

1

2 **Dynamics of Snow and Glacier Cover in the Upper Karnali Basin, Nepal: An Analysis of**
3 **Its Relationship with Climatic and Topographic Parameters**

4 **Motilal Ghimire^{1*}**, Dibas Shrestha², Raju Chauhan³, Amrit Thapa⁴, Til Prasad Pangali Sharma⁵,
5 Krishna Prasad Sharma⁶, Sher Bahadur Gurung⁶, Sundar Devkota⁷, Prabin Bhandari⁸, Sikesh
6 Koirala⁷, Yanhong Wu⁹, Niroj Timalsina⁶, and Jeevan Kutu⁶

7 ¹ *Corresponding Author:* Tribhuvan University, Central Department of Geography, Kathmandu,
8 Nepal. Email: motighimire@gmail.com

9 ² Tribhuvan University, Central Department of Hydrology and Meteorology, Kathmandu, Nepal

10 ³ Tribhuvan University, Central Department of Environmental Science, Kathmandu, Nepal

11 ⁴ University of Alaska Fairbanks, Fairbanks, **AK**, USA

12 ⁵ Tribhuvan University, Nepal Mountain Academy, Kathmandu, Nepal

13 ⁶ Tribhuvan University, Central Department of Geography, Kathmandu, Nepal

14 ⁷ Department of Survey, Government of Nepal, Kathmandu, Nepal

15 ⁸ George Mason University, Fairfax, **VA**, USA

16 ⁹ Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu,
17 China

18 **Abstract**

19 Snow and glacier cover in the Upper Karnali Basin (UKB) are crucial freshwater reservoirs that
20 support downstream ecosystems and human populations. This study uses remote sensing and
21 GIS data **from various sources, including MODIS**-derived land surface temperature and ERA5
22 reanalysis **climate datasets**, to analyze snow cover dynamics from 2002 to 2024. The results

23 show a significant decrease in snow-covered area (SCA), with an annual decline of
24 **approximately** 3.99 km². Seasonal variations indicate the most significant reductions during the
25 monsoon period (July–September), when rising temperatures accelerate snowmelt. The analysis
26 also **identifies a** strong negative correlation between snow cover and temperature ($r = -0.59$ to -
27 0.77, $p < 0.05$), with warming trends disproportionately affecting **mid- to high-elevation** zones
28 (3000–5000 m a.s.l.). Glacier basins exhibit consistent retreat, with the mean glacier area
29 **decreasing** from 119.05 hectares in 2000 to 100.47 hectares in 2023, highlighting the impact of
30 climate change. Additionally, snowline analysis shows upward migration, with the 10th-
31 percentile snowline rising at approximately 5.16 m/year, **indicating** progressive snow loss at
32 lower elevations. Given the current warming trends (~0.0643°C/year above 5000 m a.s.l.), the
33 UKB could experience a decline in glacier area by 47–69% and snow-covered area by 19–30%.
34 These findings **highlight** the vulnerability of the UKB's cryosphere to climate change,
35 **emphasizing the need for** adaptive water resource management **strategies to** mitigate impacts
36 on hydrology, agriculture, and regional water security.

37 **Keywords:** Snow and glacier, Karnali, Himalayas, Remote sensing, Climate change, Elevation-
38 dependent **warming**, Snowline

39

40 **1. Introduction**

41 Snow and glaciers in the mountains serve as freshwater **reservoirs**. Their meltwater provides a
42 consistent supply to rivers and downstream ecosystems (Immerzeel et al., 2020; Wester et al.,
43 2019; Pritchard, 2019). The meltwater from Himalayan ice and snow supports the livelihoods of
44 millions across Nepal, India, and China by supplying drinking water, irrigation, hydropower, and
45 ecosystem services (Bolch, 2007; Bookhagen and Burbank, 2010). Therefore, a decline in snow
46 and glacier extent threatens water availability, food security, and sustainable development in
47 these regions (Krishnan et al., 2019).

48 Furthermore, snow and glacial ice regulate regional and global climates by reflecting solar
49 radiation, thereby contributing to the Earth's energy balance and influencing local weather
50 patterns (Xu et al., 2009). Seasonal meltwater sustains ecosystems that provide habitats for
51 numerous animal and plant species in mountainous regions. Consequently, changes in snow
52 cover and glaciers can disrupt these ecosystems entirely (Wester et al., 2019). On both local and
53 regional scales, variations in the amount of snow and ice can contribute to changes in sea level,
54 affecting coastal areas (Forster et al., 2021; Mimura, 2013).

55 Snow-covered peaks and glaciers are major hubs for adventure, religious, and nature-based
56 tourism (Anup, 2017; Nyaupane and Chhetri, 2009). Being sensitive to climate change, changes
57 in their size and volume not only serve as visible indicators of broader climate trends but also
58 directly threaten the tourism economy they support (Elsasser and Bürki, 2002).

59 A comprehensive understanding of cryospheric transformations is essential for accurate
60 hydrological forecasting, assessing cryospheric hazards, and developing effective adaptation
61 strategies. Historically, monitoring snow and glacier dynamics in the remote Himalayan regions

62 was limited by a scarcity of **in situ** observations. Since the 1970s, advances in satellite remote
63 sensing have revolutionized large-scale cryospheric assessments (Kääb et al., 2012; Muhammad
64 and Thapa, 2020). The synergistic integration of satellite-derived data with sophisticated climate
65 models and targeted ground-based measurements has subsequently **enabled an** improved
66 understanding of snow and glacier mass balance changes, their resultant hydrological impacts,
67 and spatiotemporal variability (Bajracharya et al., 2014; Bolch et al., 2012; Gurung et al., 2017;
68 Kääb et al., 2012; Krishnan et al., 2019; Kulkarni et al., 2021). Collectively, these studies
69 demonstrate substantial snow and glacier loss across the Himalayas, altering river discharge
70 seasonality and water resource availability.

71 Extensive research on glaciers, glacier lakes, and glacier lake outburst floods (GLOFs) in Nepal
72 has been conducted (Bajracharya et al., 2009; Hall et al., 2002; Kääb et al., 2005; Shrestha et al.,
73 2012). However, these **studies have** disproportionately focused on the central and eastern
74 Himalayas. The mid-western and far-western regions remain underrepresented due to their
75 remoteness and limited accessibility (Ghimire et al., 2025a; Khadka et al., 2024). Although
76 global and regional glacier **inventories that** specifically **address** high-resolution (≤ 30 m)
77 glacier cover are limited (Bajracharya et al., 2014; Bolch et al.), analyses of elevation-dependent
78 warming (EDW) and trend assessments are also scarce in the Himalayas (Pepin et al., 2015;
79 Pepin et al., 2022; Desinayak et al., 2022). Furthermore, integrated studies linking glaciers,
80 glacier basins, and snow cover to climate remain underexplored.

81 Bridging this gap is crucial for understanding cryosphere dynamics and their impacts on
82 hydrology, hazards, and livelihoods in western Nepal. The Karnali Basin, Nepal's largest river
83 basin (approximately 40,780 km² upstream of the Chisapani gauge station) and home to about
84 2.5 million people (CBS, 2021), exemplifies this need. Its rivers, fed by snowmelt, provide

85 essential dry-season water for irrigation, drinking, and hydropower. Despite its ecological
86 significance, the basin's cryospheric behavior remains poorly documented.

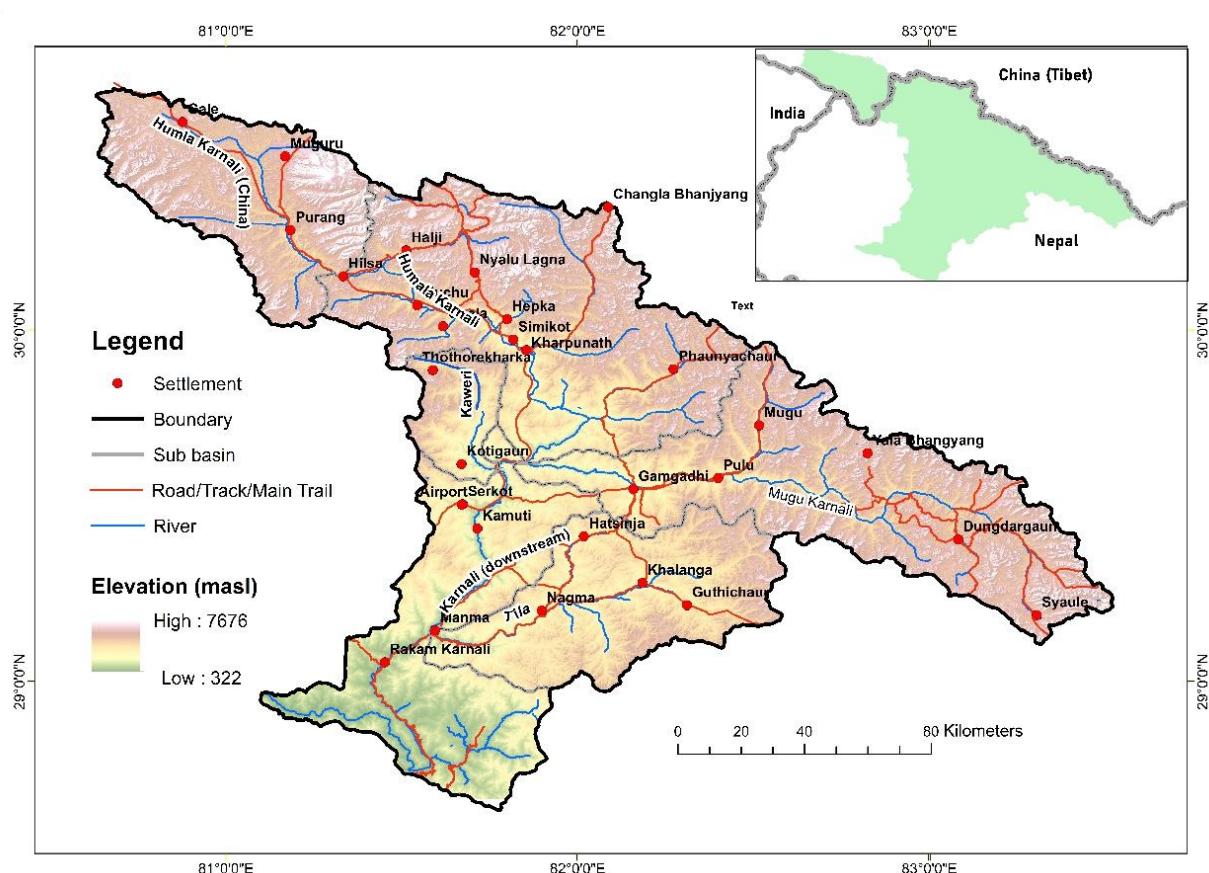
87 Findings from studies conducted in the central and eastern Himalayas, the Indian Himalayas, and
88 the Tibetan Plateau cannot be universally applied to the Karnali Basin due to differences in
89 climatic regimes and geographical settings. Understanding the impacts of cryosphere changes on
90 water resources requires research specific to the Karnali Basin. Integrating MODIS data, which
91 offers high temporal resolution, with Landsat data, known for its high spatial resolution, will
92 **improve** our understanding of snow and glacier changes and their relationships with topography,
93 glacier basins, and climate.

94 Against this backdrop, the specific objectives of this study are as follows:

95 1. Quantify the temporal variations in snow and glacier cover in the Upper Karnali Basin from
96 2000 to 2024 using multi-sensor remote sensing data.

97 2. Determine the influence of climatic drivers, such as rising temperatures and shifts in
98 precipitation, on the cryospheric dynamics, including the upward migration of the snowline.

99 **2. Study Area**


100 The Upper Karnali Basin (UKB) is a transboundary **catchment area** extending from 28.64° to
101 30.68° N latitude and 80.64° to 83.54° E longitude, covering 22,577 km². This region accounts
102 for more than 50% of the entire Karnali Basin **upstream of the** Chisapani gauge station (225 m
103 above sea level). It includes about 66% of the basin's glacierized area (Bajracharya et al., 2011;
104 Ghimire et al., 2025a). The UKB **includes** the Humla Karnali (partly within Tibet, China), Muju
105 Karnali, Kawari, and Tila Nadi sub-basins (see Fig. 1).

106 The elevation ranges from 340 meters to 7,030 meters, with an alpine zone above 4,000 meters
107 extending across the Middle Mountains, High Mountains, High Himalaya, and the Tibetan
108 Plateau. These regions encompass the geological units known as the Lesser Himalaya, Higher
109 Himalaya, and Tethys Himalaya (LRMP 1986; Dhital 2015). This topographic and **lithological**
110 diversity significantly influences climatic gradients and cryospheric processes.

111 The climate varies from polar tundra in the glacier regions to subtropical, temperate, and cold
112 climates below 4,000 meters. Mean annual temperatures range from 27 °C to -12 °C, while
113 precipitation varies from 250 mm in rain-shadow areas to approximately 1,900 mm annually on
114 the **rain-bearing** slopes. The cryosphere extends across both rainy and rain-shadow regions,
115 influencing the distribution and mass balance of snow and glaciers.

116 The Upper Karnali Basin features a diverse landscape of snow-covered glaciers, valleys,
117 permafrost, alpine meadows, and forests, supporting a rich variety of flora and fauna. It
118 represents a cultural blend of Khas and Tibetan traditions and is an emerging tourist destination,
119 including a stop on the Kailash Mansarovar pilgrimage route. The basin has an estimated
120 population of approximately 816,941 people, with a density of 36.2 persons per square
121 kilometer, residing in 4,395 settlements, primarily below 4,000 meters in elevation. The Human
122 Development Index in the area is 0.49, which is below the national average.

123 Due to its climatic, geological, and cryospheric diversity, the Upper Karnali Basin represents the
124 broader Himalayan environment. It serves as an ideal natural laboratory for studying spatial
125 variations in snow- and glacier-covered areas, elevation-dependent warming, and hydro-
126 cryospheric changes across far- and mid-western Nepal.

127

128

Figure 1. Location of the Upper Karnali Basin.

129

130

3. Data Sources, Methods, and Limitations

131 This study treats snow and glacier cover as a unified cryospheric component because of their
 132 analogous functional roles. It analyzes cryospheric dynamics using remote sensing techniques.
 133 Satellite imagery was processed to generate time-series data on snow and ice cover, derive land
 134 surface temperatures, and map glacier basins.

135

3.1. Snow Cover Mapping

136 We mapped snow cover in the Upper Karnali Basin using Google Earth Engine (GEE) and
 137 imagery from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI. For the period preceding the

138 Scan Line Corrector (SLC) failure, we used only Landsat 7 ETM+ images (2002–2003). For
139 subsequent years, we utilized data from Landsat 5 TM and Landsat 8 OLI. To ensure high data
140 quality, we selected only scenes with less than 30% cloud cover see (**Sect. S1 and Fig. S1 in the**
141 **Supplement**).

142 We preprocessed all Landsat images by masking clouds using the Quality Assessment (QA)
143 bands–pixel_qa for Landsat 5 and 7, and QA_PIXEL for Landsat 8. Next, we calculated the
144 Normalized Difference Snow Index (NDSI) using the green and short-wave infrared (SWIR)
145 bands (Hall et al., 2002; Gorelick et al., 2017) and applied a threshold of NDSI > 0.4 to identify
146 snow pixels. To reduce confusion between snow and vegetation in mixed or forested terrain, we
147 also calculated the Normalized Difference Vegetation Index (NDVI) and excluded pixels with
148 NDVI > 0.2 from the snow classification, following the approach of Rittger et al. (2013). Finally,
149 we exported the resulting snow cover maps as GeoTIFF files for overlay and **sub-basin** and
150 micro-basin analyses.

151 To supplement the Landsat observations, we processed MODIS 8-day composite snow-cover
152 products (MOD10A2) using Google Earth Engine (GEE). The MOD10A2 algorithm employs a
153 maximum snow-extent compositing method over each 8-day period (Parajka and Blöschl, 2008),
154 which minimizes cloud contamination and produces a spatially continuous dataset for analyzing
155 seasonal and interannual variability in snow cover. Although this **approach loses** daily temporal
156 resolution, the 8-day composite effectively smooths out short-lived cloud effects, providing a
157 more stable dataset for trend analysis.

158 After processing the imagery, we executed a Python script within the Google Earth Engine
159 (GEE) environment to automate the download and organization of snow cover data. The script

160 aggregated MODIS-derived snow extent by season, **sub-basin**, and elevation band (derived from
161 the SRTM DEM).

162 The year was divided into four distinct three-**month periods**: January–March (Peak
163 Accumulation), April–June (Major Ablation), July–September (Monsoon Ablation), and
164 October–December (Early Accumulation). This division was explicitly chosen to capture the
165 hydrological phases of snow accumulation and melting while minimizing cloud contamination
166 during the monsoon season (Hunt et al., 2025; Khatiwada et al., 2016; Kulkarni et al., 2010). The
167 resulting structured snow dataset served as the main input for analyzing snow cover trends,
168 elevation-dependent variability, and hydrological differences among sub-basins.

169 We describe the methods for spatial resolution harmonization and accuracy assessment between
170 Landsat and MODIS datasets (see **Sect. S2 and Tables S1–S3 in the Supplement**). Despite
171 these refinements, persistent monsoon cloud cover continues to limit optical remote sensing in
172 the Himalayas, often **leading to** underestimation of snow-covered areas and uncertainties in
173 seasonal trends.

174 Elevation bands were defined using the SRTM DEM and categorized into 200-meter intervals,
175 ranging from ≤ 2000 m to ≥ 6500 m. Zonal statistics were applied to extract the frequency of
176 snow cover for each elevation band and sub-basin. **The snow-covered area** was calculated using
177 a threshold-based binary mask. The results were aggregated into a structured dataset, revealing
178 seasonal snow distribution and variations across elevation zones and watersheds, thereby
179 facilitating hydrological analysis.

180

181 **3.2. Land Surface Temperature Data and Validation**

182 We also downloaded land surface temperature (LST) **data** at 1 km resolution from the
183 Application for Extracting and Exploring Analysis Ready Sample (AppEEARS) platform.
184 AppEEARS is a NASA-supported platform developed to facilitate easy access, subset into
185 specified areas, and analysis of climate and environmental **data** (Wan et al., 2015). MODIS Land
186 Surface Temperature (LST) data have been reliably used to determine surface temperature
187 patterns in areas where ground observations are scarce, **particularly** in rugged mountainous
188 regions. Several studies have confirmed their accuracy, **reporting** average biases of less than 1.5
189 K and high correlations ($R^2 > 0.9$) with on-site measurements (Duan et al., 2019; Yu et al., 2011;
190 Zhao et al., 2019), demonstrating their appropriateness for analyzing elevation-related warming
191 trends in the Himalayas. We also obtained temperature and precipitation records, including
192 maximum and minimum values, from the Department of Hydrology and Meteorology (DHM),
193 Government of Nepal, **as well as** from open-access reanalysis datasets such as ERA5.
194 **Temperature data** (measured at 2 m above ground) were compared with MODIS LST; the
195 results of this comparison are discussed in **Sect. 4**. Due to the 1 km spatial resolution of the
196 MODIS product, the analysis of time series data reflects area-averaged temperature trends rather
197 than in situ measurements at individual stations.

198 **3.3. Delineation of the Glacier Basin and Glacier Data**

199 The boundaries of glacier basins were delineated to assess changes in glaciers and snow cover
200 fractions within glacier-drained areas. Glacier basins include trunk glaciers, tributary glaciers,
201 and surrounding slopes nourished by moving ice and snow. Their boundaries are topographically

202 defined, with the lower boundary terminating at the terminus of the main glacier. This
203 delineation process involved multiple steps to ensure accuracy.

204 Initially, the Glacier Inventory map referenced earlier served as a fundamental resource. High-
205 resolution imagery and ESRI's topographic maps in ArcGIS 10 and later versions provided
206 detailed spatial data. A **12.5-meter** DEM was used to extract drainage networks, produce contour
207 lines, and generate hillshade maps, enhancing the visualization of divides between glacier basins.
208 These components were essential for accurately identifying glacier termini and delineating
209 glacier head basins. This integrated approach, combining topographic analysis, remote sensing,
210 and geospatial techniques, enabled precise delineation of glacier basins for comprehensive
211 evaluations of snow cover fraction.

212 The time series glacier data compiled by **Ghimire et al. (2025)** were included in this study. The
213 lead author of the current manuscript **also contributed to that research** paper. In summary, we
214 mapped glacier polygons for the years 2000, 2010, and 2023 using high-resolution imagery from
215 Google Earth, Bing Maps, and RapidEye 2023 to maintain temporal consistency. Snow and
216 glaciers were identified based on their bright characteristics, smooth textures, and shadows cast
217 by adjacent terrain. Landsat composites (both true and false color) and the Normalized
218 Difference Snow Index (NDSI) enhanced the visibility of snow and ice, while altitude and
219 topographic data derived **from DEM highlighted** potential glacier regions. Outlines from the
220 Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014) and ICIMOD (Bajracharya et al., 2011)
221 served as references, while ground-truth and additional data helped validate the findings. This
222 comprehensive approach ensured precise delineation.

223

224 **3.4. Limitations and Validation**

225 A key limitation of this research is that optical remote sensing is significantly affected by cloud
226 cover, particularly during the monsoon season (Hall et al., 2002; Gafurov and Bárdossy, 2009).
227 Frequent cloudiness often restricts the availability of clear Landsat images, leading to an
228 underestimation of snow cover and potential inaccuracies in the spatial and seasonal assessment
229 of snow patterns. In this study, cloud-free images were primarily available from January to
230 March and October to December in most Upper Karnali sub-basins. Nevertheless, all four
231 seasons were analyzed for microglacier basins where suitable data **were available**.

232 To address these issues, we used MODIS MOD10A2 data, which provide higher temporal
233 resolution (8-day composites at 500 m) compared to Landsat's 16-day revisit cycle and 30 m
234 spatial resolution. This multi-sensor strategy enhances temporal continuity and minimizes data
235 gaps caused by clouds; however, **the** results should still be interpreted cautiously (Maskey et al.,
236 2011a; Parajka and Blöschl, 2008).

237 The scarcity of high-altitude temperature stations necessitated the use of MODIS land surface
238 temperature (LST) data at a 1 km resolution, representing daytime skin temperature at
239 approximately 10:30 A.M. local time. This skin temperature was compared with in situ air
240 temperature measurements taken at 2 meters above ground from four stations: Jumla (2,300 m),
241 Simkot (2,800 m), Guthi Chaur (3,080 m), and Rara (3,048 m). Correlations varied by site and
242 season—strongest at Jumla (up to 0.85), moderate at Guthi Chaur, and weakest at high-altitude,
243 snow-covered sites such as Simkot and Rara (−0.18). MODIS LST performs well in clear, snow-
244 free areas but requires adjustments at higher elevations. Differences arise from factors including
245 resolution, spatial averaging, land-cover heterogeneity, and surface–air temperature contrasts.

246 Validation studies further confirm its reliability for analyzing high-mountain temperatures in
247 regions where in situ data are limited (see Duan et al., 2019; Yu et al., 2011; Zhao et al., 2019).

248 4. Result

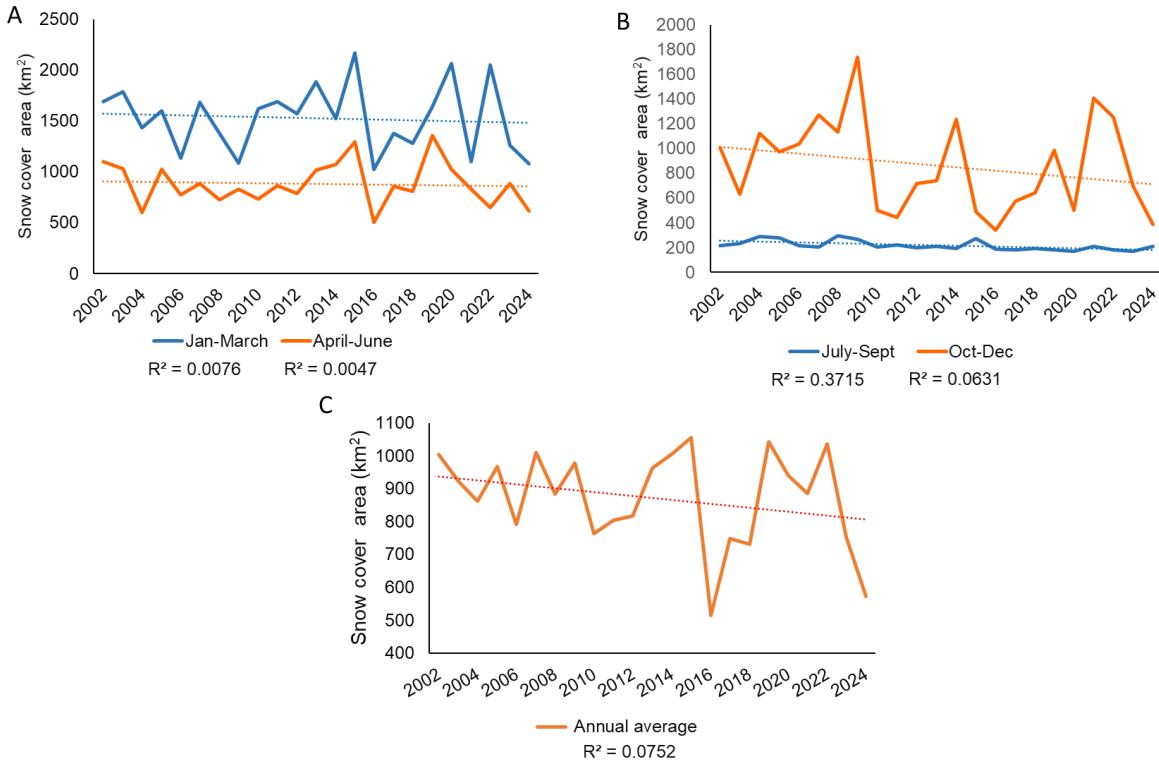
249 4.1. Snow or Ice cover Trend and Variability: Annual and Seasonal

250 The total snow cover across the Upper Karnali Basin (22,546 km²) from **2002 to 2024** averages
251 872 km², with a standard deviation of 147 km², indicating moderate variability (Table 1 and
252 Figure 2). The minimum recorded snow cover is 514 km²; about 25% of the observations are at
253 or below 777 km². The average **snow-covered** area from **January to March** is $1,528 \pm 333$ km²,
254 followed by **April to June** (881 ± 212 km²) and **October to December** (862 ± 373 km²),
255 respectively. July to September shows the lowest snow cover area, i.e., 169 ± 38.3 km².

256 Snow cover data reveal significant year-to-year changes in every quarterly season, with varying
257 directions and magnitudes of trends, as **demonstrated by correlation analysis**, the Kendall tau
258 test, and **Sen's slope estimator**. The annual average **snow-covered area** (SCA) shows a
259 decreasing trend, **although it is not statistically significant** ($p = 0.535$). **Sen's slope estimates** a
260 loss of approximately 3.99 km² per year, **indicating** a gradual decline in snowpack **over the past**
261 two decades. Seasonally, the July–September period exhibits a gentler trend compared to
262 October–December; however, **due to its** much lower inter-annual variability, this period exhibits
263 the statistically significant steepest decline in snow cover (Sen's Slope = -2.87, $p = 0.001$) (Table
264 1). This period is characterized by **snow ablation**, as the summer monsoon brings warmer
265 temperatures. In mid-latitude regions, precipitation occurs more as rain than snow, resulting in
266 accelerated snowmelt. While January–March shows a decline (Sen's slope = -8.63 km/year), it **is**
267 **not statistically significant** ($p = 0.523$), suggesting year-to-year winter variability in snowfall or
268 early melt. Similarly, no significant trends were detected from **April to June**. Interannual

269 variability is evident, with peaks and lows in snow and ice coverage (Figure 2). Episodic snow
270 coverage was observed in 2015, 2020, and 2022 (**January–March**); 2015 and 2019 (**April–**
271 **June**); and 2009 and 2021 (October–December), indicating **anomalous years of** heavy episodic
272 snowfall events. However, these anomalies do not **offset** the long-term declines. Compared to
273 **seasonal variability**, annual snow **coverage shows** relatively **low interannual variability**, with
274 a 16% coefficient of variation (**CoV**)—**the ratio** of the standard deviation to the mean.

275


276 **Table 1.** Snow cover descriptors and changes by seasons

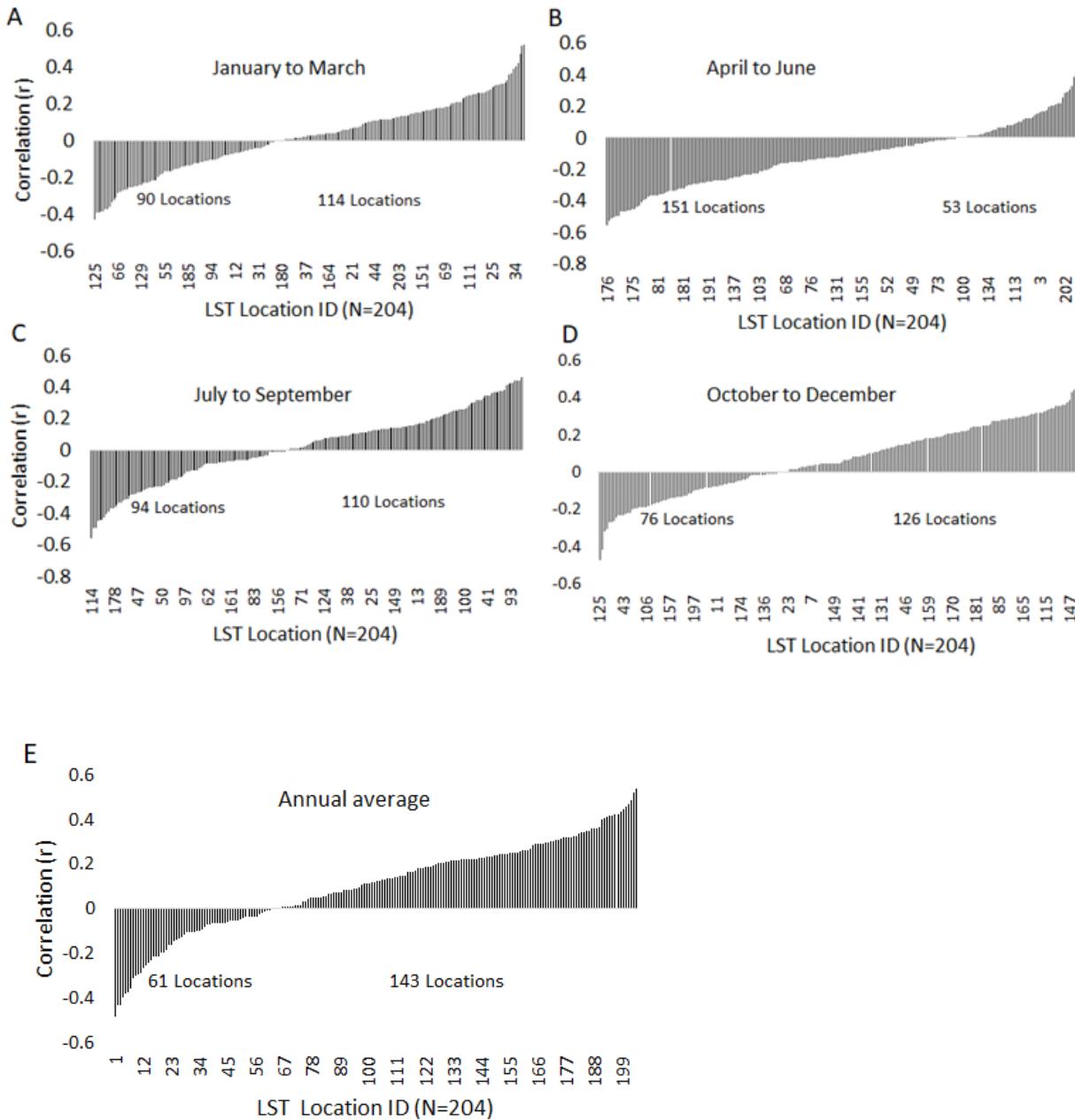
Descriptor	Jan–Mar	Apr–Jun	Jul–Sep	Oct–Dec	Annual avg.
Mean (km ²)	1 528.00	881.00	217.00	862.00	872.00
Median (km ²)	1 569.00	858.00	210.00	739.00	886.00
Std. dev. (km ²)	333.00	212.00	38.30	373.00	147.00
Minimum (km ²)	1 025.00	503.00	169.00	340.00	514.00
Maximum (km ²)	2 167.00	1 358.00	298.00	1 737.00	1 055.00
Skewness	0.21	0.47	0.94	0.51	−0.87
25th percentile (km ²)	1 270.00	751.00	191.00	538.00	777.00
50th percentile (km ²)	1 569.00	858.00	210.00	739.00	886.00
75th percentile (km ²)	1 689.00	1 025.00	229.00	1 126.00	991.00
Correlation (r)	−0.09	−0.07	−0.61	−0.25	−0.27
Kendall's τ	−0.09	0.01	−0.54	−0.13	−0.10
p-value	0.523	0.950	0.000	0.398	0.535
Sen's slope (km ² yr ^{−1})	−8.63	−3.14	−2.87	−13.21	−3.99

277

278 **Note:** Sen's slope represents the median of all possible pairwise slopes, **quantifying the trend**
 279 (here, snow cover) over time (Sen, 1968). It provides a more reliable **long-term estimate** of
 280 snow cover loss without being skewed by short-term anomalies (Gilbert, 1987; Yue and Wang,
 281 2004).

282

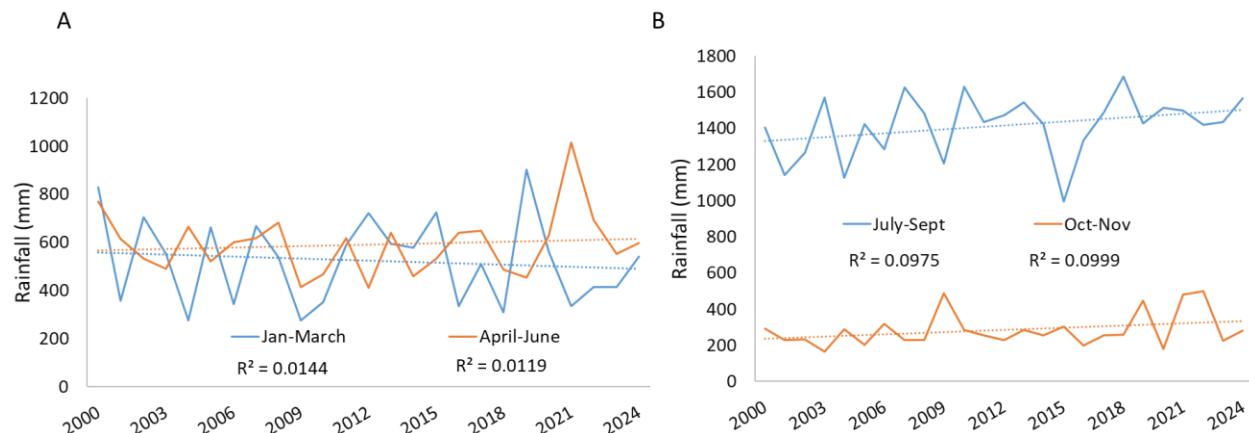
283

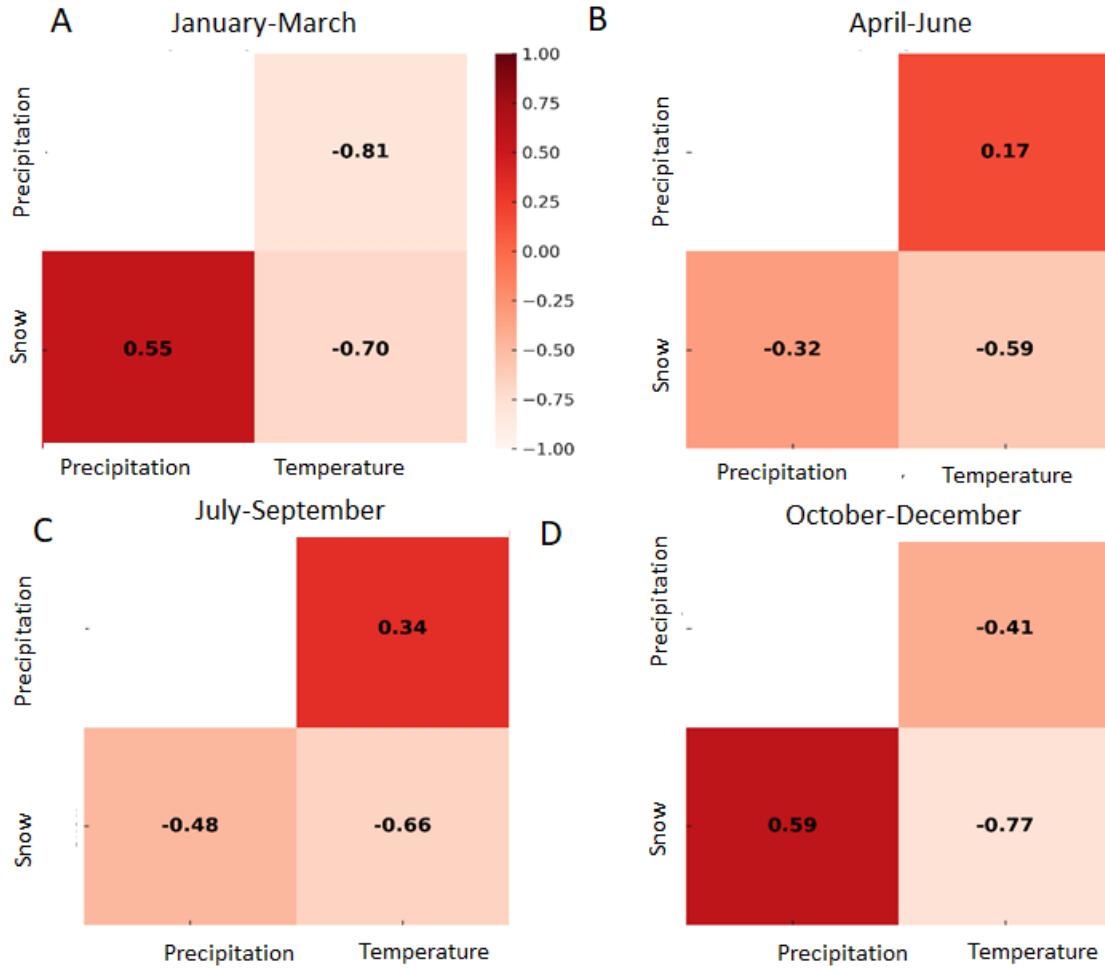

284 **Figure 2.** Temporal variation and trends in seasonal and annual snow-covered area (SCA) in the
 285 Upper Karnali Basin (2002–2024). (a) Time series of SCA for January–March (orange) and
 286 April–June (green); (b) SCA for July–September (blue) and October–December (orange); (c)
 287 average annual SCA (orange).

288 **4.2. The Relation between Snow Cover, Temperature, and Precipitation**

289 We derived land surface temperature (LST) data for 204 locations from MODIS Terra
 290 (MOD11A1) and Aqua (MYD11A2) **products at 1 km resolution**, processed through
 291 AppEEARS. Precipitation data were obtained from the ERA5-Land reanalysis (~9 km
 292 resolution) **provided by** ECMWF (Hersbach et al., 2020). These datasets, covering four distinct
 293 seasons, were used to **analyze** temperature and precipitation trends, as well as their relationships
 294 with snow cover trends (**Figures 3-5**).

295 Using correlation statistics, we found that among the 204 sampled sites, 143 locations
296 (approximately 70%) exhibit a positive annual temperature trend, indicating a general warming
297 pattern throughout the study region (Figure 3). However, statistically significant trends ($p \leq 0.1$)
298 were identified in only a subset of these sites, highlighting that not all observed warming trends
299 are statistically robust. Moreover, the warming pattern is not consistent across all seasons.
300 Notably, during the April–June interval, the temperature trend tends to be weaker or, in some
301 cases, negative. Several subsites across different seasons also demonstrate negative trends,
302 although the majority of locations show a positive trend (Figure 3). Elevation-related variability
303 in these trends is further analyzed in Figures 7–9 and Table 3.
304 Seasonal rainfall trends from 2000 to 2024 indicate weak to moderate increases across all
305 seasons, except for winter (January–March), which shows a slight downward trend ($R^2 = 0.014$)
306 (Figure 4). **Pre-monsoon** (April–June) rainfall **exhibits** a slight upward trend ($R^2 = 0.0119$). All
307 these seasons display high variability, suggesting a limited impact on snow accumulation.
308 Monsoon rainfall (July–September) demonstrates a more noticeable increase ($R^2 = 0.0975$),
309 primarily contributing to rainfall rather than snowfall. Post-monsoon (October–December)
310 precipitation remains low and stable. **Combined** with rising temperatures, these trends indicate a
311 shift toward rainfall-dominated precipitation, reduced snowfall, and earlier snowmelt,
312 contributing to declining snow cover and altered hydrological regimes.
313 The snow-covered area exhibits a strong to moderate negative **correlation with temperature**
314 **across all seasons** ($r = -0.59$ to -0.77 , $p < 0.05$) (Figure 5). **Conversely, precipitation shows a**
315 **positive correlation with snow cover during January–March and October–December** ($r =$
316 0.55 to 0.59 , $p < 0.05$), while in the remaining seasons, it demonstrates a moderate negative


317 correlation. **Additionally, precipitation** and temperature are negatively correlated in winter
318 (**October–March**) and positively correlated in summer (**April–September**).


319

320

321 **Figure 3.** The correlation illustrates the **seasonal** (A–E) temperature trend directions at various
322 sites between 2000 and 2024 (Source: MODIS Terra and Aqua MOD11A2, MYD11A1,
323 AppEEARS). Significant correlations at **the** 90% confidence level are observed at $r = \pm 0.364$.

326 **Figure 4.** Yearly rainfall trends across various periods. Precipitation data were collected from
 327 the ERA5-Land reanalysis dataset by ECMWF (Hersbach et al., 2020), covering 204 locations
 328 over four distinct time intervals.

331

332

333 **Figure 5.** Seasonal correlation patterns among snow cover, temperature, and precipitation over a
334 22-year period, presented separately for each season (A–D).

335 **4.3. Snow Cover Changes in Sub-Basins Using Landsat Series Data**

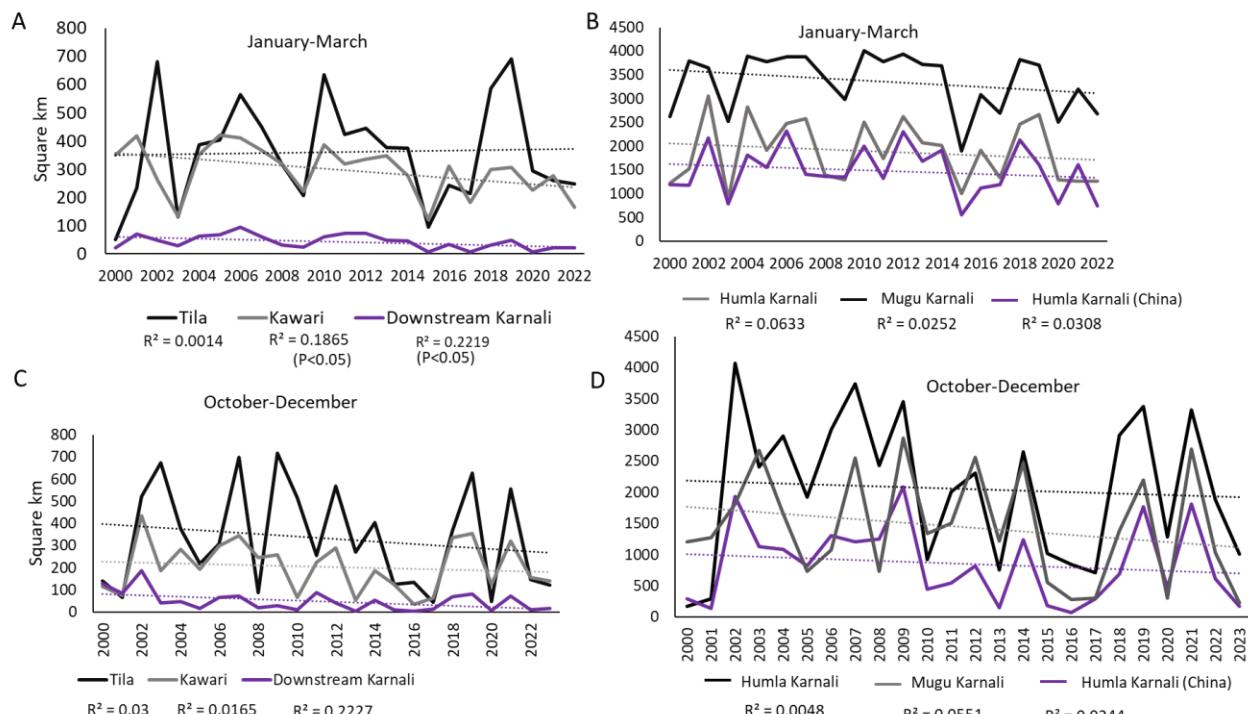
336 Landsat-derived reliable snow and ice data were unavailable for the pre-monsoon and monsoon
337 seasons due to significant cloud cover (as mentioned in Section 3.4). Therefore, only two
338 **seasons: January to March and October to December**, were considered. These periods are
339 characterized by snowfall as the primary form of precipitation, contributing to snow
340 accumulation.

341

342 Examining snow cover patterns in the sub-basins of the Upper Karnali Basin (UKB) across two
343 seasons (January–March and October–December) reveals notable seasonal and spatial
344 differences (Table 2). During January–March, Humla Karnali **exhibits** the largest average snow
345 cover (3,336 km²), followed by Mugu Karnali (1,864 km²) and Humla Karnali (China) (1,478
346 km²), **while downstream areas** such as Tila and Kawari have **minimal** coverage (less than 350
347 km²). Significant variability in snow cover **trends** is observed, particularly in Tila and
348 Downstream Karnali, with a coefficient of variation (CoV) **exceeding** 50%. This high CoV
349 indicates inconsistent snow cover from year to year during January–March. Furthermore, this
350 variability is associated with a significant negative **correlation**, i.e., $r \leq -0.37$ ($p < 0.1$). Figure 6
351 **graphically illustrates** the temporal **trends**, **showing** the correlation coefficient (r) and
352 fluctuations in Landsat-derived snow cover for the two seasons mentioned above. The
353 moderately negative skewness of the temporal distribution does not affect the correlation, which
354 is negative for all basins, indicating a declining trend.

355 Conversely, the October–December season has a lower average snow cover (823 km²) and
356 **exhibits significant fluctuations**, with a range of 227–1,570 km² and a coefficient of variation
357 (CoV) of 55%. Strong variability is observed **across all basins**, particularly in Humla Karnali
358 (China), Tila, and Downstream Karnali. The skewness **is moderate for most basins**, except for
359 the Downstream Karnali. Correlation values are reliable and indicate a declining trend. **Notably**,
360 **despite** high variability, **Downstream Karnali** shows a statistically significant negative
361 **correlation coefficient** of -0.47 ($p < 0.05$) (Figure 6).

362


Table 2. Descriptive statistics of snow cover across sub-basins for two seasons (January–March and October–December), along with the time series correlation from 2002 to 2024.

Descriptor	January - March						October-December					
	Humla Karnali (China)	Humla Karnali	Mugu Karnali	Tila	Kawari Downst ream	Seasonal average	Humla Karnali (China)	Humla Karnali	Mugu Karnali	Tila	Kawari Downstr eam	Seasonal average
Mean	1478	3336	1864	351	294	41.9	1227	854	2057	1442	332	48.1
Median	1420	3667	1827	346	308	39	1239	754	2159	1301	288	40.2
Standard deviation	501	597	645	184	86.2	24	311	622	1163	862	227	112
Coefficient of variation (CoV in %)	33.90	17.90	34.60	52.42	29.32	57.28	25.35	72.83	56.54	59.78	68.3 7	54.90
Minimum	552	1904	887	50.1	121	5.74	612	67.2	166	226	44.3	35.2
Maximum	2317	4009	3056	691	420	93.5	1642	2092	4074	2868	716	434
Skewness	-0.707	-0.488	-1.29	-0.69	-0.469	-0.763	-1.1	0.533	-0.016	0.231 7	0.34 7	185
Temporal correlation (r<0.44 and r>0.44, p<0.05	-0.16	-0.18	-0.10	0.12	-0.37	-0.41	-0.14	-0.16	-0.07	-0.23 -0.17	-0.13 -0.17	-0.47 -0.17

364

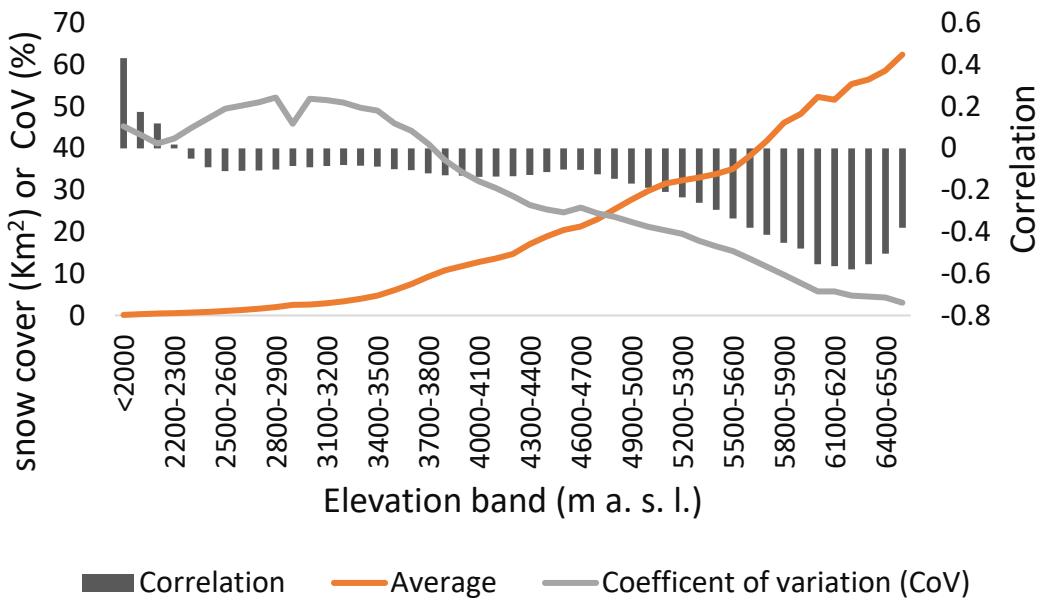
365

366

367

368 **Figure 6.** The snow cover trend in the Upper Karnali Basin varies across different sub-basins
 369 from January–March and from October–December (A–D).

370 4.4. Snow Cover Dynamics across Elevation Zones


371 The dynamics of snow cover across elevation zones, categorized in 200-meter intervals from
 372 ≤ 2000 m to ≥ 6500 m, reveal remarkable elevation-dependent patterns in correlation and
 373 **variability over time (2002–2024)** (Figure 7). Snow cover in the lowest elevation zones
 374 **exhibits** a weak positive correlation (0.12–0.43), indicating a slight increase. However,

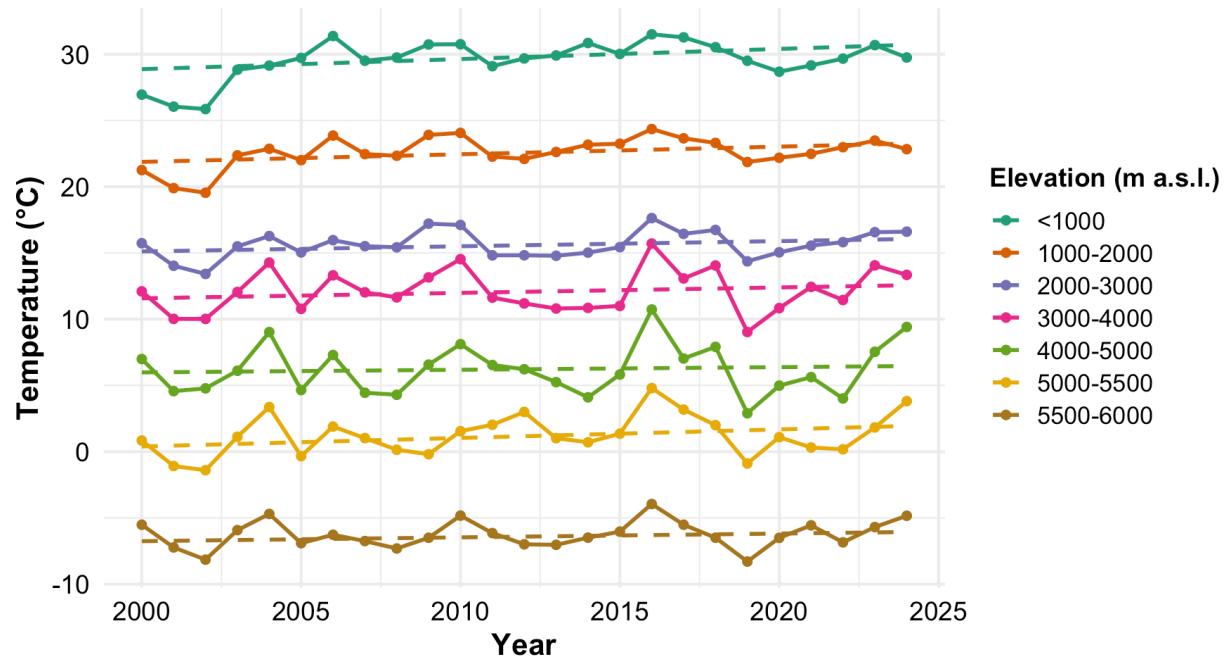
375 pronounced interannual variability (CoV ~ 41–43%) is likely driven by fluctuating temperature
376 and precipitation regimes (Pendergrass, 2020).

377 Above 2300 m a.s.l., correlations shift to weak negative values (up to 5000 m a.s.l., $r = -0.05$ to -
378 0.17), reaching peak negativity at 6100–6200 m a.s.l. ($r = -0.56$), indicating a significant decline
379 in snow cover (Figure 7). This trend aligns with the impacts of global warming, where rising
380 temperatures disproportionately affect higher elevations, accelerating snowmelt and reducing
381 accumulation (Naegeli et al., 2019; Ren et al., 2023; Shen et al., 2021). The mean snow cover
382 increases with elevation, showing a marked rise from 3300 to 6500 m a.s.l. or above, except
383 between 5000 and 5200 m a.s.l., which exhibits a gradual increase in snow cover.

384 Above this elevation, the mean snow cover area increases sharply, coinciding with glaciers and
385 permanent snow zones. In contrast, **the coefficient of variation (CoV)** rises with elevation up to
386 3100 m a.s.l., then declines sharply from 3100 m a.s.l. to 6500 m a.s.l. and beyond. This pattern
387 indicates a decrease in interannual variability **accompanied by stronger** negative correlations.
388 The low interannual variability reinforces the reliability of the observed declining trend in snow

389

390


391 **Figure 7.** The average, coefficient of variation, and correlation of snow cover area (Source:
 392 MODIS) across various elevation bands with time (2002–2024).

393 To examine the relationship between temperature and snow cover, the elevation bands were
 394 regrouped into **seven broader categories: <1000 m, 1000–2000 m, 2000–3000 m, 3000–4000
 395 m, 4000–5000 m, 5000–5500 m, 5500–6000 m**, and above 6000 m a.s.l. The temperature trend
 396 from 2002 to 2024 across these elevation bands in the Upper Karnali Basin, as **indicated** by
 397 Sen's slope (Figure 8, Table 3), shows a general increase. The highest rate of change is observed
 398 at lower elevations (<1000 m: 0.0765°C/year). Mid-elevations (**1000–2000 m: 0.0576°C/year**)
 399 and high elevations (5000–5500 m: 0.0643°C/year) also exhibit significant warming. **However,**
 400 **the statistical significance (P-value) weakens at higher elevations.** This warming accelerates
 401 **glacier retreat, reducing snow cover and altering river flow patterns, thereby reducing the**
 402 **glacier-fed water supply in the Upper Karnali Basin.**

403

404

405

406

407 **Figure 8.** Temperature (source: MODIS) trend between 2002 and 2024 for different elevation

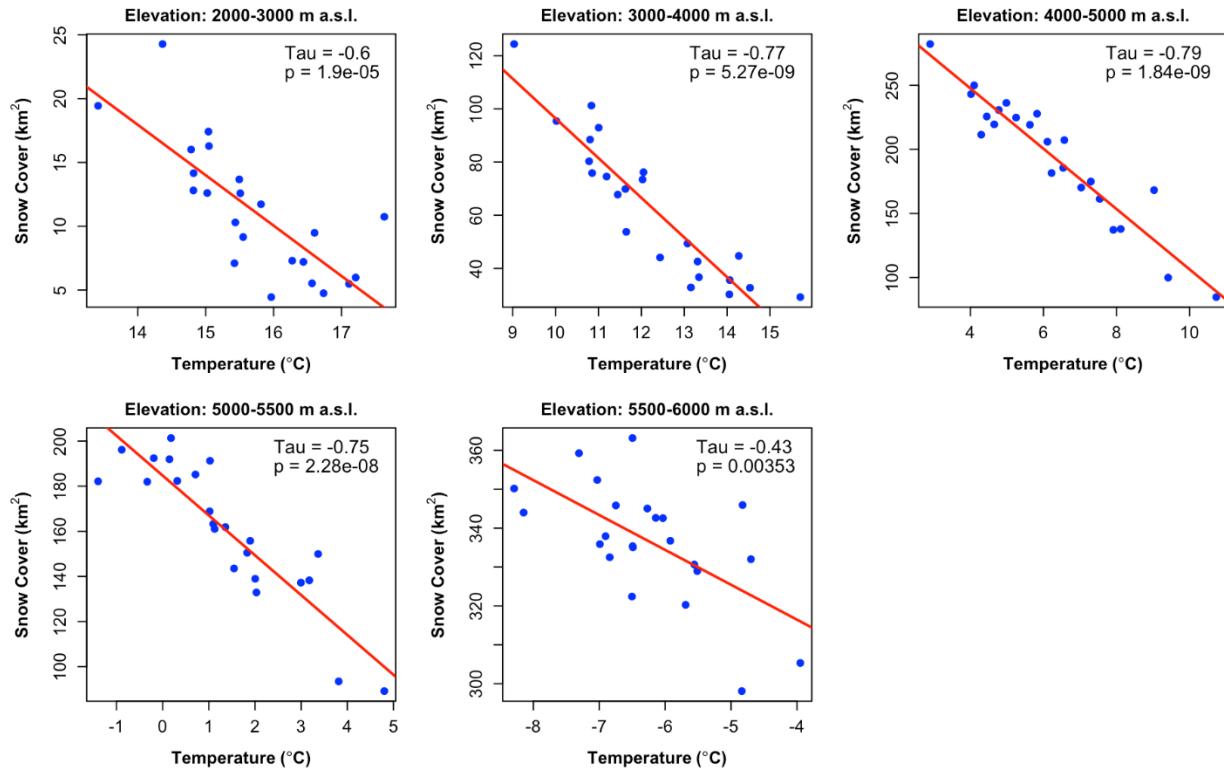
408 bands

409

410

411 **Table 3.** Rate of temperature change in different elevation between 2000–2024.

Elevation bands (m a.s.l.)	Sen's slope (Sen, 1968)	P Value
<1000	0.0765	0.052
1000–2000	0.0576	0.058
2000–3000	0.0390	0.168
3000–4000	0.0410	0.528
4000–5000	0.0198	0.833
5000–5500	0.0643	0.154
5500–6000	0.0287	0.414


412 Figure 9 shows a strong negative correlation between land surface temperature and snow cover
413 across elevation bands in the Upper Karnali Basin. Tau values range from -0.43 to -0.79. The
414 correlation is strongest **between 3000 and 5000 m a.s.l.** (Tau = -0.77 to -0.79) and 5000–5500 m
415 a.s.l. (Tau = -0.75), with all p-values <0.01, confirming statistical significance. Even at 5500–
416 6000 m a.s.l. (Tau = -0.43, p = 0.00353), snow cover continues to decline. The impact is most
417 severe at mid-to-high elevations, where warming accelerates snowmelt and glacier retreat,
418 highlighting the vulnerability of the Upper Karnali Basin's hydrological balance to climate
419 change.

420

421

422

423

424

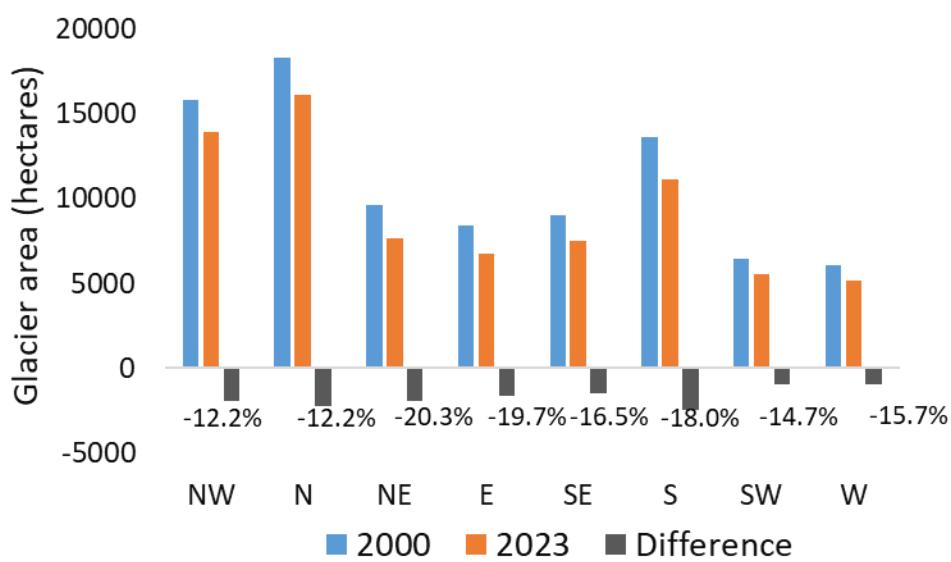
425 **Figure 9.** Relationship between snow cover and temperature (°C) across elevation zones in the
 426 Upper Karnali Basin (2002–2024). The correlation (Kendall’s Tau) shows a strong negative
 427 association **at all** elevations, especially between 3000–5500 m a.s.l., where warming has
 428 significantly reduced snow cover.

429 **Note:** Elevation bands below 2000 m are excluded due to minimal snow presence, high
 430 interannual variability, and limited data reliability.

431 **4.5. Snow Cover Trend in Glacier Basins (Landsat Data).**

432 We examined **snow cover trends using Landsat data** in 735 glacier basins, each containing at
 433 least one glacier in 2000 that was greater than 10 hectares, which are crucial for assessing glacial
 434 status, water security, and climate change impacts (Table 4). The minimum altitude of the glacier
 435 basin, where all tributary glaciers **converge**, was considered the outlet of the glacier basin. In
 436 these basins, snowfall **replenishes the** ice lost to melting, contributing to glacier stability.

437 Reduced snow cover in the glacier basins accelerates negative mass balance, leading to glacier
438 retreat. These glacier basins are located at a minimum altitude above 4000 m a.s.l., with an
439 **average altitude** of approximately 5100 m a.s.l. **Twenty-five and seventy-five percent of the**
440 **basins** lie below 4800 m and 5330 m a.s.l., respectively. **In addition** to other meteorological
441 parameters, current temperature trends and albedo patterns play a critical role in glacier mass
442 balance (Dowson et al., 2020; Ye & Tian, 2022). Higher temperatures directly increase the
443 **snowmelt** rate, and a decrease **in the** reflectivity of solar radiation **causes** more solar energy to
444 **be absorbed** by the glacier surface, leading to accelerated melting. Declining permanent snow
445 cover in the glacier basin disrupts the glacier mass balance, affecting glacier persistence, altering
446 water availability, and accentuating climate-driven environmental changes.


447 The data reveal a significant decline in glacier area across 735 glacier basins between 2000 and
448 2023. The mean glacier area decreased from 119.0 **hectares** in 2000 to 100.5 hectares in 2023,
449 reflecting an average loss of 18.6 hectares per basin. The total glacier area shrank by 13,633.2
450 hectares, indicating widespread glacier retreat. The percentage of glacier area **relative to the**
451 **total** basin area declined from 53.23% in 2000 to 44.93% in 2023. Statistical tests show high
452 skewness (>3.9), suggesting that a few large glaciers dominate the dataset. The Shapiro-Wilk test
453 ($p < .001$) confirms a non-normal distribution.

454 **Table 4.** Change in glacier area between 2000 and 2023.

Glacier basin count (N=735)	Glacier basin Area (hectares)	Glacier area (hectares)		Difference in glacier area (hectares)
		2000	2023	
Median	101.4	52.8	39.7	-10.0
Mean	223.6	119.0	100.5	-18.6

Std. Dev	368.1	187.1	169.9	27.2
Skewness	4.6	4.0	4.0	-4.0
Sum	164140.9	87379.9	73746.8	13633.2

455 The glacier area has declined significantly across all basin **orientations** from 2000 to 2023, with
 456 basins facing **north, northwest, and northeast** experiencing the largest losses, totaling 6,126.9
 457 hectares (Figure 10). **Glaciers on northeast, east, and south-facing slopes exhibit the highest**
 458 **relative percentage loss.** This consistent decline across all directions underscores the ongoing
 459 impact of climate change on the region's glacier-fed water resources.

460

461 **Figure 10.** Change in glacier area in glacier basins by direction between 2000 and 2023.

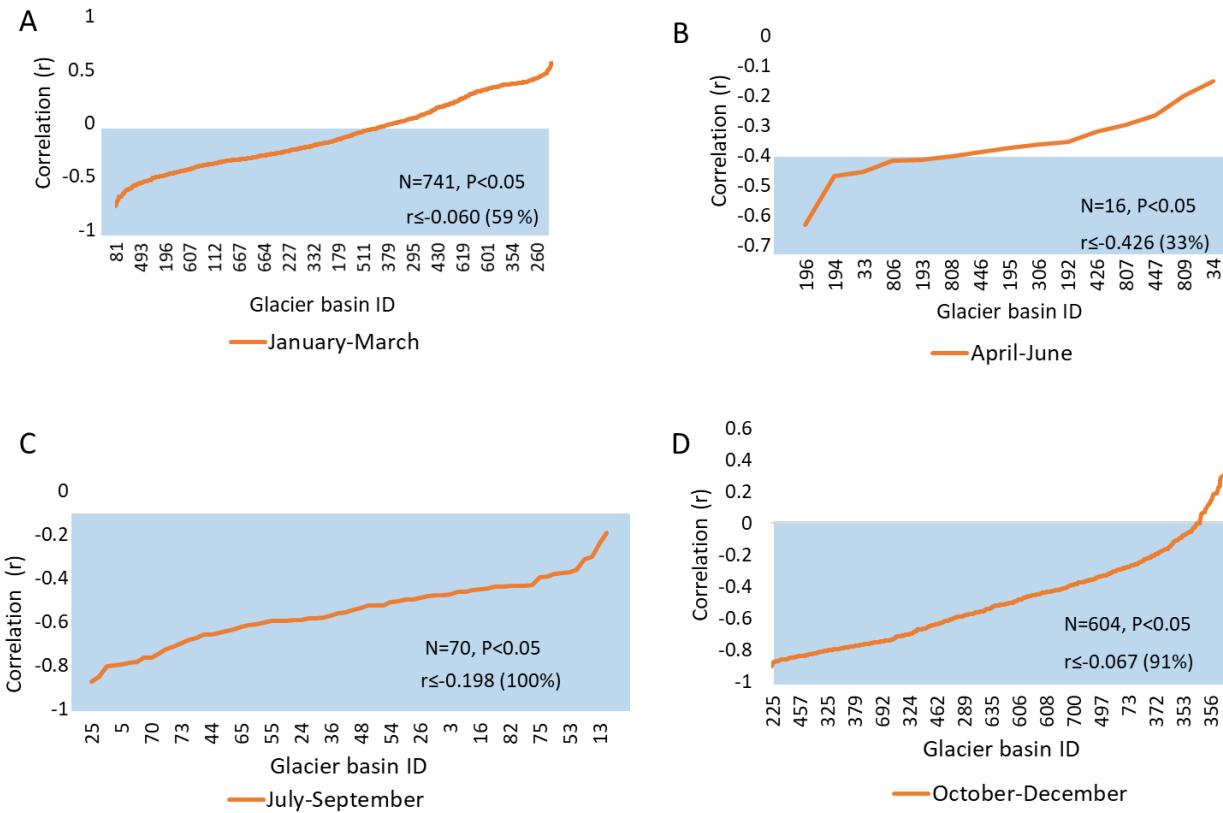
462 Analysis of snow cover trends indicates that **approximately 59%** of glacier basins ($n = 735$)
 463 exhibit statistically significant negative correlations ($p < 0.05$) from January to March. Among
 464 these, basins with a **correlation coefficient (r)** less than -0.44 **account for** 16.3% of the total
 465 (Figures 11, 12, and 13). Basins with moderate negative correlations, ranging from -0.44 to -

466 0.30, **represent** about 19% of the total. Additionally, 36% of basins show positive **correlations**,
467 with 3% being statistically significant and 13% displaying a moderate **correlation**. The
468 **prevalence** of glacier basins with negative correlations **suggests** a broader regional trend of
469 declining **winter snow** cover (January to March).

470 Similarly, **from May to July**, all 15 cloud-free glacier basins **exhibit** a declining trend in snow
471 cover from 2002 to 2024. Twelve of these basins **show** a moderate negative correlation ($r < -$
472 0.30). The snow **cover trend** during July to September and October to December also indicates a
473 decline. **Sixty-two percent** of the 70 glacier basins display a statistically significant negative
474 correlation ($p < 0.05$).

475

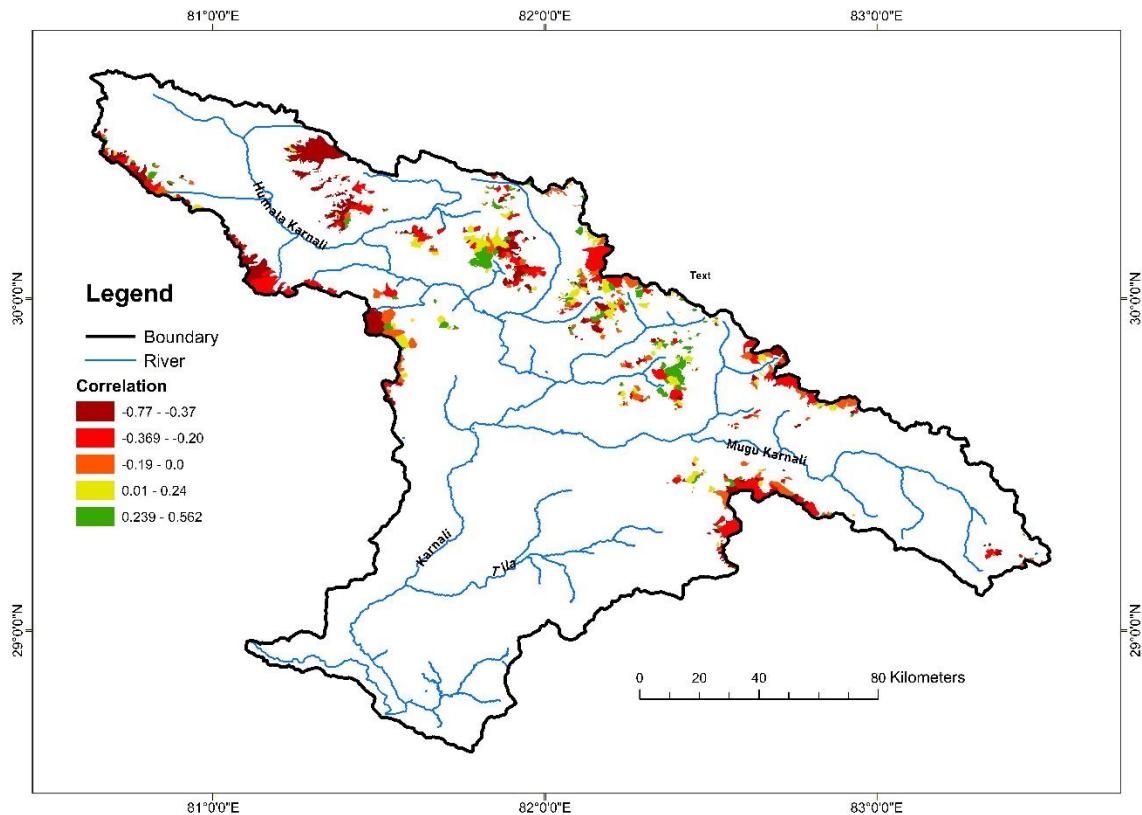
476


477

478

479

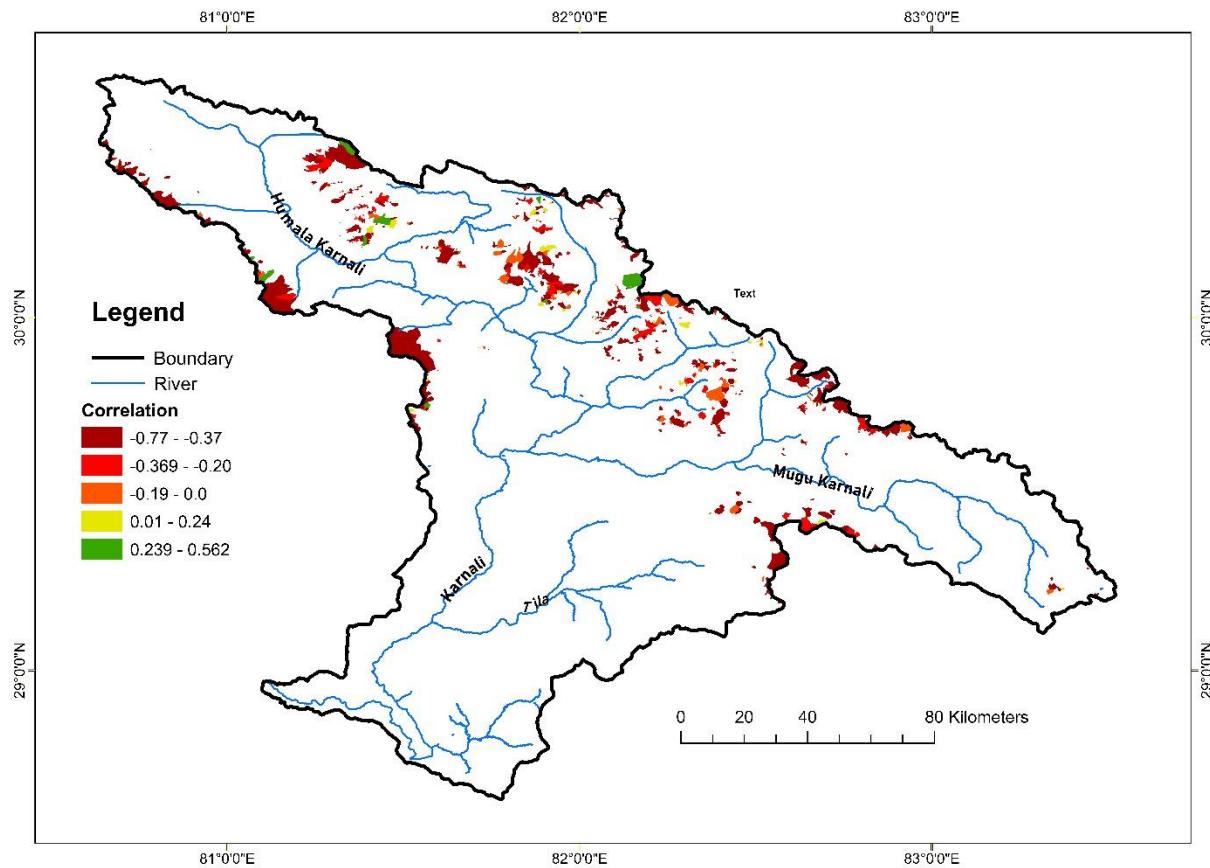
480


481

482

483 **Figure 11.** The correlation showing the snow cover change between 2002 and 2024 in different
484 glacier basins.

485 The snow cover trend between July and September and **between** October and December over 22
486 years also demonstrated a consistent decline across all glacier basins. **Of the** 604 basins selected
487 for analysis, **approximately** 91% showed a statistically significant negative correlation ($p <$
488 0.05), and 15% of the glacier basins exhibited a moderate negative correlation, with r values
489 ranging from -0.47 to -0.30 (**Figures 11-13**). The snow cover in the remaining basins showed a
490 **weak negative correlation** but still indicated a decline over the period.


491

492 **Figure 12.** Snow cover trend on the Glacier Basins for January–March between 2000–2023

493 (Landsat 5, 7, and 8).

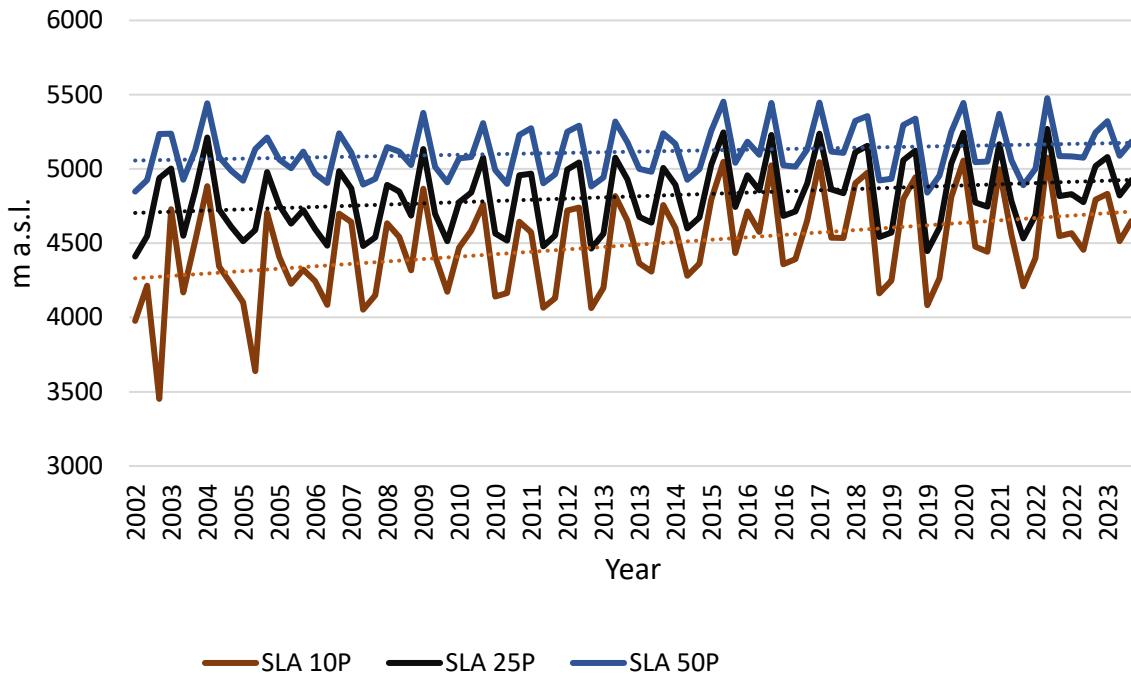
494

495

496

497 **Figure 13.** Snow cover trend on the glacier basins for October–December between 2000–2023
 498 (Landsat 5, 7, and 8).

499 **4.6. Snowline Shift across Elevations**


500 Snow-covered areas were derived from **Landsat 7, 8, and 9** imagery by classifying snow using
 501 the Normalized Difference Snow Index (NDSI) algorithm to analyze changes in the snowline.
 502 This analysis was performed on the Google Earth Engine (GEE) platform. Snow pixels were
 503 **detected** using an NDSI threshold of > 0.4 . The elevation-wise distribution of snow pixels was
 504 then calculated. To determine the minimum **elevation of the snowline** and its shift from 2002 to
 505 2024, three statistical thresholds were applied: the 10th, 25th, and 50th percentiles of the snow
 506 cover distribution across **different** elevations.

507 The analysis of snowline altitude data from 2002 to 2024 reveals a significant upward trend
508 across all percentiles (Figure 14). The 10th percentile shows the **most significant** increase, with
509 a Kendall's tau of 0.2662 and a Sen's slope of approximately 5.16 m/year, indicating that the
510 lower snowline is rising rapidly (Table 5). The 25th percentile presents a moderate yet
511 statistically significant trend, with a Kendall's tau of 0.1938 and a Sen's slope of about 2.91
512 m/year. In contrast, the 50th percentile shows a gentler trend, with a Kendall's tau of 0.1483 and
513 a Sen's slope of around 1.54 m/year, **both of which remain statistically** significant ($p < 0.05$).
514 Collectively, these findings suggest that the snowline is shifting to higher elevations, reflecting
515 broader climatic changes that **impact** lower elevations more **intensely** than the median snowline
516 altitude.

517 **Table 5.** Statistical analysis of snow line altitude trends using Kendall's Tau and Sen's slope.

Snow Line Percentile	Kendall's Tau	p-value	Sen's Slope (m/year)	Significance
10th Percentile (SLA_10P)	0.2662	0.00042	5.16	Significant ($p < 0.001$)
25th Percentile (SLA_25P)	0.1938	0.01022	2.91	Significant ($p < 0.05$)
50th Percentile (SLA_50P)	0.1483	0.04942	1.54	Significant ($p < 0.05$)

518

519

520 **Figure 14. Snowline shift using snow line of elevation of 10, 25 and 50 percentiles**

521 **5.0. Discussion**

522 This study **provides valuable** insights into the interactions between snow and ice **cover** in the
 523 Upper Karnali Basin (UKB) and **the influencing climatic** and topographic factors. The results
 524 reveal **significant** trends and **variations** in snow cover, glacial retreat, **and snowline elevation**,
 525 **consistent** with broader climate change **patterns** observed in the Himalayan region. Below, we
 526 discuss the key findings in relation to existing literature and their **implications** for water
 527 resources, ecosystems, and local communities.

528 The study of the Upper Karnali Basin from 2002 to 2024 **offers** significant insights into the
 529 relationship between snow cover area (SCA), temperature, and precipitation. The annual average
 530 SCA is 872 km², with the highest snow cover occurring from January to March (1,528 ± 333
 531 km²) and the lowest from July to September (169 ± 38.3 km²). The findings **indicate** a gradual

532 decline in snow cover across the Upper Karnali Basin (UKB) over this period, with an average
533 loss of approximately 3.99 km² **per year**.

534 There is a strong to moderate negative correlation between snow cover and temperature across
535 all seasons ($r = -0.59$ to -0.77 , $p < 0.05$), signifying that higher temperatures **result** in reduced
536 snow cover. In contrast, precipitation **shows** a positive correlation with snow cover **during**
537 winter (January to March and October to December). The reduction in snow cover during the
538 winter months (January–March) **suggests** a potential shift in precipitation patterns, with more
539 precipitation falling as rain **rather than** snow. The winter and pre-monsoon snowpack in the
540 western Himalayas is heavily influenced by the Westerly wind system, which is a key source of
541 snowfall in the UKB (Syed et al., 2006; Dimri & Dash, 2012). Consequently, the decline in
542 winter snow cover may be **attributed not** only to temperature-induced changes in precipitation
543 but also to a possible weakening or **alteration** of the Westerlies, which **warrants** further
544 **investigation**. Such changes could lead to a decrease in overall moisture inflow (Yadav et al.,
545 2009).

546 This shift is temperature-dependent and, **consequently**, elevation-dependent, **leading to**
547 increased **snowmelt consistent** with global warming trends (Wester et al., 2019). During the
548 summer months (April to September), precipitation negatively correlates with snow cover, as it
549 **predominantly falls as** rain, further accelerating snowmelt. **Notably**, the period from July to
550 **September shows** a statistically significant decrease in snow cover (Sen's Slope = -2.87 , $p <$
551 0.05), primarily driven by warmer temperatures and increased rainfall during **the summer**
552 **monsoon**.

553 Examining snow cover patterns in the UKB **sub-basins** reveals notable seasonal and spatial
554 variations. The Humla Karnali **sub-basin** has the largest average snow cover **from January to**
555 **March**, while downstream areas such as Tila and Kawari exhibit less snow **cover**.

556 The interannual variability in snow cover highlights the sensitivity of the snowpack to changing
557 temperature and precipitation patterns. This variability significantly **affects** water availability, as
558 the observed reduction in snow cover could exacerbate water scarcity during the dry season,
559 **impacting** millions who rely on snowmelt for irrigation, drinking water, and hydropower
560 generation (Immerzeel et al., 2020; Pritchard, 2019). The strong negative correlation in
561 **downstream Karnali** ($r = -0.47$, $p < 0.05$) further supports the declining trend in snow cover,
562 which threatens water availability and ecosystem services in the region (Wester et al., 2019).

563 The outcomes **highlight** the vulnerability of the UKB to climate change, as rising temperatures
564 and changing precipitation patterns result in reduced snow cover. **Implementing adaptive** water
565 management strategies is **essential to** mitigate the impacts on water resources and local
566 communities.

567 The findings on snow cover dynamics across elevation zones in the Upper Karnali Basin reveal
568 significant elevation-dependent patterns, reflecting the influence of temperature fluctuations and
569 global warming. At lower elevations (≤ 2000 m a.s.l.), snow cover exhibits a weak positive
570 correlation (0.12–0.43), likely **due to** occasional snowfall during brief cold spells and a transition
571 between rain and snow (Pendergrass, 2020). These zones experience high year-to-year variability
572 (CoV ~41–43%), making trends less reliable and warranting cautious interpretation. Similar
573 elevation-sensitive variability has also been reported in other Himalayan basins (Pepin et al.,
574 2015).

575

576 The transition from weak negative correlations **between snow cover, elevation**, and year above
577 2300 m a.s.l. to the strongest negative correlation at 6100–6200 m a.s.l. ($r = -0.56$) aligns with
578 evidence of elevation-dependent warming (**EDW**). **In this phenomenon**, higher altitudes
579 experience accelerated warming, resulting in reduced snow accumulation and increased melt
580 rates. The sharp increase in mean snow cover above 5000 m a.s.l. **corresponds** to permanent
581 snow and glacier zones. However, the decline in inter-annual variability (**coefficient of**
582 **variation, CoV**) indicates a consistent reduction in snow cover, particularly at mid-to-high
583 elevations (3000–5000 m a.s.l.).

584 The nonlinear relationship between elevation and inter-annual snow cover variability (CoV) is
585 particularly insightful. **At elevations of 3,000 meters above sea level (a.s.l.)** or below, the CoV
586 reaches 41–43%, reflecting transitional zones where slight temperature fluctuations determine
587 the precipitation phase (rain versus snow). Above 3,000 m a.s.l., the CoV decreases to 25–30%
588 as conditions remain persistently below freezing; however, the dominant driver shifts to
589 insolation and temperature-modulated melt rates. This observation aligns with Ren et al.’s (2023)
590 findings on Tibetan Plateau glaciers, where albedo feedbacks dominate mass balance above
591 **5,000** m a.s.l.

592 The strong negative correlation between land surface temperature and snow cover ($Tau = -0.43$
593 to -0.79) **underscores** the impact of rising temperatures on the snowpack. The most severe
594 declines occur between **3,000 and 5,000 meters above sea level (m a.s.l.)**, where warming
595 accelerates snowmelt and glacier retreat, threatening water availability for river flows,
596 agriculture, and hydropower (Immerzeel et al., 2020; Bolch et al., 2012).

597 Between 2000 and 2023, glacier basins in the Upper Karnali Basin experienced significant ice
598 and snow loss. The mean glacier area per basin declined from 119.04 to 100.47 **hectares**,
599 **representing** with an average loss of 18.6 hectares. While it occurred consistently across all
600 aspects, north-facing basins (N, NW) saw the largest total area decline. This trend, driven by
601 rising temperatures and reduced precipitation, results in a negative mass balance (Pepin et al.,
602 2022; Ren et al., 2024; Ye & Tian, 2022), threatening the persistence of glaciers and altering
603 critical water resources.

604 Snow cover trends in glacier basins reveal a consistent decline across all seasons. From January
605 to March, a majority (59%) of the 735 basins analyzed exhibit a statistically significant negative
606 correlation ($p < 0.05$), with 16.3% of all basins showing a substantial decline ($r < -0.44$). The
607 trend is even more **pronounced during** the post-monsoon and ablation seasons (October–
608 December). From July to September, 62% of basins ($n = 70$) show a significant negative
609 correlation, and in October–December, this figure rises to 91% ($n = 604$). This widespread
610 reduction in snow cover is linked to rising temperatures, which increase snowmelt rates and
611 reduce albedo, further accelerating glacier retreat (Dowson et al., 2020). These trends underscore
612 the vulnerability of the region's cryosphere to climate change, with profound implications for
613 water security and regional hydrology.

614 The seasonal snowline in the Upper Karnali Basin is rising **steadily** at rates of 5.6 m per year
615 (**10th percentile**), 2.91 m per year (**25th percentile**), and 1.54 m per year (50th percentile).
616 Although these rates are more conservative than many regional estimates, our findings align with
617 the broader Himalayan trend of snowline elevation. Recent studies **report** faster increases, such
618 as approximately 6.7–7.3 m per year in the Ganga–Brahmaputra basins (Dixit et al., 2024) and
619 roughly 8–14 m per year in several Nepalese catchments (Sasaki et al., 2024), while the

620 Langtang Basin shows a similar increase of about 2.2 m per year (Pradhananga et al., 2025). This
621 **pattern indicates** a consistent retreat of seasonal snow cover to higher elevations, **reducing** the
622 potential for snow accumulation to sustain glacier mass balance.

623 **5.1. Feedback mechanisms and future projections**

624 The correlation between temperature and snow cover (τ ranging from -0.43 to -0.79 across
625 different elevations) confirms the presence of a reinforcing snow–albedo feedback in the Upper
626 Karnali Basin (UKB). Increasing land surface temperatures reduce snow cover, lowering surface
627 albedo and **increasing the absorption of shortwave radiation**. This process causes localized
628 warming of **approximately** 0.8 to 1.2 °C, as estimated through Sen’s slope analysis, further
629 promoting melting and accelerating the feedback loop. **Similar** snow–albedo feedback
630 mechanisms have been observed across the central and eastern Himalayas (**Brun et al., 2015**;
631 Bhattacharya et al., 2021; Salerno et al., 2023), underscoring the regional consistency of
632 cryospheric amplification.

633 In addition to snow cover analysis, glacier change data (Ghimire et al., 2025b) were integrated
634 with long-term temperature and precipitation records to assess cryospheric variability.
635 Relationships among temperature, snow cover, and glacier extent across elevation bands were
636 quantified using Kendall’s τ and Sen’s slope, providing estimates of warming trends and
637 snowline responsiveness. Future cryospheric conditions were simulated using a degree-day,
638 elevation-band glacio-hydrological model forced with bias-corrected CMIP6 (NEX-GDDP)
639 climate projections under the SSP1-2.6 and SSP2-4.5 scenarios, enabling projections of glacier
640 and snow cover evolution through 2100 (Ghimire et al., 2025b).

641 Above 5,000 m a.s.l., Sen's slope analysis indicates a mean warming rate of +0.064 °C per year,
642 comparable to the rates observed at mid-elevations (approximately +0.058 °C per year between
643 1,000 and 2,000 m). This elevation-dependent warming accelerates glacier thinning and shifts
644 the snow–rain boundary upward, thereby reducing accumulation periods and causing earlier melt
645 onset. Similar warming trends, with mean annual temperature increases of 0.05–0.07 °C per year
646 and glacier thinning rates of 0.3–1.0 m per year since 2000, have been documented in the central
647 Himalayas (Kääb et al., 2015; Bolch et al., 2019).

648 Under low-emission scenarios such as SSP1-2.6, high-altitude temperatures are projected to
649 increase by approximately 1 °C by 2100. Under the moderate SSP2-4.5 scenario, temperature
650 increases could reach 2 °C or more. Consequently, glacier areas are expected to decrease by 47–
651 69%, and snow-covered areas are projected to decline by 19–30% (Ghimire et al., 2025b). This
652 would transform the basin's hydrology from nival (snowmelt-dominated) to pluvial (rain-
653 dominated), increasing flood risks during monsoons and susceptibility to drought in dry seasons.

654 These projections **align** with other studies of Himalayan basins, which **predict** reductions in
655 glacier area of 40–60% by mid-century (Bhattacharya et al., 2021; Salerno et al., 2021; Hock et
656 al., 2019). **Similar** amplification mechanisms are also observed in the Andes and Alps, where
657 rapid glacier retreat and albedo-induced warming **reflect** trends seen in the Himalayas (Rabaté
658 et al., 2013; Vuille et al., 2018; Dussaillant et al., 2019; Beniston & Stoffel, 2014; Zemp et al.,
659 2019).

660

661 **6.0. Conclusions**

662 The study of snow and glacier cover dynamics in the Upper Karnali Basin from 2002 to 2024
663 reveals a persistent decline in snow cover, glacier area, and snowline elevation, driven by rising
664 temperatures and **changes** in precipitation patterns.

665 The annual snow-covered area (SCA) has decreased by approximately 3.99 km² per year, with
666 the most significant reductions **occurring** during the **July–September** monsoon period. This
667 decline in snow cover is statistically correlated with **rising** temperatures, **highlighting** the impact
668 of climate change on seasonal snow accumulation and melt cycles. **Variability** in winter snow
669 cover suggests changes in snowfall patterns rather than a uniform decrease.

670 Notable seasonal and spatial differences in snow cover patterns are observed in the **sub-basins** of
671 the UKB during **two periods**: January–March and October–December. The upstream sub-basins
672 experience **more consistent** snowfall than the downstream basins. During October–December,
673 snowfall is inconsistent **across** all basins, with particularly high variability in the China Karnali,
674 **Tila, and downstream** Karnali basins.

675 Elevation-dependent trend analysis confirms that snow cover at lower elevations (<2000 m a.s.l.)
676 exhibits high interannual variability, **whereas** higher elevations (>3000 m a.s.l.) show a
677 significant long-term decline. The most pronounced reductions occur between 3000 and 5000 m
678 a.s.l., where warming accelerates snowmelt and glacier retreat. The observed negative correlation
679 between snow cover and rising temperatures confirms the climate-driven reduction in snowpack,
680 exacerbating the risk of water shortages.

681 The study of glacier basins **reveals** widespread retreat, with the **average** glacier area **decreasing**
682 from 119.05 hectares in 2000 to 100.47 hectares in 2023. Glacier retreat is most pronounced in

683 north-facing basins (N, NW, NE), where melting exceeds accumulation. The continuous decline
684 in snow cover across **these basins** indicates a **persistent** negative mass balance, **threatening the**
685 **long-term survival of the glaciers.**

686 Additionally, the snow line is gradually shifting upward, with the 10th, 25th, and 50th percentiles
687 rising by approximately 5.16, 2.91, and 1.54 meters per year, **respectively**. This **trend indicates**
688 a consistent loss of seasonal snow accumulation.

689 Given the current warming trends (**~0.0643°C per year** above 5000 m a.s.l.), the **Upper Karnali**
690 **Basin** (UKB) could experience a decline in glacier area by 47–69% and a reduction in snow-
691 covered area by 19–30%. This shift would transform the hydrology from snowmelt-dominated
692 (nival) to rainfall-dominated (pluvial), increasing the frequency of extreme weather events and
693 altering regional water security dynamics. These findings underscore the urgent need for
694 proactive water resource management, **enhanced** climate resilience strategies, and continuous
695 monitoring of cryospheric changes to mitigate future risks. Policymakers must prioritize
696 adaptation measures, such as improved water storage infrastructure and sustainable land-use
697 practices, to ensure long-term water security in the Upper Karnali Basin and beyond.

698 **Author contributions**

699 MG conceptualized the research, designed the methodology, conducted fieldwork, analyzed the
700 data, and drafted the manuscript. DS and RC assisted **with** proposal writing, research design,
701 fieldwork, and data analysis. AT, TPPS, KPS, SBG, and SD contributed to procuring remote
702 sensing and climate data. PB and SK were responsible for procuring and updating MODIS data.
703 WY reviewed the manuscript and provided feedback to enhance its quality. NT and JK assisted

704 **with** GIS analysis. All authors contributed to revising the manuscript and provided input before
705 submission.

706 **Competing Interests**

707 The authors declare that they have no conflict of interest.

708 **Data availability**

709 MODIS, Landsat, Sentinel, ERA5 **reanalysis** climate datasets, and NEX-GDDP data are
710 publicly available.

711 **Acknowledgments**

712 We express our gratitude to the Director of Tribhuvan University's Research Coordination and
713 Development Council (RCDC) for supporting the project titled "State and Dynamics of the
714 Cryosphere of the Upper Karnali Basin, Associated **Hazards**, and Implications for Water
715 Resources and Livelihood" (Project Code TU-NPAR-077/78-ERG-15). This paper is a product
716 of that project. We appreciate the Evaluation and Monitoring Committee of RCDC for their
717 insightful feedback and suggestions, which greatly enhanced the manuscript. We also thank the
718 University Grants Commission for providing research funding. **The authors sincerely**
719 acknowledge the Sichuan Science and Technology Program (2024YFHZ0248) for partial
720 support. **Additionally, we** acknowledge the contributions of Google Earth Engine, ERA5, ESRI,
721 and other open-access resources for providing satellite imagery and data.

722 **Financial support**

723 This research was funded by the University Grants Commission (UGC), Kathmandu, through
724 Tribhuvan University's Research Coordination and Development Council (RCDC) under the
725 National Policy Area Research program. **Partial funding was also provided by the Sichuan**
726 **Science and Technology Program (2024YFHZ0248).**

727 **References**

728 **Bajracharya, S. R. and Mool, P.: Glaciers, glacial lakes and glacial lake outburst floods in**
729 **the Mount Everest region, Nepal, Ann. Glaciol., 50(53), 81–86,**
730 <https://doi.org/10.3189/172756410790595895>, 2009.

731 **Bajracharya, S. R. and Shrestha, B. (eds.): The status of glaciers in the Hindu Kush–**
732 **Himalayan region, International Centre for Integrated Mountain Development (ICIMOD),**
733 **Kathmandu, Nepal, 127 pp., 2011.**

734 Bajracharya, S. R., Bajracharya, O. R., Baidya, S., Maharjan, S. B., and Shrestha, F.: Climate
735 change impact on glaciers in the Langtang and Imja sub-basins of Nepal from late 70s to 2010,
736 in: AGU Fall Meeting Abstracts, San Francisco, CA, 15–19 December, C31B-0278, 2014.

737 Beniston, M. and Stoffel, M.: Assessing the impacts of climatic change on mountain water
738 resources, *Sci. Total Environ.*, 493, 1129–1137, <https://doi.org/10.1016/j.scitotenv.2013.11.122>,
739 2014.

740 Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Neckel, N.,
741 Yao, T., and Li, X.: High Mountain Asian glacier response to climate revealed by multi-temporal
742 satellite observations since the 1960s, *Nat. Commun.*, 12, 4133, <https://doi.org/10.1038/s41467-021-24180-y>, 2021.

744 Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U.: Automated delineation of debris-
745 covered glaciers based on ASTER data, in: *GeoInformation in Europe*, edited by: Gomarasca, M.
746 A., Millpress, Rotterdam, 403–410, 2007.

747 Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S.,
748 Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers,
749 *Science*, 336, 310–314, <https://doi.org/10.1126/science.1215828>, 2012.

750 **Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W.,**
751 **Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang, Y.: Status and change of the**
752 **cryosphere in the extended Hindu Kush Himalaya region, in: The Hindu Kush Himalaya**

753 **Assessment: Mountains, Climate Change, Sustainability and People**, edited by: Wester, P.,

754 **Mishra, A., Mukherji, A., and Shrestha, A. B., Springer, Cham, 209–255,**

755 **https://doi.org/10.1007/978-3-319-92288-1_7, 2019.**

756 Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget:

757 Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, *J.*

758 *Geophys. Res.-Earth Surf.*, 115, F03019, <https://doi.org/10.1029/2009JF001426>, 2010.

759 **Brun, F., Dumont, M., Wagnon, P., Berthier, E., Azam, M. F., Shea, J. M., Sirguey, P.,**

760 **Rabatel, A., and Ramanathan, A.: Seasonal changes in surface albedo of Himalayan**

761 **glaciers from MODIS data and links with the annual mass balance, The Cryosphere**, 9,

762 **341–355, <https://doi.org/10.5194/tc-9-341-2015>, 2015.**

763 CBS: National Population and Housing Census 2021 – Province 6 (Karnali) results (online

764 tables), Central Bureau of Statistics, Nepal, 2021.

765 **Desinayak, N., Prasad, A. K., El-Askary, H., Kafatos, M., and Asrar, G. R.: Snow cover**

766 **variability and trend over the Hindu Kush Himalayan region using MODIS and SRTM**

767 **data, Ann. Geophys.**, 40, 67–82, <https://doi.org/10.5194/angeo-40-67-2022>, 2022.

768 Dhital, M. R.: Geology of the Nepal Himalaya: Regional Perspective, Springer International

769 Publishing, Cham, Switzerland, 583 pp., <https://doi.org/10.1007/978-3-319-02496-7>, 2015.

770 Dimri, A. P. and Dash, S. K.: Wintertime climatic trends in the western Himalayas, *Clim.*

771 *Change*, 111, 775–800, <https://doi.org/10.1007/s10584-011-0201-y>, 2012.

772 Dixit, A., Goswami, A., Jain, S., and Das, P.: Assessing snow cover patterns in the Indus–

773 Ganga–Brahmaputra River Basins of the Hindu Kush Himalayas using snow persistence and

774 snow line as metrics, *Environ. Chall.*, 14, 100834, <https://doi.org/10.1016/j.envc.2023.100834>,
775 2024.

776 Dowson, A. J., Sirguey, P., and Cullen, N. J.: Variability in glacier albedo and links to annual
777 mass balance for the Gardens of Eden and Allah, Southern Alps, New Zealand, *The Cryosphere*,
778 14, 3425–3448, <https://doi.org/10.5194/tc-14-3425-2020>, 2020.

779 Duan, S.-B., Li, Z.-L., Li, H., Götsche, F.-M., Wu, H., Zhao, W., Leng, P., Zhang, X., and Coll,
780 C.: Validation of Collection 6 MODIS land surface temperature product using in situ
781 measurements, *Remote Sens. Environ.*, 225, 16–29, <https://doi.org/10.1016/j.rse.2019.02.020>,
782 2019.

783 Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte,
784 P., and Ruiz, L.: Two decades of glacier mass loss along the Andes, *Nat. Geosci.*, 12, 802–808,
785 <https://doi.org/10.1038/s41561-019-0432-5>, 2019.

786 Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, *Clim. Res.*, 20,
787 253–257, <https://doi.org/10.3354/cr020253>, 2002.

788 Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J.,
789 Mauritsen, T., Palmer, M. D., Watanabe, M., and Wild, M.: The Earth's Energy Budget, Climate
790 Feedbacks, and Climate Sensitivity, in: *Climate Change 2021: The Physical Science Basis*.
791 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
792 on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
793 C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,
794 E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B.,

795 Cambridge University Press, Cambridge, UK and New York, NY, USA, 923–1054,
796 <https://doi.org/10.1017/9781009157896.009>, 2021.

797 Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product,
798 *Hydrol. Earth Syst. Sci.*, 13, 1361–1373, <https://doi.org/10.5194/hess-13-1361-2009>, 2009.

799 **Ghimire, M., Pangali Sharma, T. P., Chauhan, R., Gurung, S. B., Devkota, S., Sharma, K. P., Shrestha, D., Wei, Z., and Timalsina, N.: Status and changes in glaciers in the Upper Karnali Basin, West Nepal: Assessing topographic influences on area, fragmentation, and volume, J. Earth Syst. Sci., <https://doi.org/10.1007/s12040-025-02664-5>, 2025a.**

800 **Ghimire, M., Shrestha, D., Zhao, W., Chauhan, R., Gurung, S. B., Pangali Sharma, T. P., Sharma, K. P., Tamang, S., Timalsina, N., Devkota, S., Thapa, A., Koirala, S., Bhandari, P., Subedi, B., Lohani, U., Kutu, J., Rana, D., and Yanhong, W.: State and Dynamics of Cryosphere of Upper Karnali Basin, Associated Hazards and Implications to Water Resources and Livelihood, Project Code TU-NPAR-077/78-ERG-15, Tribhuvan University, Research Coordination and Development Council (RCDC), Kathmandu, Nepal, 2025b.**

801 **Gilbert, R. O.: Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York, 272 pp., 1987.**

802 **Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, *Remote Sens. Environ.*, 202, 18–27, <https://doi.org/10.1016/j.rse.2017.06.031>, 2017.**

803 **Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya, S. R., and Murthy, M. S. R.: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya, *Int. J. Climatol.*, 37, 3873–3882, <https://doi.org/10.1002/joc.4961>**

817 , 2017.

818 Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K. J.: MODIS snow-
819 cover products, *Remote Sens. Environ.*, 83, 181–194, <https://doi.org/10.1016/S0034->
820 4257(02)00095-0, 2002.

821 Heid, T. and Kääb, A.: Evaluation of existing image matching methods for deriving glacier
822 surface displacements globally from optical satellite imagery, *Remote Sens. Environ.*, 118, 339–
823 355, <https://doi.org/10.1016/j.rse.2011.11.024>

824 , 2012.

825 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
826 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
827 G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
828 Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
829 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
830 Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
831 global reanalysis, *Q. J. R. Meteorol. Soc.*, 146, 1999–2049, <https://doi.org/10.1002/qj.3803>,
832 2020.

833 Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A.,
834 Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High
835 Mountain Areas, in: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate*,
836 edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
837 Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and

838 Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–
839 202, <https://doi.org/10.1017/9781009157964.004>, 2019.

840 Hunt, K. M. R., Baudouin, J.-P., Turner, A. G., Dimri, A. P., Jeelani, G., Pooja, Chattopadhyay,
841 R., Cannon, F., Arulalan, T., Shekhar, M. S., Sabin, T. P., and Palazzi, E.: Western disturbances
842 and climate variability: a review of recent developments, *Weather Clim. Dynam.*, 6, 43–112,
843 <https://doi.org/10.5194/wcd-6-43-2025>, 2025.

844 Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S.,
845 Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U.,
846 Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepaul, S.,
847 Pacheco, P., Pak-sok, J., Poulton, C., Pradhan, S., Rangecroft, S., Smeets, S., Suzuki, T., van der
848 Schriek, T., Vivioli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and
849 vulnerability of the world's water towers, *Nature*, 577, 364–369, <https://doi.org/10.1038/s41586-019-1822-y>, 2020.

850

851 **K.C., A.: Climate change and its impact on tourism in Nepal, *J. Tour. Hosp. Educ.*, 7, 25–43, <https://doi.org/10.3126/jthe.v7i0.17688>, 2017.**

852

853 Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early
854 twenty-first-century glacier mass change in the Himalayas, *Nature*, 488, 495–498,
855 <https://doi.org/10.1038/nature11324>, 2012.

856 Kääb, A., Reynolds, J. M., and Haeberli, W.: Glacier and permafrost hazards in high mountains,
857 in: *Global Change and Mountain Regions*, edited by: Huber, U. M., Bugmann, H. K. M., and
858 Reasoner, M. A., Springer, Dordrecht, 225–234, https://doi.org/10.1007/1-4020-3508-X_23,
859 2005.

860 Khadka, N., Li, B., Wu, Q., Shrestha, F., Paudel, L., and Wang, W.: Glacial lake outburst floods
861 threaten China–Nepal transportation corridors, *Sci. Total Environ.*, 927, 172456,
862 <https://doi.org/10.1016/j.scitotenv.2024.174701>, 2024.

863 Khatiwada, K. R., Panthi, J., Shrestha, M. L., and Nepal, S.: Hydro-climatic variability in the
864 Karnali River basin of Nepal Himalaya, *Climate*, 4, 17, <https://doi.org/10.3390/cli4020017>,
865 2016.

866 Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, M. A.,
867 Vellore, R., Xu, Y., You, Q., and Ren, Y.: Unravelling climate change in the Hindu Kush
868 Himalaya: rapid warming in the mountains and increasing extremes, in: *The Hindu Kush*
869 *Himalaya Assessment: Mountains, Climate Change, Sustainability and People*, edited by:
870 Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., Springer International Publishing,
871 Cham, 57–97, https://doi.org/10.1007/978-3-319-92288-1_3, 2019.

872 **Kulkarni, A. V., Rathore, B. P., and Singh, S. K.: Distribution of seasonal snow cover in**
873 **central and western Himalaya, *Ann. Glaciol.*, 51, 125–130,**
874 <https://doi.org/10.3189/172756410791386445>, 2010.

875 Kulkarni, A. V., Shirsat, T. S., Kulkarni, A., Negi, H. S., Bahuguna, I. M., and Thamban, M.:
876 State of Himalayan cryosphere and implications for water security, *Water Security*, 14, 100101,
877 <https://doi.org/10.1016/j.wasec.2021.100101>, 2021.

878 LRMP: Land Resource Mapping Project (national soils/land-use inventory), Government of
879 Nepal, Kathmandu, Nepal, 1986.

880 **Maskey, S., Uhlenbrook, S., and Ojha, S.: An analysis of snow cover changes in the**
881 **Himalayan region using MODIS snow products and in-situ temperature data, Clim.**
882 **Change, 108, 391–400, <https://doi.org/10.1007/s10584-011-0181-y>, 2011.**

883 Mimura, N.: Sea-level rise caused by climate change and its implications for society, Proc. Jpn.
884 Acad. Ser. B, 89, 281–301, <https://doi.org/10.2183/pjab.89.281>, 2013.

885 **Muhammad, S. and Thapa, A.: An improved Terra–Aqua MODIS snow cover and**
886 **Randolph Glacier Inventory 6.0 combined product (MOYDGL06) for high-mountain Asia**
887 **between 2002 and 2018, Earth Syst. Sci. Data, 12, 345–356, [https://doi.org/10.5194/essd-12-345-2020, 2020.](https://doi.org/10.5194/essd-12-345-2020)**

889 Naegeli, K., Huss, M., and Hoelzle, M.: Change detection of bare-ice albedo in the Swiss Alps,
890 The Cryosphere, 13, 397–412, <https://doi.org/10.5194/tc-13-397-2019>, 2019.

891 Nyaupane, G. P. and Chhetri, N.: Vulnerability to climate change of nature-based tourism in the
892 Nepalese Himalayas, Tour. Geogr., 11, 95–119, <https://doi.org/10.1080/14616680802643359>,
893 2009.

894 Parajka, J. and Blöschl, G.: Spatio-temporal combination of MODIS images – Potential for snow
895 cover mapping, Water Resour. Res., 44, W03406, <https://doi.org/10.1029/2007WR006204>, 2008.

896 Parris, A. S., Bromirski, P., Burkett, V., Cayan, D. R., Culver, M. E., Hall, J., Horton, R. M.,
897 Knuuti, K., Moss, R. H., Obeysekera, J., Sallenger, A. H., and Weiss, J. L.: Global Sea Level
898 Rise Scenarios for the United States National Climate Assessment, NOAA Tech. Memo. OAR
899 CPO-1, 37 pp., 2012.

900 Pendergrass, A. G.: **Changing degree of convective organization as a mechanism for**
901 **dynamic changes in extreme precipitation**, *Curr. Clim. Change Rep.*, **6**, 47–54,
902 <https://doi.org/10.1007/s40641-020-00157-9>, 2020.

903 Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E.,
904 Seibert, P., Serafin, S., Stocchi, P., and Zebisch, M.: Climate changes and their elevational
905 patterns in the mountains of the world, *Rev. Geophys.*, **60**, e2020RG000730,
906 <https://doi.org/10.1029/2020RG000730>, 2022.

907 Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H.,
908 Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E.,
909 Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N.,
910 and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, *Nat. Clim.
911 Change*, **5**, 424–430, <https://doi.org/10.1038/nclimate2563>, 2015.

912 Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O.,
913 Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V.,
914 Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and the Randolph Consortium: The Randolph
915 Glacier Inventory: a globally complete inventory of glaciers, *J. Glaciol.*, **60**, 537–552,
916 <https://doi.org/10.3189/2014JoG13J176>, 2014.

917 Pradhananga, D., Adhikary, S., Dhakal, B. N., Dhakal, A., Ghimire, A., Dhital, S., and
918 Manandhar, S.: Cryosphere change in the warming Himalaya: Snow cover and snowline trends
919 in Nepal's Langtang Basin (1988–2024), *J. Tourism Himalayan Adv.*, **7**, 14–26, 2025.

920 Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, *Nature*,
921 569, 649–654, <https://doi.org/10.1038/s41586-019-1240-1>, 2019.

922 Rabaté, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R.,
923 Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M.,
924 Condom, T., and Wagnon, P.: Current state of glaciers in the tropical Andes: a multi-
925 century perspective on glacier evolution and climate change, *The Cryosphere*, 7, 81–102,
926 <https://doi.org/10.5194/tc-7-81-2013>, 2013.

927 Ren, P., Pan, X., Liu, T., Huang, Y., Chen, X., Wang, X., Zhang, Y., and Ling, X.: Glacier
928 changes from 1990 to 2022 in the Aksu River Basin, western Tien Shan, *Remote Sens.*, 16, 1751,
929 <https://doi.org/10.3390/rs16101751>, 2024.

930 Ren, S., Jia, L., Menenti, M., and Zhang, J.: Changes in glacier albedo and the driving factors in
931 the Western Nyainqntanglha Mountains from 2001 to 2020, *J. Glaciol.*, 69, 1500–1514,
932 <https://doi.org/10.1017/jog.2023.33>, 2023.

933 Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for mapping snow cover from
934 MODIS, *Adv. Water Resour.*, 51, 367–380, <https://doi.org/10.1016/j.advwatres.2012.03.002>,
935 2013.

936 Salerno, F., Uccelli, A., Cristofanelli, P., Stocchi, P., Diolaiuti, G., Ma, Y., and Putero, D.: Local
937 cooling and drying induced by Himalayan glaciers, *Nat. Geosci.*, 16, 1120–1127,
938 <https://doi.org/10.1038/s41561-023-01331-y>, 2023.

939 Sasaki, O., Miles, E. S., Pellicciotti, F., Sakai, A., and Fujita, K.: Contrasting patterns of change
940 in snowline altitude across five Himalayan catchments, *EGUsphere* [preprint],
941 <https://doi.org/10.5194/egusphere-2024-2026>, 2024.

942 Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, *J. Am. Stat. Assoc.*,
943 63, 1379–1389, <https://doi.org/10.1080/01621459.1968.10480934>, 1968.

944 Shen, L., Zhang, Y., Ullah, S., Pepin, N., and Ma, Q.: Changes in snow depth under elevation-
945 dependent warming over the Tibetan Plateau, *Atmos. Sci. Lett.*, 22, e1041,
946 <https://doi.org/10.1002/asl.1041>, 2021.

947 **Shrestha, M., Wang, L., Koike, T., Xue, Y., and Hirabayashi, Y.: Modeling the spatial**
948 **distribution of snow cover in the Dudhkoshi region of the Nepal Himalayas, J.**
949 **Hydrometeorol.**, 13, 204–222, <https://doi.org/10.1175/JHM-D-10-05027.1>, 2012.

950 Syed, F. S., Giorgi, F., Pal, J. S., and King, M. P.: Effect of remote forcings on the winter
951 precipitation of central southwest Asia part 1: observations, *Theor. Appl. Climatol.*, 86, 147–160,
952 <https://doi.org/10.1007/s00704-005-0217-1>, 2006.

953 Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis,
954 M., Yarleque, C., Elison Timm, O., Condom, T., Salzmann, N., and Sicart, J. E.: Rapid decline
955 of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead, *Earth-Sci.*
956 *Rev.*, 176, 195–213, <https://doi.org/10.1016/j.earscirev.2017.09.019>, 2018.

957 Wan, Z., Hook, S., and Hulley, G.: MODIS/Aqua Land Surface Temperature/Emissivity Daily
958 L3 Global 1 km SIN Grid, Version 6, NASA EOSDIS Land Processes DAAC,
959 <https://doi.org/10.5067/MODIS/MYD11A1.006>, 2015.

960 Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B. (eds.): *The Hindu Kush Himalaya*
961 *Assessment: Mountains, Climate Change, Sustainability and People*, Springer Nature, Cham,
962 Switzerland, 627 pp., <https://doi.org/10.1007/978-3-319-92288-1>, 2019.

963 Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., and Wilkes, A.: The
964 melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods,
965 *Conserv. Biol.*, 23, 520–530, <https://doi.org/10.1111/j.1523-1739.2009.01237.x>, 2009.

966 Yadav, R. K., Rupa Kumar, K., and Rajeevan, M.: Increasing influence of ENSO and decreasing
967 influence of AO/NAO in the recent decades over northwest India winter precipitation, *J.*
968 *Geophys. Res.-Atmos.*, 114, D12112, <https://doi.org/10.1029/2008JD011318>, 2009.

969 Ye, Y. and Tian, Y.: Interpreting changes in albedo and mass balance at White Glacier, Canadian
970 Arctic Archipelago, *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.*, XLIII-B3-2022, 793–
971 798, <https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-793-2022>, 2022.

972 Yu, W., Ma, M., Wang, X., Geng, L., Tan, J., and Shi, J.: Validation of MODIS land surface
973 temperature products using ground-based longwave radiation observations in the Heihe River
974 Basin, *Proc. SPIE*, 8174, 81741G, <https://doi.org/10.1117/12.897571>, 2011.

975 Yue, S. and Wang, C. Y.: The Mann–Kendall test modified by effective sample size to detect
976 trend in serially correlated hydrological series, *Water Resour. Manag.*, 18, 201–218,
977 <https://doi.org/10.1023/B:WARM.0000043140.61082.60>, 2004.

978 Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth,
979 H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and
980 Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to
981 2016, *Nature*, 568, 382–386, <https://doi.org/10.1038/s41586-019-1071-0>, 2019.

982 Zemp, M., Roer, I., Kääb, A., Hoelzle, M., Paul, F., and Haeberli, W. (eds.): *Global glacier
983 changes: facts and figures*, United Nations Environment Programme and World Glacier
984 Monitoring Service, Nairobi, Kenya and Zurich, Switzerland, 88 pp., 2008.

985 Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., and Li, A.: An analysis of land surface
986 temperature trends in the central Himalayan region based on MODIS products, *Remote Sens.*,
987 11, 900, <https://doi.org/10.3390/rs11080900>, 2019.