
I have read the paper, “DAR-type model based on "long memory-threshold" structure: 

a competitor for daily streamflow prediction under changing environment”. Overall, 

the paper aims to develop and test a stochastic model for simulating daily streamflow, 

taking care of the nonlinearity, nonstationarity, and most importantly, the long-term 

memory of the streamflow. This is one of the few papers in the field of stochastic 

hydrology that has devoted greater attention to reproducing the long-term memory 

component of streamflow, which is really appreciated. 

My major observation is that the paper is not sufficiently motivated, and the flow of the 

arguments in the paper is not smooth. For example, there are many times in the paper 

when an arbitrary number of statistical tests are being performed without any prior 

reasoning. The structure of section 2.3 does not clearly give enough reason why the 

current modeling paradigm is failing to reproduce the nonlinear, non-stationary models 

that fail to reproduce the long-term memory properties of the streamflow. Further, this 

section does not provide enough evidence to go with the FDTDAR model. There are 

many figures in the paper which is more suitable in the supplementary file rather than 

the main manuscript. 

Responses: Thank you very much for your constructive and insightful comments. We 

truly appreciate your careful reading and recognition of the novelty of our work, 

especially your appreciation for our focus on long-term memory modeling in 

streamflow simulation. We have carefully considered your main observation that the 

motivation and logical flow of the paper need improvement, and that Section 2.3 lacks 

clarity and sufficient justification, including the relocation of figures to the 

supplementary files. In response, we have followed the comments and suggestions to 

refine this work. We highlight revisions with bold and blue text in the latest submitted 

manuscript and list them following. 

2.3 Daily streamflow time series characteristics  
Before initiating the modeling procedure, it is essential to understand the inherent 
statistical properties of daily streamflow time series. The primary objective of this 
section is to conduct a comprehensive diagnostic analysis to evaluate four key 
characteristics of time series: long-term persistence, non-stationarity, ARCH effects, 
and nonlinearity (Figure 2). These features are critical in determining the suitability 



and effectiveness of various modeling approaches. Moreover, understanding their 
interconnections provides important theoretical support for the logical consistency 
and robustness of the subsequent modeling framework (Figure 2). 
The daily streamflow time series exhibits seasonal characteristics due to the cyclical 
influence of the four seasons. Therefore, deseasonalization is a necessary 
preprocessing step before modeling, with the specific method detailed in Section 3.1. 
In this section, the presence of long-term memory in the daily streamflow series is 
identified based on the Hurst exponent (H) calculated using the rescaled range (R/S) 
analysis method and the trend of the autocorrelation function (ACF), and the 
influence of seasonality on long-term memory is also assessed (Lo, 1991). On this 
basis, the stationarity of the series is evaluated using three unit root tests: the 
Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests (Dickey and Fuller, 1981; Kwiatkowski et al., 1992; Peter 
and Perron, 1988). The null hypotheses of ADF and PP tests assume that the time 
series has a unit root, while the KPSS test considers the null hypothesis as the time 
series being a stationary process. Due to the tendency of unit root tests to favor the 
null hypothesis, to rigorously determine the non-stationarity of the daily streamflow 
time series, if any of the three methods indicates the presence of a unit root process, 
then the daily streamflow time series at that station is considered non-stationary. 
Stationarity is a fundamental prerequisite for model construction. The method of 
achieving stationarity differs depending on the presence of long memory: non-long-
memory series are differenced using integer orders, while long-memory series require 
fractional differencing. Subsequently, the Ljung-Box (LB) and Lagrange Multiplier 
(LM) tests are employed to detect the presence of ARCH effects, which is the most 
critical link in choosing to build a heteroscedastic model in this study (Ljung and Box, 
1978). The ARCH effect reflects the limitations of linear regression models and 
highlights the necessity of characterizing the variation in second-order moments. 
Some studies have suggested a close relationship between ARCH effects and long-
term memory in hydrological time series, neglecting long-term memory may lead to 
spurious detection of ARCH effects (Wang et al., 2023b; Wang et al., 2023c). 
Therefore, this section compares the LB test results of two linear models: a standard 
integer-order autoregressive model and a long-memory autoregressive (FAR) model 
based on fractional differencing. Finally, the BDS test is applied to examine whether 
the series exhibits nonlinear dynamics (Broock et al., 1996). Since most existing 
heteroscedastic models are constructed based on linear structures, if the series 
demonstrates significant nonlinearity, it may be necessary to improve the model 
expression accordingly. 



 
Figure 2: Daily streamflow time series characteristics test and application method. 
The results of various diagnostic tests on the daily streamflow time series are presented 
in Figure 4, Figure S2, and Tables S1–S3. The autocorrelation function (Figure 3) and 
the Hurst exponent results (Table S1) indicate that the daily streamflow series exhibits 
long-ter memory characteristics, and that seasonality weakens the strength of this 
memory. The results of the 3 unit root tests (Table S2) reveal that the series is non-
stationary. Considering its long-memory properties, fractional differencing is adopted 
to achieve stationarity, which satisfies the model assumptions. Figure S2 shows the 
Ljung-Box (LB) test results for the residuals of two linear models. The residuals of both 
models exhibit no significant autocorrelation, indicating that the model structures are 
appropriate. However, the squared residuals display significant autocorrelation, 
reflecting the presence of ARCH effects. Moreover, the ARCH effect becomes more 
pronounced when long memory is taken into account. The LM test yields consistent 
results. The nonlinearity test results (Table S3) suggest that the daily streamflow time 
series exhibits significant nonlinear behavior, implying that the model structure in this 
study should be modified to accommodate nonlinear dynamics. 



 
Figure 3: Autocorrelation coefficient (ACF) of daily streamflow time series. 
The diagnostic results presented above provide critical insights into the statistical 
characteristics of the daily streamflow time series, including long-term memory, non-
stationarity, heteroscedasticity, and nonlinearity. These findings form a solid foundation 
for selecting appropriate modeling strategies in the subsequent sections. Specifically, 
the detection of long-term memory and non-stationarity justifies the use of fractional 
differencing methods to ensure model validity. The presence of ARCH effects 
highlights the need for models capable of capturing time-varying volatility, while the 
identified nonlinear dynamics suggest that linear structural models may be insufficient. 
DAR-type models have emerged as strong competitors to the widely used 
heteroscedastic GARCH models, due to their simple mathematical formulation, ease of 
parameter estimation, and ability to accurately characterize real-world data. Based on 
the results of this section, the next section introduces an enhanced modeling framework 
(FDTDAR model) based on the DAR family, which integrates long-memory 
components, heteroscedasticity, and nonlinear dynamics to better capture the complex 
behavior of daily streamflow. 
 

The following comments need to be addressed to improve the structure of the paper and 

the overall motivation behind this work. 

Major comment: 



• Line 120-125: How is the Hurst exponent estimated? Based on the information 

provided in Table 1, the length of the time series is short enough to estimate a stable 

value of H. Additionally, there is no uncertainty measure of the H estimates 

provided. This is a very serious concern. If H is not statistically significant, then it 

is not a long-term persistence process. In order to confirm the existence of long-

term persistence, the nature of decay of the autocorrelation function must follow a 

type of power-law, as long-term persistence is a scale-free entity. 

Responses: Thanks for your comment. We agree that accurate estimation of the Hurst 

exponent (H) is critical to validate the presence of long-term persistence, and we 

appreciate the opportunity to clarify and improve this aspect of the paper. 

(1) Method for estimating the Hurst exponent: 

We have clarified the calculation method of the H index in the description on page 6, 

lines 122-124 of the manuscript. Specifically, we used the rescaled range analysis (R/S) 

method, which is widely used and robust in detecting long-term correlations in 

hydrological time series. The specific description in the manuscript is " In this section, 

the presence of long-term memory in the daily streamflow series is identified based on 

the Hurst exponent (H) calculated using the rescaled range (R/S) analysis method and 

the trend of the autocorrelation function (ACF)". A supplementary file has also been 

added to the paper, in which we describe the calculation process of the R/S method. For 

details, please refer to the supplementary file page 2, lines 5-15: "In this study, the 

rescaled range (R/S) analysis method is employed to calculate the Hurst exponent (H) 

of daily streamflow time series from 15 hydrology station. For time series 𝑋! of length 

𝑇 with 𝑡 = 0,1,⋯ , 𝑇, the R/S analysis proceeds as follow: 

First, calculate the increments of the time series 𝑥! = 𝑋! − 𝑋!"# with 𝑡 = 0,1,⋯ , 𝑇 

and divides them into 𝑁  adjacent sub-interval 𝐼$ , for 𝑛 = 1,⋯ ,𝑁 , of length 𝑣 

while 𝑁𝑣 = 𝑇. For each sub-interval the mean value is computed, and a cumulative 

deviation series 𝑦! is constructed by accumulating deviations from this mean. 

Subsequently, the range 𝑅%! = 𝑚𝑎𝑥%!(𝑦!) − 𝑚𝑖𝑛%!(𝑦!) of the cumulative deviation 

series 𝑦! and a standard deviation 𝑆%! of the original increment time series for each 



sub- interval are calculated. Each range is divided by its corresponding standard 

deviation to obtain the standardized rescaled range. Finally, the average rescaled range 

(𝑅/𝑆)&  for the given sub-period length is calculated by averaging across all sub-

intervals. Rescaled ranges scale as (𝑅/𝑆)& ∝ 𝑣'.". 

(2) Justification for statistical stability: 

In the revised manuscript, we have clarified the method used to estimate the Hurst 

exponent. Specifically, we employed the rescaled range (R/S) method, which is widely 

used in hydrology and time series analysis due to its robustness in detecting long-term 

persistence, even in relatively short records. However, to illustrate the uncertainty 

measure of the H value and enhance the robustness of its estimation, we have included 

the confidence intervals and significance tests of the H values for the daily streamflow 

series from the 15 hydrological stations in the supplementary material. These were 

obtained through Monte Carlo simulations. Specifically, for each station, we generated 

1,000 synthetic Gaussian white noise sequences (with H = 0.5) of the same length as 

the observed streamflow series. Under the null hypothesis of no long-term persistence, 

we calculated the 95% confidence intervals of the H estimates. If the observed H value 

falls outside this range (p < 0.05), it indicates statistically significant long-term 

persistence in the time series. The detailed results are presented in the supplementary 

material (page 3, lines 20-40), including the following description: “To assess the 

statistical significance of the H estimated using the R/S method, a confidence interval 

for the test statistic was constructed based on the Monte Carlo simulation approach. 

Under the null hypothesis, the time series is assumed to exhibit no long-term memory, 

i.e., H=0.5, corresponding to a Gaussian white noise process. Specifically, for each 

hydrological station, 1,000 synthetic Gaussian white noise sequences of the same length 

as the observed daily streamflow series were generated. The R/S analysis was then 

applied to each simulated series to estimate the Hurst exponent, and the 95% confidence 

interval was derived from the resulting distribution. If the H value of the observed series 

lies outside this interval (at a significance level of p<0.05), the time series is considered 

to exhibit statistically significant long-term memory. As shown in Table S1, all 15 

hydrological stations demonstrate significant long-term persistence in their daily 



streamflow time series. 

Table S1. Significance test of H value of daily streamflow time series at 15 

hydrological stations 

Station 2.50% 97.50% H p Station 2.50% 97.50% H p 

TNH 0.49 0.59 0.82 <0.05 ZT 0.49 0.59 0.69 <0.05 

SZS 0.49 0.59 0.88 <0.05 ZJS 0.48 0.59 0.72 <0.05 

XHY 0.49 0.59 0.91 <0.05 LZ 0.49 0.60 0.92 <0.05 

FG 0.48 0.59 0.88 <0.05 TDG 0.49 0.59 0.87 <0.05 

TG 0.49 0.59 0.87 <0.05 LM 0.49 0.59 0.89 <0.05 

SMX 0.48 0.59 0.87 <0.05 LT 0.48 0.59 0.76 <0.05 

AS 0.48 0.59 0.84 <0.05 XY 0.48 0.58 0.77 <0.05 

LJ 0.49 0.59 0.85 <0.05      

”. 

(3) Assessment of long-term persistence via autocorrelation decay: 

As suggested, we have included an analysis of the decay of the autocorrelation function 

(ACF) in our current manuscript (shown in Figure 3 on page 8). The results show that 

the ACF decays in a power-law manner, rather than exhibiting the exponential decay 

characteristic of short-term memory processes. This pattern provides additional 

evidence supporting the presence of long-term persistence in the daily streamflow series. 

• Section 2.3: This section, in the current form, is the most confusing part in section 

2. It portrays different tests on streamflow time series, identifies non-stationarity, 

confirms the general properties of a white noise process, and examines the 

contribution of long-term memory to improve the simulation capability of daily 

streamflow. There are many tests performed here, without enough motivation. It is 

recommended to reconstruct this section. First, try to state what the overall aim or 

motivation is for the modeling exercise. Second, with the help of a flowchart, show 

what hypothesis needs to be tested before going to the modeling exercise. In order 

to do such hypothesis testing, state the relevant tests with appropriate references. 

Finally, crisply conclude what is learnt through this modeling exercise and state the 



next steps to achieve the objective of the paper. 

Responses: We sincerely thank the reviewer for the constructive comments on Section 

2.3. We fully agree that the original version lacked clarity in structure and motivation, 

and could potentially confuse the reader due to the number of statistical tests presented 

without a clearly stated objective. In response, we have substantially revised Section 

2.3 to improve its coherence and readability. The revisions include the following key 

improvements: 

(1) Clarification of Motivation and Objective: 

At the beginning of Section 2.3, we have added a clear statement of purpose, explaining 

that the main objective is to evaluate the intrinsic statistical properties of the daily 

streamflow series-including stationarity, randomness, and long-term persistence-before 

proceeding with any modeling. This diagnostic step is essential to inform the selection 

of appropriate modeling approaches and ensure that underlying assumptions are 

satisfied. This is specifically reflected in the revised manuscript on page 6, lines 115-

120, which are described as: " Before initiating the modeling procedure, it is essential 

to understand the inherent statistical properties of daily streamflow time series. The 

primary objective of this section is to conduct a comprehensive diagnostic analysis to 

evaluate four key characteristics of time series: long-term persistence, non-stationarity, 

ARCH effects, and nonlinearity (Figure 2). These features are critical in determining 

the suitability and effectiveness of various modeling approaches. Moreover, 

understanding their interconnections provides important theoretical support for the 

logical consistency and robustness of the subsequent modeling framework (Figure 2).". 

(2) Introduction of a Hypothesis Testing Framework: 

We have added a structured hypothesis testing framework to the revised manuscript, 

supported by a flowchart that outlines the logical flow of the analysis. Relevant 

references have also been added for each test. The adjustments to this section are 

detailed in pages 6-7, lines 121-144 of the revised manuscript, which are described as 

follows: " The daily streamflow time series exhibits seasonal characteristics due to the 

cyclical influence of the four seasons. Therefore, deseasonalization is a necessary 



preprocessing step before modeling, with the specific method detailed in Section 3.1. 

In this section, the presence of long-term memory in the daily streamflow series is 

identified based on the Hurst exponent (H) calculated using the rescaled range (R/S) 

analysis method and the trend of the autocorrelation function (ACF), and the influence 

of seasonality on long-term memory is also assessed (Lo, 1991). On this basis, the 

stationarity of the series is evaluated using three unit root tests: the Augmented Dickey-

Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

tests (Dickey and Fuller, 1981; Kwiatkowski et al., 1992; Peter and Perron, 1988). The 

null hypotheses of ADF and PP tests assume that the time series has a unit root, while 

the KPSS test considers the null hypothesis as the time series being a stationary process. 

Due to the tendency of unit root tests to favor the null hypothesis, to rigorously 

determine the non-stationarity of the daily streamflow time series, if any of the three 

methods indicates the presence of a unit root process, then the daily streamflow time 

series at that station is considered non-stationary. Stationarity is a fundamental 

prerequisite for model construction. The method of achieving stationarity differs 

depending on the presence of long memory: non-long-memory series are differenced 

using integer orders, while long-memory series require fractional differencing. 

Subsequently, the Ljung-Box (LB) and Lagrange Multiplier (LM) tests are employed 

to detect the presence of ARCH effects, which is the most critical link in choosing to 

build a heteroscedastic model in this study (Ljung and Box, 1978). The ARCH effect 

reflects the limitations of linear regression models and highlights the necessity of 

characterizing the variation in second-order moments. Some studies have suggested a 

close relationship between ARCH effects and long-term memory in hydrological time 

series, neglecting long-term memory may lead to spurious detection of ARCH effects 

(). Therefore, this section compares the LB test results of two linear models: a standard 

integer-order autoregressive model and a long-memory autoregressive (FAR) model 

based on fractional differencing. Finally, the BDS test is applied to examine whether 

the series exhibits nonlinear dynamics (Broock et al., 1996). Since most existing 

heteroscedastic models are constructed based on linear structures, if the series 

demonstrates significant nonlinearity, it may be necessary to improve the model 



expression accordingly. 

 
Figure 2: Daily streamflow time series characteristics test and application method.". 
(3) Refinement of Text and Interpretation: 

We have rewritten the section to describe each test concisely, with a brief explanation 

of its purpose and relevance. The results are interpreted in the context of the modeling 

objective, ensuring that each test logically contributes to the decision-making process. 

(4) Summary and Transition: 

At the end of Section 2.3, a concise summary paragraph has been added to synthesize 

the key findings-namely, that the streamflow series is non-stationary, non-random, and 

exhibits significant long-term memory. This conclusion justifies the subsequent use of 

long-memory modeling approaches. For details, see page 8, lines 145-155 of the revised 

manuscript, specifically describing “The results of various diagnostic tests on the daily 

streamflow time series are presented in Figure 4, Figure S2, and Tables S1–S3. The 

autocorrelation function (Figure 3) and the Hurst exponent results (Table S1) indicate 

that the daily streamflow series exhibits long-ter memory characteristics, and that 

seasonality weakens the strength of this memory. The results of the 3 unit root tests 

(Table S2) reveal that the series is non-stationary. Considering its long-memory 

properties, fractional differencing is adopted to achieve stationarity, which satisfies the 

model assumptions. Figure S2 shows the Ljung-Box (LB) test results for the residuals 



of two linear models. The residuals of both models exhibit no significant 

autocorrelation, indicating that the model structures are appropriate. However, the 

squared residuals display significant autocorrelation, reflecting the presence of ARCH 

effects. Moreover, the ARCH effect becomes more pronounced when long memory is 

taken into account. The LM test yields consistent results. The nonlinearity test results 

(Table S3) suggest that the daily streamflow time series exhibits significant nonlinear 

behavior, implying that the model structure in this study should be modified to 

accommodate nonlinear dynamics.”. The transition to the next section clearly states 

how these findings inform the modeling framework adopted in the remainder of the 

study. In the revised manuscript, lines 158-167 on pages 8-9 are described as: “The 

diagnostic results presented above provide critical insights into the statistical 

characteristics of the daily streamflow time series, including long-term memory, non-

stationarity, heteroscedasticity, and nonlinearity. These findings form a solid foundation 

for selecting appropriate modeling strategies in the subsequent sections. Specifically, 

the detection of long-term memory and non-stationarity justifies the use of fractional 

differencing methods to ensure model validity. The presence of ARCH effects 

highlights the need for models capable of capturing time-varying volatility, while the 

identified nonlinear dynamics suggest that linear structural models may be insufficient. 

DAR-type models have emerged as strong competitors to the widely used 

heteroscedastic GARCH models, due to their simple mathematical formulation, ease of 

parameter estimation, and ability to accurately characterize real-world data. Based on 

the results of this section, the next section introduces an enhanced modeling framework 

(FDTDAR model) based on the DAR family, which integrates long-memory 

components, heteroscedasticity, and nonlinear dynamics to better capture the complex 

behavior of daily streamflow.”. 

• Before going to section 4, it is recommended to give an illustration of the model 

selection, parameter estimation, and testing the residuals of the FDTDAR model for 

a simulation from a standard model. Give a flowchart for this entire model-building 

process and diagrams related to the key results. 



Responses: We thank the reviewer for this valuable suggestion. In response, we have 

added a detailed illustration of the model-building process for the FDTDAR model 

prior to Section 4. This new content serves as a bridge between the diagnostic analysis 

and the model application phase, and aims to enhance the transparency of our modeling 

framework. 

(1) Model Selection and Justification: 

We added a brief summary at the beginning of Section 3.1 in the revised manuscript, 

explaining why the FDTDAR model is constructed based on the statistical 

characteristics of the determined daily runoff time series. The description of lines 179-

188 on pages 9-10 in the revised manuscript is: “As revealed by the analysis in Section 

2.3, the daily streamflow time series exhibits long-term memory, non-stationarity, 

conditional heteroscedasticity, and nonlinear characteristics. Therefore, these properties 

should be comprehensively considered in the model construction process. The model 

proposed in this study, referred to as the FDTDAR model (Fractionally differenced 

dual-threshold double autoregressive model), is an extension of the ordinary double 

autoregressive (DAR) model-a type of heteroscedasticity model. Specifically, the long 

memory characteristics of daily streamflow are described using the fractional difference 

method. On the premise of satisfying stationarity, the threshold idea is considered in the 

DAR model, that is, in the process of characterizing the first-order moment and the 

second-order moment, the threshold is introduced to segment, so as to express the 

nonlinear changes of the daily streamflow series. This processing method is inspired by 

the threshold autoregression (TAR) model. The FDTDAR model is therefore capable 

of accommodating the coexistence of multiple complex features in the daily streamflow 

series. The mathematical formulation of the model is presented as follows:”. 

(2) Parameter Estimation: 

In the revised manuscript, we have clarified the parameter estimation method used for 

the proposed FDTDAR model at the beginning of Section 3.3 “Parameter Estimation 

of the FDTDAR Model.” We have also explicitly stated that two types of residual 

distributions (normal and Student’s t) are considered in the estimation process. This is 



described on Page 11, Lines 226-227 of the revised manuscript, as follows: “The 

parameters of the FDTDAR model are estimated using the quasi-maximum likelihood 

estimation (QMLE) method, considering both the Gaussian distribution (FDTDAR-n) 

and the student's t distribution (FDTDAR-t) for the residuals.”. 

Moreover, although the original version of Section 3.3 already included the maximum 

likelihood estimation formulas for the FDTDAR model under both distributional 

assumptions, it lacked details regarding the software implementation and the settings 

of the initial values of the parameters in the estimation process. These aspects have now 

been added in the revised manuscript. Please refer to Page 13, Lines 280–288 for the 

newly added description: “In this study, the quasi-maximum likelihood estimation 

under both residual distributions was implemented using the nlminb function in R 

version 4.4.1, which is an efficient numerical optimization tool. It returns the negative 

value of the likelihood function; therefore, the actual likelihood value used in the 

estimation is the negative of the function’s output. For both residual distribution 

scenarios, the model orders (𝑝##, 𝑝(#, 𝑝#(, 𝑝((, 𝑞##, 𝑞#(, 𝑞(#, and 𝑞((; 𝑝#, 𝑝(, 𝑞# 

and 𝑞() were exhaustively searched in the range of 0 to 10. The initial values of the 

parameters were determined based on the autocorrelation functions at different lag 

orders up to the corresponding model order. Additionally, the nlminb function allows 

for setting constraints on parameter values, which were specified based on the 

theoretical requirements of the model. Specifically, the parameters associated with the 

first-order moments were allowed to vary over the entire real line, while the parameters 

related to the second-order moments were constrained to be greater than 0.”. 

(3) Residual Diagnostics: 

We added an introduction to model residual diagnosis in the model evaluation method 

section (Section 3.6). For details, please see page 15, lines 329-332 of the revised 

manuscript, which reads: “The residual diagnostics of the model were conducted using 

the autocorrelation function (ACF), by examining whether the residual autocorrelations 

at various lag times fall within the 95% confidence interval around 0. If ACF values lie 

within this interval, the residuals can be considered approximately white noise, 

indicating that the model has effectively captured the variation structure of the time 



series.”. 

(4) Model building flowchart: 

An overview of the process of building the model in this study is shown in Figure 4. 

 
Figure 4: Model building overview diagram 

The key results related to the long-term memory-heteroscedastic-nonlinear structure 

models have been presented in Section 4.1. Specifically, the selection of model orders 

and threshold values are shown in Figure 5 and Table 2, respectively. Figures 6 and 7 

present the comparison of predictive performance and the scatter distribution of 

forecasts for the FDTDAR and FTAR-GARCH models under two types of residual 

distributions. Figure 8 displays the ACF test results of the model residuals. 

• Section 3.5: Why the FTAR-GARCH model? The previous sections were devoted 

to a finer understanding of the FDTDAR model. Suddenly, in this section, a new 

modeling framework is added without any prior motivation/reasons. Please clarify 

this point. 

Responses: We appreciate the reviewer’s insightful comment regarding the sudden 

introduction of the FTAR-GARCH model in Section 3.5. To address this concern, we 

have revised the manuscript to clarify the rationale for introducing the FTAR-GARCH 



model. As mentioned in the Introduction, AR-GARCH type models are popular and 

widely recognized approaches for modeling heteroscedasticity in time series. However, 

the complex structure of these combined models often leads to difficulties in parameter 

estimation, and the strict parameter constraints of AR-type models further limit their 

applicability in real-world scenarios. In contrast, DAR-type models have recently 

emerged as a promising alternative for modeling heteroscedasticity. Due to their simpler 

mathematical formulation and more flexible parameter settings, they are easier to 

implement and generally provide more reliable results. The FTAR-GARCH model 

introduced in Section 3.5 retains the basic structure of the traditional AR-GARCH 

framework, but similar to the FDTDAR model, it adds elements that capture long-

memory behavior (via fractional differencing) and nonlinear dynamics (through 

threshold effects). Therefore, our primary motivation for introducing the FTAR-

GARCH model is to use it as a benchmark for evaluating the predictive performance 

of the proposed FDTDAR model. 

To improve the coherence of the manuscript, we also added a brief introductory 

paragraph at the beginning of Section 3.5 to explain the motivation for constructing the 

FTAR-GARCH model. This clarification has been added to the beginning of Section 

3.5 (see revised manuscript, Page14, Lines 307-308), which now reads: “To evaluate 

the performance of the proposed FDTDAR model, we compare it with the FTAR-

GARCH model, a widely used long-memory heteroscedastic model that also 

incorporates threshold effects.”. 

Other comments: 

• There are many figures and tables in the main manuscript that can be moved to the 

supplementary section, as they support the model development process. For 

example, table 2, figure 4, and figure 2, table 3. 

Responses: Thanks for your suggestion. In the revised manuscript, we have moved 

Table 2, Figure 4 and Figure 2, Table 3 in the original version to Table S2, Figure S2 

and Figure S1, Table S3 in the supplementary file. 



• Section 2.3: Daily streamflow time series characteristics and their linkage 

relationships – the title is not conveying any specific element/property. What is 

meant by linkage relationships? How is this link estimated? What are the variables 

considered for the link? 

Responses: Thank you for pointing out the ambiguity in the original title and content 

of Section 2.3. We acknowledge that the phrase “Daily streamflow time series 

characteristics and their linkage relationships” was too vague and failed to clearly 

convey the focus of the section. In the original version, the intention was to examine 

whether the daily streamflow time series exhibits long-term memory, non-stationarity, 

ARCH effects, and nonlinearity, as well as whether these properties interact with each 

other (i.e., linkage relationships). The section did not employ conventional correlation 

measures involving variable pairs. For example, the influence of seasonality on long-

term memory was assessed by comparing the Hurst exponent values and autocorrelation 

function (ACF) behavior of the original series and the deseasonalized series. The 

observation that the deseasonalized series exhibits higher H values and a slower ACF 

decay suggests that removing seasonality enhances the strength of long-term memory. 

Similarly, the effect of long-term memory on the presence of ARCH effects (conditional 

heteroskedasticity) was also evaluated. We agree that the use of the term “linkage 

relationships” was imprecise. To avoid confusion, we have removed this term from the 

title and revised the title of Section 2.3 to “Daily streamflow time series characteristics”. 

• Line 130-135: There is no motivation for doing all sorts of statistical tests. In the 

previous section, the discussion was focused on autocorrelation, but suddenly it 

shifted to nonstationarity without giving much motivation for why such an analysis 

is needed. 

Responses: We agree that the transition between different statistical tests in the original 

version was abrupt and lacked a clear motivating context. We have substantially revised 

and reorganized Section 2.3 in the updated manuscript. The revised section now 

consists of four structured paragraphs: (1) an overall introduction and objective of the 

section, (2) an introduction of the methods used to examine each statistical property, (3) 



a summary of the diagnostic results, and (4) a transitional paragraph leading into the 

subsequent modeling section. In the first paragraph, we clearly state that the objective 

of this diagnostic analysis is to determine the statistical characteristics of the daily 

streamflow series, such as long-term memory, nonstationarity, conditional 

heteroskedasticity, and nonlinearity-which are critical for selecting an appropriate 

modeling framework. Therefore, after identifying long memory based on the 

autocorrelation function, we proceed to diagnose nonstationarity and other statistical 

features. The abrupt transitions present in the original version have been addressed and 

resolved through the new structured and logically coherent revision. 

• Line 120-125: How the deseasonalization is performed here. Please provide the 

mathematical details of the process. 

Responses: We thank the reviewer for this helpful suggestion. In the revised manuscript, 

we have restructured Section 2.3 according to the reviewer’s other suggestions. As part 

of this revision, we have clearly indicated where the mathematical details of the 

deseasonalization process are provided. Specifically, these details are included in 

Section 3.1. Please refer to Page 6, Lines 121-122 of the revised manuscript, which 

state: “The daily streamflow time series exhibits seasonal characteristics due to the 

cyclical influence of the four seasons. Therefore, deseasonalization is a necessary 

preprocessing step before modeling, with the specific method detailed in Section 3.1.”. 

• Figure 2: The discharge is shown in m3/s with a different y-axis. Please show the 

plots in mm/day, so that the flow magnitudes and other patterns can be compared 

visually across all the catchments. 

Responses: We have moved Figure 2 from the original manuscript to the supplementary 

material as Figure S1. However, we fully acknowledge the reviewer’s valid concern 

regarding the inconsistency in the y-axis scales, which indeed makes it difficult to 

visually compare daily streamflow magnitudes across all hydrological stations. To 

address this issue while maintaining consistency with the units used in the subsequent 

model comparison figures, we retained the current unit (m³/s) but adjusted the y-axis 



display range to be consistent across all subplots. This revision resolves the concern 

raised and ensures logical consistency throughout the manuscript.  

• Line 96: The Length of the basin is 5464 km, is it the length of the main 

channel/river? Please provide the catchment area. 

Responses: Thanks for your comments. We have clarified in the revised manuscript 

that the length of the Yellow River mainstream is 5464 kilometers, and added the 

catchment area of the basin. Please see page 4, lines 97-98 of the revised manuscript 

for details, which is specifically described as "The research area of this study (Figure 

1) is the Yellow River Basin in China, which has a main stream length of approximately 

5464 km and a catchment area of about 795,000 km2, ranking second in China and fifth 

in the world. ". 

• Section 3.1: “mu_m and sigma_m are seasonal mean and variance” – I think this is 

not correct. It is mentioned in equation 1 that m denotes day of the year 

where n denotes the year. Therefore, the variable x_nm denotes the value of 

streamflow on the mth day of the nth year. So if the average is taken across all the 

years (as it is mentioned n=1,2,..,N), mu_m should be the average annual 

streamflow, not the seasonal streamflow as it is now mentioned. Please clarify this. 

The same is with the variance, sigma_m. 

Responses: Thanks for your comments. We have changed the expression to “𝜇) and 

𝜎) are the mean and variance of the variable for each calendar day, respectively.” in 

the revised manuscript on page 9, lines 175-176. 

• Section 2.3: Strong motivation for why the DAR type model is needed in 

streamflow simulation can be discussed here with some numerical cases. 

Responses: Thank you for this helpful suggestion. We agree that providing a stronger 

motivation for using DAR-type models in streamflow simulation would enhance the 

clarity and impact of Section 2.3. In the revised manuscript, we have expanded the 

discussion to more clearly explain the rationale behind adopting the DAR framework. 

Specifically, we emphasize that through various tests, daily streamflow series often 



exhibit long-term memory behavior, conditional heteroscedasticity, and nonlinear 

dynamics, which are not well captured by traditional linear models. DAR-type models 

provide a concise and easy-to-interpret heteroscedasticity structure, which has the 

potential to surpass GARCH-type models in real work. We describe this in the transition 

paragraph in Section 2.3, which also leads to the improved framework of the DAR 

model in the next section (FDTDAR model), which includes the characterization of 

long-term memory and nonlinear changes. The specific description is: “The diagnostic 

results presented above provide critical insights into the statistical characteristics of the 

daily streamflow time series, including long-term memory, non-stationarity, 

heteroscedasticity, and nonlinearity. These findings form a solid foundation for 

selecting appropriate modeling strategies in the subsequent sections. Specifically, the 

detection of long-term memory and non-stationarity justifies the use of fractional 

differencing methods to ensure model validity. The presence of ARCH effects 

highlights the need for models capable of capturing time-varying volatility, while the 

identified nonlinear dynamics suggest that linear structural models may be insufficient. 

DAR-type models have emerged as strong competitors to the widely used 

heteroscedastic GARCH models, due to their simple mathematical formulation, ease of 

parameter estimation, and ability to accurately characterize real-world data. Based on 

the results of this section, the next section introduces an enhanced modeling framework 

(FDTDAR model) based on the DAR family, which integrates long-memory 

components, heteroscedasticity, and nonlinear dynamics to better capture the complex 

behavior of daily streamflow.” on pages 8-9, lines 158-167 of the revised manuscript. 

• Section 4.1 is not there. 

Responses: Thanks for your discovery of the problem in the manuscript. In the revised 

manuscript, sections "4.2" and "4.3" have been re-adjusted to "4.1" and "4.2", 

respectively. 

 


