significant spatial and temporal heterogeneity in their relationships 290 

with SPEI-12, whereas indices like the GBI and AO showed much lower variability (Dev.st < 0.05), suggesting more stable 

but weaker connections. These findings emphasize that while certain indices like AMO are closely tied to sub-regional drought 

dynamics, others like GMT and IPWP reveal broader, systemic influences linked to global warming. 

 

Figure 4: Box plot representation of the correlations between SPEI-12 and climate indices. 295 
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Figure 5.  Maps of the correlations between SPEI-12 gridded data and a subset of 12 climatic indices (continue). 
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Figure 6.  Correlation analysis between SPEI-12 for Cell 2042 and AMO. The figure presents the time series of AMO and SPEI-12 300 

for Cell 2042, located at the border between Chad and Sudan. Additionally, it includes a scatter plot illustrating their relationship 

on both a monthly scale and a five-year mean scale. 
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Figure 7.  Correlation analysis between SPEI-12 for Cell 2319 and GMT. The figure presents the time series of AMO and SPEI-12 

for Cell 2319, located at the Sahel’s border in Central Sudan. Additionally, it includes a scatter plot illustrating their relationship 

on both a monthly scale and a five-year mean scale. 305 
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3.3 Clustering 

A preliminary analysis was conducted to determine the more suitable algorithm between K-means and Hierarchical clustering. 

The analysis considered a range of cluster numbers from 3 to 8. However, for the sake of brevity, only the results for the 

optimal number of clusters, identified as 3 based on the highest mean Silhouette Scores (see Figure 8a), are presented here. As 

inputs for the clustering, the most correlated climatic indices, whose correlations with SPEI-12 are depicted in Figure 5, were 310 

considered: AMM, AMO, CAR, GMT, IPWP, NTA, PDO, Sahel P, TNA, TSA and WHWP. 

The minimum, mean, and maximum Silhouette Scores for the K-means and Hierarchical clustering algorithms are reported in 

Figure S1. K-means consistently achieved higher Silhouette Scores compared to Hierarchical clustering across all clusters. For 

K-means, the minimum, mean, and maximum scores ranged from 0.47 (C1) to 0.50 (C2), 0.58 (C1) to 0.61 (C3), and 0.64 

(C1) to 0.66 (C3), respectively. In contrast, Hierarchical clustering exhibited negative minimum values, ranging from -0.47 315 

(C1) to 0.21 (C3), along with lower mean scores, from 0.19 (C1) to 0.29 (C2), and maximum values, from 0.46 (C1) to 0.50 

(C2). Therefore, the subsequent discussion focuses on the clustering analysis performed using the K-means algorithm, which 

has been considered and examined in detail. 

Cluster C1 (blue circles in Figure 8b), covered most of the central-western Sahel, corresponding to part of Niger and Burkina 

Faso. Cluster C2 (red circles in Figure 8b) covered most of the western Sahel, including the Sahel regions of Senegal, 320 

Mauritania, and Mali, except for the southwestern portion, corresponding to Gambia and Southern Senegal, which falls under 

Cluster C3. Other parts of the Sahel also fall within Cluster C2, such as some central areas of the Sahel and the easternmost 

part of the Sahel, including a part of Sudan, South Sudan and Eritrea, which is shared with Cluster C1. Finally, Cluster C3 

(yellow circles in Figure 8b) included the extensive central-eastern portion of the Sahel, including large territories of Chad, 

Sudan and Nigeria. 325 

Notable differences and similarities among the three clusters in terms of their response to climatic indices and long-term trends 

in SPEI-12 were also observed (Figure 8c), highlighting a spatial heterogeneity of drought conditions across the Sahel.  

Clusters C1 and C2 exhibit broadly similar patterns, with negative correlations dominating the relationship between SPEI-12 

and most climatic indices. Both clusters show particularly strong negative correlations with the GMT and IPWP, suggesting 

that these indices play a key role in driving aridity in these regions. However, the magnitude of these relationships differs, with 330 

C1 generally showing slightly stronger negative correlations than C2. A key distinction is that C2 demonstrates a stronger 

positive correlation of SPEI-12 with Sahel P (0.24), which suggests this cluster benefits from regional precipitation patterns in 

mitigating drought, unlike C1, where Sahel P shows a weaker positive effect (0.15). Cluster C3 stands out from the other two 

clusters, showing weaker negative correlations of SPEI-12 with most indices and even positive correlations with some, such 

as the AMO and AMM. This indicates that the drivers of drought in C3 are less linked to the same global climatic indices that 335 

strongly influence C1 and C2. Additionally, the weaker negative correlation with GMT and IPWP in C3 highlights a distinct 

climatic regime compared to the other clusters.  
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In terms of long-term drought trends, Cluster C2 shows the most pronounced worsening, with the lowest Z-value (-5.04). This 

indicates a sharp decline in SPEI-12, reflecting severe drought intensification. Cluster C3, while still experiencing a negative 

trend (-2.98), exhibits a less severe decline compared to C2, with its moderate correlations suggesting more stable conditions 340 

overall. Cluster C1 occupies an intermediate position, with a relatively mild decreasing trend (-0.93) and weaker correlations 

with regional precipitation patterns, pointing to a more gradual but persistent worsening of drought conditions. 

Overall, while C1 and C2 share similarities in their drought responses, C2 is more vulnerable to severe drought intensification, 

whereas C3 differs fundamentally, with weaker correlations and a slower trend toward worsening conditions. These differences 

underline the need for cluster-specific approaches to understanding and addressing drought impacts in the Sahel. 345 
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(c) 

Figure 8.  Clustering analysis: mean Silhouette Scores calculated for cluster numbers ranging from 3 to 8 (a); K-means clustering 

map of the Sahel Region (b); mean values of correlations between SPEI-12 and selected climatic indices and the Z statistic from 

the SK test performed on SPEI-12 for each cluster (c). 355 
 

To evaluate the relative influence of each climatic index on the clustering process and assess the predictive performance of the 

classifier, we employed an explainable AI approach that integrates a Random Forest (RF) classifier with SHAP. The RF model, 

a robust tree-based ensemble algorithm, effectively captures complex nonlinear interactions among variables but lacks inherent 

interpretability. To address both model performance and transparency, a comprehensive protocol was implemented. 360 

First, the dataset was split using stratified sampling into training (90%) and testing (10%) subsets to preserve the original class 

distribution. A Random Forest classifier (100 estimators, criterion=Gini, random_state=42) was trained on the training data, 

and standard evaluation metrics—accuracy, class-wise precision, recall, F1-score, and the confusion matrix—were computed 

on the test set. The model achieved an accuracy of 0.985 on the independent test set. Class-wise precision, recall, and F1-

scores were all above 0.97, confirming the classifier’s strong discriminative power (see Table S4). Second, model 365 

explainability was addressed using SHAP values computed through the TreeExplainer framework. Beeswarm plots were 

generated for each cluster to visualize the magnitude and direction of feature contributions. Moreover, for each cluster, mean 

absolute SHAP values were computed for each feature, and a bootstrap procedure (n = 100) was performed to calculate 95% 

confidence intervals, providing statistical robustness to the importance rankings. 

SHAP values represent the marginal impact of each feature on a model’s prediction, averaged over all possible feature subsets. 370 

In this context, a positive SHAP value indicates that the feature increases the likelihood of a data point being assigned to a 

particular cluster, while a negative value suggests a suppressing effect. In the SHAP beeswarm plots (Figure 9), the x-axis 

represents SHAP values—the impact of each feature on the clustering outcome—while the color gradient (Feature value) 

encodes the actual correlation value between the climatic index and SPEI-12 for each data point, ranging from low (blue) to 
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high (red). This dual encoding enables a nuanced interpretation of the model’s behavior: the position along the x-axis reflects 375 

the strength and direction of influence, while the color reveals whether strong or weak correlations drive the effect. 

The SHAP beeswarm plots for Clusters C1, C2, and C3 provide a comprehensive breakdown of the influence that each climate 

index exerts on the Random Forest classifier's clustering outcomes. Each plot reveals both the magnitude and direction of 

influence through SHAP values, offering insight into the discriminative role of individual features in defining cluster 

membership. 380 

In Cluster C1, the AMO, CAR and TNA emerged as the most influential variables, with mean absolute SHAP values of 0.088, 

0.72 and 0.059, respectively (see Table S5). Their distributions are notably skewed toward positive SHAP values, with dense 

concentrations between 0.05 and 0.15. This pattern indicates a strong and consistent association between high index values 

and increased likelihood of C1 classification. Moderately influential indices such as WHWP, NTA, and AMM present 

narrower spreads (-0.05 to 0.2) and more symmetric profiles, suggesting subtler but still directional contributions. Conversely, 385 

indices like PDO, GMT, IPWP, and TSA show very limited SHAP influence, with values clustered near zero and minimal 

dispersion, highlighting their negligible role in defining this cluster. 

Cluster C2, in contrast, was characterized by AMO and the NTA indices as the most important features (mean absolute SHAP 

equal to 0.096 and 0.084, respectively), followed by CAR and TNA. These variables show significant spread on both sides of 

zero, implying a bidirectional influence where both high and low values can affect classification, depending on the context. 390 

Secondary contributors such as IPWP, AMM, and GMT exhibit tighter distributions centered around zero but with occasional 

asymmetries, pointing to context-dependent roles. Sahel P, PDO, and TSA remain minimally influential, with narrow SHAP 

ranges and modes at or near zero. Compared to Cluster C1, the SHAP profiles in C2 suggest greater interaction complexity 

among variables rather than dominance by a few. 

For Cluster C3, NTA dominated the feature importance ranking (mean absolute SHAP: 0.102), followed by AMO (0.080) and 395 

WHWP (0.072). These distributions are distinctly positively skewed, and the color gradient confirms that high feature values 

strongly align with positive SHAP contributions. Variables such as CAR, TNA, and IPWP follow a similar, though slightly 

less pronounced, pattern. Mid-tier contributors like GMT, AMM, and TSA are more symmetrically distributed, with modal 

SHAP values just above zero. Finally, Sahel P and PDO again register as the least impactful, mirroring the behavior observed 

in the other clusters. 400 

Across all three clusters, a consistent pattern emerges in the relative importance of certain indices. AMO, and NTA are among 

the most influential features throughout, though the nature of their impact differs. In Clusters C1 and C3, their SHAP 

distributions are positively skewed, indicating a clear, directional relationship between high index values and cluster 

membership. In contrast, Cluster C2 exhibits more symmetric SHAP profiles, highlighting bidirectional effects and greater 

context dependency. 405 

Another key distinction lies in the degree of feature dominance. Cluster C1 and C3 are shaped by a small subset of highly 

influential variables with strong directional effects, whereas Cluster C2 displays a more distributed influence among multiple 

variables with less sharply skewed contributions. 
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Low-impact indices such as PDO and TSA consistently show minimal influence across all clusters. Their SHAP values remain 

centered around zero with low density, suggesting that these variables have limited utility in discriminating among the regimes 410 

captured by the clustering model. 

 
Figure 9.  SHAP beeswarm plot for the three clusters. The x-axis shows SHAP values representing each feature’s impact on cluster 

assignment. The color gradient indicates the corresponding climatic index–SPEI-12 correlation value, ranging from low (blue) to 415 

high (red). 

4 Discussion 

4.1 Reconceptualizing Drought Dynamics in the Sahel: A Multiscale Perspective 

The findings of this study reveal a profound reconfiguration of hydroclimatic regimes across the Sahel, with an alarming 57.5% 

of grid cells exhibiting a statistically significant decline in SPEI-12. This extensive drying is not a localized phenomenon but 420 

rather a manifestation of large-scale climatic reorganization, where the intensification of drought aligns with a convergence of 

atmospheric and oceanic anomalies. The most affected regions—the western Sahel (Senegal, Gambia, Mali), southeastern 
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Sahel (South Sudan), and northern-central Sahel (Chad)—serve as hydroclimatic sentinels, encapsulating the broader 

destabilization of the West African monsoon system. Yet, amidst this widespread aridification, a contrasting signal emerges 

between Burkina Faso and Nigeria, where a tendency toward wetter conditions underscores the region’s inherent climatic 425 

heterogeneity and the nonlinear interplay of local and global forcing mechanisms. 

The intensification of drought correlates with unequivocal global warming signatures, as reflected in the strong increasing 

trends of GMT (Z = 28.70) and IPWP (Z = 27.83). These indices do not merely co-evolve with regional drying; rather, they 

act as thermal amplifiers, accelerating evapotranspiration rates, altering atmospheric moisture gradients, and modulating land-

atmosphere feedback in ways that redefine conventional paradigms of drought causality. Meanwhile, the observed decline in 430 

TNI, Solar Flux, and Sahel P suggests a shift in moisture transport dynamics and radiative forcing, further reinforcing the 

complexity of hydrological reorganization in the region. 

Beyond linear associations, the correlation structure between global climate drivers and regional drought variability reveals an 

intricately woven network of teleconnections that challenge traditional dichotomies of cause and effect. The AMO emerges as 

a bifurcated influence, exerting positive correlations in western and central-eastern Sahel but negative correlations in central-435 

western regions such as Burkina Faso. This spatially divergent response suggests that the AMO does not exert uniform control 

over Sahelian drought but rather interacts with localized boundary conditions in ways that defy simplistic interpretations. It is 

important to note that the apparent differences between the correlation maps (Fig. 5) and the SHAP-based feature importance 

results do not represent inconsistencies but rather reflect the different nature of these diagnostics. Correlation analysis 

highlights the strength of direct, linear associations between climatic indices and drought intensity, which explains why GMT 440 

and IPWP show strong correlations across much of the Sahel. In contrast, SHAP-driven Random Forest analysis evaluates the 

contribution of each index to the classification of distinct drought regimes. Although AMO shows relatively weak average 

correlations, its spatial heterogeneity and nonlinear interactions with other indices allow it to emerge as a key discriminator 

among clusters. Conversely, the more spatially uniform influence of GMT and IPWP, while important for overall drought 

intensification, contributes less to distinguishing regional drought regimes. Thus, correlation and SHAP/RF provide 445 

complementary insights: the former identifies direct associations with drought severity, while the latter uncovers the indices 

most relevant for separating hydroclimatic regimes. Similarly, GMT and IPWP exhibit strong negative correlations with SPEI-

12 (-0.76 and -0.71), reinforcing their role as primary drought intensifiers, while Sahel P maintains a positive correlation (0.22), 

acting as a partial counterbalance to the prevailing drying trend. The weaker and inconsistent influence of AO and NAO 

underscores the selective and spatially constrained nature of extratropical climatic influences on the Sahel. 450 

The application of K-means clustering transcends conventional regional classifications, revealing three distinct drought-prone 

domains that reflect not only geographic coherence but also fundamentally different climate-drought interaction mechanisms. 

Cluster C1 (central-western Sahel, primarily Niger) is predominantly governed by global warming indices, suggesting that 

anthropogenic climate change plays an outsized role in dictating its hydroclimatic trajectory. Cluster C2 (western Sahel, 

including Senegal, Mauritania, and Mali) exhibits the most severe drought intensification (Z = -5.04), positioning it as a critical 455 

hotspot for future hydroclimatic vulnerability. In contrast, Cluster C3 (central-eastern Sahel, including Chad and Sudan) 
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demonstrates weaker correlations with global indices, indicating that regional-scale processes and localized land-atmosphere 

interactions may exert a more dominant control over its drought evolution. 

Across all three clusters, AMO and NTA consistently emerge as key indices, though their SHAP value distributions differ. 

Clusters C1 and C3 show positively skewed SHAP values, indicating that higher values of these indices strongly associate 460 

with cluster membership. In contrast, Cluster C2 displays more symmetric distributions, reflecting bidirectional influences and 

a more complex hydroclimatic regime driven by multiple moderately influential variables rather than a few dominant ones. 

This SHAP-based clustering approach represents a paradigm shift by quantifying the relative influence of climate drivers with 

unprecedented clarity. The prominence of AMO and NTA, alongside the significant roles of GMT and IPWP in drought 

intensification, reshapes the understanding of the region’s hydroclimate. These findings challenge deterministic views of 465 

Sahelian drought and highlight the value of machine-learning frameworks for capturing climate variability and its hydrological 

impacts. 

4.2 A Reassessment of Climate-Drought Interactions in Light of Existing Literature 

A comparative analysis with previous studies on the relationship between drought and climatic indices provides a critical 

context for interpreting the present findings. The work of Okonkwo (2014), which explores precipitation variability in the 470 

Sahel in relation to climate indices, aligns with the present study by confirming the strong influence of the Atlantic 

Multidecadal Oscillation (AMO). Okonkwo (2014) demonstrates that the warm and cold phases of the AMO are associated 

with increased and decreased precipitation, respectively—a pattern that has been reaffirmed here. However, while previous 

studies have largely treated AMO as a broad-scale modulator of precipitation, the SHAP-driven clustering approach applied 

in this study reveals that AMO's influence is spatially heterogeneous, exhibiting positive correlations with SPEI-12 across 475 

much of the Sahel but negative correlations in specific subregions, particularly Burkina Faso and Niger (Cluster C1). This 

nuanced perspective challenges the assumption of uniform AMO control over Sahelian hydroclimatic variability and 

underscores the need for regionally adaptive models. 

Similarly, Ndehedehe et al. (2020) investigate the correlation between climatic indices and drought variability using both SPEI 

and SPI, confirming that AMO exerts a dominant influence over precipitation patterns in the central Sahel. Their findings 480 

resonate with the present study, reinforcing AMO’s multi-scalar control over drought evolution. However, while Ndehedehe 

et al. (2020) highlight a significant role of the Pacific Decadal Oscillation (PDO) in modulating Sahelian drought conditions—

reporting a negative correlation (r = -0.53) between PDO and SPI—the present analysis, based on SPEI-12, identifies a weaker 

but still notable negative correlation (up to -0.40) in the western and central-eastern Sahel. This result is corroborated by 

Lüdecke et al. (2021), who also identify a negative PDO-rainfall relationship. These findings reinforce the multidecadal 485 

Pacific-Sahel teleconnection but suggest that its strength and consistency depend on the drought metric employed and the 

temporal scale of analysis. 

The relationship between NTA and SSTs and Sahelian rainfall, explored by Wane et al. (2023), further illustrates the intricacies 

of ocean-atmosphere interactions. Their findings indicate that positive SST anomalies in the NTA enhance rainfall in the 
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western Sahel, while negative anomalies suppress it. This process is driven by changes in atmospheric circulation and moisture 490 

transport. The present study confirms the remarkable role of NTA in shaping drought dynamics and clustering patterns. 

However, an inverse correlation between NTA and SPEI-12 is observed, deviating from the rainfall-based perspective provided 

by Wane et al. (2023). This divergence is likely attributable to the fundamental difference between precipitation anomalies 

and drought indices incorporating evapotranspiration, highlighting the necessity of adopting integrated hydroclimatic 

indicators when assessing drought mechanisms. 495 

The complex interaction between hydrological drought variability and large-scale climatic drivers is further explored by 

Ogunrinde et al. (2024), whose study on SPEI-based drought analysis in Nigeria identifies an increasing frequency of drought 

events, consistent with the present findings. Their correlation analysis ranks the influence of climate indices on drought as SOI 

> NAO > AMO, whereas in this study, NAO and SOI exhibit only weak correlations with SPEI and negligible impacts on 

clustering outcomes. A notable discrepancy emerges in the regional breakdown of drought influences: while both studies 500 

identify AMO as a key determinant of Nigerian drought conditions, the relationships with NAO and SOI diverge considerably. 

In contrast to Ogunrinde et al. (2024), where NAO and SOI exert a measurable impact, the present study finds their effect to 

be statistically insignificant. These differences likely stem from methodological variations, including the spatial domain of 

analysis, the clustering methodology employed, and the timescales considered. More broadly, these results underscore the 

complexity of climate-drought interactions in the Sahel, suggesting that the influence of extratropical climate oscillations is 505 

neither spatially uniform nor temporally consistent, but instead varies according to local climatic regimes and feedback 

processes. 

The present study builds upon and extends prior research by moving beyond conventional correlation analyses, incorporating 

a multi-method approach that disentangles the mechanistic drivers of drought at an unprecedented level of granularity. Previous 

studies have largely treated climatic indices as static modulators of Sahelian precipitation, relying on broad correlation patterns 510 

to infer causality. However, by integrating SHAP-driven clustering, this study advances the conceptual understanding of 

drought variability by quantifying the individual contributions of each climate driver, demonstrating that their influence is 

often localized, nonlinear, and scale-dependent. 

This refined perspective challenges the notion of uniform climate-drought relationships, advocating for a more adaptive, ML-

informed approach to hydroclimatic research. The findings emphasize the importance of re-evaluating deterministic 515 

frameworks in favor of probabilistic, interpretable, and data-driven methodologies that better capture the dynamic nature of 

Sahelian drought evolution. 

4.3 Advancing Hydrological Clustering: From Conventional Methods to SHAP-Enhanced Insights 

Traditional clustering methods, such as K-means, hierarchical clustering, and fuzzy c-means, have long been employed in 

hydrological studies to identify regions with similar drought characteristics. For instance, Najafi and Khanbilvardi (2018) used 520 

K-means clustering on the Palmer Drought Severity Index (PDSI) to assess global extreme drought patterns, while studies in 

South Korea (Azam et al., 2018) and western India (Goyal and Sharma, 2016) applied hierarchical or fuzzy clustering to group 
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rainfall stations or drought-prone regions for improved water resource planning. Similarly, Di Nunno and Granata (2023) 

applied K-means, Hierarchical, and Expectation–Maximization clustering to delineate homogeneous drought regions in 

Southern Italy based on gridded SPEI-6 data. These approaches effectively capture statistical similarity but offer limited insight 525 

into the underlying climatic mechanisms that drive drought variability. 

Such methods, which rely on distance metrics and variance minimization, inherently lack explanatory power: they cluster 

based on observable similarities without clarifying which variables most influence the results. This is especially limiting in 

regions like the Sahel, where drought dynamics are shaped by multiple, interacting climatic drivers with often non-linear and 

context-specific influences. 530 

The proposed framework addresses these limitations by integrating SHAP into the clustering process. By coupling SHAP with 

machine learning models such as Random Forest, the approach moves beyond surface-level pattern recognition to quantify the 

contribution of each climatic index to cluster formation. This integration transforms clustering into an interpretable and 

mechanistically grounded analysis of climate-drought interactions, supporting both pattern detection and causal attribution. 

The benefits of this approach are evident in the Sahelian context. SHAP-based analysis reveals the strong, directional influence 535 

of indices such as the AMO and the NTA in specific clusters (e.g., C1 and C3), where drought regimes are governed by a 

narrow set of dominant drivers. In contrast, other clusters (e.g., C2) exhibit a more complex, bidirectional interaction among 

multiple indices, necessitating more flexible and adaptive management strategies. 

Moreover, our framework identifies low-impact indices—such as PDO and TSA—allowing policymakers to focus monitoring 

efforts on the most influential drivers. This prioritization improves the efficiency of early warning systems and resource 540 

allocation. Without SHAP, such insights into causal mechanisms would remain inaccessible, as conventional clustering results 

lack interpretability beyond spatial similarity. 

In practical terms, SHAP-driven clustering provides actionable insights for adaptation planning. For example, anticipating 

AMO phase shifts in regions where its influence is dominant can enhance preparedness. Likewise, the observed negative 

correlation between NTA and SPEI-12 underscores the value of monitoring ocean-atmosphere interactions for timely 545 

intervention. 

In addition, the spatial heterogeneity revealed across the three clusters highlights the need for targeted adaptation strategies 

that align with each cluster’s specific climatic vulnerabilities. Cluster C2, which faces the most severe drought intensification, 

would benefit from proactive investment in water harvesting infrastructure, drought-resilient crop varieties, and transboundary 

water governance mechanisms to manage shared resources. Cluster C1, more strongly influenced by indices such as AMO, 550 

CAR, and TNA according to SHAP analysis, may require policies focused on long-term resilience, such as promoting 

sustainable groundwater extraction, enhancing soil moisture retention through agroecological practices, and integrating 

climate-smart irrigation systems. Although global warming indicators such as GMT and IPWP play an overarching role in 

drought intensification across the Sahel, their direct influence on Cluster C1 is comparatively limited. In contrast, Cluster C3, 

where local and regional dynamics dominate, presents an opportunity for community-based water management, improved land 555 

use planning, and localized climate services tailored to support decision-making at the grassroots level. These differentiated 
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strategies are crucial to building adaptive capacity in the Sahel and ensuring that resource allocation reflects both scientific 

insight and regional socio-environmental contexts. 

In summary, while conventional clustering methods have laid the foundation for spatial drought analysis, the integration of 

SHAP enables a significant methodological advancement. It bridges the gap between data-driven classification and physical 560 

climate understanding, offering a transparent, interpretable, and operationally useful tool for drought mitigation and climate 

resilience planning. This work thus complements and extends the literature by embedding explanatory power into hydrological 

clustering, enhancing its relevance for both science and policy. 

4.4 Limitations and Future Directions 

While this study provides a comprehensive and data-driven framework for assessing drought variability in the Sahel, certain 565 

limitations warrant consideration. One inherent constraint lies in the geographical scope of the analysis. Although the Sahel 

represents a vast and climatically significant region, the findings are inherently tailored to its semi-arid hydroclimatic regime. 

As a result, the generalizability of the proposed methodology to regions with markedly different climatic and hydrogeological 

conditions remains an open question. Future research should seek to extend this framework to diverse environmental contexts, 

including humid tropical zones, arid desert landscapes, and temperate regions, to evaluate the transferability and adaptability 570 

of the approach across varying hydroclimatic gradients. Such an extension would provide a more holistic understanding of 

drought dynamics, revealing how different climatic drivers modulate hydrological extremes under contrasting environmental 

forcings. 

Additionally, while this study successfully integrates trend analysis and explainable clustering, further investigation is needed 

to assess its performance in highly anthropized environments, where urbanization, land-use change, and water extraction exert 575 

non-climatic controls on drought evolution. Notably, some areas showing weak correlations between climate indices and SPEI-

12 may coincide with regions undergoing extensive human-induced modifications, such as agricultural expansion, irrigation, 

or groundwater exploitation. These anthropogenic factors can decouple local drought dynamics from large-scale climate 

drivers, potentially obscuring the climate signal detected by statistical models. Expanding the application of this methodology 

to regions experiencing rapid demographic growth and infrastructural development, such as peri-urban zones increasingly 580 

reliant on groundwater, would offer critical insights into the interplay between human activities and climatic variability. 

Similarly, applying the approach to colder climates would enable an evaluation of its robustness in regions where snowpack 

dynamics, freeze-thaw processes, and permafrost degradation introduce additional layers of hydrological complexity. 

Furthermore, the temporal range of the analysis (1951–2018), although selected to ensure consistency and adequate overlap 

among multiple climate indices, may not fully capture recent accelerations in climate change and extreme event frequency, 585 

especially post-2018. As newer datasets become available, extending the analysis to include the most recent years will be 

critical for capturing ongoing hydroclimatic shifts. Moreover, while the 0.5° spatial resolution of the Global SPEI Database is 

adequate for regional-scale assessments, it may smooth out local variations critical for decision-making at finer administrative 

levels. This can introduce spatial biases, particularly in areas where terrain, land use, or rainfall gradients are highly variable. 
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Finally, despite the broad suite of 31 climate indices considered, the exclusion of potentially relevant drivers—such as dust 590 

aerosol concentrations, local vegetation indices, or land surface temperature—could limit the full explanatory power of the 

model. Incorporating such variables in future iterations may improve the detection of drought triggers and feedbacks, especially 

where local biogeophysical processes play a pivotal role. 

Beyond spatial expansion, methodological advancements represent a key avenue for future research. While the integration of 

SHAP-driven clustering with traditional statistical techniques has enhanced the interpretability of drought patterns, the 595 

incorporation of hybrid ML models and advanced change-point detection algorithms could further refine the detection of non-

stationary behaviors in drought variability. ML models—particularly deep learning architectures and ensemble learning 

frameworks—hold promise for capturing high-dimensional dependencies within climate-drought interactions, thereby 

improving predictive accuracy. Similarly, the application of advanced change-point detection methods could enhance the 

ability to identify abrupt hydroclimatic regime shifts, offering a more granular perspective on the evolving nature of drought 600 

risk. 

Moreover, while the percentage of grid cells showing statistically significant trends is reported to convey a general sense of 

spatial extent, we acknowledge that such figures can be affected by spatial autocorrelation, potentially inflating the number of 

significant results. As such, these values should be interpreted cautiously, with emphasis placed on coherent spatial patterns 

rather than individual significance. This limitation, discussed in the literature (e.g., Wilks, 2006), highlights the importance of 605 

adopting field significance approaches in future work to address spatial dependencies in gridded climate data. 

Future studies should also consider integrating multi-source datasets, including remote sensing observations, high-resolution 

reanalysis products, and socio-economic indicators, to develop a more holistic and cross-disciplinary framework for drought 

assessment. This would facilitate a transition from a purely climatological perspective to a socio-hydrological paradigm, 

acknowledging the feedback between climate variability, human adaptation strategies, and water resource sustainability. 610 

Ultimately, the continued evolution of interpretable and adaptive methodologies is essential to advancing the understanding of 

drought risk in a rapidly changing global climate. By bridging the gap between statistical inference, ML, and hydroclimatic 

process understanding, future research has the potential to redefine drought analysis, enabling more effective climate 

adaptation and water resource management strategies at both regional and global scales. 

5. Conclusion 615 

This study presents a comprehensive framework for assessing drought variability in the Sahel by integrating trend analysis, 

cross-correlation, and an innovative SHAP-driven clustering approach. The analysis revealed that 57.5% of the region exhibits 

a significant drying trend in SPEI-12, particularly in the western and southeastern Sahel, driven by increasing temperatures 

and declining precipitation. Conversely, 19.3% of the region shows statistically significant wetting trends, highlighting the 

spatial heterogeneity of drought evolution primarily through increased evapotranspiration and reduced soil moisture 620 

availability. At a regional scale, AMO and NTA emerged as key modulators of drought variability, influencing distinct 
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drought-prone zones. Clustering identified three major drought regimes, with Cluster C2 (western Sahel: Senegal, Mauritania, 

Mali) experiencing the most severe intensification (Z = -5.04). 

The SHAP-driven clustering approach integrates a Random Forest (RF) model with SHAP values to identify distinct drought 

patterns across the Sahel. By quantifying the contribution of each climatic index to the clustering results, this method makes 625 

the model’s decision-making process transparent and highlights the prominent influence of AMO and NTA on regional drought 

variability. This level of interpretability allows for a deeper understanding of the climatic mechanisms behind spatial drought 

patterns, offering a robust basis for designing targeted adaptation strategies. 

Beyond its application in the Sahel, the proposed framework offers strong potential for generalization to other drought-prone 

regions worldwide. Its modular structure—combining seasonal trend detection, teleconnection analysis, and explainable 630 

machine learning—can be readily adapted to different hydroclimatic contexts, including temperate zones, monsoonal climates, 

and arid environments. By incorporating local drought indices and relevant climate drivers, this methodology can support 

region-specific assessments while maintaining the advantages of transparency and model interpretability. As such, it provides 

a scalable and transferrable tool for advancing drought risk management in a changing global climate. 

By bridging advanced statistical analysis with explainable AI techniques, this study contributes a novel and interpretable 635 

approach for understanding climate impacts on regional water security, offering actionable insights for policymakers, 

researchers, and resource managers well beyond the Sahel context. 
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