
Reviewer 1 

This paper investigates how various climate indices impacts drought assessment measured by SPEI, based on an 

explainable-AI framework. Below are my major concerns followed by minor comments. 

We would like to thank the Reviewer for the careful review of our manuscript. We have revised the manuscript, taking 

into consideration all the comments. During the revision, we also made numerous changes. All these changes have 

significantly improved the quality and presentation of the manuscript, and we hope the current version is acceptable for 

publication. Below, we provide our point-by-point responses to the specific review comments. 

 

Major comments: 

1. While the authors claim that they use an explainable-AI framework, the methods section has limited details about 

SHAP and how the AI is explainable. Random Forest, while tree-based, does not embed physical mechanisms as a 

priori. Relevant explanations in the manuscript are also very brief. For example, there are no details about how the 

feature value and SHAP value work, and what information the beeswarm plot conveys in Fig. 9. The caption of Fig. 

9 is also very short. Line 345 “increases in correlations with climatic indices tend to negatively affect how data points 

are grouped into clusters” also requires a clear physical interpretation. 

Thanks for the constructive comments regarding the explainability of our AI framework and the presentation of SHAP 

results. In the revised version of the manuscript, we have substantially expanded the Methods section to clarify how 

SHAP values function within our Random Forest classifier to provide interpretability. Specifically, we now explain 

that SHAP values quantify the marginal contribution of each climatic index correlation to the cluster assignment, 

with positive and negative values indicating features that respectively increase or decrease the likelihood of cluster 

membership. 

Furthermore, the caption and main text describing Figure 9 have been enhanced to clearly interpret the beeswarm 

plot: the x-axis reflects the SHAP value impact on clustering, while the color gradient encodes the actual feature 

(climatic index correlation) value, allowing a nuanced understanding of how feature magnitude and direction affect 

classification. We also provide detailed cluster-wise analyses of feature importance distributions and their directional 

effects, clarifying the roles of dominant versus minor indices. 

Regarding the statement “increases in correlations with climatic indices tend to negatively affect how data points are 

grouped into clusters,” we have widely revised the text to offer a clearer physical interpretation within the context of 

clustering behavior, emphasizing how changes in feature correlations influence the clustering structure through their 

SHAP contributions. 



We trust these clarifications address your concerns and improve the transparency and interpretability of our 

explainable-AI approach. Below the revised text for the SHAP analysis: 

To evaluate the relative influence of each climatic index on the clustering process and assess the predictive 

performance of the classifier, we employed an explainable AI approach that integrates a Random Forest (RF) 

classifier with SHAP. The RF model, a robust tree-based ensemble algorithm, effectively captures complex nonlinear 

interactions among variables but lacks inherent interpretability. To address both model performance and 

transparency, a comprehensive protocol was implemented. 

First, the dataset was split using stratified sampling into training (90%) and testing (10%) subsets to preserve the 

original class distribution. A Random Forest classifier (100 estimators, criterion=Gini, random_state=42) was 

trained on the training data, and standard evaluation metrics—accuracy, class-wise precision, recall, F1-score, and 

the confusion matrix—were computed on the test set. The model achieved an accuracy of 0.985 on the independent 

test set. Class-wise precision, recall, and F1-scores were all above 0.97, confirming the classifier’s strong 

discriminative power (see Table S4). Second, model explainability was addressed using SHAP values computed 

through the TreeExplainer framework. Beeswarm plots were generated for each cluster to visualize the magnitude 

and direction of feature contributions. Moreover, for each cluster, mean absolute SHAP values were computed for 

each feature, and a bootstrap procedure (n = 100) was performed to calculate 95% confidence intervals, providing 

statistical robustness to the importance rankings. 

SHAP values represent the marginal impact of each feature on a model’s prediction, averaged over all possible 

feature subsets. In this context, a positive SHAP value indicates that the feature increases the likelihood of a data 

point being assigned to a particular cluster, while a negative value suggests a suppressing effect. In the SHAP 

beeswarm plots (Figure 9), the x-axis represents SHAP values—the impact of each feature on the clustering 

outcome—while the color gradient (Feature value) encodes the actual correlation value between the climatic index 

and SPEI-12 for each data point, ranging from low (blue) to high (red). This dual encoding enables a nuanced 

interpretation of the model’s behavior: the position along the x-axis reflects the strength and direction of influence, 

while the color reveals whether strong or weak correlations drive the effect. 

The SHAP beeswarm plots for Clusters C1, C2, and C3 provide a comprehensive breakdown of the influence that 

each climate index exerts on the Random Forest classifier's clustering outcomes. Each plot reveals both the 

magnitude and direction of influence through SHAP values, offering insight into the discriminative role of individual 

features in defining cluster membership. 

In Cluster C1, the AMO, CAR and TNA emerged as the most influential variables, with mean absolute SHAP values 

of 0.088, 0.72 and 0.059, respectively (see Table S5). Their distributions are notably skewed toward positive SHAP 



values, with dense concentrations between 0.05 and 0.15. This pattern indicates a strong and consistent association 

between high index values and increased likelihood of C1 classification. Moderately influential indices such as 

WHWP, NTA, and AMM present narrower spreads (-0.05 to 0.2) and more symmetric profiles, suggesting subtler but 

still directional contributions. Conversely, indices like PDO, GMT, IPWP, and TSA show very limited SHAP influence, 

with values clustered near zero and minimal dispersion, highlighting their negligible role in defining this cluster. 

Cluster C2, in contrast, was characterized by AMO and the NTA indices as the most important features (mean 

absolute SHAP equal to 0.096 and 0.084, respectively), followed by CAR and TNA. These variables show significant 

spread on both sides of zero, implying a bidirectional influence where both high and low values can affect 

classification, depending on the context. Secondary contributors such as IPWP, AMM, and GMT exhibit tighter 

distributions centered around zero but with occasional asymmetries, pointing to context-dependent roles. Sahel P, 

PDO, and TSA remain minimally influential, with narrow SHAP ranges and modes at or near zero. Compared to 

Cluster C1, the SHAP profiles in C2 suggest greater interaction complexity among variables rather than dominance 

by a few. 

For Cluster C3, NTA dominated the feature importance ranking (mean absolute SHAP: 0.102), followed by AMO 

(0.080) and WHWP (0.072). These distributions are distinctly positively skewed, and the color gradient confirms that 

high feature values strongly align with positive SHAP contributions. Variables such as CAR, TNA, and IPWP follow 

a similar, though slightly less pronounced, pattern. Mid-tier contributors like GMT, AMM, and TSA are more 

symmetrically distributed, with modal SHAP values just above zero. Finally, Sahel P and PDO again register as the 

least impactful, mirroring the behavior observed in the other clusters. 

Across all three clusters, a consistent pattern emerges in the relative importance of certain indices. AMO, and NTA 

are among the most influential features throughout, though the nature of their impact differs. In Clusters C1 and C3, 

their SHAP distributions are positively skewed, indicating a clear, directional relationship between high index values 

and cluster membership. In contrast, Cluster C2 exhibits more symmetric SHAP profiles, highlighting bidirectional 

effects and greater context dependency. 

Another key distinction lies in the degree of feature dominance. Cluster C1 and C3 are shaped by a small subset of 

highly influential variables with strong directional effects, whereas Cluster C2 displays a more distributed influence 

among multiple variables with less sharply skewed contributions. 

Low-impact indices such as PDO and TSA consistently show minimal influence across all clusters. Their SHAP 

values remain centered around zero with low density, suggesting that these variables have limited utility in 

discriminating among the regimes captured by the clustering model. 

 



2. The paper claims a methodological advancement, but the literature review gives limited coverage of studies that use 

conventional approach. The Discussion should (a) compare the present results with key earlier studies that relied on 

traditional methods, and (b) explain why the proposed framework leads to superior or complementary results. 

We appreciate the Reviewer’s insightful comment. In the revised manuscript, we have substantially expanded Section 

4.3 (now titled “Advancing Hydrological Clustering: From Conventional Methods to SHAP-Enhanced Insights”) to 

address both parts of the suggestion: 

(a) Comparison with key earlier studies using traditional clustering methods: We now discuss several 

representative studies that applied conventional clustering techniques in hydrological and drought-related research. 

These include K-means applications to global PDSI patterns (Najafi and Khanbilvardi, 2018), hierarchical and fuzzy 

clustering in South Korea (Azam et al., 2018) and western India (Goyal and Sharma, 2016), and a recent combination 

of clustering and forecasting in Southern Italy (Di Nunno and Granata, 2023). These studies are valuable in capturing 

statistical similarities in drought behavior and in supporting regionalization. However, they typically rely on distance-

based metrics and offer limited ability to explain why clusters form or which variables most influence regional drought 

regimes. 

(b) Explanation of the proposed framework’s superiority or complementarity: We clarify how our framework 

advances these conventional methods by incorporating SHAP (SHapley Additive exPlanations) into the clustering 

process. This innovation transforms clustering from a statistical to a mechanistically interpretable task. It enables us 

to quantify the influence of each climatic driver on each cluster and to identify both dominant and negligible 

contributors to drought variability—capabilities that are absent in traditional clustering. By doing so, our approach 

supports more transparent attribution, improves decision-making for early warning and adaptation strategies, and 

complements existing clustering work by embedding causal interpretability into spatial drought analysis. 

We believe this addition strengthens the Discussion and clearly supports the claim of methodological advancement. 

 

3. Abstract line 10, it is inappropriate to state that XX% has stat sig trend because there could be spatial autocorrelation 

that inflate counts of significance. Same thing for Line 201-202, Line 372, Line 538. A relevant paper is Wilks, D. S. 

"On “field significance” and the false discovery rate." Journal of applied meteorology and climatology 9 (2006): 

1181-1189. 

We sincerely thank the Reviewer for this important observation regarding spatial autocorrelation and its implications 

for interpreting statistical significance in gridded climate data. We fully agree that spatial dependence can lead to an 

inflated number of statistically significant tests, as outlined in Wilks (2006), and we are aware of the limitations this 

presents in field-scale trend analysis. 



In our manuscript, the reported percentages of statistically significant trends are intended to offer a descriptive 

overview of the spatial extent of the observed patterns, rather than to suggest a rigorous count of independent 

significant results. These trends are further interpreted within the broader context of spatial coherence, regional 

climatic patterns, and clustering analysis. Moreover, the robustness of our findings is supported through multiple 

complementary techniques (e.g., cross-correlation and SHAP-driven clustering), which together provide a multi-

dimensional view of drought evolution in the Sahel. 

We have chosen to retain the current text for clarity and interpretability but are willing to insert a section in the 

discussion acknowledging the potential effect of spatial autocorrelation and citing Wilks (2006), should the reviewer 

or editor deem it necessary: 

Moreover, while the percentage of grid cells showing statistically significant trends is reported to convey a general 

sense of spatial extent, we acknowledge that such figures can be affected by spatial autocorrelation, potentially 

inflating the number of significant results. As such, these values should be interpreted cautiously, with emphasis 

placed on coherent spatial patterns rather than individual significance. This limitation, discussed in the literature 

(e.g., Wilks, 2006), highlights the importance of adopting field significance approaches in future work to address 

spatial dependencies in gridded climate data. 

We trust that the holistic and multi-methodological framework adopted in our analysis mitigates the risk of 

overinterpretation of localized significance and maintains the scientific validity of the conclusions presented. 

 

4. It is unclear what “climate indices” means. Broadly speaking, SPEI itself can also be a climate index. The authors 

should highlight large-scale climate variability or provide a formal definition of climate indices. 

We thank the reviewer for this helpful comment. We agree that the term “climate indices” can be ambiguous and that 

clarification is necessary. In this study, “climate indices” refers specifically to standardized metrics that represent 

large-scale modes of atmospheric and oceanic variability (e.g., AMO, ENSO, NAO), which influence regional 

climate patterns. To address this, we have added a formal definition in Section 2.1 of the manuscript: 

Drought assessment in the Sahel is complicated by the complex, nonlinear, and dynamic nature of atmospheric 

processes, which challenge the accurate representation of spatial–temporal patterns, multi-scale interactions, and 

the influence of extreme events and topographic variability. To address these complexities, this study incorporates 

time series of various climate indices into the modeling framework. 

In this context, climate indices refer to large-scale indicators of atmospheric and oceanic variability derived from 

standardized measurements such as sea surface temperature (SST), sea-level pressure, and wind anomalies over 

specific regions. Examples include the AMO, GMT and North Atlantic Oscillation (NAO). Unlike drought indicators 



such as SPEI, which quantify regional hydroclimatic conditions, climate indices capture broader patterns of 

variability that serve as external drivers of local drought dynamics. 

These indices offer critical insights into the mechanisms regulating regional drought variability. For instance, warm 

phases of the AMO are associated with increased rainfall in the Sahel, whereas El Niño events often lead to drier 

conditions (Okonkwo, 2014). The 12-month SPEI timescale was selected to reflect both seasonal and interannual 

climate variability, enabling the detection of annual hydrological responses to the prevailing phases of large-scale 

climate drivers. While some indices, such as the AMO, operate on multidecadal timescales, their current phase can 

still exert influence on precipitation patterns within a given year. Thus, the 12-month period is not intended to resolve 

long-term climate variability itself, but rather to integrate its effects as expressed in a single year's climate system. 

This timescale effectively captures the cumulative influence of slow-acting processes such as oceanic and 

atmospheric anomalies, allowing SPEI to reflect integrated climate impacts on precipitation and evapotranspiration. 

As a result, the use of climate indices alongside long-term SPEI enhances the ability to identify meaningful 

correlations, detect persistent drought trends, and better understand the climatic forces shaping drought conditions 

in the region. 

 

5. Table 1 lists many indices, but the manuscript does not explain why each is relevant to Sahel/African hydroclimate. 

Please justify the inclusion of each index or focus on a subset with documented influence on the region, similar to 

the description of “Sahel Precipitation”. 

The indices listed in Table 1 were selected for their potential influence on atmospheric and oceanic conditions that 

directly or indirectly affect the hydroclimate of the Sahel and the broader African region. Table 1 has been updated 

to include descriptions of each index, highlighting their potential impacts on Africa and the Sahel where relevant, 

and the data source. 

 

6. Using two particular cells in Fig. 6 and Fig. 7 is not representative. The two cell is just two out of 1335 SPEI gridded 

data points in the study region, and there is not a clear rationale for focusing on these cells. It is hard to follow the 

motivation of the analysis. While the cell in Fig. 6 has the strongest positive correlation between AMO and SPEI, the 

overall correlation mean is only “modest” at 0.06 (Line 239). How could it support the statement in Line 270, “AMO 

are closely tied to sub-regional drought dynamics”? 

We thank the Reviewer for the insightful observation regarding the use of specific grid cells in Figures 6 and 7. The 

intention behind highlighting Cells 2042 and 2319 was not to generalize their behavior to the entire Sahel region, but 



rather to provide illustrative examples that represent spatial extremes in the correlation distribution—i.e., the highest 

positive and negative correlations observed in the domain for AMO and GMT, respectively. 

This approach was chosen to help readers better understand how large-scale climatic indices can exert regionally 

differentiated influences on drought variability. While the mean correlation values for indices like AMO should be 

modest at the regional scale, the spatial heterogeneity is substantial, as indicated by the wide range and standard 

deviation of the correlation coefficients (as reported in Table S3). The selected cells exemplify areas where these 

influences are more pronounced and thus help to illustrate the sub-regional relevance of these correlations. 

 

7. There are mismatches and typos in the manuscript. I suggest the authors carefully read their manuscript throughout. 

To name only a few: Line 231 refers to Fig. 5 as a “combined box and violin plot,” but Fig. 5 is a map. “ahel” in 

Table 1 should be “Sahel.” Line 230 describes Fig. 4 as “maps of correlations … and the most correlated climatic 

indices,” but Fig. 4 shows bar plots for all indices. 

We thank the Reviewer for carefully pointing out the inconsistencies and typographical errors in the manuscript. 

We have thoroughly reviewed the entire document to correct such issues. Specifically: 

Line 231: The description of Fig. 5 has been corrected. We mistakenly referred to it as a “combined box and violin 

plot,” while it is indeed a map. The caption and in-text reference have been revised accordingly. 

Table 1: The term “ahel” has been corrected to “Sahel” to accurately reflect the regional classification. 

Line 230: The description of Figures 4 and has been revised: 

Figure 4 reports a combined box and violin plots representation of the correlations for all climatic indices, while 

Figure 5 provides the maps of the correlations between SPEI-12 gridded data and the most correlated climatic 

indices. 

In addition to these specific issues, we have performed a thorough proofread of the entire manuscript to correct any 

other typographical or referencing inconsistencies. 

 

8. The manuscript does not specify the data sources for each climate index in Table 1. 

Thanks for the comment. As stated above, Table 1 has been updated to include descriptions of each index, 

highlighting their potential impacts on Africa and the Sahel where relevant, and the data source. 

Climate 

index 
Abbr. Definition Data source 

Atlantic 

Meridional 

Mode 

AMM 

The AMM describes north-south SST differences in the tropical Atlantic. Its 

positive phase shifts rainfall northward, increasing Sahel precipitation and 

reducing drought risk. The negative phase causes southward rainfall shifts, 

leading to Sahel drought. AMM also affects Atlantic hurricane activity, 

influencing regional climate variability. 

https://psl.noaa.go

v/data/timeseries/

month/DS/AMM/ 



Atlantic 

Multidecadal 

Oscillation 

AMO 

The Atlantic Multidecadal Oscillation refers to natural variations in North 

Atlantic Ocean sea surface temperatures that occur over periods of 20 to 40 

years. In its positive phase, North Atlantic temperatures are above average, 

leading to hotter summers along the eastern U.S., increased hurricane activity 

in the tropical Atlantic, and enhanced rainfall in Africa. In its negative phase, 

cooler Atlantic temperatures are associated with weaker hurricane activity, 

drought in Africa's Sahel region, and cooler, wetter summers in Europe. The 

AMO plays a significant role in shaping global climate systems and regional 

weather patterns, particularly in the North Atlantic region. 

https://www.psl.no

aa.gov/data/timese

ries/AMO/ 

Arctic 

Oscillation 
AO 

The AO influences atmospheric circulation patterns that can extend to the 
Sahel region by affecting the strength and position of the African Easterly Jet 

and mid-latitude weather systems. Its negative phase can weaken the jet stream, 

altering rainfall patterns in West Africa and contributing to Sahel drought or 

variability in seasonal precipitation. 

https://psl.noaa.go

v/data/timeseries/

month/DS/AO/ 

Berkeley 

Earth 

Surface 

Temperature 

BEST 

The BEST dataset provides global and regional surface temperature trends, 

including detailed temperature anomalies across Africa. These trends are 

crucial for understanding how warming influences Sahel hydroclimate, as 

rising temperatures can exacerbate drought conditions and impact rainfall 

variability in the region. 

https://psl.noaa.go

v/data/correlation/

censo.data 

Caribbean 

Index 
CAR 

The CAR index captures climate variability in the Caribbean, including SST 

and atmospheric patterns. It influences Atlantic tropical cyclone activity, which 

can affect West African monsoon dynamics and Sahel rainfall through 

atmospheric teleconnections. 

https://psl.noaa.go

v/data/correlation/

CAR_ersst.data 

Eastern 

Pacific 

Oscillation 

Index  

EPO 

The EPO describes atmospheric pressure anomalies in the eastern North 
Pacific. Its phases influence the jet stream and temperature patterns in North 

America, which can indirectly affect West African climate by modulating 

large-scale atmospheric circulation and teleconnections linked to Sahel rainfall 

variability. 

https://psl.noaa.go

v/data/correlation/

epo.data 

Greenland 

Blocking 

Index  

GBI 

The GBI measures persistent high-pressure systems over Greenland. Its 

positive phase alters North Atlantic circulation, which can influence the West 

African monsoon and Sahel rainfall by affecting atmospheric patterns that 

modulate moisture transport into the region. 

https://psl.noaa.go

v/data/correlation/

gbi.ncep.day 

Global Mean 

Temperature 
GMT 

GMT tracks overall atmospheric and ocean warming or cooling trends. Rising 

global temperatures influence the Sahel by intensifying droughts, altering 

rainfall patterns, and impacting regional water resources through shifts in the 

hydrological cycle. 

https://psl.noaa.go

v/data/correlation/

gmsst.data 

Indo-Pacific 
Warm Pool 

IPWP 

The IPWP, with some of the warmest tropical ocean temperatures, drives 

global atmospheric circulation, including monsoons. Its warming phase 
enhances convection and rainfall, indirectly influencing Sahel rainfall through 

shifts in the Walker circulation and global moisture transport. 

https://psl.noaa.go

v/data/correlation/
pacwarm.data 

The North 

Atlantic 

Oscillation 

NAO 

The NAO index measures sea-level pressure differences between the Azores 

High and the Subpolar Low. Its phases modulate the North Atlantic jet stream 

and storm tracks, affecting heat and moisture transport. These changes 

influence West African monsoon strength and Sahel precipitation by altering 

atmospheric circulation patterns over the Atlantic. 

https://psl.noaa.go

v/data/correlation/

nao.data 

The North 

Atlantic 

Oscillation 

(Jones) 

NAO 

(Jones) 

Defined by Jones (1997), this NAO index measures the sea-level pressure 

difference between the Azores High and Icelandic Low. Its phases influence 

Atlantic atmospheric circulation patterns that affect West African monsoon 

dynamics and Sahel rainfall variability. 

https://psl.noaa.go

v/data/correlation/j

onesnao.data 

Niño-1.2 - 

This index covers sea surface temperatures in the eastern equatorial Pacific 

(80°W–90°W, 10°S–0°), where El Niño and La Niña events typically originate. 

In its positive phase (El Niño), warmer waters lead to increased rainfall and 
floods along South America’s northwest coast; in its negative phase (La Niña), 

cooler waters cause drought and promote cold-water upwelling. While its 

direct effects are regional, Niño-1+2 influences large-scale atmospheric 

circulation patterns, which can alter the West African monsoon strength and 

consequently affect Sahel precipitation variability. 

https://www.cpc.n
cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 

Niño 3 - 

The Niño-3 index tracks sea surface temperatures in the eastern equatorial 

Pacific (150°W–90°W, 5°S–5°N) to monitor El Niño and La Niña events. 

During El Niño (positive phase), warmer waters cause increased rainfall in 

western South America, drought in Asia-Pacific, and reduced rainfall in the 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 



Sahel. La Niña (negative phase) brings cooler waters, increased storms in Asia-

Pacific, and enhanced rainfall in the Sahel. This index influences global 

atmospheric circulation and tropical rainfall patterns. 

Niño-3.4 - 

The Niño-3.4 index measures sea surface temperatures in the central equatorial 

Pacific (120°W–170°W, 5°S–5°N) and is a key indicator of El Niño and La 

Niña events. During El Niño (positive phase), warmer waters lead to increased 

rainfall along South America’s coast, drought and heatwaves in the Asia-

Pacific, and reduced rainfall in the Sahel. La Niña (negative phase) brings 

cooler waters, heavy rains and floods in Asia-Pacific, drought in South 

America, and enhanced rainfall in the Sahel. Niño-3.4 strongly influences 
global atmospheric circulation and tropical weather patterns. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 

Niño-4 - 

The Niño-4 index measures sea surface temperature variations in the central 

Pacific (160°E–150°W, 5°S–5°N) during El Niño and La Niña events. In its 

positive phase (El Niño), warmer waters enhance convection in the tropical 

western Pacific, influencing atmospheric circulation and monsoon patterns, 

often linked to reduced rainfall in the Sahel. In the negative phase (La Niña), 

cooler waters lead to drought in the western Pacific and increased rainfall in 

the central Pacific, sometimes boosting Sahel precipitation. Niño-4 is key for 

understanding tropical circulation and regional climate variability. 

https://www.cpc.n

cep.noaa.gov/data/ 

indices/ersst5.nino

.mth.91-20.ascii 

Northern 

Oscillation 
Index 

NOI 

The NOI measures sea level pressure differences between Tahiti (eastern 

tropical Pacific) and Darwin (western subtropical Pacific). In its positive phase, 

high pressure dominates the eastern Pacific and low pressure the western 

Pacific, causing drought in the east and wetter conditions in the west. The 
negative phase reverses this pattern. The NOI is essential for understanding 

tropical climate phenomena such as El Niño-Southern Oscillation (ENSO) 

impacts. 

https://psl.noaa.go

v/data/correlation/
noi.data 

North 

Pasific Index 
NP 

The NP reflects average sea level pressure over the North Pacific, indicating 

the strength of the Aleutian Low. In its positive phase, a stronger Aleutian Low 

brings more rainfall to western North America and cooler eastern Pacific 

waters. In the negative phase, the system weakens, leading to drier conditions 

and warmer sea surface temperatures. The NP Index is key to understanding 

Pacific atmospheric circulation and its effects on North American and, to a 

lesser extent, African climate patterns 

https://psl.noaa.go

v/data/correlation/

np.data 

North 

Tropical 
Atlantic SST 

Index 

NTA 

The NTA index represents SSTs in the North Tropical Atlantic. In its positive 

phase, warmer SSTs enhance convection and tropical cyclone activity, while 

influencing rainfall patterns across the Atlantic basin. This phase is often 
linked to increased precipitation in the Sahel. In the negative phase, cooler 

SSTs reduce cyclone activity and can lead to drought conditions in West 

Africa. The NTA index is crucial for understanding Atlantic climate variability 

and its impacts on regional weather systems. 

https://psl.noaa.go
v/data/correlation/

NTA_ersst.data 

Oceanic 

Niño Index 
ONI 

The ONI measures the three-month running average of sea surface temperature 

anomalies in the Niño-3.4 region of the central tropical Pacific. It is the primary 

indicator of El Niño and La Niña events within the ENSO cycle. Positive ONI 

values (El Niño) are linked to drought in regions like Australia and the Sahel, 

while negative values (La Niña) can enhance rainfall in these areas. The ONI 

is essential for monitoring ENSO’s global impacts on temperature, rainfall, and 

atmospheric circulation 

https://psl.noaa.go

v/data/correlation/

oni.data 

Pasific 

Decadal 

Oscillation 

PDO 

The PDO describes long-term shifts in sea surface temperatures and 

atmospheric pressure across the North Pacific. In its positive phase, the eastern 

Pacific cools while the western Pacific warms, bringing wetter conditions to 
western North America and warmer weather in Alaska. In the negative phase, 

the pattern reverses, causing drought in western North America and reduced 

marine productivity. The PDO influences multi-decadal climate variability, 

affecting agriculture, fisheries, and water resources globally, including rainfall 

patterns in Africa 

https://psl.noaa.go

v/data/correlation/

pdo.data 

Pacific 

Meridional 

Mode 

PMM 

The PMM is a climate pattern driven by interactions between sea surface 

temperatures and surface winds in the tropical Pacific. In its positive phase, 

warmer waters enhance convection and rainfall across the Pacific, often 

preconditioning El Niño events. In its negative phase, cooler waters suppress 

convection, leading to drier tropical conditions. The PMM influences the onset 

https://psl.noaa.go

v/data/timeseries/

month/data/pmm.d

ata 



of ENSO events and plays a key role in shaping tropical and global climate 

variability, including rainfall over Africa. 

Pacific–

North 

American 

Pattern 

PNA 

The PNA pattern is a major mode of atmospheric variability in the Northern 

Hemisphere, reflecting recurring pressure anomalies over the North Pacific and 

North America. The PNA index is based on standardized 500 hPa geopotential 

height anomalies at four specific locations. Its phases correlate with 

temperature and precipitation anomalies across North America. The PNA 

influences regional weather by modulating the strength and position of the East 

Asian jet stream, affecting storm tracks and climate patterns. Through 

atmospheric teleconnections, the PNA can also impact tropical circulations, 
with potential links to rainfall variability in the Sahel and parts of northern 

Africa. 

https://psl.noaa.go

v/data/correlation/

pna.data 

Quasi-

Biennial 

Oscillation 

QBO 

The QBO is a regular oscillation of easterly and westerly winds in the tropical 

stratosphere, with a cycle of about 28–30 months. In its westerly phase, tropical 

cyclone activity increases, especially in the Pacific and Atlantic. In the easterly 

phase, cyclone formation weakens, and stratospheric ozone distribution shifts. 

The QBO modulates stratosphere–troposphere interactions and can influence 

tropical convection, potentially affecting rainfall variability in regions such as 

the Sahel and equatorial Africa. 

https://psl.noaa.go

v/data/correlation/

qbo.data 

Sahel 

Precipitation 
Sahel P 

Sahel Precipitation refers to the annual rainfall in Africa’s Sahel region (south 

of the Sahara Desert) and is influenced by tropical Atlantic Sea surface 

temperatures and atmospheric circulation. Positive phases (increased rainfall) 

improve agriculture and water resources, while negative phases (drought) lead 
to famine and heightened socio-economic impacts. 

https://psl.noaa.go

v/data/correlation/

sahelrain.data 

Southern 

Oscillation 

Index 

SOI 

The SOI is calculated from the air pressure difference between Tahiti (central 

Pacific) and Darwin, Australia (western Pacific). Positive SOI values indicate 

La Niña conditions with high pressure over Tahiti and low pressure over 

Darwin, often linked to increased rainfall in the Sahel. Negative SOI values 

correspond to El Niño conditions, typically associated with drier Sahel 

conditions and shifts in global climate patterns. 

https://psl.noaa.go

v/data/correlation/

soi.data 

Solar Flux - 

Solar flux measures the amount of solar energy reaching Earth, reflecting solar 

activity cycles. Increased solar flux can lead to warming and changes in 

atmospheric circulation, which may influence rainfall patterns in Africa. Lower 

solar flux periods tend to coincide with cooler and more stable climate 

conditions, potentially affecting the Sahel rainfall variability indirectly. 

https://psl.noaa.go

v/data/correlation/

solar.data 

Tropical 
Northern 

Atlantic 

Index (TNA) 

TNA 

The TNA measures sea surface temperature anomalies in the tropical North 

Atlantic (5°N–25°N, 15°W–60°W). Positive phases with warmer SSTs are 
associated with increased rainfall along the West African coast and enhanced 

tropical cyclone activity. Negative phases correspond to cooler SSTs, reduced 

tropical rainfall, and weaker cyclone activity, often linked to drought 

conditions in the Sahel. 

https://psl.noaa.go
v/data/correlation/t

na.data 

Trans Nino 

Index 
TNI 

The TNI analyzes spatial shifts in El Niño and La Niña events by measuring 

SST differences between the eastern tropical Pacific (Niño-1+2) and central 

tropical Pacific (Niño-4). Positive TNI phases indicate eastward-shifted El 

Niño effects, increasing rainfall in the eastern Pacific and often suppressing 

rainfall in the Sahel. Negative phases reflect eastward shifted La Niña effects, 

which can enhance Sahel precipitation by influencing tropical atmospheric 

circulation. 

https://psl.noaa.go

v/data/correlation/t

ni.data 

Tropical 

Southern 
Atlantic 

Index 

TSA 

The TSA measures SST anomalies in the tropical South Atlantic (0°–20°S, 

10°E–30°W). Warmer SSTs in the positive phase lead to increased rainfall 

along eastern South America and shifts in the Atlantic Hadley circulation, 
which can influence West African monsoon intensity. Cooler SSTs during the 

negative phase are linked to drought and reduced convection, potentially 

weakening Sahel rainfall. 

https://psl.noaa.go
v/data/correlation/t

sa.data 

Tropical 

Western 

Hemisphere 

warm pool  

WHWP 

The WHWP covers the Caribbean, Gulf of Mexico, and eastern tropical Pacific 

where SSTs exceed 28°C. Positive phases are characterized by increased 

temperatures, leading to stronger tropical cyclone activity and enhanced 

rainfall in surrounding regions. Negative phases correspond to cooler SSTs and 

reduced storm intensity. WHWP variability affects Atlantic atmospheric 

circulation and can modulate rainfall in the Sahel and West Africa. 

https://psl.noaa.go

v/data/correlation/

whwp.data 



West Pacific 

Index 
WPI 

The WPI measures atmospheric pressure differences in the tropical and 

subtropical western Pacific. In its positive phase, a strong high-pressure system 

weakens Asian monsoons and tropical cyclone activity. The negative phase, 

dominated by low pressure, enhances Asian monsoon strength and storm 

activity. Changes in the WPI influence tropical climate dynamics and can 

indirectly affect the Sahel by modulating global atmospheric circulation 

patterns. 

https://psl.noaa.go

v/data/correlation/

wp.data 

 

Minor comments: 

1. Abstract line 15, Why should a positive correlation necessarily imply a stronger influence on regional hydrology? 

Drought is part of hydrology as well; as long as a statistically significant relationship exists—positive or negative—

it can affect the system. 

Thanks for the comment. The Authors agree that both positive and negative statistically significant correlations can 

influence regional hydrology, including drought characteristics. In the revised abstract, we have clarified that the 

positive correlation with AMO does not necessarily imply a “stronger” influence in general but rather highlights a 

different type of influence on drought variability compared to indices with negative correlations: 

Conversely, the Atlantic Multidecadal Oscillation (AMO, 0.40) showed a positive correlation, suggesting its distinct 

role in modulating hydrological conditions in the Sahel. 

 

2. Lines 19-20, “further highlights … the NTA” is confusing because the NTA is not introduced earlier. 

Thanks for the comment. To improve clarity, we now introduce the NTA earlier in the abstract along with the other 

climatic indices considered in the study and mentioned in the Abstract: 

This study explores the correlation between the Standardized Precipitation Evapotranspiration Index (SPEI) and 

multiple climatic indices—including the Global Mean Temperature (GMT), Indo-Pacific Warm Pool (IPWP), Atlantic 

Multidecadal Oscillation (AMO), and North Tropical Atlantic Index (NTA)—using trend analysis, cross-correlation, 

and an innovative SHAP-driven clustering approach. 

 

3. Line 21, the abstract does not explain why or how the AI component is explainable. 

Thanks for the comment. The text has been revised to clarify how explainability is achieved through the SHAP 

framework: 

The SHAP-driven clustering approach integrates a Random Forest (RF) model with SHAP values to identify distinct 

drought patterns across the Sahel. By quantifying the contribution of each climatic index to the clustering results, 

this method makes the model’s decision-making process transparent and highlights the prominent influence of AMO 

and NTA on regional drought variability. 

 



4. Line 38-39, Gleeson et al. (2012) do not discuss temperature effects. Please check the citation or replace with a more 

appropriate reference. 

Thanks for the comment. Accordingly, the citation has been replaced with more appropriate references that 

specifically discuss temperature-driven impacts on drought severity and groundwater depletion: 

Hao, Z., Hao, F., Singh, V.P. and Zhang, X. (2018). Changes in the severity of compound drought and hot extremes 

over global land areas. Environmental Research Letters, 13, 124022. doi: 10.1088/1748-9326/aaee96 

Nigatu, Z.M., Fan, D., You, W. et al. (2022). Crop production response to soil moisture and groundwater depletion 

in the Nile Basin based on multi-source data. Science of The Total Environment, 825, 154007. doi: 

10.1016/j.scitotenv.2022.154007 

Additionally, Gleeson et al. (2012) has been retained in the Introduction but relocated to a more appropriate context:  

This over-extraction, coupled with diminished recharge opportunities due to shifting precipitation patterns, raises 

serious concerns about long-term water security and the sustainability of groundwater-dependent ecosystems (Döll 

and Fiedler 2008; Gleeson et al. 2012). 

 

5. Fig. 1 Consider overlaying Köppen climate‐type boundaries (or another climate‐zone map). This would help readers 

see whether algorithm‐identified clusters align with known climatic regions. 

Thanks for the comment. The Köppen-Geiger climate classification has been added to Figure 1. 

 

Figure 1: Location of the selected SPEI grid in the Sahel region with the Köppen-Geiger Climate Classification. 



6. Lines 134-135, I don’t understand how “The 12-month period is long enough to capture the cumulative effect of 

these global drivers”. AMO operates on multi‐decadal scales, much longer than 12 months. 

Thanks for the comment. The point regarding the temporal scale of indices such as the AMO is well taken. The 

original statement has been revised to clarify that the 12-month SPEI is not intended to resolve the internal variability 

of long-term climate modes like the AMO. Rather, the 12-month timescale was selected to capture the integrated 

hydrological response to prevailing climate conditions over an annual cycle, including the influence of large-scale 

drivers during their active phases. 

While the AMO operates on multidecadal timescales, its current phase (e.g., warm or cool) can influence precipitation 

patterns in the Sahel on interannual to seasonal scales. The revised text reflects this clarification, emphasizing that 

the 12-month SPEI captures the expression of such long-term drivers as they affect regional hydroclimatic conditions 

within a given year. 

The revised paragraph has been updated accordingly in the manuscript: 

The 12-month SPEI timescale was selected to reflect both seasonal and interannual climate variability, enabling the 

detection of annual hydrological responses to the prevailing phases of large-scale climate drivers. While some 

indices, such as the AMO, operate on multidecadal timescales, their current phase can still exert influence on 

precipitation patterns within a given year. Thus, the 12-month period is not intended to resolve long-term climate 

variability itself, but rather to integrate its effects as expressed in a single year's climate system. 

 

7. Lines 140-143, The logic is hard to follow. Clarify why having 31 indices conflicts with a 1951–2018 record, and 

why a “large number of indices” would undermine a robust analysis. Re-phrase to make the trade-offs explicit. 

Thanks for the comment. The original statement aimed to address the potential challenge of integrating a large number 

of climate indices—each with varying periods of availability—within a coherent analytical framework. While the 

inclusion of 31 indices increases the risk of reduced temporal overlap, multicollinearity, and noise in the analysis, the 

1951–2018 period was selected because it represents the longest continuous span with consistent data coverage for 

the majority of indices considered. 

This timeframe ensures sufficient temporal overlap across most datasets, allowing for a methodologically robust 

analysis of long-term climatic variability and its relationship with drought. The revised text now explicitly outlines 

these trade-offs and justifies the selection of both the number of indices and the chosen time period 

The revised paragraph has been updated accordingly in the manuscript: 

Although the analysis incorporated 31 climate indices, the historical period from 1951 to 2018 was deemed 

appropriate for this study. This timeframe balances the need for a sufficiently long record to capture long-term 



climatic variability with the availability of consistent and overlapping data for a large set of indices. While the 

inclusion of many indices can pose challenges—such as reduced temporal overlap, increased multicollinearity, and 

potential noise in statistical relationships—the 1951–2018 period provided a common baseline that ensured temporal 

consistency across most indices. As a result, it was possible to conduct a robust analysis of long-term climate-drought 

relationships while minimizing data limitations associated with differing index availability. 

 

8. Fig. 3a, I suggest adding hatches or stipples to distinguish areas with and without statistically significant trends. Same 

thing for Fig. 5. 

Thanks for the suggestion. For Figures 3a and 5, a more distinct color bar has been used to better differentiate the 

various ranges of Z-values. Also Figure 6 and 7 have been improved to better differentiate colors. 

Regarding the use of hatches or stipples, it should be noted that the grid is very dense, with all cells fully populated. 

Adding such patterns would substantially reduce the readability of the map and may obscure underlying spatial 

structures. For this reason, color intensity was intentionally used as the primary visual cue for statistical significance. 

 

 

Figure 3: Z parameter of the SK test: SPEI-12 map (a) 





 

Figure 5.  Maps of the correlations between SPEI-12 gridded data and the most correlated climatic indices (continue). 

 

 



 

  

 
Figure 6.  Correlation analysis between SPEI-12 for Cell 2042 and AMO. The figure presents the time series of AMO and 

SPEI-12 for Cell 2042, located at the border between Chad and Sudan. Additionally, it includes a scatter plot illustrating their 

relationship on both a monthly scale and a five-year mean scale. 
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Figure 7.  Correlation analysis between SPEI-12 for Cell 2319 and GMT. The figure presents the time series of AMO and 

SPEI-12 for Cell 2319, located at the Sahel’s border in Central Sudan. Additionally, it includes a scatter plot illustrating their 

relationship on both a monthly scale and a five-year mean scale. 

 

9. Line 210-219, When discussing the impact of climate variability on drought, indicate the direction of influence. For 

example, does increased aerosol loading tend to increase or decrease regional precipitation? 

Thanks for the comment. The paragraph discussing the results of the Seasonal Kendall test on the climate indices has 

been revised to explicitly state the direction of influence each trend is likely to exert on regional precipitation and 

drought conditions. In particular, the revised text now clarifies that increases in GMT and IPWP are generally 
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associated with reduced rainfall and enhanced drought conditions in the Sahel. Likewise, the decreasing trends in 

TNI, Solar Flux, and Sahel P are discussed in terms of their potential to contribute to regional drying, with reduced 

solar flux—possibly linked to increased aerosol loading or cloud cover—being associated with suppressed 

precipitation. These clarifications aim to provide a clearer understanding of how specific climate signals relate to 

observed hydroclimatic changes in the region. Revised text: 

The SK test was also performed for the climatic indices (Figure 3b). The predominance of statistically significant 

increasing trends, particularly for the IPWP (Z = 27.83) and GMT (Z = 28.70), underscores the substantial role of 

global warming and oceanic heat distribution in shaping regional climate dynamics. These upward trends reflect 

broader increases in sea surface temperatures and global temperature anomalies, which are generally associated 

with reduced precipitation and enhanced drought conditions in the Sahel due to shifts in atmospheric circulation and 

moisture availability. 

Conversely, statistically significant decreasing trends were observed in three indices: TNI (Z = -7.83), Solar Flux (Z 

= -3.18), and Sahel P (Z = -4.13), each suggesting mechanisms that contribute to regional drying. The decline in 

TNI implies a weakening of tropical convection and changes in atmospheric circulation patterns that can reduce 

moisture transport toward the Sahel. The decrease in Solar Flux may be indicative of increased aerosol 

concentrations or cloud cover, both of which tend to reduce surface solar radiation, leading to lower evaporation 

and altered atmospheric dynamics that often result in reduced rainfall. Finally, the negative trend in Sahel P reflects 

a direct decline in regional precipitation, consistent with the observed intensification and persistence of drought 

conditions in recent decades. 

 

10. Line 266, Define the threshold for “weaker correlations” and state the correlation values, not just the IQR. 

Thanks for the comment. The text has been updated to report both the IQR and the mean correlation values for each 

index discussed, thereby providing a clearer quantitative basis for interpretation. The term “weaker correlations” 

refers to indices such as AO (mean = -0.02, IQR = 0.05) and NAO (mean = -0.03, IQR = 0.06), which exhibit notably 

lower correlation magnitudes and narrower variability compared to other indices in the analysis. This classification 

is intended to highlight their comparatively limited and less consistent relationship with drought variability in the 

Sahel, relative to indices such as AMM, AMO, and GMT. 

 

11. Line 341, what statistic of SHAP values do we use to measure the influence on clustering? I thought I should look at 

the mean values but here the authors cite the range. 



Thanks for the comment. The influence of each climatic index on the clustering outcome is assessed by examining 

the distribution of SHAP values assigned to that feature across all data points. In the revised manuscript, more details 

on the SHAP analysis and on the Random Forest model have been provided. 

As an example of the text, here you find the revised version of the description for cluster C1: 

In Cluster C1, the AMO, CAR and TNA emerged as the most influential variables, with mean absolute SHAP values 

of 0.088, 0.72 and 0.059, respectively (see Table S5). Their distributions are notably skewed toward positive SHAP 

values, with dense concentrations between 0.05 and 0.15. This pattern indicates a strong and consistent association 

between high index values and increased likelihood of C1 classification. Moderately influential indices such as 

WHWP, NTA, and AMM present narrower spreads (-0.05 to 0.2) and more symmetric profiles, suggesting subtler but 

still directional contributions. Conversely, indices like PDO, GMT, IPWP, and TSA show very limited SHAP influence, 

with values clustered near zero and minimal dispersion, highlighting their negligible role in defining this cluster. 

In addition, in the Supplementary material, Tables S4 and S5 provide the Output accuracy of the Random Forest model 

and the SHAP Feature Importance Ranking with Confidence Intervals, respectively. 

 

Table S4. Output accuracy of the Random Forest model. The color bar ranges from red (low values) to green (high values). 

Clusters precision recall f1-score support 

C1 1 0.97 0.985 33 

C2 0.964 1 0.982 54 

C3 1 0.978 0.989 46 

accuracy   0.985 133 

macro average 0.988 0.983 0.985 133 

weighted average 0.985 0.985 0.985 133 

Overall Random Forest Accuracy 0.985 

 

 

Table S5. SHAP Feature Importance Ranking with Confidence Intervals. The color bar ranges from red (low values) to green 

(high values). 

Classe Feature Mean Absolute SHAP values 
Lower 95% 

Confidence Interval 
Upper 95% 

Confidence Interval 

C1 

AMO 0.088 0.079 0.098 

CAR 0.072 0.064 0.081 

TNA 0.059 0.051 0.066 

WHWP 0.051 0.045 0.057 

NTA 0.042 0.038 0.048 

AMM 0.033 0.029 0.037 

Sahel P 0.013 0.011 0.014 

PDO 0.009 0.008 0.011 

GMT 0.006 0.005 0.006 

IPWP 0.002 0.002 0.002 



TSA 0.002 0.002 0.002 

C2 

AMO 0.096 0.091 0.101 

NTA 0.084 0.079 0.088 

CAR 0.077 0.072 0.081 

TNA 0.067 0.063 0.072 

WHWP 0.061 0.056 0.066 

IPWP 0.029 0.026 0.033 

AMM 0.027 0.025 0.030 

GMT 0.023 0.020 0.027 

Sahel P 0.014 0.013 0.016 

PDO 0.009 0.008 0.011 

TSA 0.007 0.006 0.008 

C3 

NTA 0.102 0.094 0.109 

AMO 0.080 0.073 0.087 

WHWP 0.072 0.067 0.078 

CAR 0.061 0.057 0.066 

TNA 0.059 0.055 0.064 

IPWP 0.030 0.027 0.033 

GMT 0.027 0.024 0.030 

AMM 0.012 0.011 0.014 

TSA 0.006 0.006 0.007 

Sahel P 0.004 0.003 0.004 

PDO 0.002 0.002 0.002 

 

12. Line 344, “High” and “low” should be replaced with actual correlation values (or value ranges). Note that Fig. 9 

labels “feature value,” not “correlation.” 

Thanks for the comment. The text has been revised to specify that the color gradient in Figure 9 represents the actual 

correlation values between each climatic index and SPEI-12, with the range clearly indicated from low (blue) to high 

(red). Revised text: 

In the SHAP beeswarm plots (Figure 9), the x-axis represents SHAP values—the impact of each feature on the 

clustering outcome—while the color gradient (Feature value) encodes the actual correlation value between the 

climatic index and SPEI-12 for each data point, ranging from low (blue) to high (red). This dual encoding enables a 

nuanced interpretation of the model’s behavior: the position along the x-axis reflects the strength and direction of 

influence, while the color reveals whether strong or weak correlations drive the effect. 

 

13. Lines 475-481, Spatial heterogeneity has already been discussed in lines 415-419. Avoid repetition. 

Thank you for this observation. The text in lines 473–481 has been revised to avoid redundancy with the earlier 

discussion on spatial heterogeneity in lines 415–419. The revised paragraph now focuses more specifically on the 

added value of SHAP analysis in identifying the relative importance of individual climatic indices, particularly the 



consistent influence of the NTA, without repeating the earlier interpretation of AMO-related spatial variability. This 

adjustment preserves the integrity of the findings while improving clarity and conciseness: 

In this study, the application of SHAP analysis provided insight into the relative importance of individual climate 

indices in shaping the clustering structure. Indices such as AMO and NTA emerged as influential in distinguishing 

cluster-specific drought patterns. Notably, the NTA consistently showed a negative correlation with SPEI-12, 

suggesting that cooler SSTs in this region are associated with wetter conditions. These results reinforce the role of 

oceanic variability in modulating drought conditions and demonstrate the added value of interpretable machine 

learning methods in identifying key drivers of regional differentiation without assuming uniform climatic influence. 

 

14. Lines 512-519, Link the limitation of ignoring human activities to specific findings—e.g., could regions with low 

climate–SPEI correlation coincide with areas of extensive land‐use change or other human activities? 

Thank you for this constructive suggestion. The paragraph discussing methodological limitations has been revised to 

explicitly acknowledge that regions exhibiting weak correlations between climate indices and SPEI-12 may 

correspond to areas affected by significant anthropogenic influences, such as land-use change, irrigation, or 

groundwater extraction. This clarification reinforces the relevance of extending the analysis to highly anthropized 

environments, where non-climatic drivers may decouple local drought dynamics from broader climate variability. 

The revised text also emphasizes the potential value of applying the methodology to such contexts to better 

understand the interaction between human-induced modifications and large-scale climatic controls: 

Additionally, while this study successfully integrates trend analysis and explainable clustering, further investigation 

is needed to assess its performance in highly anthropized environments, where urbanization, land-use change, and 

water extraction exert non-climatic controls on drought evolution. Notably, some areas showing weak correlations 

between climate indices and SPEI-12 may coincide with regions undergoing extensive human-induced modifications, 

such as agricultural expansion, irrigation, or groundwater exploitation. These anthropogenic factors can decouple 

local drought dynamics from large-scale climate drivers, potentially obscuring the climate signal detected by 

statistical models. Expanding the application of this methodology to regions experiencing rapid demographic growth 

and infrastructural development, such as peri-urban zones increasingly reliant on groundwater, would offer critical 

insights into the interplay between human activities and climatic variability. Similarly, applying the approach to 

colder climates would enable an evaluation of its robustness in regions where snowpack dynamics, freeze-thaw 

processes, and permafrost degradation introduce additional layers of hydrological complexity. 

 

 



Reviewer 2 

The manuscript titled "Decoding the Architecture of Drought: SHAP-Enhanced Insights into the Climate Forces 

Reshaping the Sahel" presents a robust, interdisciplinary analysis of drought patterns in the Sahel region. The authors 

employ a multi-method approach that combines the Standardized Precipitation Evapotranspiration Index 

(SPEI), Seasonal Kendall (SK) trend analysis, cross-correlation with 31 climatic indices, and a SHAP-enhanced 

clustering methodology using Random Forest (RF) to explore the spatial-temporal variability of drought and its climatic 

drivers. 

Key findings include: 

• A significant downward trend in SPEI-12 across 57.5% of the Sahel, particularly in the west and southeast, indicating 

intensified drought conditions. 

• Strong negative correlations between drought severity and Global Mean Temperature (GMT) and Indo-Pacific Warm 

Pool (IPWP); Atlantic Multidecadal Oscillation (AMO) showed spatially heterogeneous impacts. 

• The clustering analysis delineates three distinct regions with unique drought dynamics and climate-drought 

interactions. 

• The SHAP framework reveals the differential contribution of climatic indices to drought clustering, offering high 

interpretability and novel insight into region-specific vulnerabilities. 

We sincerely thank the Reviewer for the thoughtful and thorough evaluation of our manuscript. The manuscript has been 

revised in accordance with all comments received. Additional modifications have also been made during the revision 

process, which have contributed to improving the overall quality and clarity of the text. It is hoped that the revised version 

will be found suitable for publication. A point-by-point response to the Reviewer’s comments is provided below. 

 

Title and Abstract 

• Include quantitative results (e.g., number of clusters, correlation values) in the abstract to enhance clarity and 

impact. 

• Slightly reduce jargon in the abstract for broader accessibility (e.g., explain “SHAP” in simpler terms before the 

acronym). 

Thanks for the comment. The Abstract has been improved including quantitative results and slightly reducing jargon in 

the abstract for broader accessibility. 

 

 



Introduction 

• Include a short paragraph summarizing existing clustering approaches and why SHAP-RF is a significant 

improvement. 

• Reduce the length of some paragraphs to improve readability and flow. 

The Introduction has been revised by shortening several paragraphs to enhance readability and flow, and by adding a 

paragraph summarizing existing clustering approaches and explaining why the SHAP framework represents a significant 

improvement: 

A critical yet frequently overlooked aspect of drought characterization involves identifying spatially homogeneous regions 

that exhibit consistent drought-climate relationships. Traditionally, clustering techniques such as K-means and 

Hierarchical clustering have been used to delineate these regions based on hydroclimatic features. K-means, while 

computationally efficient, assumes spherical clusters and equal variance, often oversimplifying complex spatial patterns. 

Hierarchical clustering, although more flexible in capturing nested relationships, can be sensitive to noise and lacks 

scalability for large datasets. Moreover, both methods operate as unsupervised learning algorithms, providing little 

insight into the underlying climatic drivers that influence cluster formation. As a result, these techniques often fall short 

in interpretability and in explaining the climatic processes shaping spatial drought variability. 

To overcome these limitations, this study introduces an innovative SHAP-driven clustering framework, which integrates 

RF classification with SHAP analysis. In this approach, RF is used to classify observations into drought-prone clusters 

identified during the unsupervised phase, while SHAP quantifies the contribution of each climatic variable to the predicted 

cluster membership. This combination offers a transparent and interpretable alternative to traditional clustering by 

uncovering not only the spatial patterns of drought but also the relative importance of different climate drivers in shaping 

those patterns. The framework shifts from a purely data-partitioning paradigm to one that integrates explainable AI, 

significantly enhancing the understanding of how climatic variability governs regional drought dynamics. 

 

Materials and Methods 

• Consider summarizing the 31 climate indices in a supplementary table only, instead of the main text, or 

condensing Table 1. 

Thanks for the comment. Table 1 has been updated to include a more concise descriptions of each index, 

highlighting their potential impacts on Africa and the Sahel where relevant, and the data source. 

Climate 

index 
Abbr. Definition Data source 

Atlantic 

Meridional 

Mode 

AMM 

The AMM describes north-south SST differences in the tropical Atlantic. Its 

positive phase shifts rainfall northward, increasing Sahel precipitation and 

reducing drought risk. The negative phase causes southward rainfall shifts, 

https://psl.noaa.go

v/data/timeseries/

month/DS/AMM/ 



leading to Sahel drought. AMM also affects Atlantic hurricane activity, 

influencing regional climate variability. 

Atlantic 

Multidecadal 

Oscillation 

AMO 

The Atlantic Multidecadal Oscillation refers to natural variations in North 

Atlantic Ocean sea surface temperatures that occur over periods of 20 to 40 

years. In its positive phase, North Atlantic temperatures are above average, 

leading to hotter summers along the eastern U.S., increased hurricane activity 

in the tropical Atlantic, and enhanced rainfall in Africa. In its negative phase, 

cooler Atlantic temperatures are associated with weaker hurricane activity, 

drought in Africa's Sahel region, and cooler, wetter summers in Europe. The 

AMO plays a significant role in shaping global climate systems and regional 
weather patterns, particularly in the North Atlantic region. 

https://www.psl.no

aa.gov/data/timese

ries/AMO/ 

Arctic 

Oscillation 
AO 

The AO influences atmospheric circulation patterns that can extend to the 

Sahel region by affecting the strength and position of the African Easterly Jet 

and mid-latitude weather systems. Its negative phase can weaken the jet stream, 

altering rainfall patterns in West Africa and contributing to Sahel drought or 

variability in seasonal precipitation. 

https://psl.noaa.go

v/data/timeseries/

month/DS/AO/ 

Berkeley 

Earth 

Surface 

Temperature 

BEST 

The BEST dataset provides global and regional surface temperature trends, 

including detailed temperature anomalies across Africa. These trends are 

crucial for understanding how warming influences Sahel hydroclimate, as 

rising temperatures can exacerbate drought conditions and impact rainfall 

variability in the region. 

https://psl.noaa.go

v/data/correlation/

censo.data 

Caribbean 

Index 
CAR 

The CAR index captures climate variability in the Caribbean, including SST 

and atmospheric patterns. It influences Atlantic tropical cyclone activity, which 

can affect West African monsoon dynamics and Sahel rainfall through 
atmospheric teleconnections. 

https://psl.noaa.go

v/data/correlation/
CAR_ersst.data 

Eastern 

Pacific 

Oscillation 

Index  

EPO 

The EPO describes atmospheric pressure anomalies in the eastern North 

Pacific. Its phases influence the jet stream and temperature patterns in North 

America, which can indirectly affect West African climate by modulating 

large-scale atmospheric circulation and teleconnections linked to Sahel rainfall 

variability. 

https://psl.noaa.go

v/data/correlation/

epo.data 

Greenland 

Blocking 

Index  

GBI 

The GBI measures persistent high-pressure systems over Greenland. Its 

positive phase alters North Atlantic circulation, which can influence the West 

African monsoon and Sahel rainfall by affecting atmospheric patterns that 

modulate moisture transport into the region. 

https://psl.noaa.go

v/data/correlation/

gbi.ncep.day 

Global Mean 

Temperature 
GMT 

GMT tracks overall atmospheric and ocean warming or cooling trends. Rising 

global temperatures influence the Sahel by intensifying droughts, altering 

rainfall patterns, and impacting regional water resources through shifts in the 

hydrological cycle. 

https://psl.noaa.go

v/data/correlation/

gmsst.data 

Indo-Pacific 

Warm Pool 
IPWP 

The IPWP, with some of the warmest tropical ocean temperatures, drives 
global atmospheric circulation, including monsoons. Its warming phase 

enhances convection and rainfall, indirectly influencing Sahel rainfall through 

shifts in the Walker circulation and global moisture transport. 

https://psl.noaa.go
v/data/correlation/

pacwarm.data 

The North 

Atlantic 

Oscillation 

NAO 

The NAO index measures sea-level pressure differences between the Azores 

High and the Subpolar Low. Its phases modulate the North Atlantic jet stream 

and storm tracks, affecting heat and moisture transport. These changes 

influence West African monsoon strength and Sahel precipitation by altering 

atmospheric circulation patterns over the Atlantic. 

https://psl.noaa.go

v/data/correlation/

nao.data 

The North 

Atlantic 

Oscillation 

(Jones) 

NAO 

(Jones) 

Defined by Jones (1997), this NAO index measures the sea-level pressure 

difference between the Azores High and Icelandic Low. Its phases influence 

Atlantic atmospheric circulation patterns that affect West African monsoon 

dynamics and Sahel rainfall variability. 

https://psl.noaa.go

v/data/correlation/j

onesnao.data 

Niño-1.2 - 

This index covers sea surface temperatures in the eastern equatorial Pacific 

(80°W–90°W, 10°S–0°), where El Niño and La Niña events typically originate. 
In its positive phase (El Niño), warmer waters lead to increased rainfall and 

floods along South America’s northwest coast; in its negative phase (La Niña), 

cooler waters cause drought and promote cold-water upwelling. While its 

direct effects are regional, Niño-1+2 influences large-scale atmospheric 

circulation patterns, which can alter the West African monsoon strength and 

consequently affect Sahel precipitation variability. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino

.mth.91-20.ascii 

Niño 3 - 
The Niño-3 index tracks sea surface temperatures in the eastern equatorial 

Pacific (150°W–90°W, 5°S–5°N) to monitor El Niño and La Niña events. 

https://www.cpc.n

cep.noaa.gov/data/



During El Niño (positive phase), warmer waters cause increased rainfall in 

western South America, drought in Asia-Pacific, and reduced rainfall in the 

Sahel. La Niña (negative phase) brings cooler waters, increased storms in Asia-

Pacific, and enhanced rainfall in the Sahel. This index influences global 

atmospheric circulation and tropical rainfall patterns. 

indices/ersst5.nino

.mth.91-20.ascii 

Niño-3.4 - 

The Niño-3.4 index measures sea surface temperatures in the central equatorial 

Pacific (120°W–170°W, 5°S–5°N) and is a key indicator of El Niño and La 

Niña events. During El Niño (positive phase), warmer waters lead to increased 

rainfall along South America’s coast, drought and heatwaves in the Asia-

Pacific, and reduced rainfall in the Sahel. La Niña (negative phase) brings 
cooler waters, heavy rains and floods in Asia-Pacific, drought in South 

America, and enhanced rainfall in the Sahel. Niño-3.4 strongly influences 

global atmospheric circulation and tropical weather patterns. 

https://www.cpc.n

cep.noaa.gov/data/

indices/ersst5.nino
.mth.91-20.ascii 

Niño-4 - 

The Niño-4 index measures sea surface temperature variations in the central 

Pacific (160°E–150°W, 5°S–5°N) during El Niño and La Niña events. In its 

positive phase (El Niño), warmer waters enhance convection in the tropical 

western Pacific, influencing atmospheric circulation and monsoon patterns, 

often linked to reduced rainfall in the Sahel. In the negative phase (La Niña), 

cooler waters lead to drought in the western Pacific and increased rainfall in 

the central Pacific, sometimes boosting Sahel precipitation. Niño-4 is key for 

understanding tropical circulation and regional climate variability. 

https://www.cpc.n

cep.noaa.gov/data/ 

indices/ersst5.nino

.mth.91-20.ascii 

Northern 

Oscillation 

Index 

NOI 

The NOI measures sea level pressure differences between Tahiti (eastern 

tropical Pacific) and Darwin (western subtropical Pacific). In its positive phase, 
high pressure dominates the eastern Pacific and low pressure the western 

Pacific, causing drought in the east and wetter conditions in the west. The 

negative phase reverses this pattern. The NOI is essential for understanding 

tropical climate phenomena such as El Niño-Southern Oscillation (ENSO) 

impacts. 

https://psl.noaa.go

v/data/correlation/

noi.data 

North 

Pasific Index 
NP 

The NP reflects average sea level pressure over the North Pacific, indicating 

the strength of the Aleutian Low. In its positive phase, a stronger Aleutian Low 

brings more rainfall to western North America and cooler eastern Pacific 

waters. In the negative phase, the system weakens, leading to drier conditions 

and warmer sea surface temperatures. The NP Index is key to understanding 

Pacific atmospheric circulation and its effects on North American and, to a 

lesser extent, African climate patterns 

https://psl.noaa.go

v/data/correlation/

np.data 

North 

Tropical 

Atlantic SST 

Index 

NTA 

The NTA index represents SSTs in the North Tropical Atlantic. In its positive 
phase, warmer SSTs enhance convection and tropical cyclone activity, while 

influencing rainfall patterns across the Atlantic basin. This phase is often 

linked to increased precipitation in the Sahel. In the negative phase, cooler 

SSTs reduce cyclone activity and can lead to drought conditions in West 

Africa. The NTA index is crucial for understanding Atlantic climate variability 

and its impacts on regional weather systems. 

https://psl.noaa.go

v/data/correlation/

NTA_ersst.data 

Oceanic 

Niño Index 
ONI 

The ONI measures the three-month running average of sea surface temperature 

anomalies in the Niño-3.4 region of the central tropical Pacific. It is the primary 

indicator of El Niño and La Niña events within the ENSO cycle. Positive ONI 

values (El Niño) are linked to drought in regions like Australia and the Sahel, 

while negative values (La Niña) can enhance rainfall in these areas. The ONI 

is essential for monitoring ENSO’s global impacts on temperature, rainfall, and 

atmospheric circulation 

https://psl.noaa.go

v/data/correlation/

oni.data 

Pasific 

Decadal 

Oscillation 

PDO 

The PDO describes long-term shifts in sea surface temperatures and 
atmospheric pressure across the North Pacific. In its positive phase, the eastern 

Pacific cools while the western Pacific warms, bringing wetter conditions to 

western North America and warmer weather in Alaska. In the negative phase, 

the pattern reverses, causing drought in western North America and reduced 

marine productivity. The PDO influences multi-decadal climate variability, 

affecting agriculture, fisheries, and water resources globally, including rainfall 

patterns in Africa 

https://psl.noaa.go

v/data/correlation/

pdo.data 

Pacific 

Meridional 

Mode 

PMM 

The PMM is a climate pattern driven by interactions between sea surface 

temperatures and surface winds in the tropical Pacific. In its positive phase, 

warmer waters enhance convection and rainfall across the Pacific, often 

preconditioning El Niño events. In its negative phase, cooler waters suppress 

https://psl.noaa.go

v/data/timeseries/

month/data/pmm.d

ata 



convection, leading to drier tropical conditions. The PMM influences the onset 

of ENSO events and plays a key role in shaping tropical and global climate 

variability, including rainfall over Africa. 

Pacific–

North 

American 

Pattern 

PNA 

The PNA pattern is a major mode of atmospheric variability in the Northern 

Hemisphere, reflecting recurring pressure anomalies over the North Pacific and 

North America. The PNA index is based on standardized 500 hPa geopotential 

height anomalies at four specific locations. Its phases correlate with 

temperature and precipitation anomalies across North America. The PNA 

influences regional weather by modulating the strength and position of the East 

Asian jet stream, affecting storm tracks and climate patterns. Through 
atmospheric teleconnections, the PNA can also impact tropical circulations, 

with potential links to rainfall variability in the Sahel and parts of northern 

Africa. 

https://psl.noaa.go

v/data/correlation/

pna.data 

Quasi-

Biennial 

Oscillation 

QBO 

The QBO is a regular oscillation of easterly and westerly winds in the tropical 

stratosphere, with a cycle of about 28–30 months. In its westerly phase, tropical 

cyclone activity increases, especially in the Pacific and Atlantic. In the easterly 

phase, cyclone formation weakens, and stratospheric ozone distribution shifts. 

The QBO modulates stratosphere–troposphere interactions and can influence 

tropical convection, potentially affecting rainfall variability in regions such as 

the Sahel and equatorial Africa. 

https://psl.noaa.go

v/data/correlation/

qbo.data 

Sahel 
Precipitation 

Sahel P 

Sahel Precipitation refers to the annual rainfall in Africa’s Sahel region (south 

of the Sahara Desert) and is influenced by tropical Atlantic Sea surface 

temperatures and atmospheric circulation. Positive phases (increased rainfall) 
improve agriculture and water resources, while negative phases (drought) lead 

to famine and heightened socio-economic impacts. 

https://psl.noaa.go

v/data/correlation/
sahelrain.data 

Southern 

Oscillation 

Index 

SOI 

The SOI is calculated from the air pressure difference between Tahiti (central 

Pacific) and Darwin, Australia (western Pacific). Positive SOI values indicate 

La Niña conditions with high pressure over Tahiti and low pressure over 

Darwin, often linked to increased rainfall in the Sahel. Negative SOI values 

correspond to El Niño conditions, typically associated with drier Sahel 

conditions and shifts in global climate patterns. 

https://psl.noaa.go

v/data/correlation/

soi.data 

Solar Flux - 

Solar flux measures the amount of solar energy reaching Earth, reflecting solar 

activity cycles. Increased solar flux can lead to warming and changes in 

atmospheric circulation, which may influence rainfall patterns in Africa. Lower 

solar flux periods tend to coincide with cooler and more stable climate 

conditions, potentially affecting the Sahel rainfall variability indirectly. 

https://psl.noaa.go

v/data/correlation/

solar.data 

Tropical 

Northern 

Atlantic 

Index (TNA) 

TNA 

The TNA measures sea surface temperature anomalies in the tropical North 
Atlantic (5°N–25°N, 15°W–60°W). Positive phases with warmer SSTs are 

associated with increased rainfall along the West African coast and enhanced 

tropical cyclone activity. Negative phases correspond to cooler SSTs, reduced 

tropical rainfall, and weaker cyclone activity, often linked to drought 

conditions in the Sahel. 

https://psl.noaa.go

v/data/correlation/t

na.data 

Trans Nino 

Index 
TNI 

The TNI analyzes spatial shifts in El Niño and La Niña events by measuring 

SST differences between the eastern tropical Pacific (Niño-1+2) and central 

tropical Pacific (Niño-4). Positive TNI phases indicate eastward-shifted El 

Niño effects, increasing rainfall in the eastern Pacific and often suppressing 

rainfall in the Sahel. Negative phases reflect eastward shifted La Niña effects, 

which can enhance Sahel precipitation by influencing tropical atmospheric 

circulation. 

https://psl.noaa.go

v/data/correlation/t

ni.data 

Tropical 
Southern 

Atlantic 

Index 

TSA 

The TSA measures SST anomalies in the tropical South Atlantic (0°–20°S, 

10°E–30°W). Warmer SSTs in the positive phase lead to increased rainfall 
along eastern South America and shifts in the Atlantic Hadley circulation, 

which can influence West African monsoon intensity. Cooler SSTs during the 

negative phase are linked to drought and reduced convection, potentially 

weakening Sahel rainfall. 

https://psl.noaa.go

v/data/correlation/t

sa.data 

Tropical 

Western 

Hemisphere 

warm pool  

WHWP 

The WHWP covers the Caribbean, Gulf of Mexico, and eastern tropical Pacific 

where SSTs exceed 28°C. Positive phases are characterized by increased 

temperatures, leading to stronger tropical cyclone activity and enhanced 

rainfall in surrounding regions. Negative phases correspond to cooler SSTs and 

reduced storm intensity. WHWP variability affects Atlantic atmospheric 

circulation and can modulate rainfall in the Sahel and West Africa. 

https://psl.noaa.go

v/data/correlation/

whwp.data 



West Pacific 

Index 
WPI 

The WPI measures atmospheric pressure differences in the tropical and 

subtropical western Pacific. In its positive phase, a strong high-pressure system 

weakens Asian monsoons and tropical cyclone activity. The negative phase, 

dominated by low pressure, enhances Asian monsoon strength and storm 

activity. Changes in the WPI influence tropical climate dynamics and can 

indirectly affect the Sahel by modulating global atmospheric circulation 

patterns. 

https://psl.noaa.go

v/data/correlation/

wp.data 

 

• Include more explanation or citation on how SHAP values are computed and interpreted in the clustering context 

for readers unfamiliar with explainable AI techniques. 

Thanks for the comment. In the revised version of the manuscript, the Methodological Section has been improved 

providing a more detailed explanation of the SHAP analysis: 

However, this criterion does not allow for a clear assessment of the impact of each climatic index on the 

clustering process. To enhance the interpretability of clustering analyses in hydrological studies, particularly 

concerning drought patterns, this study integrates SHAP (values with RF models. This approach addresses the 

limitations of traditional clustering methods, which often lack explanatory power regarding the influence of 

individual climatic variables on cluster formation. 

SHAP, grounded in cooperative game theory, assigns each feature an important value for a particular prediction, 

offering a unified measure of feature influence across the model. In this study, SHAP values are employed to 

interpret the output of an RF classifier trained to predict cluster assignments based on climatic indices (Lundberg 

and Lee 2017). The process involves:  

− Model Training: An RF classifier is trained using climatic indices as input features and the cluster labels 

(obtained from initial clustering analyses) as the target variable. 

− SHAP Value Computation: Post-training, SHAP values are computed for each feature, quantifying the 

contribution of each climatic index to the model's prediction for each data point. This computation considers 

all possible combinations of features, ensuring a fair distribution of importance among them . 

− Interpretation: The resulting SHAP values provide insights into how each climatic index influences the 

assignment of data points to specific clusters. Positive SHAP values indicate a feature's positive contribution 

to predicting a particular cluster, while negative values suggest a negative contribution. 

By employing this SHAP-driven approach, the study transforms clustering from a purely statistical exercise into 

an interpretable framework that reveals the underlying climatic drivers of drought patterns. This enhanced 

interpretability facilitates more informed decision-making and targeted adaptation strategies, especially in 

regions like the Sahel, where drought dynamics are influenced by complex interactions among multiple climatic 

factors. 



This methodology aligns with recent advancements in explainable AI, where SHAP values have been utilized to 

enhance the interpretability of clustering analyses in various domains (Cohen et al. 2023). By integrating SHAP 

with RF models, the study not only identifies homogeneous drought regions but also elucidates the specific 

climatic variables driving these patterns, thereby contributing to more effective drought mitigation and resource 

management strategies. 

 

Results 

• Provide statistical significance or validation metrics for SHAP impacts (e.g., confidence intervals or feature 

importance rankings). 

Thanks for the comment. In supplementary material Table S5 has been reported, providing the SHAP Feature 

Importance Ranking with the Confidence Intervals. The text in the paper has been also updated accordingly. 

Below an extract of the updated text: 

In Cluster C1, the AMO, CAR and TNA emerged as the most influential variables, with mean absolute SHAP 

values of 0.088, 0.72 and 0.059, respectively (see Table S5). Their distributions are notably skewed toward 

positive SHAP values, with dense concentrations between 0.05 and 0.15. This pattern indicates a strong and 

consistent association between high index values and increased likelihood of C1 classification. Moderately 

influential indices such as WHWP, NTA, and AMM present narrower spreads (-0.05 to 0.2) and more symmetric 

profiles, suggesting subtler but still directional contributions. Conversely, indices like PDO, GMT, IPWP, and 

TSA show very limited SHAP influence, with values clustered near zero and minimal dispersion, highlighting 

their negligible role in defining this cluster. 

Cluster C2, in contrast, was characterized by AMO and the NTA indices as the most important features (mean 

absolute SHAP equal to 0.096 and 0.084, respectively), followed by CAR and TNA. These variables show 

significant spread on both sides of zero, implying a bidirectional influence where both high and low values can 

affect classification, depending on the context. Secondary contributors such as IPWP, AMM, and GMT exhibit 

tighter distributions centered around zero but with occasional asymmetries, pointing to context-dependent roles. 

Sahel P, PDO, and TSA remain minimally influential, with narrow SHAP ranges and modes at or near zero. 

Compared to Cluster C1, the SHAP profiles in C2 suggest greater interaction complexity among variables rather 

than dominance by a few. 

For Cluster C3, NTA dominated the feature importance ranking (mean absolute SHAP: 0.102), followed by AMO 

(0.080) and WHWP (0.072). These distributions are distinctly positively skewed, and the color gradient confirms 

that high feature values strongly align with positive SHAP contributions. Variables such as CAR, TNA, and IPWP 



follow a similar, though slightly less pronounced, pattern. Mid-tier contributors like GMT, AMM, and TSA are 

more symmetrically distributed, with modal SHAP values just above zero. Finally, Sahel P and PDO again 

register as the least impactful, mirroring the behavior observed in the other clusters. 

Table S5. SHAP Feature Importance Ranking with Confidence Intervals. The color bar ranges from red (low values) to green 

(high values). 

Classe Feature Mean Absolute SHAP values 
Lower 95% 

Confidence Interval 

Upper 95% 

Confidence Interval 

C1 

AMO 0.088 0.079 0.098 

CAR 0.072 0.064 0.081 

TNA 0.059 0.051 0.066 

WHWP 0.051 0.045 0.057 

NTA 0.042 0.038 0.048 

AMM 0.033 0.029 0.037 

Sahel P 0.013 0.011 0.014 

PDO 0.009 0.008 0.011 

GMT 0.006 0.005 0.006 

IPWP 0.002 0.002 0.002 

TSA 0.002 0.002 0.002 

C2 

AMO 0.096 0.091 0.101 

NTA 0.084 0.079 0.088 

CAR 0.077 0.072 0.081 

TNA 0.067 0.063 0.072 

WHWP 0.061 0.056 0.066 

IPWP 0.029 0.026 0.033 

AMM 0.027 0.025 0.030 

GMT 0.023 0.020 0.027 

Sahel P 0.014 0.013 0.016 

PDO 0.009 0.008 0.011 

TSA 0.007 0.006 0.008 

C3 

NTA 0.102 0.094 0.109 

AMO 0.080 0.073 0.087 

WHWP 0.072 0.067 0.078 

CAR 0.061 0.057 0.066 

TNA 0.059 0.055 0.064 

IPWP 0.030 0.027 0.033 

GMT 0.027 0.024 0.030 

AMM 0.012 0.011 0.014 

TSA 0.006 0.006 0.007 

Sahel P 0.004 0.003 0.004 

PDO 0.002 0.002 0.002 

 

• The explanations of Beeswarm plots can be expanded for clarity. 

Thanks for the comment. The explanation of Beeswarm plots has been improved as suggested by the Reviewer: 



In the SHAP beeswarm plots (Figure 9), the x-axis represents SHAP values—the impact of each feature on the 

clustering outcome—while the color gradient (Feature value) encodes the actual correlation value between the 

climatic index and SPEI-12 for each data point, ranging from low (blue) to high (red). This dual encoding enables 

a nuanced interpretation of the model’s behavior: the position along the x-axis reflects the strength and direction 

of influence, while the color reveals whether strong or weak correlations drive the effect. 

• Include more information on model performance (e.g., accuracy, F1-score of RF classification for clusters). 

Thanks for the comment. More details on model performance have been provided in the text:  

To evaluate the relative influence of each climatic index on the clustering process and assess the predictive 

performance of the classifier, we employed an explainable AI approach that integrates a Random Forest (RF) 

classifier with SHAP. The RF model, a robust tree-based ensemble algorithm, effectively captures complex 

nonlinear interactions among variables but lacks inherent interpretability. To address both model performance 

and transparency, a comprehensive protocol was implemented. 

First, the dataset was split using stratified sampling into training (90%) and testing (10%) subsets to preserve 

the original class distribution. A Random Forest classifier (100 estimators, criterion=Gini, random_state=42) 

was trained on the training data, and standard evaluation metrics—accuracy, class-wise precision, recall, F1-

score, and the confusion matrix—were computed on the test set. The model achieved an accuracy of 0.985 on 

the independent test set. Class-wise precision, recall, and F1-scores were all above 0.97, confirming the 

classifier’s strong discriminative power (see Table S4). Second, model explainability was addressed using SHAP 

values computed through the TreeExplainer framework. Beeswarm plots were generated for each cluster to 

visualize the magnitude and direction of feature contributions. Moreover, for each cluster, mean absolute SHAP 

values were computed for each feature, and a bootstrap procedure (n = 100) was performed to calculate 95% 

confidence intervals, providing statistical robustness to the importance rankings. 

In addition, Table S4 has been provided in supplementary material, reporting the output accuracy of the Random 

Forest model. 

Table S4. Output accuracy of the Random Forest model. The color bar ranges from red (low values) to green (high values). 

Clusters precision recall f1-score support 

C1 1 0.97 0.985 33 

C2 0.964 1 0.982 54 

C3 1 0.978 0.989 46 

accuracy   0.985 133 

macro average 0.988 0.983 0.985 133 

weighted average 0.985 0.985 0.985 133 

Overall Random Forest Accuracy 0.985 

  



Discussion 

• Integrate more discussion on potential policy or adaptation strategies based on cluster-specific vulnerabilities. 

Thanks for the comment. In Section 4.3 “Advancing Hydrological Clustering: From Conventional Methods to 

SHAP-Enhanced Insights” details related to adaptation strategies based on the cluster outcomes are now 

reported: 

In addition, the spatial heterogeneity revealed across the three clusters highlights the need for targeted 

adaptation strategies that align with each cluster’s specific climatic vulnerabilities. Cluster C2, which faces the 

most severe drought intensification, would benefit from proactive investment in water harvesting infrastructure, 

drought-resilient crop varieties, and transboundary water governance mechanisms to manage shared resources. 

Cluster C1, more strongly influenced by global warming indicators such as GMT and IPWP, may require policies 

focused on long-term resilience—such as promoting sustainable groundwater extraction, enhancing soil 

moisture retention through agroecological practices, and integrating climate-smart irrigation systems. In 

contrast, Cluster C3, where local and regional dynamics dominate, presents an opportunity for community-based 

water management, improved land use planning, and localized climate services tailored to support decision-

making at the grassroots level. These differentiated strategies are crucial to building adaptive capacity in the 

Sahel and ensuring that resource allocation reflects both scientific insight and regional socio-environmental 

contexts. 

 

• Acknowledge limitations such as the temporal range of the data (1951–2018), and possible bias due to data 

resolution or missing climatic drivers. 

Thanks for the comment. In Section 4.4 “Limitations and Future Directions” details related to possible bias due 

to data resolution or missing climatic drivers are now reported: 

Furthermore, the temporal range of the analysis (1951–2018), although selected to ensure consistency and 

adequate overlap among multiple climate indices, may not fully capture recent accelerations in climate change 

and extreme event frequency, especially post-2018. As newer datasets become available, extending the analysis 

to include the most recent years will be critical for capturing ongoing hydroclimatic shifts. Moreover, while the 

0.5° spatial resolution of the Global SPEI Database is adequate for regional-scale assessments, it may smooth 

out local variations critical for decision-making at finer administrative levels. This can introduce spatial biases, 

particularly in areas where terrain, land use, or rainfall gradients are highly variable. Finally, despite the broad 

suite of 31 climate indices considered, the exclusion of potentially relevant drivers—such as dust aerosol 

concentrations, local vegetation indices, or land surface temperature—could limit the full explanatory power of 



the model. Incorporating such variables in future iterations may improve the detection of drought triggers and 

feedbacks, especially where local biogeophysical processes play a pivotal role. 

  

Figures and Tables 

• Improve color consistency and legends for clarity (e.g., avoid ambiguous shades). 

• Add numerical cluster centroids or representative climate patterns for each cluster. 

 Different figures have been revised to avoid ambiguous shades: 

 

Figure 3: Z parameter of the SK test: SPEI-12 map (a) 





 

Figure 5.  Maps of the correlations between SPEI-12 gridded data and the most correlated climatic indices (continue). 

 

 



 

  

 
Figure 6.  Correlation analysis between SPEI-12 for Cell 2042 and AMO. The figure presents the time series of AMO and 

SPEI-12 for Cell 2042, located at the border between Chad and Sudan. Additionally, it includes a scatter plot illustrating their 

relationship on both a monthly scale and a five-year mean scale. 
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Figure 7.  Correlation analysis between SPEI-12 for Cell 2319 and GMT. The figure presents the time series of AMO and 

SPEI-12 for Cell 2319, located at the Sahel’s border in Central Sudan. Additionally, it includes a scatter plot illustrating their 

relationship on both a monthly scale and a five-year mean scale. 

 

Language and Style 

• Consider simplifying overly dense or jargon-heavy sentences (especially in the Introduction and Discussion). 

• Check for consistency in the use of abbreviations (e.g., GMT vs. Global Mean Temperature) and ensure all 

acronyms are introduced properly. 
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Thanks for the comment. We have carefully revised the text, particularly in the Introduction and Discussion sections, to 

simplify overly dense or jargon-heavy sentences and improve overall readability. Additionally, we reviewed all 

abbreviations and acronyms throughout the manuscript to ensure consistent usage and that each term is properly 

introduced at first mention). These changes have been implemented to enhance both clarity and accessibility for a broader 

audience. 

  

Novelty and Impact 

• Emphasize more clearly in the Conclusion how the framework can be generalized to other regions beyond the 

Sahel. 

We thank the Reviewer for this insightful suggestion. In response, we have revised the Conclusion section to more clearly 

emphasize the generalizability of our proposed framework. Specifically, we now highlight that the modular structure—

comprising seasonal trend analysis, cross-correlation with large-scale climate drivers, and explainable machine learning 

via SHAP-driven clustering—can be readily adapted to diverse hydroclimatic contexts beyond the Sahel. This includes 

temperate, monsoonal, and arid regions where drought dynamics are governed by both local conditions and global climate 

teleconnections. The revised text underscores the framework’s flexibility, interpretability, and potential to support data-

informed drought risk assessment and adaptation strategies across geographically and climatically varied settings: 

This study presents a comprehensive framework for assessing drought variability in the Sahel by integrating trend 

analysis, cross-correlation, and an innovative SHAP-driven clustering approach. The analysis revealed that 57.5% of the 

region exhibits a significant drying trend in SPEI-12, particularly in the western and southeastern Sahel, driven by 

increasing temperatures and declining precipitation. Conversely, 19.3% of the region shows statistically significant 

wetting trends, highlighting the spatial heterogeneity of drought evolution primarily through increased 

evapotranspiration and reduced soil moisture availability. At a regional scale, AMO and NTA emerged as key modulators 

of drought variability, influencing distinct drought-prone zones. Clustering identified three major drought regimes, with 

Cluster C2 (western Sahel: Senegal, Mauritania, Mali) experiencing the most severe intensification (Z = -5.04). 

The SHAP-driven clustering approach integrates a Random Forest (RF) model with SHAP values to identify distinct 

drought patterns across the Sahel. By quantifying the contribution of each climatic index to the clustering results, this 

method makes the model’s decision-making process transparent and highlights the prominent influence of AMO and NTA 

on regional drought variability. This level of interpretability allows for a deeper understanding of the climatic mechanisms 

behind spatial drought patterns, offering a robust basis for designing targeted adaptation strategies. 

Beyond its application in the Sahel, the proposed framework offers strong potential for generalization to other drought-

prone regions worldwide. Its modular structure—combining seasonal trend detection, teleconnection analysis, and 



explainable machine learning—can be readily adapted to different hydroclimatic contexts, including temperate zones, 

monsoonal climates, and arid environments. By incorporating local drought indices and relevant climate drivers, this 

methodology can support region-specific assessments while maintaining the advantages of transparency and model 

interpretability. As such, it provides a scalable and transferrable tool for advancing drought risk management in a 

changing global climate. 

By bridging advanced statistical analysis with explainable AI techniques, this study contributes a novel and interpretable 

approach for understanding climate impacts on regional water security, offering actionable insights for policymakers, 

researchers, and resource managers well beyond the Sahel context. 

 


