- 1 A new biogeochemical modelling framework (FLaMe-v1.0) for lake methane
- 2 emissions on the regional scale: Development and application to the European
- 3 domain
- 4 Manon Maisonnier¹, Maoyuan Feng^{1*}, David Bastviken², Sandra Arndt¹, Ronny Lauerwald³, Aidin
- 5 Jabbari⁴, Goulven Gildas Laruelle¹, Murray D. MacKay⁵, Zeli Tan⁶, Wim Thiery⁷, Pierre Regnier¹
- 6 ¹Biogeochemistry and Modelling of the Earth System-BGEOSYS, Department of Geoscience,
- 7 Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
- 8 ²Linköping University, Department of Thematic Studies, Tema Environmental Change, Sweden
- 9 ³ Université Paris-Saclay, INRAE, AgroParisTech, UMR Ecosys, Palaiseau, France
- ⁴Environmental Fluid Dynamics Laboratory, Department of Civil Engineering, Queen's University,
- 11 Kingston, ON, Canada
- ⁵Science and Technology Branch, Environment and Climate Change Canada, Toronto, M3H5T4,
- 13 Canada

16

- 14 ⁶Pacific Northwest National Laboratory, Richland, WA, USA
- ⁷Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium

*Correspondence to Maoyuan Feng (maoyuan.feng@ulb.be)

Abstract

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

This study presents a new physical-biogeochemical modelling framework for simulating lake methane (CH₄) emissions at regional scales. The new model, FLaMe-v1.0 (Fluxes of Lake Methane), rests on an innovative, computationally efficient lake clustering approach that enables the simulation of CH₄ emissions across a large number of lakes. Building on the Canadian Small Lake Model (CSLM) that simulates the lake physics, we develop a suite of biogeochemical modules to simulate transient dynamics of organic Carbon (C), Oxygen (O₂), and CH₄. We first test the performance of FLaMev1.0 by analyzing physical and biogeochemical processes in two theoretical lakes with characteristics that can be considered representative for many lakes (an oligotrophic, deep lake driven by cold climate versus a eutrophic, shallow lake driven by warm climate). Next, we evaluate the model by comparing simulated and observed timeseries of CH₄ emissions in four well-surveyed lakes. We then apply FLaMe-v1.0 at the European scale to evaluate simulated diffusive and ebullitive lake CH₄ fluxes against in-situ measurements in both boreal and central European regions. Finally, we provide a first assessment of the spatio-temporal variability in CH₄ emissions from European lakes with a surface area comprised between 0.1–1000 km² (n=108407, total area = 1.33x10⁵ km²), indicating a total emission of 0.97±0.23 Tg CH₄ yr⁻¹, with the uncertainty constrained by combining FLaMe-v1.0 and machine learning techniques. Moreover, 30% and 70% of these CH₄ emissions are through diffusive and ebullitive pathways, respectively. Annually averaged CH₄ emission rates per unit lake area during 2010-2016 have a South-to-North decreasing gradient, resulting in a mean over the European domain as 7.39 g CH₄ m⁻² yr⁻¹. Our simulations reveal a strong seasonality (with iceblocking effects accounted for) in European lake CH₄ emissions, with nearly ten times higher emissions during late summer than during winter. This pronounced seasonal variation highlights the importance of accounting for the sub-annual variability in CH₄ emissions to accurately constrain regional CH₄ budgets. In the future, FLaMe-v1.0 could be embedded into Earth System Models to investigate the feedback between climate warming and global lake CH₄ emissions.

1. Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Methane (CH₄) is the second most important greenhouse gas after carbon dioxide (CO₂), with a Global Warming Potential (GWP) per mass ~28 times higher than that of CO₂ over a 100-year horizon (Saunois et al., 2020). Over the last centuries, the atmospheric CH₄ concentration has increased from 722 ppb in the pre-industrial period (year 1750) to 1923 ppb in year 2023 (Saunois, et al., 2020; Dlugokencky, 2022; Forster et al., 2024) and this increase is expected to continue in the future. The critical role of CH₄ in global warming has called for the establishment of a comprehensive global CH₄ budget, which embraces both natural and anthropogenic sources (Saunois et al., 2016; 2020; 2024). This budget identified inland freshwaters (lakes, reservoirs, ponds, rivers, etc.) as an important, yet highly uncertain atmospheric CH₄ source (Jackson et al., 2020, 2024; Saunois, et al., 2020, Canadell et al., 2021). Global lake CH₄ emissions, which has been estimated to account for ~5 to 20% of total CH₄ emissions (576 TgCH₄ yr⁻¹), are the largest contributors to this inland water source (Jackson et al., 2020; Saunois et al., 2020). However, estimates of its magnitude vary depending on the assessment methods, with discrepancies of up to a factor of four (Saunois et al., 2020; DelSontro and John 2018; Rosentreter et al., 2021; Bastviken et al., 2011; Deemer et al., 2016; Johnson et al., 2021; Holgerson and Raymond 2016; Stavert et al. 2022). This variability in global estimates also manifests itself at the continental scale. For instance, estimates of European lake methane emissions range from 0.9 to 2.5 Tg CH₄ yr⁻¹ (Petrescu et al. 2021, 2023; Lauerwald et al., 2023).

Observation-based upscaling approaches are highly dependent on the availability and quality of *in-situ* measurements, which are unevenly distributed across the globe and biased towards summer months (Canadell *et al.*, 2021; Johnson *et al.*, 2022). Although the number of CH₄ emission measurements from lakes has increased considerably in recent decades, the two largest current

databases together contain only 1081 records from 575 lakes worldwide (Rosentreter et al., 2021; Johnson et al., 2022). This relatively small data compilation is unlikely to capture the full diversity of physical and biogeochemical patterns of >1.4 million lakes worldwide, which vary by morphology, climate, trophic status, and underlying sediment characteristics (Rinta et al., 2017; Bastviken 2004, 2022; Deemer and Holgerson 2021; Johnson et al., 2022). Even more critically, the underlying data collection was not designed to capture the inter-annual and decadal variability in CH₄ emissions driven by climate change and nutrient dynamics, hence rendering the decomposition of the total lake CH₄ fluxes into natural and human-induced components challenging (Saunois et al., 2020). Finally, although current instruments and techniques can effectively capture CH₄ fluxes through diffusive (driven by gradients of aqueous CH₄ concentrations) and ebullitive (via gas bubbles in the sediments due to oversaturation) emission pathways, measurements related to lake turnover events (release of previously accumulated CH₄ due to stratification and ice cover) and transport through vegetation aerenchyma remain highly challenging (Denfeld et al., 2018; Mayr et al., 2020; Zimmermann et al., 2019). These limitations induce large uncertainties in observation-based upscaling methods. In this context, process-based modelling approaches – that rely on detailed representations of lake physical and biogeochemical processes informed and tested with the available observational data - offer complementary strategies to help reduce these uncertainties.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Process-based biogeochemical models provide powerful tools to upscale scarce observations, both in space and in time. In combination with the available observational datasets, they can help deliver regional and global estimates of lake CH₄ emissions from daily to decadal timescales, as well as future projections. These mechanistic models can also help identify the drivers such as climate, land-use and atmospheric composition changes responsible for the complex temporal dynamics of

lake CH₄ emissions. Over the last decades, several process-based models have thus emerged, e.g., LAKE 2.0 (Stepanenko et al. 2016), bLake4Me (Tan et al., 2015), and ALBM (Tan et al., 2018; 2024), to estimate lake CH₄ emissions to the atmosphere. These models explicitly account for the physical and biogeochemical processes that govern lake CH₄ dynamics and resulting emissions. For instance, using ALBM, Zhuang et al. (2023) recently estimated that global lakes (larger than 0.1 km²) emit 24.0 ± 8.4 Tg CH₄ yr⁻¹, which is at the lower end of the range reported by Saunois *et al.* (2020) and represents 11% of total global CH₄ emissions from natural sources as estimated from atmospheric inversions. Yet, these process-based models also have limitations that need to be addressed. A central limitation is the omission of lake phytoplankton productivity, which is one of the most reactive organic C sources and thus substrates for CH₄ production. In most of existing models, this key process and the associated microbial degradation of organic C is not simulated explicitly but taken as prescribed model inputs. If phytoplankton productivity and associated contributions of methane substrates can be incorporated in lake CH₄ models, this would allow capturing the impacts of environmental conditions beyond the commonly included direct temperature effects on organic matter decomposition and CH₄ production. Such additional important impacts include feedback of C metabolism on lake oxygen (O₂) cycling along with eutrophication effects on CH₄ emissions (Del Sontro et al., 2018; Rosentreter et al., 2021; Stavert et al., 2022). However, it is challenging to explicitly describe the suite of key physical and biogeochemical processes controlling the coupled C-O2-CH4 cycles while at the same time maintaining model complexity, as well as the needs for observational data and computational costs for regional and global scale applications with tractable bounds. In addition, it also requires the quantification of nutrient inputs from the surrounding catchments, which exert a key control on lake productivity.

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

To tackle these challenges, we here develop a new process-based model framework of intermediate complexity, FLaMe-v1.0 (Fluxes of Lake Methane version 1.0,) that couples the C-O₂-CH₄ cycles in lakes using a one-dimensional representation. Specifically, FLaMe-v1.0 builds upon the existing physical lake model CSLM (Canadian Small Lake Model–MacKay, 2012; MacKay *et al.*, 2017), and extends with a novel biogeochemical module that captures the production, oxidation, storage, transport and emissions of CH₄ in/from lakes. Importantly, FLaMe-v1.0 introduces lake primary production and turnover of autochthonous organic carbon as a major driver of lake O₂ and CH₄ dynamics. The coupled, mechanistic lake model is then embedded in a computationally efficient clustering approach that allows for the application of the new, coupled, mechanistic lake model for (i) large parameter/input ensemble runs on regional/global scales for uncertainty assessments, (ii) long-term model projections for the assessment of future climate change and its feedback on the Earth system, (iii) a potential coupling to Earth System Models (ESMs) in subsequent stages of its development.

The structure of this paper is described as follows. In section 2, we provide a general description of the lake model with a focus on a detailed description of the novel biogeochemical modules, as well as the parameter choices and numerical solutions. In section 3, we first test the overall behavior of FLaMe-v1.0 using two representative lakes (an oligotrophic, deep lake driven by cold climate *versus* a trophic, shallow lake driven by warm climate), and then evaluate the simulated temporal variations of CH₄ fluxes against observational data at four well-surveyed lakes in the real world. Next, we apply FLaMe-v1.0 at the European scale and evaluate the results against *in-situ* measurements in boreal and central European lakes compiled by Rinta *et al.* (2017). Finally, we provide a spatio-temporally resolved estimate of CH₄ emissions from European lakes (2010–2016), assess their sensitivity to key

model parameters, and constrain their uncertainty range using a machine-learning approach. In section 4, we discuss model limitations and potential directions for further research. Main conclusions and outlooks are drawn in section 5.

2. Methodology

131

132

133

134

135

136

137

138

139

140

141

142

143

144

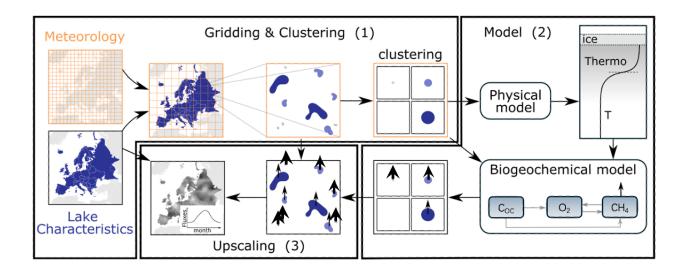
145

146

147

148

149


150

151

2.1 General model approach

We developed a new process-based physical-biogeochemical model, FLaMe-v1.0 (Fluxes of Lake Methane), to simulate lake CH₄ production and emission at large spatial scales. FLaMe-v1.0 resolves the interplay of physical and biogeochemical processes that governs organic matter ($C_{OC,auto}$), oxygen (O₂), and methane (CH₄) dynamics to estimate (diffusive and ebullitive) lake CH₄ emissions, as well as CH₄ storage fluxes due to lake turnover and ice melting. To enable a continental-scale application of FLaMe-v1.0 (e.g., in Europe, n=108407 and total area = 1.33x10⁵ km² for lakes with $0.1 \le A_0 \le 1000 \text{ km}^2$ according to Messager et al., 2016; A_0 is the lake surface area), we here propose a lake clustering strategy to reduce the computational and data/input costs (Fig. 1) while resolving the variability in lake sizes, morphology, and trophic status as well as climate conditions across Europe. Within each grid cell (2.5°×2.5°), lakes are binned into four classes arbitrarily according to surface area (0.1-1 km², 1-10 km², 10-100 km², 100-1000km²). We then run a FLaMe-v1.0 simulation for one representative lake per size class within each grid cell, using the arithmetic means of lake area, depth and trophic status of all lakes pertaining to the respective size class across the respective grid cell. Note that the areas and depths of all lakes are available from HydroLAKES database (Messager et al., 2016) while trophic status is derived from outputs of the GlobalNEWS model (Mayorga et al., 2010; Lauerwald et al., 2019). The total emission flux from a given size class

can be obtained by multiplying the CH₄ emission rates simulated by FLaMe-v1.0 with the total lake area of this size class (Fig. 1).

(Europe as an example). (1) Gridding and clustering: The European domain was divided into grid cells at a coarse spatial resolution of 2.5°×2.5°. Within each grid cell, lakes are clustered into four classes according to their surface areas. (2) FLaMe-v1.0 parallelization: FLaMe-v1.0 simulates the lake metabolic dynamics, vertically resolved concentration and rate profiles of the coupled O₂-CH₄ cycle as well as diffusive and ebullitive CH₄ fluxes through the water-air interface. The model was parallelized under transient conditions for each grid cell and each lake class. (3) Upscaling: The areal rates (i.e., fluxes per unit lake surface area) simulated by FLaMe-v1.0 were then multiplied by the total surface area of each lake class within each grid cell (available from HydroLAKES) and aggregated at the monthly timescale. The arrows pertaining to clustered and original lakes represent the CH₄

Fig. 1. Illustration of the lake clustering and upscaling strategy for the continental application of FLaMe-v1.0

2.2 Model description

FLaMe-v1.0 builds on an online coupling approach between the Canadian Small Lake Model (CSLM; MacKay, 2012; MacKay *et al.*, 2017) – a widely used lake physics model (Garnaud *et al.*,

emissions and the arrow size represent the magnitude of the flux (i.e., a lower flux for larger lakes).

2022; Verseghy and MacKay, 2017; William et al., 2014) - and a set of newly developed biogeochemical modules that resolve lake OC, O2 and CH4 dynamics. We selected the CSLM as the basis of the representation of lake physical processes in FLaMe-v1.0 because CSLM was designed for small lakes that accounts for >90 % of lakes (by number, mean depth <7.8 m) but contribute disproportionally to lake CH₄ emissions in the European domain (HydroLAKES; Messager et al., 2016), as well as due to the expertise in our research team. CSLM simulates the following physical variables: temperature profile (T), thermocline depth (h_{mix} , at which the vertical temperature gradient reaches its maximum), photic depth (h_{phot} , down to which the sunlight can penetrate, with radiation density of at least 1% of that at the lake surface), and ice cover, which will be used to force the biogeochemical modules (Fig. 2). In turn, the biogeochemical module will later modify the photic depth simulated by CSLM to account for the effect of phytoplankton growth and self-shading on light penetration, thus resolving the feedback between lake biogeochemical processes and lake physical dynamics, hence forming a complete feedback loop. A detailed description of the well-established CSLM model can be found in MacKay (2012) and MacKay et al. (2017) and is also briefly presented in Supplementary Text S1. Compared with other lake models (Table S1), the most important improvements in FLaMe-v1.0 are the adoption of a "valley" shape lake set up and the incorporation of autochthonous carbon dynamics (i.e., explicit simulation of primary production, decomposition, and oxygen processes) and its phosphorus limitation, which have been shown to be key control factors of CH₄ dynamics (Søndergaard et al., 2017; Guildford and Heckay, 2000; Schindler, 1977). In what follows, we provide a detailed description of the vertically resolved 1D model set-up (section 2.2.1) used here, as well as of the novel biogeochemical modules (section 2.2.2). All the involved model parameters, their values, and ranges are summarized in Table 1 (section 2.3).

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

2.2.1 Model Scope: Idealized representation of lake morphology

Figure 2 illustrates the vertically resolved, one-dimensional model set-up of FLaMe-v1.0 that is used for both the physical and biogeochemical modules. The original version of CSLM usually adopts a "bucket" shaped morphology which assumes a constant area (A) versus water depth (z), i.e., $A(z) = A_0$, where A_0 is the lake surface area at z = 0 m. However, this morphology is unsuitable for the simulation of biogeochemical processes, especially when variations in water depth within each lake are important. Therefore, we, instead, adopted a "valley" shaped lake morphology, with lake area A(z) given by:

198
$$A(z) = \frac{A_0}{2s} (s + \operatorname{arctanh}((1 - 2(z/h_{\max})) \tanh(s)))$$
 (1)

where A is the lake area (m²), z is the water depth (m), s is a shape parameter that controls the slope of the lakebed (a larger s indicates a steeper slope), and h_{max} is the maximum lake depth. To ensure that the volume (and hence heat exchange) is conserved between the "bucket" and "valley" shape setups, the maximum depth of the valley-shape lake, h_{max} , must be twice that of the mean depth of the bucket-shape lake, h_{mean} (i.e., $h_{max} = 2h_{mean}$), which was extracted from the global HydroLAKES database compiled by Messager *et al.* (2016). The bottom temperature profiles simulated by CSLM were then extended to the maximal depth of the valley shape lake.

Physical processes in the water column are simulated by CSLM, on a one-dimensional, vertically resolved, evenly distributed grid with a grid spacing of 50 cm. Each layer of the water column is connected to a vertically integrated lake sediment column of 5 m depth (h_s , m) (Langenegger *et al.*, 2019) (Fig. 2). Since the CH₄ production rate decreases exponentially with sediment depth (not applicable to thermokarst lakes), it is typically negligible at 5 m within the sediment column

(Langenegger et al., 2019), thus ensuring that the total, depth-integrated benthic CH₄ production becomes insensitive to this arbitrary choice. The surface area of each sediment column in contact with the water column is determined by difference in the widths of two adjacent water layers A(z) (Eq. (1)). In addition, it should be noted that we assume no **horizontal** material exchanges (O₂ and CH₄) between the sediments and water columns (i.e., across the interface where left and right edges of a water layer touch the sediment box; Fig. 2) because of its relatively minor magnitude compared to the vertical exchanges (Stepanenko et al., 2016; Tan et al., 2024) as well as the lack of observational data. Therefore, only the vertical exchanges are simulated in this first version of the model (see details in the following sections).

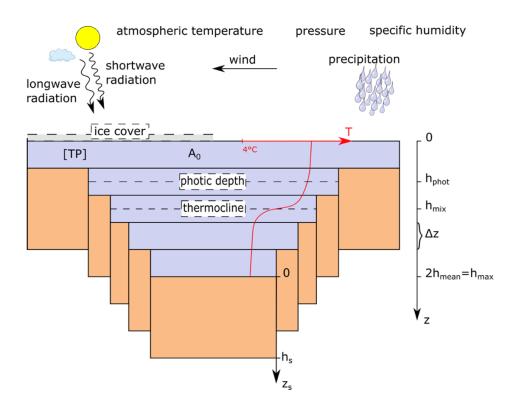


Fig. 2. Schematic representation of the lake morphology in FLaMe-v1.0. The lake is represented by a "valley" shape (denoted by Eq. (1)). A_0 denotes the lake surface area, A is the area of each water layer, and h_{max} is the maximal water column depth. z represents the depth of a water column down to the surface of a sediment column

while z_s stands for the depth inside a sediment column ($z_s = 0$ at the sediment water interface). The physical model is forced by longwave and shortwave radiation, near-surface wind, precipitation, atmospheric temperature, pressure, and specific humidity. Purple color indicates the water layers, and orange color indicates the sediment columns.

2.2.2 Biogeochemical Modules

2.2.2.1 Organic carbon module

Following the approach of Maavara *et al.* (2017), FLaMe-v1.0 does not resolve the vertical distribution of labile (i.e., microbial degradable) organic carbon (OC) concentrations ([Coc_{auto}]) produced by in-lake primary production, but only simulates the temporal dynamics of the volume-integrated autochthonous OC stock ($\overline{C_{OC,auto}}$, g C) (the overbar here indicates a volume-integrated value). $\overline{C_{OC,auto}}$ should be understood as a simple indicator or an overall reflection of the resulting lake trophic status, itself controlled by the combined effects of climate and nutrient loads from the catchment. The allochthonous C inputs delivered from surrounding catchments are more refractory and generally have a slower decomposition rate (Grasset *et al.*, 2018; Guillemette *et al.*, 2017; DelSontro *et al.*, 2018), although CH₄ production from allochthonous OC has in some instances been reported to be higher than from autochthonous compounds in laboratory incubations (Grasset *at al.*, 2018). Thus, we consider the allochthonous OC as less important substrates for CH₄ production, and consider the autochthonous primary production as the only labile OC source in this first model version; the allochthonous OC contribution will be added in the future upgrade of the model.

The temporal evolution of volume-integrated labile OC stock is determined by the interplay between autochthonous primary production, pelagic and benthic mineralization and burial fluxes (Maavara *et al.*, 2017):

$$\frac{\partial \overline{C_{OC,auto}}}{\partial t} = \overline{F_{PP}} - \overline{F_{Min}} - \overline{F_{Bur}}$$
 (2)

where t is time (day), and $\overline{C_{OC,auto}}$ is the volume-integrated OC stock (g C). $\overline{F_{PP}}$, $\overline{F_{Min}}$ and $\overline{F_{Bur}}$ are the volume-integrated primary production, mineralization, and sedimentary burial fluxes (g C d⁻¹), respectively. Following Maavara et al. (2017), we assume that autochthonous primary production rates are controlled by the light regime, water temperature, and the lake total phosphorus (TP) concentration ([TP], g P m⁻³) (Reynolds, 2006). The volume-integrated $\overline{F_{PP}}$ can then be expressed using a classical Michaelis-Menten formulation (Mavaara *et al.*, 2017):

$$\overline{F_{PP}} = B P_{Chl,max} M(T_{mean}) \frac{[TP]}{K_{s,P} + [TP]} V_{phot}$$
(3)

where B is the phytoplankton biomass (expressed as chlorophyll-a concentration, g Chl-a m⁻³) in the photic zone (Eq. (5)), $P_{Chl,max}$ is the maximum carbon fixation rate per unit of chlorophyll-a (g C (g Chla)⁻¹ h⁻¹), M is a dimensionless metabolic correction factor that depends on the mean lake water temperature in photic zone T_{mean} (°C) (see Eq. (4)), $K_{s,P}$ is the half-saturation constant for phosphorus limitation (g P m⁻³), and V_{phot} is the water volume above the photic depth (m³). Parameters $P_{Chl,max}$ and $K_{s,P}$ are constrained based on published observations (see section 2.3), while the metabolic factor M is given by:

261
$$M(T_{\text{mean}}) = \begin{cases} 1, & T_{\text{mean}} \ge 28^{\circ} \text{C} \\ \frac{T_{\text{mean}} - 28}{10} & T_{\text{mean}} < 28^{\circ} \text{C} \end{cases}$$
(4)

where $Q_{10,prod}$ is the temperature sensitivity for primary production, quantifying the increases of the metabolic factor per 10 degree increase in temperature. Surface water phytoplankton biomass, B, is approximated by a function of the photosynthetically active radiation (PAR), which is determined by shortwave radiation and light extinction in the water column:

266
$$B = \left(\frac{1}{k_{c}}\right) \left(0.75 \left(\frac{PP}{RP}\right) \ln \left(\frac{0.7PAR_{\theta}}{0.5PAR_{k}}\right) \left(\frac{1}{h_{\text{prod}}}\right) - \left(K_{dw} + K_{dp} + K_{dg}\right)\right)$$
 (5)

where k_c is the absorbance of PAR per unit of chlorophyll-a (m² (g Chl-a)⁻¹), and PP/RP is the ratio of maximum gross photosynthesis to respiration per unit chlorophyll-a. PAR_0 is the PAR at the lake surface (µmol m⁻² s⁻¹), determined by the incoming shortwave radiation, as well as the daytime that is specified by lake latitude and phenology (represented by the day of the year). PAR_k is the PAR at the onset of photosaturation (µmol m⁻² s⁻¹). The productive depth h_{prod} is determined as the maximum of the thermocline and the photic depth simulated by the physical model. K_{dw} , K_{dp} , and K_{dg} represent nonalgal PAR attenuations, due to pure water, inorganic suspended particulate matter, and labile carbon, respectively. Following Lewis (2011), K_{dg} is calculated as a function of [$C_{OC,auto}$] as:

$$ln(K_{dg}) = -4.44 + 1.80ln([C_{OC,auto}]) - 0.149(ln([C_{OC,auto}]))^{2}.$$
 (6)

Eq. (5) was derived based on the assumption of a balance between production and respiration (Reynolds, 2006; Lewis, 2011). Here we slightly relax this assumption and assume near-equilibrium conditions for given climate conditions at the monthly timescale, allowing us to simulate seasonal variations of primary production and associated biogeochemical processes. Note that this assumption is only used for biogeochemical variables related to primary production, while physical variables simulated by CSLM are resolved at a sub-daily time step.

Following Hanson *et al.* (2011; 2014) and Maavara *et al.* (2019), the volume-integrated mineralization rate is simulated as a function of temperature and labile OC availability:

$$\overline{F_{Min}} = k_{20} \,\theta^{T_{mean}-20} \,\overline{C_{OC,auto}} \tag{7}$$

where k_{20} is a first-order rate constant for the mineralization of $\overline{C_{labile}}$ at 20 °C (d⁻¹). T_{mean} is the mean water temperature (°C) in photic zone, and θ is the temperature dependence of mineralization of organic matter (Hanson *et al.*, 2014).

Following Maavara *et al.* (2019), the burial flux $\overline{F_{Bur}}$ is represented by a first order process driven by the labile OC stock $\overline{C_{OC,auto}}$:

$$\overline{F_{Bur}} = k_{bur} \overline{C_{OC,auto}}$$
 (8)

where k_{bur} is the burial rate constant and here set as half of the mineralization rate constant following the ratios between these two processes reported in the global lake dataset (n=230) assembled by Mendonça $et\ al.$ (2017). This ratio is likely an upper bound because it accounts for contributions of both autochthonous and allochthonous carbon sources in the dataset, while allochthonous inputs should have higher burial/decomposition ratios than autochthonous ones (Mendonça $et\ al.$, 2017; Guillemette $et\ al.$, 2017).

2.2.2.2 Methane module

The methane module simulates the dynamics of CH₄ concentration in both sediment and water columns as controlled by CH₄ production, aerobic CH₄ oxidation, and diffusive and ebullitive transport from sediment to water and atmosphere (Fig. 3). Since the observational evidence suggests that benthic CH₄ production is the dominant CH₄ source in lakes (Tan *et al.*, 2015; Bastviken, 2022), we neglect the CH₄ production within the lake's water column in the model.

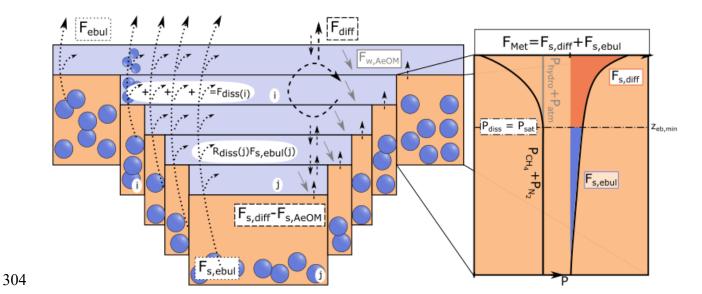


Fig. 3. Illustration of the methane (CH₄) module of FLaMe with a zoom into benthic CH₄ dynamics (zoom modified

from Langenegger *et al.*, 2019). Benthic CH₄ production (zoom) assumes an exponential decrease in CH₄ production rate (F_{Met}) with depth. The CH₄ and N₂ partial pressures ($P_{CH4} + P_{N2}$) is mainly driven by the CH₄ production and follows the black curve profile, which starts to exceed the sum of the hydrostatic and atmospheric pressure ($P_{hydro} + P_{atm} - P_{H2O}$, grey line) at $z_{cb,min}$. Thus, this depth ($z_{cb,min}$) divides F_{Met} into a diffusive ($F_{s,diff}$, red filled region) and an ebullitive ($F_{s,cbul}$, cyan filled region) flux. $F_{s,Acom}$ and $F_{w,Acom}$ are the CH₄ oxidation in the sediment and water column, respectively. F_{diss} is the dissolution of the gas bubbles during transport through the water column. F_{diff} and F_{cbul} are diffusive and ebullitive CH₄ fluxes through the water-air interface, respectively. i and j are the indexes of water layers and sediment columns. Note that the sediment column pertaining to a

Within the lake sediment, CH₄ dynamics are determined by the balance between CH₄ production via methanogenesis and CH₄ migration to the water column through diffusive and ebullitive transport:

$$\frac{\partial \widetilde{CH_{4,s}}(z)}{\partial t} = \widetilde{F_{Met}}(z) - \widetilde{F_{s,ebul}}(z) - \widetilde{F_{s,ebul}}(z)$$
 (9)

particular water layer has the same index as that water layer.

$$\widetilde{F_{Met}(z)} = f_{mm} \frac{M_{CH4}}{M_C} \overline{F_{Min}} \frac{V_s(z)}{V_{s tot}}$$
(10)

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

where the tilde overbar here represents the volume-integrated stocks or fluxes in the sediment column, which is different from the straight overbar for volume-integrated values in the water column. Note that we have sediment columns at different water depths, such that the stocks and fluxes are represented as a function of water depth z, which is characterized by the valley-shape model set-up and different from the conventional bucket shape set-up. $\widetilde{CH_{4,s}}(z)$ is thus the volumeintegrated CH₄ stock for the sediment column with the sediment-water interface positioned at depth z (g CH₄). $\widetilde{F}_{Met}(z)$ is the volume-integrated flux of CH₄ production through the entire sediment column with a sediment-water interface at depth z (g CH₄ d⁻¹), and $\widetilde{F_{s,ebul}}(z)$ are volume-integrated diffusive and ebullition fluxes (g CH₄ d⁻¹) through the sediment-water interface at depth z, respectively. f_{mm} denotes the fraction of organic matter mineralization that proceeds via methanogenesis according to data compiled by Hanson et al. (2014) and Bastviken (2022). M_{CH4}/M_C is a conversion factor corresponding to the molar ratio of CH₄ to $C_{OC,auto}$. As $f_{mm} \frac{M_{CH4}}{M_C} \overline{F_{Min}}$ is the total CH₄ production flux integrated over the whole water column, we assume that the fractions of CH₄ production occurring in different sediment columns are set according to their volume proportions, i.e., $\frac{V_s(z)}{V_{s tot}}$.

The partitioning of CH₄ production into ebullitive and diffusive fluxes depends on the porewater CH₄ concentration or its partial pressure, which relies mainly on the vertical distribution of CH₄ production rate in the sediment as well as the oxygen concentration (but is of second-order importance). Based on the observation-based assumption that the organic carbon concentration and thus mineralization rates exponentially decrease with sediment depth, we here assume an

exponentially decreasing relationship between methanogenesis rate versus depth (Fig. 3), following
 Langenegger *et al.* (2019):

$$f_{mot}(z,z_s) = F_{Met,0}(z) \exp(-\alpha z_s)$$
(11)

where $f_{met}(z,z_s)$ is the methanogenesis rate (g CH₄ m⁻³ d⁻¹) at sediment depth z_s for the sediment column with the sediment-water interface positioned at depth z. $F_{Met,0}(z)$ is the maximum CH₄ production at the sediment-water interface (g CH₄ m⁻³ d⁻¹) at depth z, and α is a shape parameter (m⁻¹) that controls the decrease of methanogenesis rate with depth. As the shape of this curve typically depends on the flux of labile carbon settling on the lake bottom, and thus, lake trophic status, the parameter α is here scaled by the F_{PP} empirically:

$$\alpha = \alpha_{min} + \beta F_{PP} \frac{V_w}{V_{phot}}$$
 (12)

- where α_{min} is the minimum or base value, and β is the dependence of α on F_{PP} . The values of α_{min} and β are determined based on the measurements in lakes of different trophic status reported by Langenegger *et al.* (2019).
- To determine the maximum CH₄ production $F_{Met,0}(z)$, the integral of CH₄ production rate over sediment column should equal to the volume-integrated CH₄ production flux $\widetilde{F_{Met}(z)}$ as specified by Eq. (10):

$$A_s(z) \int_0^{h_s} f_{met}(z, z_s) dz_s = \widetilde{F_{Met}(z)}$$
(13)

where $A_s(z)$ is the surface area of sediment column in contact with the water layer at lake depth z and is determined by difference in the areas of two adjacent water layers A(z) (Eq. (1)). The

maximum CH₄ production at depth z, $F_{Met,0}(z)$, can be obtained by combining Equations (10), (11) and (13):

$$F_{Met,0}(z) = \frac{\widetilde{F_{Met}(z)}}{A_s(z)} \frac{\alpha}{1 - \exp(-\alpha h_s)}$$
 (14)

Since CH₄ production increases the *in-situ* CH₄ concentration as the sediment depth increases, the CH₄ concentration may exceed its solubility concentration and methane gas bubbles may start forming (Fig. 3). To constrain the partitioning of CH₄ production between diffusion and ebullition, the threshold sediment depth, $z_{\text{eb,min}}$, at which CH₄ concentration starts to exceed the solubility limit, is determined based on the equilibrium pressure condition following Langenegger *et al.* (2019) (see details in Supplementary Text S2). In the upper portion of the sediment column ($z_s < z_{\text{eb,min}}$), the produced CH₄ will diffuse into water; however, a fraction of the diffusing CH₄ will be oxidized in the transit through the upper sediment column, and only the remaining CH₄ will reach the sediment-water interface. The volume-integrated CH₄ oxidation in the sediment at depth z, $F_{s,AeOM}(z)$, is here assumed to be controlled by the O₂ concentration in the overlying bottom water, and is represented by a Michaelis-Menten function:

374
$$\widetilde{F_{s,AeOM}}(z) = \widetilde{F_{Met}}(z) \frac{[O_2]_z}{K_{s,O^2} + [O_2]_z}$$
 (15)

375 where $K_{s,O2}$ is the half-saturation constant of O_2 for the sedimentary CH₄ oxidation. As a result, the diffusive flux passing through the sediment-water interface is determined as follows:

377
$$\widetilde{F_{s,diff}}(z) = A_s(z) \int_0^{z_{eb,min}} F_{Met,0}(z) \exp(-\alpha z_s) dz_s - \widetilde{F_{s,AeOM}}(z)$$
 (16)

In the lower portion of the sediment column ($z_s > z_{\rm eb,min}$; where oversaturation occurs), the produced CH₄ feeds the ebullitive flux, with the volume-integrated value $F_{s,ebul}(z)$ (g CH₄ d⁻¹) as given by:

381
$$\widetilde{F_{s,ebul}}(z) = A_s(z) \int_{z_{eh \, min}}^{h_s} F_{Met,0}(z) \exp(-\alpha z_s) \, \mathrm{d}z_s \tag{17}$$

Note that Equations. (16) and (17) implicitly imply that, at the monthly resolution of our model, the CH₄ dynamics in the sediment is at steady state and all the CH₄ produced during this time interval is either oxidized or released through the water column via diffusive and ebullitive pathways.

Pelagic, dissolved CH₄ diffuses in the water column and its concentration is determined by the diffusive CH₄ flux passing through the sediment-water interface (acting as a source for each water layer), by aerobic CH₄ oxidation in the water column, and by the re-dissolution of the ebullitive CH₄ fluxes during transit through the water column. The mass conservation equation of dissolved CH₄ is then given by:

$$\frac{\partial [CH_4]_w}{\partial t} = \frac{\partial}{\partial z} \left(K_{diff} \frac{\partial [CH_4]_w}{\partial z} \right) + \widetilde{F}_{s,diff}(z) \frac{1}{A(z)dz} - F_{w,AeOM}(z) + F_{diss}(z)$$
(18)

where [CH₄]_w is the pelagic CH₄ concentration (g CH₄ m⁻³) and K_{diff} is the eddy diffusion coefficient of CH₄ in water (m² d⁻¹). $\widetilde{F_{s,diff}}(z) \frac{1}{A(z)dz}$ is the change of CH₄ concentration induced by diffusive inputs from the sediment columns, the term A(z)dz being the volume of the water layer connected to the corresponding sediment column. $F_{\text{w,AeOM}}(z)$ is the aerobic CH₄ oxidation rate in the water column, and is described through double Michaelis-Menten reaction kinetics (Stepanenko *et al.*, 2016; Liikanen *et al.*, 2002; Thottathil and Prairie, 2019):

$$F_{w,AeOM}(z) = k_{max} Q_{10,ox}^{\frac{T-T_r}{10}} \frac{[CH_4]_{w,z}}{K_{s,CH_4} + [CH_4]_{w,z}} \frac{[O_2]_z}{K_{s,O_2} + [O_2]_z}$$
(19)

where k_{max} is the maximum CH₄ oxidation rate (Liikanen et al. 2002), T is the water temperature, T_r is the reference temperature, and $Q_{10,ox}$ expresses the temperature dependency of the CH₄ oxidation rate. $K_{s,CH4}$ and $K_{s,O2}$ are the half-saturation constants for CH₄ and O₂, respectively.

402

403

404

405

406

407

To constrain the redissolution of gas bubbles ($F_{diss}(z)$), we follow the approach proposed by McGinnis *et al.* (2006) where a function ($f_{bdiss}(z)$) is used to represent the fraction of the benthic ebullitive CH₄ flux that redissolves in the water column during gas ascent. This fraction is a function of water depth and gas bubble diameter, and the latter was set to 5 mm following Delwiche and Hemond (2017). With this function $f_{bdiss}(z)$, the redissolved CH₄ fluxes from sediment column at depth z are assumed to be evenly redistributed in the water layers above the sediment, i.e.,

$$f_{rediss}(z) = \frac{f_{bdiss}(z)\overline{F_{s,ebul}(z)}}{\int_0^z A(z)dz}$$
 (20)

where $\int_0^z A(z)dz$ is the water volume above the sediment layer at the depth of interest z. Then, at this particular depth z, the redissolution flux $(F_{diss}, g \text{ CH}_4 \text{ m}^{-3} \text{ d}^{-1})$ is thus determined as follows:

$$F_{diss}(z) = \int_{z}^{h_{max}} f_{rediss}(z) dz$$
 (21)

- where $\int_{z}^{h_{max}} f_{rediss}(z) dz$ represents the integral of all re-dissolved ebullitive fluxes from sediment columns below z.
- By deducing this dissolution flux from the ebullitive flux released from lake sediments, the resultant ebullitive flux reaching the atmosphere (F_{ebul} ; g CH₄ m⁻² d⁻¹) is calculated as:

$$F_{ebul} = \frac{1}{A_0} \int_0^{h_{max}} \left(1 - f_{bdiss}(z) \right) \widetilde{F_{s,ebul}}(z) dz$$
 (22)

where A_0 is the lake surface area, and $\left(1-f_{bdiss}(z)\right)\widetilde{F_{s,ebul}}(z)$ is the component of ebullitive flux at depth z that reaches the atmosphere.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

In addition to diffusive and ebullitive pathways, FLaMe-v1.0 also calculates a storage flux (F_{stor}) that encapsulates the changes in the total CH₄ mass stored in hypolimnion due to the weakening of lake stratification or turnover events when the lake surface temperature approaches the critical temperature 4°C (MacKay, 2012; MacKay et al., 2017). This results in a full mixing of the lake that releases the previously accumulated CH₄ in the anoxic portion of the lake and concomitantly fully aerates the water column. Lake turnovers thus lead to a complete homogenization of O₂ and CH₄ concentration across the vertically resolved water column. Before lake turnover, the lake water is highly stratified, blocking the material exchange between upper and lower water layers, such that bottom water has high CH₄ concentration (even oversaturated) and low O₂, while the upper water has high O₂ concentration and low CH₄ concentration. Upon full mixing, remobilization of larger CH₄ stocks that accumulated in the hypolimnion abruptly increase the CH₄ concentration near the lake surface, and hence strongly enhance the diffusive flux through the air-water interface; in the meantime, O₂ in the upper layers can penetrate to deep water layers and start oxidizing the CH₄ throughout the entire water column. After full mixing, the CH₄ emissions and oxidation are both simulated based on O2 and CH4 concentrations within each water layers. That is, the storage flux in FLaMe-v1.0 is not simulated separately but it is implicitly incorporated into the diffusive flux F_{diff} which increases dramatically following the formation of a very sharp CH₄ concentration gradient at the lake surface.

2.2.2.3 Oxygen module

The oxygen module is needed to simulate the lake methane processes (section 2.2.2.2). It represents the O₂ cycle within the water column, driven by O₂ production by photosynthesis, O₂ consumption by pelagic and benthic OC mineralization, and aerobic pelagic and benthic CH₄ oxidation. These processes are coupled to the vertical diffusive transport of O₂ through water column (Fig. 4). The one-dimensional conservation equation for O₂ concentration in the water column is thus given by:

444
$$\frac{\partial[O_2]}{\partial t} = \frac{\partial}{\partial z} \left(K_{diff} \frac{\partial[O_2]}{\partial z} \right) + OF_{PP}(z) - OF_{w,Aer}(z) - \frac{1}{A(z)dz} O\widetilde{F}_{s,Aer}(z) - OF_{w,AeOM}(z) - OF_{s,AeOM}(z)$$
(23)

where $[O_2]$ is the O_2 concentration in the water $(g O_2 m^{-3})$, and K_{diff} is the eddy diffusion coefficient of O_2 ($m^2 d^{-1}$), assumed identical to that of CH₄. $OF_{PP}(z)$ is the oxygen production through primary production $(g O_2 m^{-3} d^{-1})$ at depth z. $OF_{w,Aer}(z)$ is the O_2 consumption by heterotrophic respiration $(g O_2 m^{-3} d^{-1})$ in the water column at depth z, while $OF_{s,Aer}(z)$ is the volume-integrated O_2 consumption by heterotrophic respiration in the sediment $(g O_2 m^{-3} d^{-1})$, and A(z)dz is the volume of the water layer connected to the corresponding sediment column. $OF_{w,AeOM}(z)$ and $OF_{s,AeOM}(z)$ are the aerobic CH₄ oxidation in the water column and sediment $(g O_2 m^{-3} d^{-1})$, respectively, at depth z.

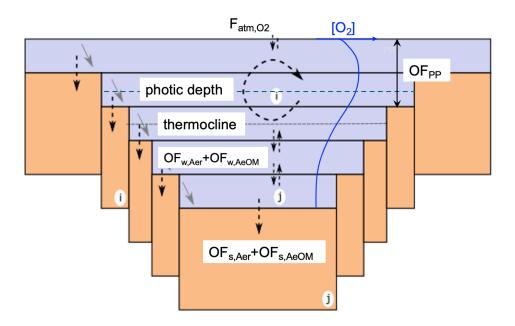


Fig. 4. Illustration of the oxygen (O₂) module in the FLaMe-v1.0. The O₂ production due to primary production occurs only in the photic zone (OF_{PP}), while the O₂ consumption by heterotrophic respiration occurs in both the entire pelagic zone and benthic zone (OF_{w,Aer} and OF_{s,Aer}). The O₂ consumption due to CH₄ oxidation occurs also in both pelagic and benthic zones (OF_{w,AeOM} and OF_{s,AeOM}). In this figure, the dotted arrows crossing the sediment-water interface represent the O₂ demands in sediments (OF_{s,Aer} and OF_{s,AeOM}), the dashed arrows represent the eddy diffusion of O₂ between water layers and through the water-air interface, and the tilted grey arrows represent the aerobic oxidation of CH₄ in the water column. As a result, the blue curve depicts a typical vertical profile of O₂ concentration under lake water stratification.

Photosynthesis occurs only in the photic zone, and the amount of O_2 produced by primary production $\overline{OF_{PP}}$ (volume-integrated value; g O_2 d⁻¹) can be determined according to the stoichiometric ratio M_{O2}/M_C , where and M_{O2} and M_C are the molar masses of oxygen and carbon, respectively. To resolve the vertical O_2 profile, the O_2 produced during primary production is assumed to be evenly redistributed within the water layers above the photic depth (Fig. 4):

$$OF_{PP}(z) = \begin{cases} \overline{F_{PP}} \frac{1}{V_{phot}} \frac{M_{O_2}}{M_C}, & z < z_{phot} \\ 0, & z \ge z_{phot} \end{cases}$$
(24)

468 where V_{phot} is the photic volume.

481

469 The oxygen consumption induced by CH₄ oxidation in the sediment and water column can be 470 calculated from corresponding CH₄ fluxes (Eqs. (15) and (19), respectively) and the stoichiometry 471 of the reactions involved:

472
$$OF_{s,AeOM}(z) = \frac{2M_{O_2}}{M_{CH_4}} F_{s,AeOM}(z)$$
 (25)

$$OF_{w,AeOM}(z) = \frac{2M_{O_2}}{M_{CH_4}} F_{w,AeOM}(z)$$
 (26)

474 As in Eq. (10), a fraction of the mineralized organic carbon (represented by f_{mm}) is channeled into the methanogenesis pathway according to the data compiled by Hanson et al. (2014) and 475 Bastviken (2009). Thus, the remaining fraction $(1-f_{mm})$ of the total mineralization $\overline{F_{Min}}$ is channeled 476 into the aerobic metabolic pathway (F_{Aer}) . As a result, the bulk volumetric rate of oxygen 477 478 consumption due to the aerobic metabolic activity (OF_{Aer}) can be represented by the fraction $1-f_{mm}$ and the volume-integrated mineralization $\overline{F_{Min}}$: 479

$$OF_{Aer} = (1 - f_{mm}) \overline{F_{Min}} \frac{1}{V_w} \frac{M_{O2}}{M_C}$$
 (27)

In the sediment, the aerobic mineralization occurs only in the upper oxic layer. The thickness 482 of this aerobic layer is limited by the oxygen penetration depth z_{ox} . Following Ruardij and Van 483 Raaphorst (1995), this depth z_{ox} can be derived by solving the steady-state reaction-diffusion 484 equation for O₂ in the sediment:

$$z_{ox} = \sqrt[2]{\frac{2K_{s,diff}}{OF_{s,AeOM} + OF_{Aer}}}$$
 (28)

where $K_{s,diff}$ is the molecular diffusion coefficient within the sediment, which is dependent on the temperature (Ruardij and Van Raaphorst,1995). The amount of O_2 consumed within the oxic layers of the sediment can thus be determined as:

$$\widetilde{OF_{s,Aer}}(z) = OF_{Aer}A_s(z)z_{ox}$$
(29)

where $A_s(z)$ is the area of the corresponding sediment column at depth z. To ensure a mass balance, the volumetric rate of O_2 consumption due to aerobic metabolism in water can then be calculated as follows:

$$OF_{w,Aer}(z) = OF_{Aer} - O\widetilde{F_{s,Aer}(z)} \frac{1}{A(z)dz}$$
(30)

where A(z)dz is the volume of the water layer connected to the corresponding sediment column, and it is used here to convert the sedimentary O_2 consumption into a volumetric rate in the water column. Furthermore, following Martin *et al.* (1987), Carlson *et al.* (1994) and Arístegui *et al.* (2003), we redistribute the respiration ($OF_{w,Aer}$) within the water column, assuming that 80% of the respiration occurs in the photic zone, with the remaining 20%, sustained by the export production, occurs in the deeper water layers where it can further degrade.

2.2.3 Boundary conditions for the transport module

The partial differential equations (18) and (23) require boundary conditions to constrain the diffusive transport (i.e., the first term on the right-hand side of both equations). At the sediment-water interface, a zero-flux boundary condition is imposed, because the diffusive exchanges of CH₄ and O₂ between the sediment columns and the overlying waters are already included as source/sink terms in Eq. (18) and (23). This choice was guided by the valley-shape configuration of our lake set-up, and thus by the presence of diffusive CH₄ and O₂ exchange fluxes with sediment in each water

layer of our model, a situation in stark contrast from a bucket shape model where only a single sediment column would be connected to the bottom water layer.

At the lake surface (z = 0 m), the boundary conditions are determined by the CH₄ and O₂ exchange fluxes with the atmosphere, as given by (Wanninkhof et al., 2009; Cole and Caraco, 1998):

511
$$F_{\text{atm,CH}_4} = k_{ge}([\text{CH}_4] - f_{CH4,atm} P_{\text{atm}} M_{CH4} K_{H,CH4} \exp(\frac{\partial \ln(K_{H,CH4})}{\partial \frac{l}{T}} (\frac{1}{T_I} - \frac{1}{298.15})))$$
(31)

$$F_{\text{atm,O}_2} = k_{ge}([O_2] - f_{O2,atm} P_{\text{atm}} M_{O2} K_{H,O2} \exp(\frac{\partial \ln(K_{H,O2})}{\partial_T^l} (\frac{1}{T_l} - \frac{1}{298.15})))$$
(32)

where $F_{\text{atm},CH4}$ and $F_{atm,O2}$ are diffusive fluxes of CH₄ (g CH₄ m⁻²d⁻¹) and O₂ (g O₂ m⁻² d⁻¹) through the air-water interface of the lake, respectively. $f_{CH4,atm}$ and $f_{O2,atm}$ are molar fractions of CH₄ and O₂ in the atmosphere, respectively, and P_{atm} is the atmospheric pressure. $K_{H,CH4}$ and $K_{H,O2}$ are Henry's constants of CH₄ and O₂ at 298.15 K and k_{ge} is the piston velocity (m s⁻¹), here constrained from the empirical equation reported by Cole and Caraco (1998), as in Tan *et al.* (2015; 2018) and Stepanenko *et al.* (2016):

$$k_{ge} = (C_{k_I} + C_{k_2} v_{a,10}^n) \sqrt{\frac{600}{S_{CX}}}$$
(33)

where C_{k1} , C_{k2} and n are empirical constants (Cole and Caraco, 1998). $v_{a,10}$ is the absolute wind velocity measured at 10 m above the lake surface (m s⁻¹), and $S_{c,CH4}$ and $S_{c,O2}$ are the Schmidt number of CH₄ and O₂, respectively (Wanninkhof *et al.* 2009). Note that more recent formulations of k_{ge} have been published in the last decade (Wanninkhof *et al.* 2014; McIntire et al., 2020) but we here choose to use Eq. (33) to be consistent with previous lake modelling studies (Tan et al., 2015; Stepanenko *et al.* 2016; Tan *et al.*, 2018).

2.3 Parameter values

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

Table 1 summarizes all physical and biogeochemical parameters, their values, as well as the original references from which they were extracted. Most of these parameters were either directly taken from relevant modelling studies or constrained based on comprehensive literature reviews. In addition, several key parameters of the FLaMe-v1.0, highlighted in Table 1, were adjusted by calibrating the model based on observations of lake C fluxes (i.e., F_{PP} , diffusive and ebullitive CH₄ emissions). For instance, the parameters $P_{Chl,max}$ and $K_{s,P}$ control the lake primary production and were tuned to reproduce broad global patterns of primary production rates across the full range of lake trophic status (Wetzel, 2001). The mineralization k_{20} and burial constants k_{bur} were adjusted based on the observed fraction of $C_{OC,auto}$ that settles onto the lake sediment, either to be decomposed in anaerobic or oxic conditions or accumulated in the sediment (Hanson et al., 2011, 2014; Maavara et al., 2019; Mendonça et al., 2017). The temperature dependence of mineralization θ was finetuned to reproduce the observational ranges of temperature dependence of net-CH₄ emissions (Aben et al., 2017). f_{mm} specifies the fraction of mineralization that channels to the methanogenesis pathway, which is adjusted to produce the observational patterns of CH₄ emissions. α_{min} is the base value of the exponentially decreasing rate of CH₄ production versus sediment depth, and controls the split of CH₄ production between diffusive and ebullitive pathways, which was calibrated to reproduce observed broad trends of F_{tot} , F_{ebul} and F_{diff} from the literature (Rinta et al., 2017). The parameter values listed in Table 1 provide the reference setup for the simulation of lake CH₄ emissions, and the sensitivity and uncertainty analyses regarding the key model parameters (indicated by asterisks in Table 1) is carried out using wide ranges of values covering most possible lake conditions from the real world (see section 3.3.3).

2.4 Numerical solution

In FLaMe-v1.0, the physical (i.e., CSLM) and biogeochemical (OC, CH₄ and O₂) modules are coupled online. For the dynamics of volume-integrated OC and CH₄ in sediments, the involved ordinary differential equations are solved using a forward Euler scheme. For the dynamics of dissolved O₂ and CH₄ concentrations in the water column, the partial differential equations (Eqs. (18) and (23)) are solved numerically using an explicit central difference scheme for depth and Euler forward scheme for time. The diffusion coefficient K_{diff} for both O₂ and CH₄ is set as depth-dependent (Table 1) to capture the reduced transport when the temperature gradient from the epilimnion, metalimnion and hypolimnion is well pronounced (Dong et al. 2020; Imboden and Wuest 1995; Imberger 1985; Boehrer and Schultze 2008).

Table 1. Model parameters of FLaMe v1.0 and the choice of their values

Main processes	Key model parameters	Physical meanings (units)	Values	Ranges	Equations	References	
Lake morphology	s Steepness of lakebed (-)		2	/	(1)	-	
Primary production	$P_{ m chl,max}$	Maximum carbon fixing rate per unit of Chlorophyll-a (mg C (mg Chl-a) ⁻¹ h ⁻¹)	0.5*	0.5–6	(3)	Behrenfeld and Falkowski (1997)	
	$K_{ m s,P}$	Half saturation coefficient of total dissolved phosphorus for the primary production (g m ⁻³)	0.09*	0.006– 0.18	(3)	Maavara <i>et al.</i> , (2017)	
	$Q_{10,prod}$	Temperature sensitivity for the primary production	2	1.8–2.25	(4)	Lewis (2001) and Reynolds (2006)	
	k_c	Absorbance of PAR per unit of chlorophyll-a (m² (g Chl-a)-1)	0.014× 10 ³	$(0.01-0.02)\times10^3$	(5)	Lewis (2001) and Reynolds (2006)	
	PP/RP	ratio of maximum gross photosynthesis to respiration per unit chlorophyll-a (-)	15	/	(5)	Lewis (2001) and Reynolds (2006)	
	PAR_k	PAR at the onset of photo saturation (μmol m ⁻² s ⁻¹)	120	90–250	(5)	Lewis (2001) and Reynolds (2006)	
	K_{dw}	PAR attenuations due to pure water (m ⁻¹)	0.13	0.12-0.20	(5)	Lewis (2001) and Reynolds (2006)	
	K_{dp}	PAR attenuations due to suspended particulate matter (m ⁻¹)	0.06	0.05–4	(5)	Lewis (2001) and Reynolds (2006)	
Mineralization and burial of organic carbon	k ₂₀	Mineralization rate at a reference temperature of 20 °C (d ⁻¹)	0.008*	0.003– 0.015	(7)	Maavara <i>et al.</i> , (2017)	
	θ	Temperature dependence of mineralization	1.02*	1.01–1.07	(7)	Maavara <i>et al.</i> , (2017)	

	$- k_{ m bur}$	Carbon burial rate in the lake (d^{-1})	0.004*	$1/2k_{20}$	(8)	Mendonca <i>et al.</i> , (2017)
	f_{mm}	Fraction of mineralization that channels to the methanogenesis pathway	1/4*	1/6–1/2	(10) and (27)	Hanson <i>et al.</i> (2014); Bastviken (2009)
CH ₄ oxidation	k_{max}	Maximal rate of CH ₄ oxidation (g CH ₄ m ⁻³ d ⁻¹)	0.69	0.19–7.68	(19)	Liikanen et al. (2002)
	Q10,0x	Temperature dependence of CH ₄ oxidation (-)	1.2	1.1–2.0	(19)	Liikanen et al. (2002)
	K _{s,CH4}	Half-saturation constant for CH ₄ (g CH ₄ m ⁻³)	0.6	/	(19)	Stepanenko et al. (2016)
	$K_{s,O2}$	Half-saturation constant for O_2 (g O_2 m ⁻³)	0.67	/	(19)	Liikanen et al. (2002)
Shape parameter of sedimentary CH4 production	$lpha_{min}$	Base value of the exponentially decreasing rate of CH ₄ production versus sediment depth (m ⁻¹)	10*	10–70	(12)	Langenegger et al., (2019)
Gas transport in the water column and exchange with air	K_{diff}	Depth-dependent eddy-diffusion coefficient (m ² d ⁻¹)	8.64 (epilimnion), 8.64×10^{-3} at the termocline, and 8.64×10^{-1} (hypolimnion)	8.64×10 ⁻ ² –1.728	(18) and (23)	Stefan and Fang (1994)
	C_{kl}	Empirical constant for piston velocity (m s ⁻¹)	5.75×10 ⁻⁶	/	(33)	Cole and Caraco, (1998)
	C_{k2}	Empirical constant for piston velocity (m s ⁻¹)	5.97×10 ⁻⁷	/	(33)	Cole and Caraco, (1998)
	n	Empirical constant for piston velocity	1.7	/	(33)	Cole and Caraco, (1998)
	$S_{c,CH4}$	Schmidt number of CH ₄ (-)	677	/	(33)	Wanninkhof et al. (2009)

	$S_{c,O2}$	Schmidt number of O ₂ (-)	589	/	(33)	Wanninkhof et al. (2009)
<u>-</u>	fCH4,atm	Atmospheric molar fractions of CH ₄	0.18×10 ⁻¹³	/	(31)	Lan et al. (2024)
	f02,atm	Atmospheric molar fractions of O ₂	0.2095	/	(32)	Gatley <i>et al</i> . (2008)

 ^{*} indicates that the original parameter values are from the literature, and further adjusted by calibration
 versus observations. Moreover, their values are varied for the sensitivity analysis in section 3.3.3.

[/] indicates that the ranges of the parameter values are not reported.

2.5 Case studies

We implemented three case studies to assess the performance of FLaMe-v1.0 in simulating lake CH₄ emissions, as well as its application to the European scale. First, we present theoretical simulations for two representative cases (methodological details in section 2.5.1) to assess the general behaviors of FLaMe-v1.0 in capturing the physical-biogeochemical patterns of contrasted lakes. Then, we perform the simulations for four well-surveyed real lakes to assess the model's capability in capturing the observed temporal variations of CH₄ fluxes (section 2.5.2). Next, we apply FLaMe-v1.0 to the entire European domain to assess the model's capability in reproducing the spatial patterns and seasonal variations of CH₄ fluxes at continental scale (section 2.5.3). The European scale application can be considered as a "proof of concept" in support of our proposed modeling strategy. Finally, we examine the sensitivity to key model parameters and assess the uncertainty of the continental-scale emissions using the samples produced by sensitivity analysis, combined with a machine learning approach (section 2.5.4).

2.5.1 Two theoretical representative lakes for testing FLaMe-v1.0 performance

To test if the FLaMe-v1.0 can capture the contrast patterns in physical-biogeochemical behaviors across shallow vs. deep, eutrophic vs. oligotrophic and warm vs. cold lakes, we set-up the model for two theoretical representative lakes: a "deep oligotrophic" lake ($h_{max} = 35 \text{ m}$ or $h_{mean} = 17.5 \text{ m}$ and [TP] = 3 μ g P L⁻¹) driven by a "cold" climate (63.75°N, 26.25°E; Fig. S1) and a "shallow eutrophic" lake ($h_{max} = 10 \text{ m}$ or $h_{mean} = 5 \text{ m}$ and [TP] = 80 μ g P L⁻¹) driven by a "warm" climate (43.75°N, -6.25°E; Fig. S2). The lake areas of these two theoretical lakes were set as 5 km², which was tested to have limited effects on the simulation results. For these two theoretical representative cases, FLaMe-v1.0 simulates the spatio-temporal evolutions of physical and biogeochemical variables and fluxes,

including primary production and mineralization fluxes, and labile autochthonous OC stocks as well as the vertically resolved gradients of temperature, CH₄ and O₂ concentrations. Furthermore, we also compared the seasonal patterns of CH₄ productions and emissions for these two contrasting lakes. To investigate further how environmental factors affect the model behavior, we further decompose the collective responses of shallow and deep lakes into individual effects induced by trophic level, climate (Fig. S1–S3) and lake depth using hypothetical numerical simulations, i.e., (i) changing the maximal lake depth (h_{max}) from 5 to 25 m; (ii) increasing the [TP] levels from 8 to 80 µg P L⁻¹; and (iii) changing the climate from warm (43.75°N, -6.25°E; Fig. S1) to cold conditions (63.75°N, 26.25°E; Fig. S2).

2.5.2 Simulations of temporal patterns for four well-surveyed lakes

To evaluate the ability of FLaMe-v1.0 to reproduce the observed temporal patterns of CH₄ fluxes, we selected four lakes from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) lake datasets for which monthly resolved temporal CH₄ fluxes were available (Tan *et al.*, 2024). These lakes cover different lake depths, areas, climate conditions and trophic statuses, as summarized in Table 2. Since *in-situ* measurements of climatic drivers are not available for these lakes, we extracted them from the 0.5°x0.5° GSWP3-W5E5 global climate forcings released by the ISIMIP3a project as an approximation. The measurements of CH₄ fluxes for these lakes were mostly collected during the first 20 years of the 21st century, and we thus selected the climate forcings for the period 1991–2019, using the period 1991–1999 as spin-up phase. Since the lack of concomitant *in-situ* measurements of climatic drivers and variations in lake water levels affect the model's ability to capture the full variability in the time-series of observed CH₄ emission time series, we here focus our evaluation on the magnitudes and broad seasonal patterns in observed CH₄ emissions, following what can be

achieved for regional and global scale applications. Thus, we evaluated the simulated statistics (mean and SD represented by boxplots) of CH₄ fluxes over the annual cycle against the observational data.

Table 2. Characteristic information for the four well-surveyed lakes from ISIMIP datasets

Lake	Coordinates	Lake depth	Lake area (km²)	Climate	Trophic status	Temporal coverage	Spatio- temporal resolution
Klöntal	47.026N, 8.981E	21.4m (mean), 45m (max)	2.25	Temperate	Oligotrophic	Annual mean	Site; monthly
Erssjön	58.371N, 12.162E	1.3m (mean), 4.75m (max)	0.062	Temperate- Boreal	Mesotrophic	2012– 2013	Site; bi- weekly
Upper Mystic	42.434N, 71.150W	11.7m (mean), 25m (max)	0.58	Temperate	Eutrophic	2007– 2008	Site; weekly
Villasjön	68.35N, 19.03E	1.3 m (max)	0.17	Boreal	Oligotrophic	2010– 2017	Site; daily

2.5.3 Implementation of FLaMe-v1.0 at continental scale

To implement the model at the scale of Europe (25°W–60°E, 36°–71°N), we extracted the natural lakes (type I) within this domain from the HydroLAKES database (Messager *et al.*, 2016; n=108407, total area = 1.33×10^5 km² for lakes with $0.1 \le A_0 \le 1000$ km² within the European domain). Following our clustering strategy, we subdivided, within each grid cell, all lakes into four classes based on their surface area ($0.1 < A_0 < 1$ km², $1 < A_0 < 10$ km², $10 < A_0 < 100$ km², and $100 < A_0 < 1000$ km²). As FLaMe-v1.0 was derived from the small lake physics model CSLM, we here only considered the lakes with an area smaller than 1000 km², and excluded the very large lakes ($A_0 > 1000$ km²) that account for 40% of the total European lake surface area (but only consist of 21 lakes).

Within our model domain, we have 108407 lakes with a surface area larger than 0.1 km², which at spatial resolution of 2.5 degree (Fig. S4–S5) result in 365 grid cells and 953 representative lakes (hence reducing computation cost by more than a factor of 100 compared to a case where each individual lake would be simulated). By parallelizing the model simulations on a high-performance cluster, the implementation of FLaMe-v1.0 for the entire European domain consumes approximately 365 CPU hours for a single run covering 10 years.

The FLaMe-v1.0 was forced by meteorological conditions from the GSWP3-W5E5 reanalysis product under ISIMIP3a (Frieler *et al.*, 2024) (Fig. S6), including shortwave solar radiation (W m⁻²), longwave solar radiation (W m⁻²), precipitation (mm s⁻¹), near surface air temperature (at 10 m height, °C), specific humidity (kg kg⁻¹), near surface wind velocity (at 10m, m s⁻¹), and atmospheric pressure (Pa). As these forcings were provided at a finer spatial resolution of 0.5°, we only applied the values in the central 0.5° grid cell of our larger 2.5° grid. In addition, the FLaMe-v1.0 was also driven by the TP in the representative lakes (Fig. S7–S8), which was estimated by dividing the TP mass outflow by the water discharge reported in HydroLAKES, hence assuming that the lake water is well mixed. The TP mass outflow from each lake in HydroLAKES was obtained by routing the TP loads (extracted from the GlobalNEWS model; Mayorga *et al.*, (2010)) from the watershed (point and non-point terrestrial sources) into the river network, following the procedure outlined in Lauerwald *et al.* (2019) and topological information provided by the HydroSHEDS drainage network. More details related to the TP routing can be found in Bouwman and Billen (2009), Van Drecht *et al.* (2009), and Mayorga *et al.* (2010).

To validate the FLaMe-v1.0 for European lakes, we will evaluate the simulated F_{PP} and CH₄ emission rates against the ranges/values reported in the literature and/or from observations. First, the simulated F_{PP} will be evaluated against empirical ranges reported by Wetzell (2001) for lakes from ultraoligotrophic (0–5 µgP L⁻¹), oligotrophic (5–10 µgP L⁻¹), mesotrophic (10–30 µgP L⁻¹), to eutrophic (>30 µgP L⁻¹) conditions. Next, the simulated diffusive and ebullitive CH₄ emission rates will be evaluated against in-situ measurements compiled by Rinta et al. (2017) from 17 boreal lakes (in southern Finland and Sweden) and 30 central European lakes (in The Netherlands, Germany and Switzerland). This dataset is adopted because it can not only differentiate the ebullitive and diffusive CH4 fluxes during late summer (August and September, 2010–2011) but also provides information regarding environmental conditions of the study area (mean annual air temperature, annual precipitation, percentage of forests and managed land in the catchment) and water chemistry of the studied lakes (temperature, conductivity, pH, absorbance, TP and TN in surface water, and average TP and TN in the water column), which are helpful for understanding the lake methane dynamics within these two contrasted regions. However, this dataset of 47 lakes still has some important limitations, in particular as it presents only summer-time observations, and not time-series which would comprise the full seasonal cycle including turnover events and other hot moments. In addition, it contains potential biases induced by the calculation methods used for separating the measured CH₄ fluxes into diffusive and ebullitive pathways. In particular, Rinta et al. (2017) used floating chambers over a relatively short duration (6hr), which might not be able to detect sporadic ebullition events, and did not employ bubble traps to estimate the ebullitive flux.

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

2.5.4 Sensitivity and uncertainty analysis

To explore how model parameterization affects the European-scale assessments of lake CH₄ emissions, we conducted a sensitivity analysis encompassing the parameters whose variations induce the largest changes in lake CH₄ dynamics (with the involved parameters indicated by asterisks in Table 1). The sensitivity was conducted by varying a parameter once at a time: only one parameter is varied with the other parameters kept unchanged. All these parameters were assumed to have Gaussian distributions, with their SDs specified as 50% of their original values, except the temperature dependency $Q_{10,ox}$ and θ whose SDs were specified as 50% of their deviation to unity. More specifically, we tested the sensitivity within the ranges of mean±SD at four points, i.e., +SD, +0.5SD, -0.5SD, and -SD.

To constrain uncertainties in European scale CH₄ emissions, we complemented the sensitivity analysis (n=36) with another 28 scenarios under several extreme cases and different combinations of variations in key parameters. With these 64 assessments taken as samples, we then used a machine learning approach to assess the uncertainty associated with our estimation of European lake CH₄ fluxes. Specifically, we trained a Random Forest (RF) model that capture nonlinear relationships between our key model parameters and European lake CH₄ emissions, i.e., the key parameters are taken as predictors and the European lake CH₄ emissions are taken as target variable. Next, we produced 1000 Gaussian-distributed random samples within the parameter space and estimated an ensemble of CH₄ emissions using the trained RF model.

3. Results

3.1 Assessing the performance of FLaMe-v1.0 in capturing patterns of CH₄ dynamics across

different lake types

The FLaMe-v1.0 is shown to be able to well capture the typically observed, contrasting physical and biogeochemical behaviors for two representative cases (Fig. 5 and Fig. S9–17; more details in Supplementary Text S3): shallow vs. deep, eutrophic vs. oligotrophic and warm vs. cold lakes. In the deep oligotrophic lake, the mean temperature reveals a lower and narrower seasonal variability (\sim 3–8° C) compared to the shallow eutrophic lake (5–15°C) (Fig. 5a vs. 5b). Large temperature variations in the latter are mainly driven by the smaller water volume and thus faster mean temperature response to fluctuations in atmospheric temperature. In addition, the annual averaged F_{PP} in the shallow eutrophic lake (490 gC m⁻² yr⁻¹) is approximately 38 times higher than that in the deep oligotrophic lake (13 gC m^{-2} yr⁻¹) (Fig. 5c vs. 5d). This difference can be explained by the differences in water volume (energy exchange), trophic status, and climate forcings. The higher F_{PP} of the shallow eutrophic lake also translates into higher $C_{OC,auto}$ concentration (\sim 110 times) which persist over longer periods (Fig. 5e vs. 5f), despite substantially higher F_{min} rates.

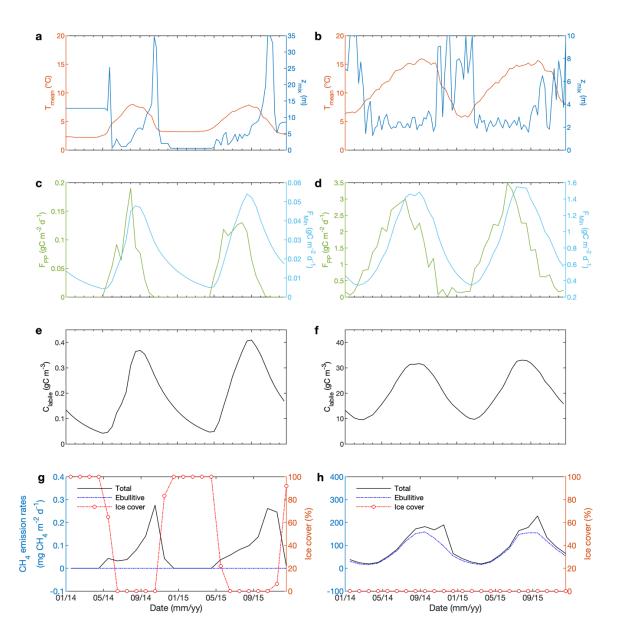


Fig. 5. Depth-integrated temporal evolution of variables and processes in two theoretical representative lakes. The deep oligotrophic lake (left) has a maximal depth of 35 m and [TP] of 3 μ gP L $^{-1}$, and is driven by the climate forcings at the location of 63.75°N, 26.25°E. The shallow eutrophic lake (right) has a maximal depth of 10 m and [TP] of 80 μ gP L $^{-1}$, and is driven by the climate forcings at the location 43.75°N, -6.25°E. (a) and (b) show the evolution of lake mean temperature and mixing depth; (c) and (d) show the evolution of primary production (F_{PP}) and mineralization rate (F_{Min}); (e) and (f) show the evolution of concentration of autochthonous organic carbon (C_{OC,auto}); (g) and (h) show the evolution of CH₄ emission rates and ice cover. Note the difference scales between the left and right panels.

In the deep oligotrophic lake, the simulated vertical temperature profiles indicate an almost permanently maintained stratification that is only interrupted by short but intense turnover events during late falls (Fig. S9a). Lake stratification (e.g., lake turnover and O₂ concentrations that depend mostly on solubility and hence, temperature) dominates the spatio-temporal pattern of O₂ such that O₂ concentration is near-saturated during most of the year (Fig. S9c). The oligotrophic status, together with the well oxygenated conditions, results in extremely low CH₄ concentrations. Higher CH₄ concentrations are only simulated near the lake bottom following the productive season, i.e., late summer/fall transition (Fig. S9e). In contrast, in the shallow eutrophic lake, the weaker stratification results in a less pronounced vertical temperature gradient (Fig. S9b). The vertical lake O₂ profile is not only controlled by the lake physics (temperature and O2 solubility) but also by intense biogeochemical processes (Fig. S9d). During summer, O₂ concentrations in the upper portion of the lake are slightly supersaturated due to photosynthetic activity, followed by a gradual decrease in O₂ concentration as mineralization rates exceed primary production rates. Due to the high primary production in the eutrophic lake, large amounts of OC are exported below the thermocline, where heterotrophic activity progressively depletes O₂, leading to the development of anoxic conditions in the hypolimnion. The combination of high F_{Min} and low O_2 concentrations drive the accumulation of CH₄ in late summer at the bottom of the lake (Fig. S9f), with maximal CH₄ concentration (3.0 g CH₄ m⁻³) exceeding those simulated in the deep oligotrophic lake by a factor of 600 (Fig. S9e).

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

By aggregating CH₄ fluxes over time, we obtained distinct seasonal patterns of CH₄ production and emission for these two representative lakes (Fig. 5g and 5h; Fig. S10). In the cold, deep oligotrophic lake (Fig. 5g and Fig. S10a), winter to early spring ice cover (December–April) blocks CH₄ emissions such that lake CH₄ emissions are limited to the period between May and November.

CH₄ production is highest (0.8 mg CH₄ m⁻² d⁻¹) in August and lowest (0.08 mg CH₄ m⁻² d⁻¹) in April. Almost all the produced CH₄ escapes the sediment via diffusion as gas bubbles do not form due to low CH₄ production rates and high-water pressure. However, the benthic CH₄ flux is subsequently largely oxidized in the well oxygenated deep water column. As a result, total lake CH₄ emissions are low (0 to 0.24 mg CH₄ m⁻² d⁻¹) with a slight peak in October. In the shallow eutrophic lake (Fig. 5h and Fig. S10b), the warmer climate prevents ice formation on the lake surface, leading to an emission season about twice as long as under colder climatic conditions. CH₄ production (20 to 350 mg CH₄ m⁻² d⁻¹) is >1000 times higher than that in cold, deep oligotrophic lake due to the higher nutrient loads, lower O₂ levels, higher irradiance as well as higher temperature (Fig. 5b). Higher CH₄ production rates, together with lower water pressure, drive the formation of gas bubbles, leading to a higher fraction of CH₄ emissions via the ebullitive pathway. The weaker stratification and the shorter transport time scale in the shallow lake limits CH₄ oxidation during diffusive transport, leading to ~900 times higher total CH₄ emissions compared to the deep, oligotrophic lake. Total lake CH₄ emissions are highest (210 mg CH₄ m⁻² d⁻¹) in September and lowest (20 mg CH₄ m⁻² d⁻¹) in February. By decomposing the collective responses of shallow and deep lakes into individual effects induced by trophic level, climate and lake depth using additional theoretical numerical simulations, we found that the trophic level exerts the most important control on CH₄ dynamics, followed by climate, and finally, lake depth (Fig. S11-S14). Specifically, the yearly mean CH₄ production is increased by a factor of 30 (from 3 to 89 mg CH₄ m⁻² d⁻¹), and the yearly mean CH₄ emission is increased by a factor of 44 (from 1.3 to 57 mg CH₄ m⁻² d⁻¹) from oligotrophic to eutrophic status (i.e.,

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

and emission increase by a factor of 6 (9.4 to 59 mg CH₄ m⁻² d⁻¹) (Fig. S13), and a factor of 5 (5.7 to

[TDP] increased by 10 times) (Fig. S12). From cold to warm climate, the yearly mean CH₄ production

30 g CH₄ m⁻² d⁻¹), respectively. By increasing lake depth from 15 m to 35 m (Fig. S14), the CH₄ production rates remain almost the same, i.e., 20 mg CH₄ m⁻² d⁻¹ for the yearly mean and 60 mg CH₄ m⁻² d⁻¹ for the peak, while the CH₄ emissions are overall lower (35 to 22 mg CH₄ m⁻² d⁻¹ for the peak without considering the storage flux) for the deeper lake.

3.2 Evaluation of simulated temporal lake CH₄ emissions against observations from four well-

surveyed lakes

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

In Klöntal and Erssjön Lakes (Table 2, Fig. 6a and 6b), FLaMe-v1.0 captures the observed seasonal cycles of CH₄ emissions well, albeit with almost a one-month delay. As a result, the simulated CH₄ fluxes are slightly lower in the first half of the year and slightly higher in the second half. This lag between observations and model results is likely due to the use of idealized climate forcings but could also be attributed to the unresolved changes in water levels and in-lake TDP dynamics. In the Klöntal Lake (Fig. 6a), the observed CH₄ fluxes are exceptionally high in April (1.64 mg CH₄ m⁻² d⁻¹) and July (5.03 mg CH₄ m⁻² d⁻¹), interrupting the normal seasonal cycles. These abrupt observed emissions might reflect the contributions from storage fluxes that are not well captured by FLaMe-v1.0. Apart from these two months with exceptionally high fluxes, the observational data indicates peak emissions of 3.18 mg CH₄ m⁻² d⁻¹ in August and no emissions during the ice-covered period. FLaMe-v1.0 simulates similar fluxes, with a peak of 3.4 mg CH₄ m⁻² d⁻¹ in September (and 3.17 mg CH₄ m⁻² d⁻¹ in August), and a null flux in January–February when the model predicts ice formation. In the Erssjön Lake (Fig. 6b), observational data report a peak in CH₄ emission reaching 13.48 mg CH₄ m⁻² d⁻¹ in July and no emissions during the ice-covered period, whereas FLaMe-v1.0 simulates a peak emission of 18.76 mg CH₄ m⁻² d⁻¹ in August (and 12.82 mg CH₄ m⁻² d⁻¹ in July), and no flux in February. Moreover, the simulated CH₄ fluxes are exceptionally high in April (11.10 mg

CH₄ m⁻² d⁻¹) due to the release of a storage fluxes that does not seem to be recorded by the observations. These high CH₄ fluxes attributed to storage and lake turnover are usually associated with large variability, i.e., in Klöntal Lake (Fig. 6a), the observed variability (standard deviation, SD) in CH₄ flux in July is almost 8-fold larger than the simulated one, whereas in Erssjön Lake (Fig. 6b), the simulated SD in CH₄ flux in April is almost 6-fold larger than that of the observed one. This suggests that both *in-situ* measurements and FLaMe-v1.0 struggle to accurately capture the storage fluxes. Apart from these storage fluxes, we found that the SDs of CH₄ fluxes simulated by FLaMe-v1.0 are lower than those observed for most months, indicating a more stable behavior in the simulations compared to the observations across the multi-year period considered here.

For the Upper Mystic and Villasjön Lakes (Fig. 6c and 6d), the observed temporal patterns of CH₄ fluxes appear more erratic, either due to the dominant role of short-term water level fluctuations or due to the complex ice cover dynamics. For the Upper Mystic Lake (Fig. 6c), the observed CH₄ fluxes are irregular or fluctuating (0–17.6 mg CH₄ m⁻² d⁻¹) over the year, a pattern which was explained by dynamic variations of lake water levels (Varadharajan, 2009). Since *in-situ* water level measurements are lacking and the lake area and depth are set as constant in the model, the simulated temporal variations cannot capture these observed erratic patterns well. Our model produces a smoother seasonal cycle of monthly-mean CH₄ fluxes over the year, i.e., high fluxes (10.02–13.38 mg CH₄ m⁻² d⁻¹) during the productive season (August–October), and low fluxes (0.02–7.56 mg CH₄ m⁻² d⁻¹) during the other months. Moreover, the model predicts a weak storage flux occurring in November (10.20 mg CH₄ m⁻² d⁻¹). For the Villasjön Lake (Fig. 6d), the observed CH₄ fluxes are limited to the period of June–October, due to the long ice cover period induced by the cold climate. FLaMe-v1.0 captures the observed ice-cover period well and produces similar seasonal cycles of CH₄

fluxes. The simulated means and SDs are very close to observations in June and July, but both, means and SDs, are much lower than observations in August, September, and October.

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

In summary, despite the use of idealized climatic forcing and neglecting variations in lake area and water level, FLaMe-v1.0 broadly captures the observed temporal patterns of monthly mean emissions, albeit sometimes with small delays or diverging extents of high emissions periods. The SDs of simulated CH₄ fluxes are also usually lower than the observed values, which is to be expected considering that our model is not designed to capture high-frequency fluctuations of CH₄ fluxes. The largest biases can be found in the estimations of storage fluxes (timing and magnitude), probably due to 1) the difficulty of capturing these fluxes with existing measurement instruments and techniques, 2) the possibility of methane oxidation with greater than expected values during turnover and ice-out (Mayr et al., 2020; Zimmermann et al., 2019; Pajala et al., 2022) and 3) the lack of in-situ measurements of climate conditions, dynamical water levels, and dynamic TDP concentrations (Denfeld et al., 2018). Resolving these issues will require to assemble a much larger dataset of observed long time-series of CH₄ fluxes and associated physical and biogeochemical variables, such as those reported by Velasco et al. (2024) and Natchimuthu et al. (2016). To help further calibrate and evaluate the model, this much larger pool of observations should span a broader range of environmental conditions to be more representative of the lake CH₄ dynamics on the continental to global scales. Overall, given the scarce spatiotemporal observations and the limited possibility to validate current knowledge on process regulation in fields, it is difficult for all existing models to produce the details of the CH₄ dynamics in specific single lakes. Hence, the temporal patterns of CH₄ fluxes simulated by FLaMe-v1.0 are seen as acceptable, as its main focus is to capture the broad

spatio-temporal patterns of CH₄ emissions across the thousands of lakes that need to be accounted for in large-scale applications (see section 3.3).

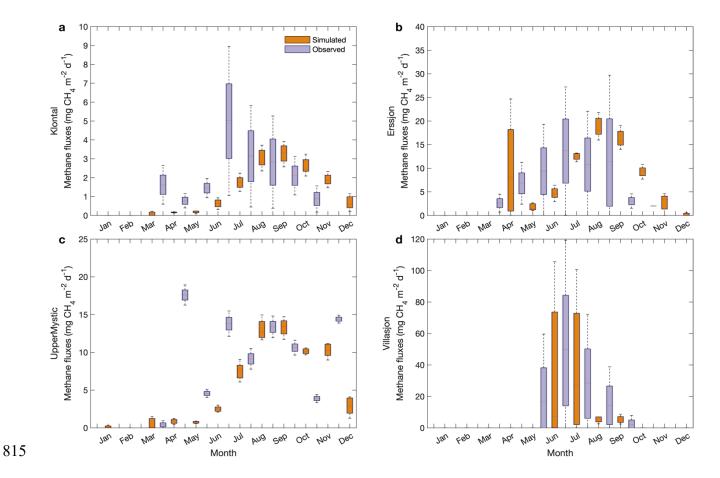


Fig. 6. Evaluation of FLaMe-v1.0 against monthly mean CH₄ fluxes recorded in long time-series of observations in four real lakes. (a) Klöntal, (b) Erssjön, (c) Upper Mystic, and (d) Villasjön. The detailed lake characteristics are listed in Table 2. The climate forcings for these four lakes are extracted from GSWP3-W5E5 model from ISIMIP3a. Note the different scales of CH₄ emissions in each lake.

3.3 FLaMe-v1.0 application on the European domain

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

3.3.1 Evaluation of FLaMe-v1.0 in European lakes

In the European scale application of FLaMe-v1.0, we first evaluated the simulated F_{PP} against the empirical ranges reported by Wetzell (2001) for lakes under ultraoligotrophic (0-5 µgP L⁻¹), oligotrophic (5–10 μgP L⁻¹), mesotrophic (10–30 μgP L⁻¹), and eutrophic (>30 μgP L⁻¹) conditions (Fig. 7 and Fig. S18). Figure 7 shows that, under different trophic status, the means and medians of F_{PP} simulated by FLaMe-v1.0 (for 953 representative lakes) fall well within the reported ranges. Slight deviations could only be observed in ultraoligotrophic lake for which the model tends to slightly overestimate F_{PP} (Fig. 7a). Ultraoligotrophic and oligotrophic lakes reveal very similar mean and median of F_{PP} that fall at the higher ends of the ranges specified by Wetzel (2001) or even exceed it in the case of ultraoligotrophic lakes. In turn, mesotrophic and eutrophic lakes reveal mean and median F_{PP} that fall at the lower ends of the ranges specified by Wetzel (2001). This slight difference of simulated versus observed F_{PP} in lakes with different trophic conditions can be explained by the relatively low value of $K_{s,P}$ (90 µg L⁻¹) compared to the concentration of [TP] (Fig. S7–S8), as well as the simplified representation of lake primary production in our model. When extending the representative lakes to all real lakes in the European domain (n=108407), the median and mean of simulated F_{PP} are still within the specified ranges but are reduced slightly for all trophic status (Fig. S18), attributed to the positively skewed distribution of [TP] (Fig. S8), i.e., many lakes have a low [TP].

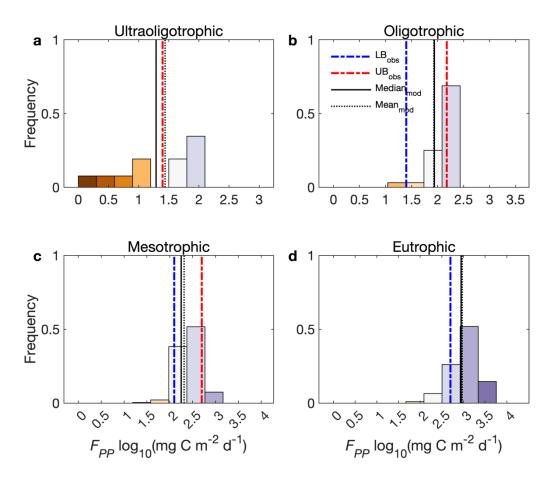


Fig. 7. Comparison of simulated primary production (F_{PP}) with empirical estimates reported by Wetzel (2001). The histograms show the frequency distributions of simulated F_{PP} (log scale) for 953 representative lakes that are grouped into ultraoligotrophic (0–5 μ gP L⁻¹), oligotrophic (5–10 μ gP L⁻¹), mesotrophic (10–30 μ gP L⁻¹), and eutrophic (>30 μ gP L⁻¹) lakes. In the figure, blue and red dashed lines are the lower and upper bounds (LB_{obs} and UB_{obs}), respectively, of empirical ranges reported by Wetzel (2001) in this class of lakes; Black solid and dotted lines are the median_{mod} and mean_{mod}, respectively, of simulated F_{PP} for this class of lakes.

Next, we evaluated the simulated diffusive and ebullitive CH₄ emission rates against measurements in boreal and central European regions during late summer (August–September, 2010–2011) synthesized by Rinta *et al.* (2017) (Fig. 8 and Fig. S19). As Rinta *et al.* (2017) compiled *in-situ*

measurements of diffusive and ebullitive CH₄ emission rates from 17 boreal lakes (in southern Finland and Sweden) and 30 lakes of central European lakes (in The Netherlands, Germany and Switzerland), we extracted the mean CH₄ emission rates during August–September for representative lakes located in the grid cells corresponding to these two regions. Results indicate that the simulated diffusive CH₄ emissions for boreal European lakes (Fig. 8) agree well with the observations; yet the simulated ebullitive CH₄ emissions are slightly higher than the observations, leading to slightly higher total emissions. For central European lakes, the simulated diffusive CH₄ emissions are slightly lower than the observations, while the simulated ebullitive CH₄ emissions are slightly higher, leading to a good agreement in the total emissions (Fig. 8). The slightly higher ebullitive fluxes simulated by FLaMe-v1.0 may be attributed to not only the uncertain choice of model parameters (e.g., α) but also to the systematically lower measured ebullitive fluxes in Rinta et al. (2017), where ebullition was separated from diffusion when the measured fluxes produced unreasonably high k_{600} . Moreover, Rinta et al. (2017) reported 6 and 27 times higher diffusive and ebullitive fluxes in central Europe, respectively, while our model simulates a smaller contrast of a 3- and 7-fold difference. This smaller contrast in the simulation can likely be explained by the higher variability in measurements, reflecting diverse climate, light and catchment properties in real lakes, while the variabilities in the simulated fluxes are significantly lower, probably due to more homogeneous representations of environmental conditions in the simulations. Specifically, the large differences in measured CH₄ emissions in boreal and central European lakes are attributed to their distinct characteristics, including climate (colder and dryer in the boreal region), light regime (larger absorbance in the boreal region) and catchment properties, in particular land-use (dominance of forests and smaller fraction of managed agricultural land in the boreal region). However, in FLaMe-v1.0, the catchment properties are not fully captured

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

by our sole, simplified indicator of [TP], such that the differences between boreal and central European lakes are underestimated. The coarse resolution of our model also likely reduces the represented range of climate conditions in our simulations compared to those experienced by the sampled lakes. In the meantime, observations are also associated with uncertainties, because measurements were not continuous in time and might thus not be fully representative of the late summer-early fall period, as well as sampling and measuring CH₄ emissions, in particular via the ebullitive pathway, is all but a trivial task. Nevertheless, the above evaluation of FLaMe-v1.0 against observations overall reveals the ability of our model to reproduce broadly observed patterns in primary production and CH₄ emissions observed across distinct trophic status and landscapes.

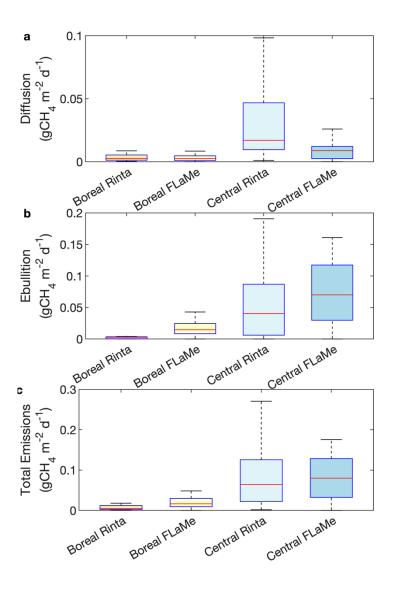


Fig. 8. Comparison of simulated diffusive (top), ebullitive (middle) and total (bottom) CH4 emission rates with the measurements complied by Rinta *et al.* (2017). The datasets reported by Rinta *et al.* (2017) comprises the diffusive, ebullitive and total emission rates from 17 boreal lakes in Finland and Sweden and 30 lakes of central European lakes in The Netherlands, Germany and Switzerland. The boxes represent the 25% and 75% quartiles, and the whiskers cover the 95% confidence intervals. The same figure with a log scale is presented in Fig. S19.

3.3.2 European scale assessment of lake CH₄ emissions

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

The continental-scale assessment indicates that European lakes smaller than 1000 km² have an annual mean emission of 0.97 Tg CH₄ yr⁻¹ from autochthonous phytoplankton production during the period of 2010–2016, of which 30% and 70% are through diffusive and ebullitive transport pathways, respectively (Fig. 9 and Fig. S20). Note that, by including the estimated emissions from European lakes larger than 1000 km² with two different strategies (Supplementary Text S5), we provide a back of the envelope estimate for the mean total annual emission as 1.03–1.10 Tg CH₄ yr⁻¹, which falls within the lower end of a previously reported range (0.9-2.5 Tg CH₄ yr⁻¹) (Petrescu et al. 2023; Lauerwald et al., 2023). The mean CH₄ emission rates per unit lake area amounts to 7.39 g CH₄ m⁻² yr⁻¹, while the mean CH₄ emission rates per unit land surface area amounts to 0.054 g CH₄ m⁻² yr⁻¹. Both emission rates decrease from South to North, despite the larger number of lakes and lake surface area in Northern Europe (Messager et al., 2016; Fig. S4). This south to north decrease can be explained by a much higher CH₄ emission rate in the South of Europe (reaching 109.6 g CH₄ m⁻² yr 1) driven by much higher eutrophic status of southern lakes (together with higher temperatures), which outcompetes the effect of the larger lake area in the Scandinavian region and Finland (which contribute to ~30% of the European lake area). The ice-cover in northern lakes also contribute to the south-to-north gradient of CH₄ emission rates, which is tested to decrease the European lake emissions by 7%. This latitudinal pattern of CH₄ emissions per unit lake area is broadly consistent with that reported by Johnson et al. (2022) based on observations.

In terms of seasonal variability, our model results are in full agreement with the sparse data set of seasonally resolved observations (Tan *et al.*, 2015) and show that European lakes as a whole act as a continuous CH₄ source including during the winter months (individual lakes during ice-covered

periods will do not emit CH₄). Moreover, the simulated CH₄ production and emission reveal a sharp 10-fold increase from late Spring to late Summer that is largely driven by the increase in ambient temperature and F_{PP} rates. These findings underscore the importance of accounting for seasonal variations in CH₄ emissions when refining regional methane budgets (Tan et al., 2015; Guo et al., 2020; Johnson et al., 2022; Stavert et al., 2022). A simple extrapolation of observed summer emissions to the yearly timescale would thus lead to an overestimation of yearly mean fluxes. In addition, model results also reveal a slight time-lag between the most favorable climate conditions (air temperature and light) and the maximum CH₄ production. This time lag in the model can be explained by the cascade of biogeochemical reactions (primary production, mineralization, O₂ depletion and onset of CH₄ production) that ultimately control benthic CH₄ fluxes, and the timescale of heat transfer from the lake surface to the deepest portion of our valley-shape lake bottom. This slight time-lag is further amplified by the time required for the benthic CH₄ to reach the water-air interface, although this effect is secondary due to the dominance of shallow lakes (with mean depth <7.8 m for 90% of lakes; Messager et al., 2016) within the European domain. Finally, the broad seasonal pattern in CH₄ emissions is complicated by the episodic releases of storage fluxes during lake turnovers which occur during spring (March and April; emissions>production) and fall (October and November; emission circa 85% of the production). Lake turnovers amplify total emissions for the duration of these short-lived events.

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

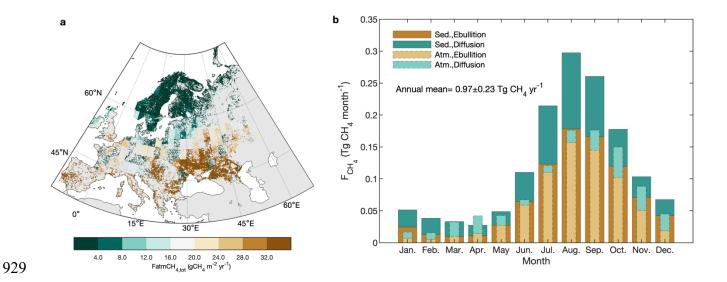


Fig. 9. Methane (CH₄) emissions from European lakes. (a) Spatial distribution of annual mean total CH₄ emissions (sum of diffusion and ebullition) for the period of 2010-2016, expressed in per unit of lake area. (b) Seasonality of total CH₄ production (wide bars with full lines) and emission (narrow bars with dashed lines) fluxes and their split between ebullitive and diffusive pathways (period 2010-2016).

3.3.3 Sensitivity and uncertainty analysis

The sensitivity analysis of annual mean CH₄ emissions from European lakes to key model parameters (indicated by asterisks in Table 1) are summarized in Table 3. Table 3 indicates that the fraction of benthic organic matter mineralization channeled to methanogenesis (f_{mm}) is the most sensitive parameter, and the increase (decrease) of f_{mm} by one SD leads to an increase (decrease) of European lake CH₄ emissions by 0.92 Tg CH₄ yr⁻¹ or 95% (0.67 Tg CH₄ yr⁻¹ or 69%). This is intuitive as a higher fraction of carbon channeled to methanogenesis will increase the continental scale CH₄ emissions, although the response is nonlinear. This is also supported by the findings of high potential methane production rates in various freshwater systems (including the lakes, reservoirs and rivers) (Bodmer *et al.*, 2025). The second and third most sensitive parameters are the maximum carbon fixation rate per unit of Chlorophyll-a ($P_{chl,max}$) and the half saturation constant of phosphorus ($K_{s,p}$).

An increase (decrease) of $P_{chl,max}$ by one SD could increase (decrease) the European lake CH₄ emissions by 0.77 Tg CH₄ yr⁻¹ or 79% (0.63 Tg CH₄ yr⁻¹ or 65%). This is again logical as a higher $P_{chl,max}$ indicates a stronger capacity of phytoplankton to assimilate carbon, thus resulting in higher amounts of organic carbon available for CH₄ production and emissions. The increase (decrease) of $K_{s,P}$ by one SD decreases (increases) the European lake CH₄ emissions by 0.46 Tg CH₄ yr⁻¹ or 48% (0.22 Tg CH₄ yr⁻¹ or 22%), a result which can be explained by a stronger TDP limitation of primary production when $K_{s,P}$ increases, resulting in lower CH₄ production and emissions. The next most sensitive parameters are the mineralization and burial rates (k_{20} and k_{bur}), for which an increase (decrease) in k_{20} by one SD result in an increase (decrease) of European lake CH₄ emissions by 0.19 Tg CH₄ yr⁻¹ or 20% (0.39 Tg CH₄ yr⁻¹ or 40%), while an increase (decrease) of k_{bur} by one SD leads to a decrease (increase) of European lake CH₄ emissions by 0.35 Tg CH₄ yr⁻¹ or 36% (0.21 Tg CH₄ yr⁻¹ or 22%). This is straightforward to interpret as a higher mineralization rate (k_{20}) will channel more mineralization into methanogenesis (and also via lower O₂ levels in the lake), while a higher burial rate (k_{bur}) translates to a lower relative amount of organic matter degradation, and thus lower CH₄ production and emissions.

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

The other parameters (including the shape parameter of the CH₄ production rate versus sediment depth α_{min} , the temperature dependence of mineralization θ , as well as the maximum CH₄ oxidation rate k_{max} and its temperature dependence $Q_{10,ox}$) are less sensitive, with their relative effects on European lake CH₄ emissions ranging from 1–20%. The shape parameter α_{min} can affect the CH₄ emissions as it determines the split between diffusive and ebullitive pathways, i.e., a higher α_{min} favors a higher fraction of CH₄ emitted to water and atmosphere through the diffusive pathway, a pathway that is more prone to oxidation thus lowering total CH₄ emissions. We also find that a higher

temperature dependence of mineralization (θ) results in a lower CH₄ emission. This can be explained by the reference temperature of 20°C in the expression of the θ function, higher than the mean water temperature in most lakes, leading to a faster drop in mineralization for a larger θ when temperature is lower than 20°C. The parameter k_{max} barely impacts the total CH₄ emissions, as this parameter mostly influences the thickness of the water layers where the profiles of oxygen and methane overlap and the oxidation occurs, while the volume-integrated rates remain essentially unaltered Thullner and Regnier, 2019; Grossart *et al.*, 2011). As for the temperature dependence of oxidation ($Q_{10,ox}$), the sensitivity is even weaker because changing the $Q_{10,ox}$ value has a lower impact on the oxidation rates than changing k_{max} . Compared to other parameters (such as f_{mm} and $P_{chl,max}$), the relatively low effects of k_{max} and $Q_{10,ox}$ does not mean that the methane oxidation is not important, but highlight the dominant role of organic carbon production and decomposition on lake CH₄ emissions, which were seldom simulated in previous models. Note that in our current model version, CH₄ oxidation only occurs through the aerobic pathway and thus neglects the potential additional controls induced by anaerobic pathways (Mostovaya *et al.*, 2022; Su *et al.*, 2020).

With the samples produced by the above sensitivity analysis and complemented by samples from additional tests, we utilized a Random Forest (RF) model to assess the uncertainty of European lake CH₄ emissions (see details in section 2.5.4). The RF model has a R^2 of 0.73 and Root of Mean Square Error (RMSE) of 0.24 Tg CH₄ yr⁻¹ for the train set (Fig. 10a) and a R^2 of 0.52 and RMSE of 0.30 Tg CH₄ yr⁻¹ for the out-of-bag samples (Fig. 10b), suggesting that it can capture the relationship between model parameters and European lake CH₄ emissions well. Using these ensembles of CH₄ emissions, the uncertainty (or SD) of European lake CH₄ emissions associated with the choice of biogeochemical parameter values was estimated as 0.23 Tg CH₄ yr⁻¹. Therefore, during the period of 2010-2016, the

European lakes (with surface areas between $0.1-1000~\rm{km^2}$) have an annual mean emission of $0.97\pm0.23~\rm{Tg}~\rm{CH_4}~\rm{yr^{-1}}$.

With the RF model, we can also identify the importance of key model parameters involved as predictors (Fig. 10c). We noticed that the first four leading parameters are also the most sensitive parameters as identified in Table 3, while the importance of other parameters are slightly different from the sensitivity analysis. This slight difference can be attributed to the interactions of model parameters that are overlooked in the sensitivity analysis. Overall, from the sensitivity and uncertainty analysis, we find that the European lake CH₄ emissions are strongly controlled by the carbon biogeochemical dynamics, which, however, was not fully accounted for in previous lake models.

Table 3 Sensitivity of European lake CH₄ emissions (Tg CH₄ yr⁻¹) to key model parameters. Mean and SD are the mean and standard deviation of a particular parameter. Mean \pm SD indicates that the parameter values are adjusted by \pm one SD; Mean \pm 0.5SD indicates that the parameter values are adjusted by \pm 0.5 SD.

Parameter setting		Mean±SD				Mean±0.5SD			
		-SD)	+SD)	-0.5S	D	+0.55	SD
		Absolute/percent		Absolute/percent		Absolute/percent		Absolute/percent	
Primary	P_{chl_max}	0.344	-65%	1.743	+80%	0.642	-34%	1.376	+42%
production	$K_{s,P}$	1.432	+48%	0.754	-22%	1.170	+21%	0.852	-12%
Mineralization and	k_{20}	0.578	-40%	1.164	+20%	0.758	-22%	1.141	+18%
burial rates	k _{bur}	1.317	+36%	0.761	-22%	1.107	+14%	0.856	-12%
	θ	1.028	+6%	0.928	-4%	0.989	+2%	0.968	0%
	f_{mm}	0.302	-69%	1.888	+95%	0.605	-38%	1.437	48%
Methane oxidation	k_{max}	1.057	+9%	0.930	-4%	1.009	+4%	0.953	-2%
	$Q_{10,ox}$	0.992	+2%	0.983	+1%	0.978	+1%	0.973	0%
Diffusion coefficient	k_{diff}	1.124	+16%	1.046	+8%	1.068	+10%	1.048	+8%
Base value of the shape parameter	$lpha_{min}$	1.222	+26%	0.840	-13%	1.077	+11%	0.891	-8%

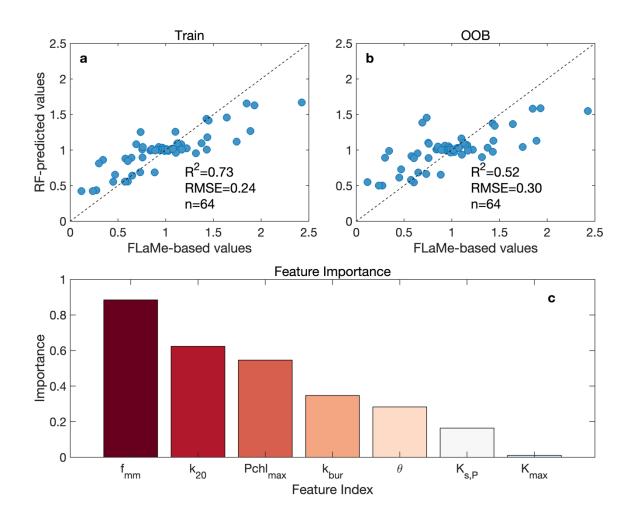


Fig. 10. Random Forest (RF) model for the uncertainty analysis. (a) and (b) are the train and test (Out-of-Bag prediction) of the RF model. (c) shows the importance of key model parameters. Note that the parameters of α_{min} and $Q_{10,ox}$ are excluded from illustration due to their second order of importance (indicated by negative values).

4. Model limitations

We have illustrated that FLaMe-v1.0 is able to capture complex physical-biogeochemical behaviors for lakes with diverse settings and environmental controls. Specifically, the FLaMe-v1.0 has been evaluated against (i) observational temporal variations of CH₄ fluxes at four contrasting, well-surveyed real lakes, (ii) the empirical ranges of primary production under different trophic status reported by Wetzel (2001), and (iii) observational patterns of CH₄ emissions against trophic and

climate gradients spanning the European domain (Rinta *et al.*, 2017). Moreover, the European scale simulation produces a spatial pattern of lake CH₄ emission rates consistent with observation-based upscaling approaches (Johnson *et al.*, 2022). This continental scale application also demonstrates the power of our modelling framework that rests on a lake clustering approach and on a routing of nutrient (TDP) inputs from surrounding catchments to lakes that allow to account for eutrophication effects. Our results thus suggest that the FLaMe-v1.0 modelling framework performs well in providing reliable spatio-temporal patterns of lake CH₄ emissions at the regional scale (with lake areas <1000 km²). However, the results also pinpoint to several key aspects to be improved in the model and highlight critical data gaps that must be addressed in the future.

First, the organic carbon module only accounts for autochthonous OC production as the substrate for methanogenesis, but ignores the contribution of allochthonous OC inputs leached from the catchments, rivers and streamflow. This is based on the distinct reactivity of autochthonous vs. allochthonous OC inputs, with the latter being more refractory to mineralization and decomposition. As a result, FLaMe-v1.0 may provide conservative estimates of CH₄ production and emission. However, neglecting the allochthonous C inputs may at the same time minimize the feedback of OC on light penetration, leading to systematically biased estimates of autochthonous production (section 2.2.2.1). Moreover, transient lake phosphorus dynamics and the co-limitations by nitrogen, albeit assumed to be less important, are neglected and might increase the uncertainty in the estimates of CH₄ production and emission. In addition, our primary production model does not resolve the short-term (e.g., (sub)daily) dynamics of algae growth induced by climate variability, rendering model-data comparison more difficult. In future model developments, these limitations could be addressed by (i) integrating or routing the lake water, carbon and nutrient fluxes along the global river network, which

would allow to simultaneously solve the issue of time-invariant lake water levels in current global lake models (Golub *et al.*, 2022), including ours; (ii) refining the carbon module by incorporating more dynamic models for algal growth as well as P and N uptake and recycling processes within lakes.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

Second, several model assumptions and implementations are based on empirical or theoretical knowledge, which may lead to biases in the estimation of CH₄ fluxes. For instance, the present version of FLaMe (i.e., v1.0) neglects the plant-mediated emission pathway (through aerenchyma in rooted plant) in the littoral zone (Mayr et al., 2020; Zimmermann et al., 2019) due to the lack of observational data for model calibration. Moreover, a recently reported process, i.e., the horizontal, advective littoral-pelagic transport of oxygen and methane (Doda et al., 2024; Bouffard et al., 2025) was ignored for the following reasons: (1) The current FLaMe-v1.0 relies on a 1-D vertical representation while explicitly accounting for horizontal transport would require a 2-D framework; and (2) observations related to horizontal transport remain limited, and whether this is an ubiquitous feature of the CH₄ dynamics across a wide range of lakes will require further observational evidences. Furthermore, in our model, the lake is assumed to follow a "valley" shape. Although this is an advancement from the "bucket" shape used in previous process-based lake models of CH₄ emissions (e.g., LAKE 2.0, ABLM, and bLake4Me), it remains a simplified assumption that captures important but not all features of a realistic lake geometry. Furthermore, several benthic CH₄ processes are highly parameterized. For instance, the split between aerobic and anaerobic decomposition of organic matter is represented by a single parameter f_{mm} and is determined based on the data compilation from Bastviken (2022). This simplification leads to the same temperature dependence of CH₄ processes occurring in the sediment as that of pelagic and benthic mineralization. This is a shortcoming although

it should be noted that the overall temperature dependence of CH₄ emissions, which results from the combined effects of OC production, mineralization, and subsequent CH₄ processes, was found to fall well within the observed ranges reported by Aben *et al.* (2017) (Fig. S21). The split of diffusive and ebullitive CH₄ fluxes is also currently captured by an empirically determined threshold depth (*z*_{eb,min}) based on limited observations by Langenegger *et al.* (2019). Moreover, the effects of heat transfer and CH₄ bubbles migration in the sediment are not resolved, which may lead to biased simulation of CH₄ fluxes especially for the timing. These are simplified representations related to the highly complex pathways of CH₄ production and emission, which needs to be improved by more mechanistic representations of the biogeochemical processes controlling carbon cycling, CH₄ production and transport via diffusion and bubble ascent. In addition, we acknowledge that the fixed grid spacing currently limits the model application to very shallow lakes, which could be solved by adopting a variable grid spacing scaling to the maximum lake depth.

Third, different modules of the FLaMe-v1.0 could benefit from more comprehensive calibration and evaluation but those are limited by data availability. Although FLaMe-v1.0 has been evaluated against several timeseries of observed data collected in four well-surveyed lakes with contrasted dynamics, a full evaluation in the context of large-scale application would benefit from a significantly larger and representative set of observational data. Moreover, the *in-situ* climate conditions may vary greatly from the grid-level forcings, and the lake water dynamics may also affect the CH4 fluxes significantly (e.g., Upper Mystic Lake; Varadharajan, 2009). Thus, a full comprehensive set of *in-situ* measurements of climate, water level, physical and biogeochemical variables would be highly valuable for the purpose of further model development, calibration and evaluation. At the European scale, we partly circumvented these limitations by evaluating lake primary production against the

broad ranges reported by Wetzel (2001), and the simulated diffusive and ebullitive CH₄ fluxes across the environmental (nutrient and climate) gradients compiled by Rinta *et al.* (2017). In this context, complementary time-series of vertically resolved organic carbon, CH₄ and O₂ concentrations, as well as high frequency measurements of CH₄ fluxes capturing short-lived emissions via the storage and ebullitive pathways and covering heterogeneity of CH₄ fluxes in large lakes (Denfeld *et al.*, 2018; Mayr *et al.*, 2020; Zimmermann *et al.*, 2019) would help further calibrate and evaluate the FLaMe-v1.0. These measurements should be performed using a sufficiently large set of representative lakes covering the full range of lake morphologies, landscape properties, and climate.

5. Conclusion and outlook

In this study, we developed and tested a new process-based biogeochemical modeling framework (FLaMe-v1.0) to simulate lake CH₄ fluxes on the large-scale and, as a "proof of concept", applied the model to European lakes. The physical lake model builds on the Canadian Small Lake Model (CSLM) and is coupled to a set of novel biogeochemical modules describing lake organic matter, oxygen and methane dynamics. We then showcased the abilities and performance of FLaMe-v1.0 by: (1) analyzing the overall behaviors of the coupled C-O₂-CH₄ dynamics in two representative cases (a deep oligotrophic lake driven by cold climate in Northern Europe and a shallow eutrophic lake driven by warm climate in Southern Europe) as well as their decomposition, and (2) evaluating simulated temporal patterns of CH₄ fluxes against observations at four well-surveyed lakes with long-term timeseries. Simulation results were consistent with our common knowledge of lake CH₄ dynamics, suggesting that FLaMe-v1.0 can capture the patterns of CH₄ production and emissions across different lake types as well as their responses to the changes in environment conditions, despite the complexity of underlying biogeochemical processes. Furthermore, by applying the model to boreal

and central European lakes, we showed that FLaMe-v1.0 captures well the observed magnitudes of both diffusive and ebullitive CH₄ fluxes as well as the difference between boreal and central lakes. Finally, at the European scale, FLaMe-v1.0 estimates total CH₄ emissions from lakes with areas of 0.1–1000 km² (n=108407, total area = 1.33x10⁵ km²) as 0.97±0.23 Tg CH₄ yr⁻¹. In addition, the model resolves spatial patterns and seasonal variations of CH₄ emissions, providing a comprehensive view of their contribution to regional methane budgets.

Despite some limitations in its current model configuration, this first version of FLaMe is a significant step forward in biogeochemical simulations of lake CH₄ dynamics. The model explicitly incorporates the dynamics of depth-integrated organic carbon cycling, such that the responses of organic carbon to climate and environmental change can be accounted for in estimating CH₄ emissions. We also have incorporated the primary production as a function of total dissolved phosphorus loads from the surrounding catchments, allowing us to evaluate for the first time the impact of eutrophication on CH₄ emissions in a quantitative way. Moreover, our model is of intermediate complexity, and is thus designed for large scale applications. Although the model was run here at a coarse spatial resolution, its parallelized version offers the possibility to carry simulations at a finer resolution in the future. With these advancements, our model can be used to resolve the spatio-temporal variability of CH₄ emissions at regional and global scales under past and future climates, and has the potential to be coupled to Earth System Models to investigate the feedback between climate warming and global lake CH₄ emissions.

Data availability

The methane emission data for the four well-surveyed real lakes (Klöntal, Erssjön, Upper Mystic, and Villasjön) were obtained from Tan et al. (2024). The in-situ measurements of diffusive and ebullitive CH₄ emission rates in boreal and central European regions during late summer (August–September 2010–2011) were obtained from Rinta et al. (2017). The lake characteristic information within Europe were obtained from the HydroLAKES database (Messager al. 2016): https://www.hydrosheds.org/products/hydrolakes. The meteorological variables from GSWP3-W5E5 reanalysis product were obtained from Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a): https://www.isimip.org/gettingstarted/input-data-bias-adjustment/.

1129

1130

1131

1120

1121

1122

1123

1124

1125

1126

1127

1128

Code availability

- The source codes for FLaMe (Fluxes of Lake Methane) model version 1.0 are available at:
- https://github.com/myFeng818/FLaMe-model-v1.0.git. The preprocessing and postprocessing codes
- for the model can be obtained upon request.

1134

1135

1136

1137

Acknowledgements

FRNS PDR T.0191.23), by the project of CLIMATE-SPACE RECCAP2: Global Land Carbon

This study was supported by the Fonds National de la Recherche Scientifique of Belgium (F.R.S.-

- Budget and its Attribution to regional drivers, as well as by the project of ESM2025-Earth System
- 1139 Models for the Future (101003536). We acknowledge the climate modelling groups involved in
- 1140 ISIMIP3a for producing and making available their model outputs. Computational resources have

been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.

Author contributions

M.M., M.F. and P.R. designed the study as well as the overall model strategy. M.M. and M.F. codeveloped and tested the FLaMe model. D.B., S.A., R.L., A.J., G.G.L., M.D.M., and Z.T. provided plenty of valuable suggestions related to the model development. D.B. and S.A. also provided constructive suggestions on model evaluation against measurements and manuscript writing. M.D.M. helped us in setting up the CSLM at the beginning of developing FLaMe, Z.T. provided us the methane emission data from ISIMIP lake datasets, and W.T. helped us in collecting climate forcings from ISIMIP3a. M.M. and M.F. wrote the first version of the manuscript, and all coauthors helped in improving the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.F. (Maoyuan.feng@ulb.be)

- 1161 References
- Aben, R.C.H., Barros, N., van Donk, E. et al.: Cross continental increase in methane ebullition under climate
- 1163 change. *Nat. Commun.*, 8, 1682. https://doi.org/10.1038/s41467-017-01535-y, 2017.
- Arístegui, J., Agustí, S. and Duarte, C. M.: Respiration in the dark ocean, Geophys. Res. Lett., 30, 1041,
- https:///doi.org/10.1029/2002GL016227, 2003.
- Bastviken D., Tranvik L. J., Downing, J. A., Crill, P. M., Enrich-Prast, A.: Freshwater methane emissions offset the
- 1167 continental carbon sink, *Science*, 331(6013), 50. https://doi/org/10.1126/science.1196808, 2011.
- Bastviken, D. (2022). Methane. In T. Mehner & K. Tockner (Eds.), Encyclopedia of Inland Waters (Second Edition)
- 1169 (pp. 136-154). Oxford: Elsevier.
- Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake
- 1171 characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, 18, GB4009,
- 1172 https://doi/org/10.1029/2004GB002238, 2004.
- Behrenfeld, M. J. and Falkowski P. G.: Photosynthetic rates derived from satellite-based chlorophyll
- 1174 concentration, *Limnol. Oceanogr.*, 42, https://doi/org/10.4319/lo.1997.42.1.0001, 1997.
- Bodmer, P., Bors, C., Liu, L. and Lorke, A.: Large sediment methane production potential in reservoirs compared
- to lakes and rivers. *Limnol. Oceanogr.*, https://doi.org/10.1002/lno.70063, 2025.
- 1177 Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46, 2006RG000210,
- 1178 https://doi.org/10.1029/2006RG000210, 2008.
- Bouffard, D., Doda, T., Ramón, C. L., Ulloa, H. N.: Thermally driven cross-shore flows in stratified basins: a review
- on the thermal siphon dynamics. *Flow.* 2025;5:E1. doi:10.1017/flo.2024.31
- Bouwman, A. F., Beusen, A. H. W., Billen G.: Human alteration of the global nitrogen and phosphorus soil
- balances for the period 1970-2050, Global Biogeochem. Cycles, 23, GB0A04,
- 1183 https://doi/org/10.1029/2009GB003576, 2009.
- 1184 Canadell, J. G., Monteiro, P. M. S., Costa, M. H., et al.: Global carbon and other biogeochemical cycles and
- feedbacks, Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth
- Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University
- 1187 Press, Cambridge, United Kingdom and New York, NY, USA, 673-816, 2021.
- 1188 Carlson, C. A., Ducklow, H. W., Michaels, A. F.: Annual flux of dissolved organic carbon from the euphotic zone
- in the northwestern Sargasso Sea, *Nature*, 397, 405–408, 1994
- 1190 Cole, J. J., and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured
- by the addition of SF₆, *Limnol. and Oceanogr.*, 4, https://doi/org/ 10.4319/lo.1998.43.4.0647, 1998.
- Deemer, B. R., Harrison, J. A., Li, S., et al.: Greenhouse Gas Emissions from Reservoir Water Surfaces: A New
- Global Synthesis. *Bioscience*, 66(11), 949-964. https://doi/org/10.1093/biosci/biw117, 2016.

- Deemer, B. R., & Holgerson, M. A.: Drivers of methane flux differ between lakes and reservoirs, complicating
- global upscaling efforts. J. Geophys. Res.-Biogeo., 126,
- e2019JG005600, https://doi.org/10.1029/2019JG005600, 2021.
- DelSontro, T., Beaulieu, J.J., and Downing, J.A.: Greenhouse gas emissions from lakes and impoundments:
- 1198 Upscaling in the face of global change, *Limnol. Oceanogr. Lett.*, 3, 64-75, https://doi.org/10.1002/lol2.10073,
- 1199 2018
- Delwiche, K. and Hemond, H.F.: An enhanced bubble size sensor for long-term ebullition studies. Limnol.
- 1201 Oceanogr. Methods, 15, 821-835. https://doi.org/10.1002/lom3.10201, 2017
- Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E., and Karlsson, J.: A synthesis of carbon dioxide
- and methane dynamics during the ice-covered period of northern lakes, Limnol. Oceanogr. Lett., 3, 117-
- 1204 131. https://doi.org/10.1002/lol2.10079, 2018.
- Dlugokencky, E. J., Steele, L. P., Lang, P. M., Masarie, K. A.: The growth rate and distribution of atmospheric
- methane, J. Geophys. Res., 99, 17021–17043, https://doi/org/10.1029/94JD01245, 1994.
- Doda, T., Ramón, C. L., Ulloa, H., N., Brennwald, M. S., Kipfer, R., Perga M.-E., Wüest, A., Schubert, C. J.,
- Bouffard, D.: Lake surface cooling drives littoral-pelagic exchange of dissolved gases. Sci.
- 1209 *Adv.* **10**, eadi0617(2024). DOI: <u>10.1126/sciadv.adi0617</u>
- 1210 Frieler, K., et al.: Scenario setup and forcing data for impact model evaluation and impact attribution within the
- third round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a), Geosci. Model Dev., 17,
- 1212 1–51, https://doi.org/10.5194/gmd-17-1-2024, 2024.
- Forster, P. M., et al.: Indicators of Global Climate Change 2023: annual update of key indicators of the state of the
- climate system and human influence, Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-
- 1215 2625-2024, 2024.
- 1216 Garnaud, C., MacKay, M., & Fortin, V.: A one-dimensional lake model in ECCC's land surface prediction system.
- 1217 *J. Adv. Model. Earth Syst.*, 14, e2021MS002861. https://doi.org/10.1029/2021MS002861, 2022.
- 1218 Gatley, D. P., Herrmann, S., & Kretzschmar, H. J.: A twenty-first century molar mass for dry air, HVAC&R
- 1219 Research, 14(5), 655–662. https://doi.org/10.1080/10789669.2008.10391032, 2008.
- Golub, M., et al.: A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP
- Lake Sector, Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, 2022.
- 1222 Grasset, C., Mendonça, R., Villamor Saucedo, G., Bastviken, D., Roland, F. and Sobek, S.: Large but variable
- methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic
- 1224 matter. Limnol. Oceanogr., 63: 1488-1501. https://doi.org/10.1002/lno.10786, 2018.

- 1225 Grossart, H., Frindte, K., Dziallas, C., Eckert, W., Tang, K.W.: Microbial methane production in oxygenated water
- 1226 column of an oligotrophic lake, Proc. Natl. Acad. Sci. U.S.A. 108 (49) 19657-19661,
- 1227 https://doi.org/10.1073/pnas.1110716108, 2011.
- Guillemette, F., von Wachenfeldt, E., Kothawala, D. N., Bastviken, D., Tranvik, L. J.: Preferential sequestration of
- terrestrial organic matter in boreal lake sediments, J. Geophys. Res. Biogeosci., 122, 863-874,
- 1230 https://doi.org/10.1002/2016JG003735, 2017.
- Hanson, P. C., Hamilton, D. P., Stanley, E. H., Preston, N., Langman, O. C., Kara, E. L.: Fate of Allochthonous
- Dissolved Organic Carbon in Lakes: A Quantitative Approach. PLoS One, 6(7): e21884,
- 1233 https://doi.org/10.1371/journal.pone.0021884, 2011.
- Hanson, P. C., Buffam, I., Rusak, J. A., Stanley, E. H., Watras, C.: Quantifying lake allochthonous organic carbon
- budgets using a simple equilibrium model, *Limnol. Oceanogr.*, 59, https://doi/org/10.4319/lo.2014.59.1.0167,
- 1236 2014
- Harrison, J. A., Prairie, Y. T., Mercier-Blais, S., Soued, C.: Year-2020 global distribution and pathways of reservoir
- methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model, *Global*
- Biogeochem. Cycles, 35, e2020GB006888. https://doi.org/10.1029/2020GB006888, 2021.
- Holgerson, M., and Raymond, P.: Large contribution to inland water CO₂ and CH₄ emissions from very small
- ponds. *Nature Geosci.*, 9, 222–226. https://doi.org/10.1038/ngeo2654, 2016.
- 1242 Imberger, J.: The diurnal mixed layer, *Limnol. Oceanogr.*, 30, 737–770, https://doi.org/10.4319/lo.1985.30.4.0737,
- 1243 1985.
- 1244 Imboden, D.M., and Wüest, A.: Mixing Mechanisms in Lakes. In: Lerman, A., Imboden, D.M., Gat, J.R. (eds)
- Physics and Chemistry of Lakes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85132-2_4,
- 1246 1995.
- Lan, X., Thoning, K.W., and Dlugokencky, E.J.: Trends in globally-averaged CH₄, N²O, and SF₆ determined from
- 1248 NOAA Global Monitoring Laboratory measurements. https://doi.org/10.15138/P8XG-AA10, 2024
- Langenegger, T., Vachon, D., Donis, D., McGinnis, D.F.: What the bubble knows: Lake methane dynamics revealed
- by sediment gas bubble composition. *Limnol. Oceanogr.*, 64: 1526-1544. https://doi.org/10.1002/lno.11133,
- 1251 2019.
- Lauerwald, R., Regnier, P., Figueiredo, V., Enrich-Prast, A., Bastviken, D., Lehner, B.: Natural lakes are a minor
- global source of N₂O to the atmosphere. Global Biogeochem. Cycles, 33, 1564–
- 1254 1581. https://doi.org/10.1029/2019GB006261, 2019.
- Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., et al.: Inland water greenhouse gas
- budgets for RECCAP2: 2. Regionalization and homogenization of estimates. Global Biogeochemical Cycles,
- 37, e2022GB007658, https://doi.org/10.1029/2022GB007658, 2023.

- Lewis, W. M.: Global primary production of lakes: 19th Baldi Memorial Lecture, *Inland Waters*, 1(1), 1–28.
- 1259 https://doi.org/10.5268/IW-1.1.384_2011.
- 1260 Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T., Martikainen, P. J.: Effects of temperature and oxygen
- availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal
- lake, Biogeochemistry, 59, 269–286. https://doi.org/10.1023/A:1016015526712, 2002
- 1263 Maavara, T., Lauerwald, R., Regnier, P., Van Cappellen, P.: Global perturbation of organic carbon cycling by river
- damming, *Nat. Commun.* **8**, 15347. https://doi.org/10.1038/ncomms15347, 2017.
- 1265 Maavara, T., Lauerwald, R., Laruelle, G. G., Akbarzadeh, Z., Bouskill, N. J., Van Cappellen, P., Regnier,
- P. Nitrous oxide emissions from inland waters: Are IPCC estimates too high? Glob Change Biol., 25, 473–
- 1267 448. https://doi.org/10.1111/gcb.14504_2019.
- 1268 MacIntyre, S., Bastviken, D., Arneborg, L., Crowe, A. T., Karlsson, J., Andersson, A., Gålfalk, M., Rutgersson, A.,
- Podgrajsek, E., Melack, J. M.: Turbulence in a small boreal lake: Consequences for air-water gas exchange,
- 1270 Limnol. Oceanogr., 66(3):827-854. https://doi.org/10.1002/lno.11645, 2020.
- MacKay, M. D., Verseghy, D. L., Fortin, V., and Rennie, M. D.: Wintertime simulations of a boreal lake with the
- 1272 Canadian Small Lake Model, *J. Hydrometeorol.*, 18, 2143–2160, https://doi.org/10.1175/JHM-D-16-0268.1,
- 1273 2017.
- 1274 MacKay, M. D.: A process-oriented small lake scheme for coupled climate modeling applications, J.
- 1275 *Hydrometeorol.*, 13, 1911–1924, https://doi.org/10.1175/JHM-D-11-0116.1, 2012.
- McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., Wüest, A.: Fate of rising methane bubbles in stratified
- waters: How much methane reaches the atmosphere? J. Geophys. Res., 111, C09007,
- 1278 https://doi.org/10.1029/2005JC003183, 2006
- Mendonça, R., Müller, R.A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., Sobek, S.: Organic carbon
- burial in global lakes and reservoirs, *Nat. Commun.*, 8, 1694, https://doi.org/10.1038/s41467-017-01789-6,
- 1281 2017
- Messager, M., Lehner, B., Grill, G., Nedeva, I., Schmitt, O.: Estimating the volume and age of water stored in global
- lakes using a geo-statistical approach. *Nat. Commun.*, 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
- Martin, J. H., Knauer, G. A., Karl, D. M., Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific,
- 1285 Deep. Sea. Res. A., 34, 2, 267-285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
- Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E. Beusen, A. H. W., Bouwman, A. F., Fekete, B. M.,
- Kroeze, C., Van Drecht, G.: Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and
- 1288 implementation, Environ. Model. Softw., 25, 7, 837-853, https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.
- Mayr, M. J., Zimmermann, M., Dey, J., et al.: Growth and rapid succession of methanotrophs effectively limit
- methane release during lake overturn. Commun. Biol., 3, 108. https://doi.org/10.1038/s42003-020-0838-z,

- 1291 2020.
- Mostovaya, A., Wind-Hansen, M., Rousteau, P., Bristow, L.A. and Thamdrup, B.: Sulfate- and iron-dependent
- anaerobic methane oxidation occurring side-by-side in freshwater lake sediment. Limnol Oceanogr, 67, 231-
- 1294 246. https://doi.org/10.1002/lno.11988, 2022
- 1295
- Jackson, R., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., Bergamaschi, P., Niwa, Y.,
- Segers, A., Tsuruta, A.: Increasing anthropogenic methane emissions arise equally from agricultural and fossil
- fuel sources, *Environ. Res. Lett.*, 15, 071002, https://doi.org/10.1088/1748-9326/ab9ed2, 2020.
- Johnson, M. S., Matthews, E., Du, J., Genovese, V., Bastviken, D.: Methane emission from global lakes: New
- spatiotemporal data and observation-driven modeling of methane dynamics indicates lower emissions, J.
- 1301 Geophys. Res.-Biogeo., 127, e2022JG006793. https://doi.org/10.1029/2022JG006793, 2022.
- Pajala, G., Sawakuchi, H. O., Rudberg, D., et al.: The effects of water column dissolved oxygen concentrations on
- lake methane emissions—Results from a whole-lake oxygenation experiment. J. Geophys. Res.: Biogeo.,
- 1304 128(11), e2022JG007185. doi:10.1029/2022jg007185, 2023.
- Petrescu, A. M. R., Qiu, C., Ciais, P., et al.: The consolidated European synthesis of CH₄ and N₂O emissions for
- the European Union and United Kingdom: 1990–2017, Earth Syst. Sci. Data, 13, 2307–2362,
- 1307 https://doi.org/10.5194/essd-13-2307-2021, 2021.
- Petrescu, A. M. R., Qiu, C., McGrath, M. J., et al.: The consolidated European synthesis of CH₄ and N₂O emissions
- for the European Union and United Kingdom, 1990–2019, Earth Syst. Sci. Data, 15, 1197–1268,
- 1310 https://doi.org/10.5194/essd-15-1197-2023, 2023.
- Rinta, P., Bastviken, D. Schilder, J., van Hardenbroek, M., Stötter, T., Heiri, O.: Higher Late Summer Methane
- Emission from Central Than Northern European Lakes, J. Limnol., 76 (1),
- 1313 https://doi.org/10.4081/jlimnol.2016.1475, 2017.
- Regnier, P., Dale, A.W., Arndt, S., LaRowe, D.E., Mogollón, J., Van Cappellen, P.: Quantitative analysis of
- anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, Earth-Sci. Rev., 106,
- 1316 1–2, 105-130, https://doi.org/10.1016/j.earscirev.2011.01.002, 2011.
- Reynolds, C. S.: The ecology of phytoplankton, Cambridge University Press, 2006
- Rosentreter, J. A., Borges, A. V., Deemer, B. R., et al.: Half of global methane emissions come from highly variable
- aquatic ecosystem sources, *Nat. Geosci.*, 14(4), 225-230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
- Ruardij, P. & Van Raaphorst, W.: Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea,
- 1321 Neth. J. Sea Res., 33, 3–4, 453-483, https://doi.org/10.1016/0077-7579(95)90057-8, 1995.
- Saunois, M., Bousquet, P., Poulter, B., et al.: The global methane budget 2000–2012, Earth Syst. Sci. Data, 8, 697–
- 751, https://doi.org/10.5194/essd-8-697-2016, 2016.

- Saunois, M., Stavert, A. R., Poulter, B., et al.: The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12,
- 1325 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020.
- Saunois, M., Martinez, A., Poulter, B., et al., Global Methane Budget 2000–2020, Earth Syst. Sci. Data Discuss.,
- 1327 https://doi.org/10.5194/essd-2024-115, in review, 2024.
- 1328 Stavert, A. R., Saunois, M., Canadell, J. G., et al.: Regional trends and drivers of the global methane
- budget, *Glob. Change Biol.*, 28, 182–200. https://doi.org/10.1111/gcb.15901, 2021.
- 1330 Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for
- temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006,
- https://doi.org/10.5194/gmd-9-1977-2016, 2016.
- Su, G., Zopfi, J., Yao, H., Steinle, L., Niemann, H. and Lehmann, M.F.: Manganese/iron-supported sulfate-
- dependent anaerobic oxidation of methane by archaea in lake sediments. Limnol. Oceanogr., 65, 863-875.
- 1335 https://doi.org/10.1002/lno.11354, 2020.
- 1336 Tan, Z., Zhuang, Q., and Anthony, K. W.: Modeling methane emissions from arctic lakes: Model development and
- site-level study, *J. Adv. Model. Earth Syst.*, 7, 459–483, https://doi.org/10.1002/2014MS000344, 2015.
- Tan, Z., Yao, H., Melack, J., Grossart, H.-P., Jansen, J., Balathandayuthabani, S., et al. A lake biogeochemistry
- model for global methane emissions: Model development, site-level validation, and global applicability. *J. Adv.*
- 1340 *Model. Earth Syst.*, 16, e2024MS004275. https://doi.org/ 10.1029/2024MS004275, 2024.
- 1341 Thottathil, S. D., Reis, P. C. J., Prairie, Y. T.: Methane oxidation kinetics in northern freshwater
- lakes. *Biogeochemistry*, 143(1), 105–116. https://www.jstor.org/stable/48701400, 2019.
- Thullner, M., Regnier, P.: Microbial controls on the biogeochemical dynamics in the subsurface. Rev. Mineral.
- 1344 *Geochem.*, 85 (1): 265–302. https://doi.org/10.2138/rmg.2019.85.9, 2019.
- Van Drecht, G., Bouwman, A. F., Harrison, J., Knoop, J. M.: Global nitrogen and phosphate in urban wastewater
- for the period 1970 to 2050, Global Biogeochem. Cycles, 23, GB0A03,
- 1347 https://doi.org/10.1029/2009GB003458, 2009.
- Varadharajan, C.: Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake,
- Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.
- 1350 Verseghy, D. L., and MacKay, M. D.: Offline Implementation and Evaluation of the Canadian Small Lake Model
- with the Canadian Land Surface Scheme over Western Canada. J. Hydrometeor., 18, 1563-
- 1352 1582, https://doi.org/10.1175/JHM-D-16-0272.1, 2017.
- Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean revisited, *Limnol. Oceanogr.*
- 1354 *Methods*, 12, doi:10.4319/lom.2014.12.351, 2014.
- Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., McGillis, W. R.: Advances in quantifying air-sea gas
- exchange and environmental forcing, Ann. Rev. Mar. Sci., 1, 213-44, https://doi.org/

- 1357 10.1146/annurev.marine.010908.163742, 2009.
- Wetzel, R.G.: Limnology: Lake and River Ecosystems. Third Edition, Academic Press, San Diego, p389, 2001.
- William, R., Georgiy, K., Matti, L.: Basin-scale circulation and heat fluxes in ice-covered lakes, Limnol.
- 1360 *Oceanogr.*, 59, https://doi.org/10.4319/lo.2014.59.2.0445, 2014.
- Zhuang, Q., Guo, M., Melack, J.M., Lan, X., Tan, Z., Oh, Y., Leung, L. R.: Current and future global lake methane
- emissions: A process-based modeling analysis. J. Geophys. Res.- Biogeo., 128,
- e2022JG007137, https://doi.org/10.1029/2022JG007137, 2023.
- Zimmermann, M., Mayr, M. J., Bouffard, D., Eugster, W., Steinsberger, T., Wehrli, B., Brand, A. Bürgmann,
- H.: Lake overturn as a key driver for methane oxidation, preprint, https://doi.org/10.1101/689182, 2019.