

1

2 **Dynamics of Snow and Glacier Cover in the Upper Karnali Basin, Nepal: An Analysis of**
3 **Its Relationship with Climatic and Topographic Parameters**

4 **Motilal Ghimire^{1*}**, Dibas Shrestha², Raju Chauhan³, Amrit Thapa⁴, Til Prasad Pangali Sharma⁵,
5 Krishna Prasad Sharma⁶, Sher Bahadur Gurung⁶, Sundar Devkota⁷, Prabin Bhandari⁸, Sikesh
6 Koirala⁷, Yanhong Wu⁹, Niroj Timalsina⁶, and Jeevan Kutu⁶

7 ¹ *Corresponding Author:* Tribhuvan University, Central Department of Geography, Kathmandu,
8 Nepal. Email: motighimire@gmail.com

9 ² Tribhuvan University, Central Department of Hydrology and Meteorology, Kathmandu, Nepal

10 ³ Tribhuvan University, Central Department of Environmental Science, Kathmandu, Nepal

11 ⁴ University of Alaska Fairbanks, Fairbanks, USA

12 ⁵ Tribhuvan University, Nepal Mountain Academy, Kathmandu, Nepal

13 ⁶ Tribhuvan University, Central Department of Geography, Kathmandu, Nepal

14 ⁷ Department of Survey, Government of Nepal, Kathmandu, Nepal

15 ⁸ George Mason University, Fairfax, Virginia, USA

16 ⁹ Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu,
17 China

18 **Abstract**

19 Snow and glacier cover in the Upper Karnali Basin (UKB) are crucial freshwater reservoirs that
20 support downstream ecosystems and human populations. This study uses remote sensing and
21 GIS data from various sources, MODIS-derived land surface temperature, and ERA5 reanalysis
22 climate datasets to analyze snow cover dynamics from 2002 to 2024. The results show a

23 significant decrease in snow-covered area (SCA), with an annual decline of about 3.99 km².
24 Seasonal variations indicate the most significant reductions during the monsoon period (July–
25 September), where rising temperatures accelerate snowmelt. The analysis also establishes a
26 strong negative correlation between snow cover and temperature ($r = -0.59$ to -0.77 , $p < 0.05$),
27 with warming trends disproportionately affecting mid-to-high elevation zones (3000–5000 m
28 a.s.l.). Glacier basins exhibit consistent retreat, with the mean glacier area declining from 119.05
29 hectares in 2000 to 100.47 hectares in 2023, highlighting the impact of climate change.
30 Additionally, snowline analysis demonstrates an upward migration, with the 10th percentile
31 snowline increasing at a rate of approximately 5.16 m/year, which indicates progressive snow
32 loss at lower elevations. Given the current warming trends (~0.0643°C/year above 5000 m a.s.l.),
33 the UKB could experience a decline of glacier area by 47–69 % and snow-covered area by 19–30
34 %. These findings emphasize the vulnerability of UKB’s cryosphere to climate change,
35 necessitating adaptive water resource management strategies. This will help mitigate impacts on
36 hydrology, agriculture, and regional water security.

37 **Keywords:** Snow and Glacier, Karnali, Himalayas, Remote Sensing, Climate Change,
38 Elevation-depended-warming, Snowline

39

40 **1. Introduction**

41 Snow and glaciers in the mountains act as freshwater towers. Their meltwater provides a
42 consistent supply to rivers and downstream ecosystems (Immerzeel et al., 2020; Wester et al.,
43 2019; Pritchard, 2019). The meltwater from Himalayan ice and snow supports the livelihoods of
44 millions across Nepal, India, and China by supplying drinking water, irrigation, hydropower, and
45 ecosystem services (Bolch, 2007; Bookhagen and Burbank, 2010). Therefore, a decline in snow
46 and glacier extent threatens water availability, food security, and sustainable development in
47 these regions (Krishnan et al., 2019).

48 Furthermore, snow and glacial ice regulate regional and global climates by reflecting solar
49 radiation, thereby contributing to the Earth's energy balance and influencing local weather
50 patterns (Xu et al., 2009). Seasonal meltwater sustains ecosystems that provide habitats for
51 numerous animal and plant species in mountainous regions. Consequently, changes in snow
52 cover and glaciers can disrupt these entirely (Wester et al., 2019). On both local and regional
53 scales, variations in the amount of snow and ice can contribute to changes in sea level, affecting
54 coastal areas (Forster et al., 2021; Mimura, 2013; NOAA, 2013)

55 Snow-covered peaks and glaciers are major hubs for adventure, religious, and nature-based
56 tourism (Anup, 2017; Nyaupane and Chhetri, 2009). Being sensitive to climate change, changes
57 in their size and volume not only serve as visible indicators of broader climate trends but also
58 directly threaten the tourism economy they support (Elsasser and Bürki, 2002).

59 A comprehensive understanding of cryospheric transformations is essential for accurate
60 hydrological forecasting, assessing cryospheric hazards, and developing effective adaptation
61 strategies. Historically, monitoring snow and glacier dynamics in the remote Himalayan regions

62 was limited by a scarcity of in-situ observations. Since the 1970s, advances in satellite remote
63 sensing have revolutionized large-scale cryospheric assessments (Kääb et al., 2012; Muhammad
64 and Thapa, 2020). The synergistic integration of satellite-derived data with sophisticated climate
65 models and targeted ground-based measurements has subsequently enabled improved
66 understanding of snow and glacier mass balance changes, their resultant hydrological impacts,
67 and spatiotemporal variability (Bajracharya et al., 2014; Bolch et al., 2012; Gurung et al., 2017;
68 Kääb et al., 2012; Krishnan et al., 2019; Kulkarni et al., 2021). Collectively, these studies
69 demonstrate substantial snow and glacier loss across the Himalayas, altering river discharge
70 seasonality and water resource availability

71 Extensive research on glaciers, glacier lakes, and glacier lake outburst floods (GLOFs) in Nepal
72 has been conducted (Bajracharya et al., 2008; Hall et al., 2002; Kääb et al., 2005; Shrestha et al.,
73 2012; Zemp, 2006). However, these studies disproportionately focus on the central and eastern
74 Himalayas. The mid-western and far-western regions remain underrepresented due to their
75 remoteness and limited accessibility (Shrestha et al., 2019; Khadka et al., 2024). Although global
76 and regional glacier inventories specifically addressing high-resolution (≤ 30 m) glacier cover
77 remain limited (Bajracharya et al., 2014; Bolch et al., 2012), Analyses of elevation-dependent warming
78 (EDW) and trend analyses are also scarce in the Himalayas (Pepin et al., 2015; Pepin et al.,
79 2022; Desinayak et al., 2022). Furthermore, integrated studies linking glaciers, glacier basins,
80 and snow cover to climate remain underexplored.

81 Bridging this gap is crucial for understanding cryosphere dynamics and their impacts on
82 hydrology, hazards, and livelihoods in western Nepal. The Karnali Basin, Nepal's largest river
83 basin (~40,780 km² upstream of the Chisapani gauge station) and home to approximately 2.5
84 million people (CBS, 2021), exemplifies this need. Its rivers, fed by snow, provide essential dry-

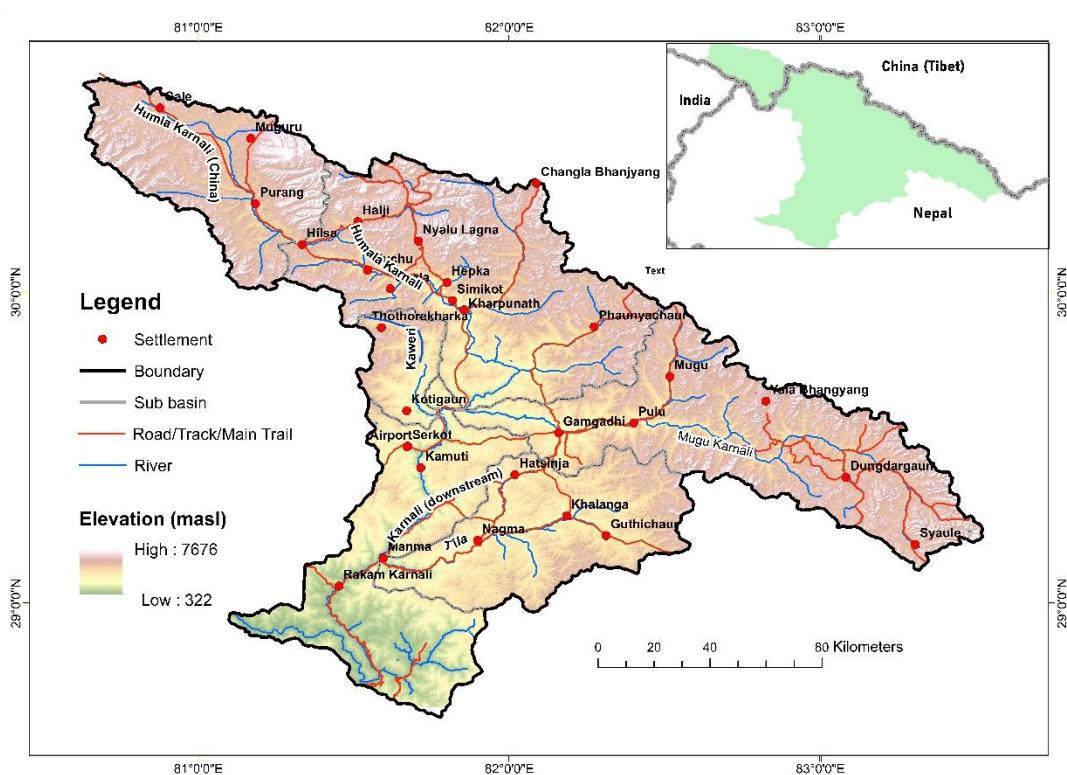
85 season water for irrigation, drinking, and hydropower. Despite its ecological significance, the
86 basin's cryospheric behavior remains poorly documented.

87 Findings from studies conducted in the central and eastern Himalayas, the Indian Himalayas, and
88 the Tibetan Plateau cannot be universally applied to the Karnali Basin due to differences in
89 climatic regimes and geographical settings. Understanding the impacts of cryosphere changes on
90 water resources requires studies specific to the Karnali Basin. Integrating MODIS data, which
91 offers high temporal resolution, with Landsat data, known for high spatial resolution, will
92 improve our understanding of snow and glacier changes and their relationships with topography,
93 glacier basins, and climate.

94 Against this backdrop, the specific objectives of these study are to:

- 95 1. Quantify spatial and temporal variations in snow and glacier cover in the Upper Karnali
96 Basin (2000–2024) using multi-sensor remote-sensing datasets.
- 97 2. To determine the influence of climatic drivers (rising temperatures, precipitation shifts)
98 and topography on the observed cryospheric dynamics, including the upward migration
99 of the snowline.

100 **2. Study Area**


101 The Upper Karnali Basin (UKB) is a transboundary catchment extending from 28.64° to 30.68°
102 N latitude and 80.64° to 83.54° E longitude, covering 22,577 km². This region accounts for over
103 50% of the entire Karnali Basin above the Chisapani gauge station (225 m above sea level). It
104 includes about 66% of the basin's glacierized area (Bajracharya et al., 2011; Ghimire et al.,
105 2024). The UKB comprises the Humla Karnali (partly within Tibet, China), Mugu Karnali,
106 Kawari, and Tila Nadi sub-basins (see Fig. 1).

107 The elevation ranges from 340 meters to 7,030 meters, with an alpine zone above 4,000 meters
108 extending across the Middle Mountains, High Mountains, High Himalaya, and the Tibetan
109 Plateau. These regions encompass the geological units known as the Lesser Himalaya, Higher
110 Himalaya, and Tethys Himalaya (LRMP 1986; Dhital 2015). This topographic and lithologic
111 diversity significantly influences climatic gradients and cryospheric processes.

112 The climate ranges from polar tundra in the glacier region to subtropical, temperate, and cold
113 climates below 4,000 meters, with mean annual temperatures ranging from 27 °C to -12 °C and
114 precipitation varying from 250 mm in rain-shadow areas to approximately 1,900 mm annually on
115 slopes. The cryosphere spans across both rainy and rain-shadow areas, which influences the
116 distribution and mass balance of snow and glaciers.

117 The Upper Karnali Basin features a diverse landscape of snow-covered glaciers, valleys,
118 permafrost, alpine meadows, and forests, supporting a rich variety of flora and fauna. It
119 represents a cultural blend of Khas and Tibetan traditions and is an emerging tourist destination,
120 including a stop on the Kailash Mansarovar pilgrimage route. The basin has an estimated
121 population of approximately 816,941 people, with a density of 36.2 persons per square
122 kilometer, residing in 4,395 settlements, primarily below 4,000 meters in elevation. The Human
123 Development Index in the area is 0.49, which is below the national average.

124 Due to its climatic, geological, and cryospheric diversity, the Upper Karnali Basin represents the
125 broader Himalayan environment. It serves as an ideal natural laboratory for studying spatial
126 variations in snow- and glacier-covered areas, elevation-dependent warming, and hydro-
127 cryospheric changes across far and mid-western Nepal.

128

Figure 1. Location of the Upper Karnali Basin.

129

130

131 3. Data Sources, Method, and Limitations

132 This study considers snow and glacier cover as a unified cryospheric component, given their
 133 analogous functional roles. This study analyzed cryospheric dynamics using remote sensing.
 134 Satellite imagery was processed to generate time-series data on snow and ice cover, derive land-
 135 surface temperatures, and map glacier basins.

136

137

138 **3.1.Snow Cover Mapping**

139 We mapped snow cover in the Upper Karnali Basin using Google Earth Engine (GEE) and
140 imagery from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI. For the period preceding the
141 Scan Line Corrector (SLC) failure, we used only Landsat 7 ETM+ images (2002–2003). For
142 subsequent years, we utilized data from Landsat 5 TM and Landsat 8 OLI. To ensure high data
143 quality, we selected only scenes with less than 30% cloud cover (Appendix A)

144 We preprocessed all Landsat images by masking clouds using the Quality Assessment (QA)
145 bands–pixel_qa for Landsat 5 and 7, and QA_PIXEL for Landsat 8. Next, we calculated the
146 Normalized Difference Snow Index (NDSI) using the green and short-wave infrared (SWIR)
147 bands (Hall et al., 2002; Gorelick et al., 2017) and applied a threshold of NDSI > 0.4 to identify
148 snow pixels. To reduce confusion between snow and vegetation in mixed or forested terrain, we
149 also calculated the Normalized Difference Vegetation Index (NDVI) and excluded pixels with
150 NDVI > 0.2 from the snow classification, following the approach of Rittger et al. (2013). Finally,
151 we exported the resulting snow cover maps as GeoTIFF files for overlay and sub basin and
152 micro-basin analyses.

153 To supplement the Landsat observations, we processed MODIS 8-day composite snow-cover
154 products (MOD10A2) using Google Earth Engine (GEE). The MOD10A2 algorithm applies a
155 maximum snow-extent compositing method over each 8-day period (Parajka and Blöschl, 2008),
156 which minimizes cloud contamination and produces a spatially continuous dataset for analyzing
157 seasonal and interannual snow-cover variability. Although it loses daily temporal resolution, the

158 8-day composite effectively smooths out short-lived cloud effects, providing a more stable
159 dataset for trend analysis.

160 After processing the imagery, we executed a Python script within the Google Earth Engine
161 (GEE) environment to automate the download and organization of snow cover data. The script
162 aggregated MODIS-derived snow extent by season, sub-basin, and elevation band (derived from
163 the SRTM DEM).

164 The year was divided into four distinct three-month periods—January–March (Peak
165 Accumulation), April–June (Major Ablation), July–September (Monsoon Ablation), and
166 October–December (Early Accumulation). This division was explicitly chosen to capture the
167 hydrological phases of snow accumulation and melting while minimizing cloud contamination
168 during the monsoon season(Hunt et al., 2025; Khatiwada et al., 2016; Kulkarni et al., 2017). The
169 resulting structured snow dataset was used as the main input for analyzing snow cover trends,
170 elevation-dependent variability, and hydrological differences among sub-basins.

171 We describe the methods for spatial resolution harmonization and accuracy assessment between
172 Landsat and MODIS datasets in Appendix B. Despite these refinements, persistent monsoon
173 cloud cover continues to limit optical remote sensing in the Himalayas, often resulting in
174 underestimation of snow-covered areas and uncertainties in seasonal trends.

175 Elevation bands were defined using the SRTM DEM and categorized into 200-meter intervals,
176 ranging from ≤ 2000 m to ≥ 6500 m. Zonal statistics were applied to extract the frequency of
177 snow cover for each elevation band and subbasin. Snow-covered area was calculated using a
178 threshold-based binary mask. The results were aggregated into a structured dataset, revealing

179 seasonal snow distribution and variations across elevation zones and watersheds, thereby
180 facilitating hydrological analysis.

181 **3.2. Land Surface Temperature Data and Validation**

182 We also downloaded the land surface temperature (LST) 1 km resolution from the Application
183 for Extracting and Exploring Analysis Ready Sample (AppEEARS) platform. AppEEARS is a
184 NASA-supported platform developed to easily access, subset into specified areas, and analyze
185 climate and environmental data(Wan et al., 2015). MODIS Land Surface Temperature (LST)
186 data have been reliably used to determine surface temperature patterns in areas where ground
187 observations are scarce, especially in rugged mountainous regions. Several studies have
188 confirmed their accuracy, showing average biases of less than 1.5 K and high correlations ($R^2 >$
189 0.9) with on-site measurements (Duan et al., 2019; Yu et al., 2011; Zhao et al., 2019),
190 demonstrating their appropriateness for analyzing elevation-related warming trends in the
191 Himalayas. We also obtained temperature and precipitation records, including maximum and
192 minimum values, from the Department of Hydrology and Meteorology (DHM), Government of
193 Nepal, and open-access reanalysis datasets such as ERA5. The temperature data (2 m above
194 ground) obtained from various meteorological stations in the study area, were compared with
195 MODIS LST; the results of this comparison are discussed in Section 4. Due to the 1 km spatial
196 resolution of the MODIS product, the analysis of time series data reflects area-averaged
197 temperature trends rather than in situ measurements at individual stations.

198 **3.3. Delineation of the Glacier Basin and Glacier Data**

199 The boundaries of glacier basins were delineated to assess changes in glaciers and snow cover
200 fractions within glacier-drained areas. Glacier basins include trunk glaciers, tributary glaciers,

201 and surrounding slopes nourished by moving ice and snow. Their boundaries are topographically
202 defined, with the lower boundary terminating at the terminus of the main glacier. This
203 delineation process involved multiple steps to ensure accuracy.

204 Initially, the Glacier Inventory map referenced earlier served as a fundamental resource. High-
205 resolution imagery and ESRI's topographic maps in ArcGIS 10 and later versions provided
206 detailed spatial data. A 12.5 meter DEM was used to extract drainage networks, produce contour
207 lines, and generate hillshade maps, enhancing the visualization of divides between glacier basins.
208 These components were essential for accurately identifying glacier termini and delineating
209 glacier head basins. This integrated approach, combining topographic analysis, remote sensing,
210 and geospatial techniques, enabled precise delineation of glacier basins for comprehensive
211 evaluations of snow cover fraction.

212 The time series glacier data compiled by Ghimire et al. (2025), were included in this study. The
213 lead author of the current manuscript was also responsible for that research paper. In summary,
214 we mapped glacier polygons for the years 2000, 2010, and 2023 using high-resolution imagery
215 from Google Earth, Bing Maps, and RapidEye 2023 to maintain temporal consistency. Snow and
216 glaciers were identified based on their bright characteristics, features, smooth textures, and
217 shadows cast by adjacent terrain. Landsat composites (both true and false color) and the
218 Normalized Difference Snow Index (NDSI) enhanced and improved the visibility of snow and
219 ice, while altitude and topographic data derived DEM highlighted potential glacier regions.
220 Outlines from the Randolph Glacier (RGI)(Pfeffer et al., 2014) and ICIMOD (Bajracharya et al.)
221 served as reference, while ground-truth and additional data helped validate the findings. This
222 comprehensive approach ensured precise delineation.

223 **3.4.Limitations and Validation**

224 A key limitation of this research is that optical remote sensing is significantly affected by cloud
225 cover, particularly during the monsoon season (Hall et al., 2002; Gafurov and Bárdossy, 2009).
226 Frequent cloudiness often restricts the availability of clear Landsat images, leading to an
227 underestimation of snow cover and potential inaccuracies in the spatial and seasonal assessment
228 of snow patterns. In this study, cloud-free images were primarily available from January to
229 March and October to December in most Upper Karnali sub-basins. Nevertheless, all four
230 seasons were analyzed for microglacier basins where suitable data existed.
231 To address these issues, we used MODIS MOD10A2 data, which provide higher temporal
232 resolution (8-day composites at 500 m) compared to Landsat's 16-day revisit cycle and 30 m
233 spatial resolution. This multi-sensor strategy enhances temporal continuity and minimizes data
234 gaps caused by clouds; however, results should still be interpreted cautiously (Maskey et al.,
235 2011; Parajka and Blöschl, 2008).
236 The scarcity of high-altitude temperature stations necessitated the use of MODIS land surface
237 temperature (LST) data at a 1 km resolution, representing daytime skin temperature at
238 approximately 10:30 A.M. local time. This skin temperature was compared with in situ air
239 temperature measurements taken at 2 meters above ground from four stations: Jumla (2,300 m),
240 Simkot (2,800 m), Guthi Chaur (3,080 m), and Rara (3,048 m). Correlations varied by site and
241 season—strongest at Jumla (up to 0.85), moderate at Guthi Chaur, and weakest at high-altitude,
242 snow-covered sites such as Simkot and Rara (−0.18). MODIS LST performs well in clear, snow-
243 free areas but requires adjustments at higher elevations. Differences arise from factors including
244 resolution, spatial averaging, land-cover heterogeneity, and surface–air temperature contrasts.
245 Validation studies further confirm its reliability for analyzing high-mountain temperatures in
246 regions where in situ data are limited (see Duan et al., 2019; Yu et al., 2011; Zhao et al., 2019).

247 **4. Result**

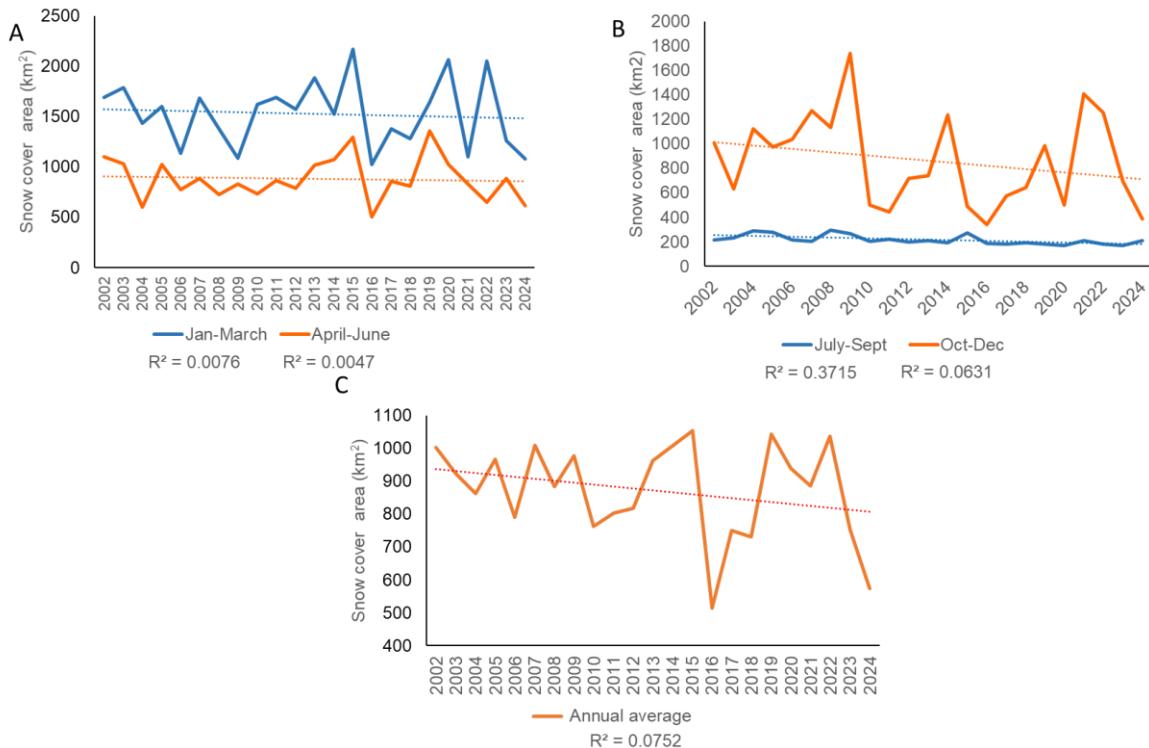
248 **4.1. Snow or Ice cover Trend and Variability: Annual and Seasonal**

249 The total snow cover across the Upper Karnali Basin (22,546 km²) from 2002–2024 averages
250 872 km², with a standard deviation of 147 km², indicating moderate variability (Table 1 and
251 Figure 2). The minimum recorded snow cover is 514 km²; about 25% of the recorded snow
252 cover observations are at or below 777 km². The average snow covered area from January–
253 March is 1528 ± 333 km², followed by April–June (881 ± 212 km²) and October–December
254 (862 ± 373 km²), respectively. July–September witnessed the lowest snow cover area, i.e., 169
255 ± 38.3 km² .

256 Snow cover data highlight significant year-to-year changes in every quarterly season with
257 varying directions and magnitudes of trends, evidenced by correlation, the Kendall tau test, and
258 Sen's slope. The annual average SCA shows, although not significant, a decreasing trend ($p =$
259 0.535), with Sen's Slope estimating a loss of ~ 3.99 km²/year, which indicates a gradual decline in
260 snowpack over two decades. Seasonally, the July–September period exhibits a gentler trend line
261 compared to October–December; however, because of its much lower inter-annual variability, this
262 period exhibits the statistically significant steepest drop in snow cover (Sen's Slope = -2.87, $p =$
263 0.001) (Table 1). This period is charactersied by snow ablation, where the summer monsoon
264 brings warmer temperatures. In mid-latitude regions, the precipitation occurs more as rain than
265 snow, resulting in accelerated snowmelt. While January–March shows a decline (Sen's slope =
266 8.63 km/year), it lacks statistical significance ($p = 0.523$), suggesting year-to-year winter
267 variability in snowfall or early melt. Similarly, no significant trends were detected in April–June.
268 Interannual variability is evident with peaks and lows of snow and ice coverage (Figure 2).
269 Episodic snow coverage was observed in 2015, 2020, and 2022 (January–March), 2015 and 2019

270 (April–June), 2009, and 2021 (October–December), indicating anomalous years of high episodic
271 heavy snowfall events. However, these anomalies do not counterbalance long-term declines.

272 Compared to seasons, annual snow coverage's inter-annual variability is relatively low, i.e., with
273 a 16% coefficient of variation (CoV)–ratio of the standard deviation to the mean.


274

275

276 **Table 1.** Snow cover descriptors and changes by seasons

Descriptor	Jan–Mar	Apr–Jun	Jul–Sep	Oct–Dec	Annual avg.
Mean (km ²)	1 528.00	881.00	217.00	862.00	872.00
Median (km ²)	1 569.00	858.00	210.00	739.00	886.00
Std. dev. (km ²)	333.00	212.00	38.30	373.00	147.00
Minimum (km ²)	1 025.00	503.00	169.00	340.00	514.00
Maximum (km ²)	2 167.00	1 358.00	298.00	1 737.00	1 055.00
Skewness	0.21	0.47	0.94	0.51	-0.87
25th percentile (km ²)	1 270.00	751.00	191.00	538.00	777.00
50th percentile (km ²)	1 569.00	858.00	210.00	739.00	886.00
75th percentile (km ²)	1 689.00	1 025.00	229.00	1 126.00	991.00
Correlation (r)	-0.09	-0.07	-0.61	-0.25	-0.27
Kendall's τ	-0.09	0.01	-0.54	-0.13	-0.10
p-value	0.523	0.950	0.000	0.398	0.535
Sen's slope (km ² yr ⁻¹)	-8.63	-3.14	-2.87	-13.21	-3.99

277 **Note:** Sen's slope represents the median of all possible pairwise slopes, quantifying trend (here
 278 snow cover) over time (Sen, 1968). It gives a more reliable long-term trend of snow cover loss
 279 without being skewed by short-term anomalies (Gilbert, 1987; Yue and Wang, 2004)

280

281

282 **Figure 2.** Temporal variation and trends in seasonal and annual snow-covered area (SCA) in the
 283 Upper Karnali Basin (2002–2024).a) Time series of SCA for January–March (orange) and April–
 284 June (orange); (b) SCA for July–September (blue) and October–December (orange); (c) average
 285 annual SCA (orange).

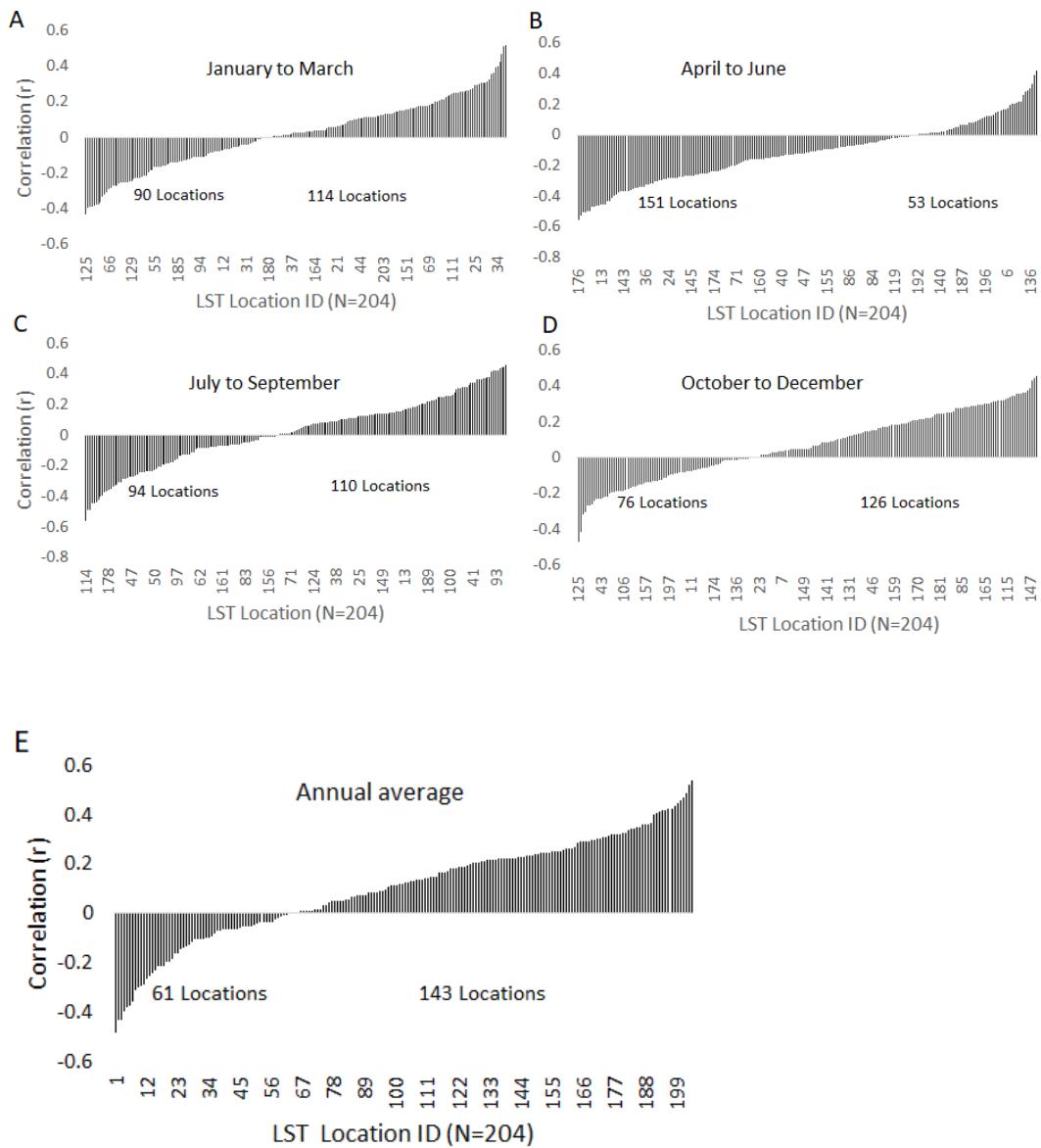
286 **4.2. The Relation among Snow Cover, Temperature, and Precipitation**

287 We derived land surface temperature (LST) data for 204 locations from MODIS Terra
 288 (MOD11A1) and Aqua (MYD11A2) (1 km resolution), which were processed through
 289 AppEEARS. Precipitation data were obtained from the ERA5-Land reanalysis (~9 km
 290 resolution) by ECMWF (Hersbach et al., 2020). These datasets, covering four different seasons,
 291 were used to examine temperature and precipitation trends, as well as their relationship with
 292 snow cover trends (Figures 3, 4, and 5).

293

294 Using correlation statistics, we found that among the 204 sampled sites, 143 locations
295 (approximately 70%) exhibit a positive annual temperature trend, indicating a general warming
296 pattern throughout the study region (Figure 3). However, statistically significant trends ($p \leq 0.1$)
297 were identified in only a subset of these sites, highlighting that not all observed warming trends
298 are statistically robust. Moreover, the warming pattern is not consistent across all seasons.

299 Notably, during the April–June interval, the temperature trend tends to be weaker or, in some
300 cases, negative. Several subsites across different seasons also demonstrate negative trends,
301 although the majority of locations show a positive trend (Figure 3). Elevation-related variability
302 in these trends is further analyzed in Figures 7–9 and Table 3.

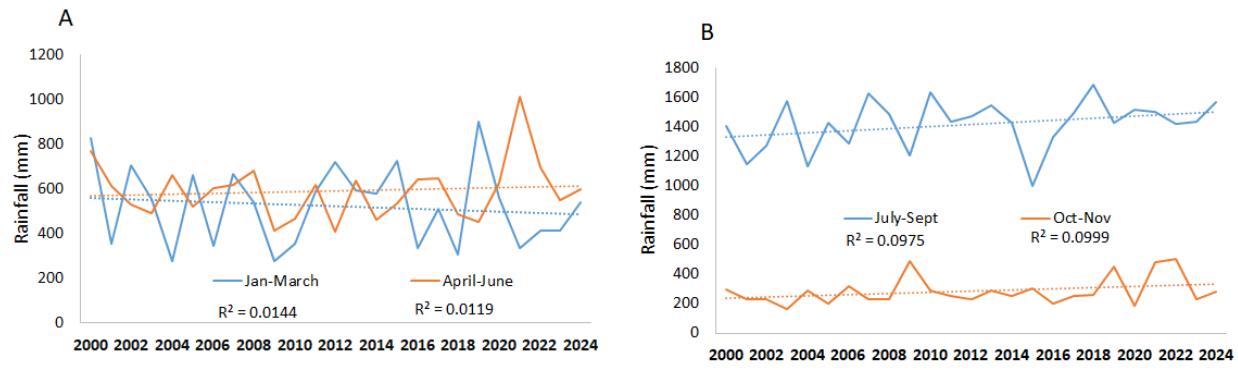

303 Seasonal rainfall trends from 2000 to 2024 indicate weak to moderate increases across all
304 seasons, with the exception of winter (January–March), which exhibits a slight downward trend
305 ($R^2 = 0.0144$) (Figure 4). Pre-monsoon (April–June) rainfall shows a slight upward trend ($R^2 =$
306 0.0119). All these seasons display high variability, suggesting a limited impact on snow
307 accumulation. Monsoon rainfall (July–September) demonstrates a more noticeable increase ($R^2 =$
308 0.0975), primarily contributing to rainfall rather than snowfall. Post-monsoon (October–
309 December) precipitation remains low and stable. When combined with rising temperatures, these
310 trends indicate a shift toward rainfall-dominated precipitation, reduced snowfall, and earlier
311 snowmelt, contributing to declining snow cover and altered hydrological regimes.

312 The snow-covered area shows a strong to moderate negative correlation ($r = -0.59$ to -0.77 , $p <$
313 0.05) with temperature across all seasons (Figure 5). Conversely, precipitation has a positive
314 correlation ($r = 0.55$ to 0.59 , $p < 0.05$) with snow cover for January–March and October–
315 December, while during the remaining seasons, it shows a moderate negative correlation.

316 Precipitation and temperature are negatively correlated in winter (Oct-March) and positively in
317 the summer (April-September) half-year.

318

319

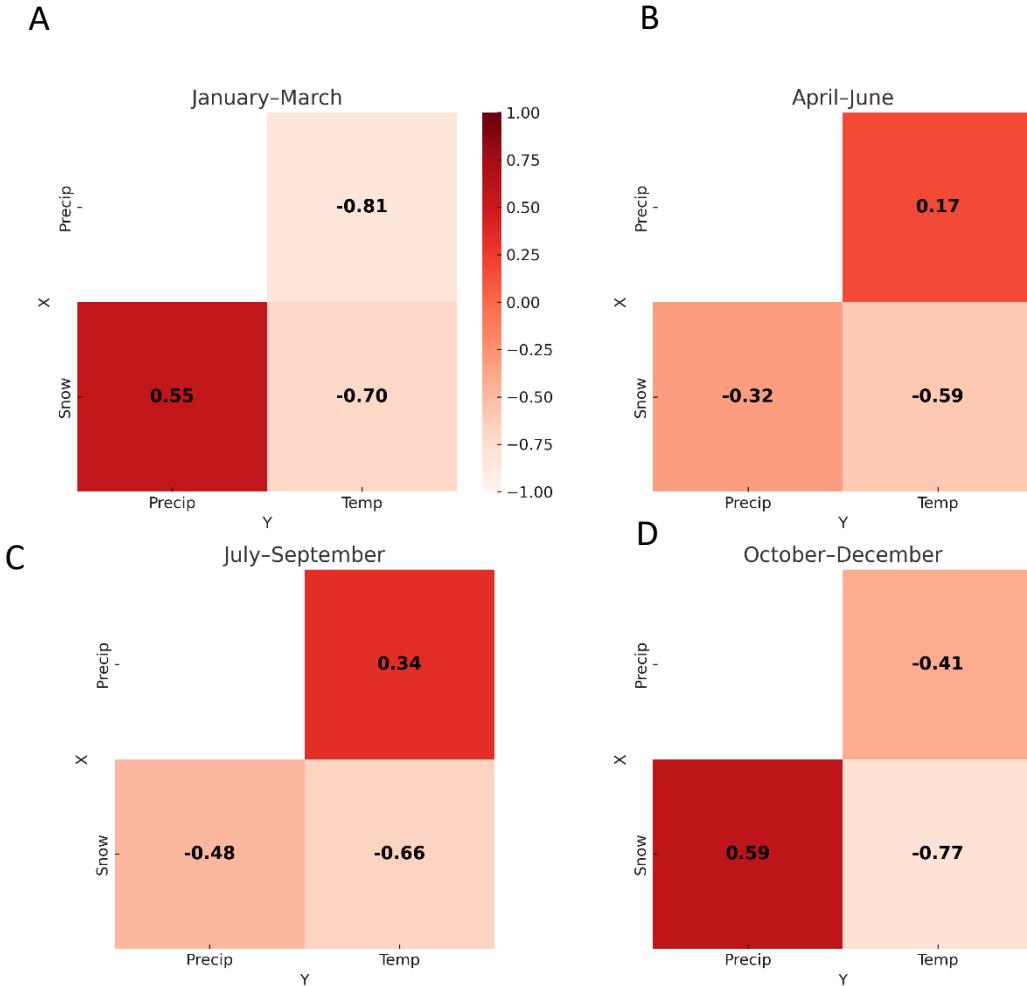


320

321

322 **Figure 3.** The correlation illustrates the season wise (A-E) temperature trend directions at
323 various sites between 2000 and 2024 (Source: MODIS Terra and Aqua MOD11A2, MYD11A1,
324 AppEEARS). Significant correlations at a 90 % confidence level are observed at $r = \pm 0.364$.

325



326

327

328 **Figure 4.** Yearly rainfall trends across various periods. Precipitation data was collected from the
329 ERA5-Land reanalysis by ECMWF (Hersbach et al., 2020) from 204 locations across four
330 different periods.

331

332

333 **Figure 5.** Seasonal correlation patterns among snow cover, temperature and precipitation across
 334 a 22-year period, shown separately for each season (A–D).

335 **4.3. Snow Cover Changes in Sub-Basins Using Landsat Series Data**

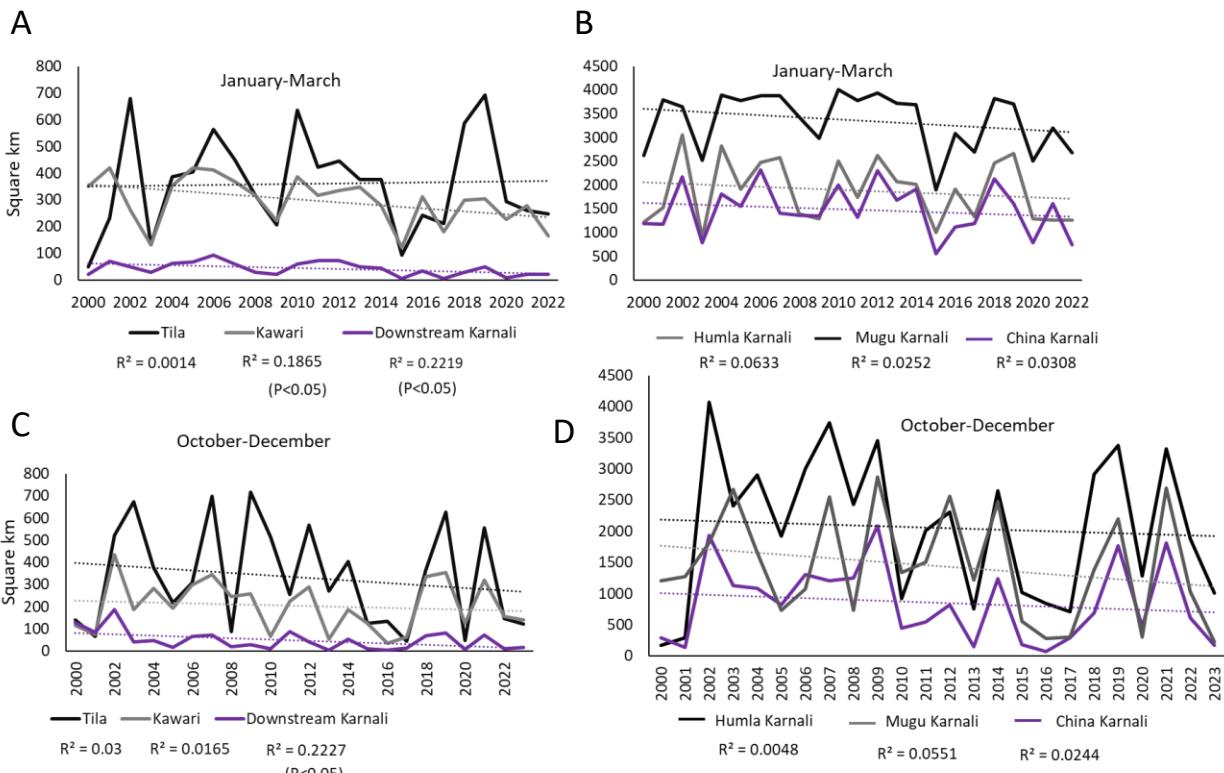
336 Landsat-derived reliable snow and ice data were unavailable for the pre-monsoon and monsoon
 337 seasons due to significant cloud coverage (as mentioned in Section 3.4). Therefore, only two
 338 seasons, January–March and October–December, were considered. These seasons are
 339 characterized by snowfall as precipitation, which contributes to snow accumulation.

340 Examining snow cover patterns in the sub-basins of the Upper Karnali Basin (UKB) for two
 341 seasons (January–March and October–December) reveals notable seasonal and spatial

342 differences (Table 2). During January–March, Humla Karnali has the largest average snow cover
343 ($3,336 \text{ km}^2$), followed by Mugu Karnali ($1,864 \text{ km}^2$) and Humla Karnali (China) ($1,478 \text{ km}^2$),
344 while areas downstream like Tila and Kawari have very little coverage (less than 350 km^2).
345 Significant variability in the snow cover trend is observed, particularly in Tila and Downstream
346 Karnali, which have a coefficient of variation (CoV) above 50%. This high CoV indicates
347 inconsistent snow cover from year to year during January–March. Furthermore, this variability is
348 associated with a significant negative correlation i.e., $r \geq -0.37$ ($p < 0.1$). Figure 6 also graphically
349 shows the temporal trends with the correlation coefficient (r) and fluctuations in Landsat-derived
350 snow cover for the two seasons mentioned above. The moderately negative skewness of the
351 temporal distribution does not affect the correlation, which is negative for all basins, indicating a
352 declining trend.

353 Conversely, the October–December season has a lower average snow cover (823 km^2) and
354 exhibits strong fluctuations (e.g., a range of 227 – 1570 km^2 and a CoV of 55%). Strong
355 variability is observed for all basins, particularly Humla Karnali (China), Tila, and Downstream
356 Karnali. The skewness is moderate, except for Downstream Karnali. Correlation values are
357 reliable and indicate a declining trend. However, Downstream Karnali, in spite of high
358 variability, indicates a statistically significant negative r value, i.e., -0.47 ($p < 0.05$) (Figure 6).

359


Table 2. Descriptive statistics of snow cover across sub-basins for two seasons (January-March and October-December) and the time series correlation from 2002 to 2024.

Descriptor	January - March						October-December					
	Humla Karnali (China)	Humla Karnali	Mugu Karnali	Tila	Kaweri Down stream	Seasonal average	Humla Karnali (China)	Mugu Karnali	Tila	Kaweri Karnali (Down stream)	Seasonal average	
Mean	1478	3336	1864	351	294	41.9	1227	854	2057	1442	332	204
Median	1420	3667	1827	346	308	39	1239	754	2159	1301	288	190
Standard deviation	501	597	645	184	86.2	24	311	622	1163	862	227	112
Coefficient of variation (CoV in %)	33.90	17.90	34.60	52.42	29.32	57.28	25.35	72.83	56.54	59.78	68.3 7	54.90
Minimum	552	1904	887	50.1	121	5.74	612	67.2	166	226	44.3	35.2
Maximum	2317	4009	3056	691	420	93.5	1642	2092	4074	2868	716	434
Skewness	-0.707	-0.488	-1.29	-0.69	-0.469	-0.763	-1.1	0.533	-0.016	0.231 7	0.34 7	185
Temporal correlation (r<0.44 and r>0.44, p<0.05	-0.16	-0.18	-0.10	0.12	-0.37	-0.41	-0.14	-0.16	-0.07	-0.23 -0.17	0.17 -0.13	-0.47 -0.17

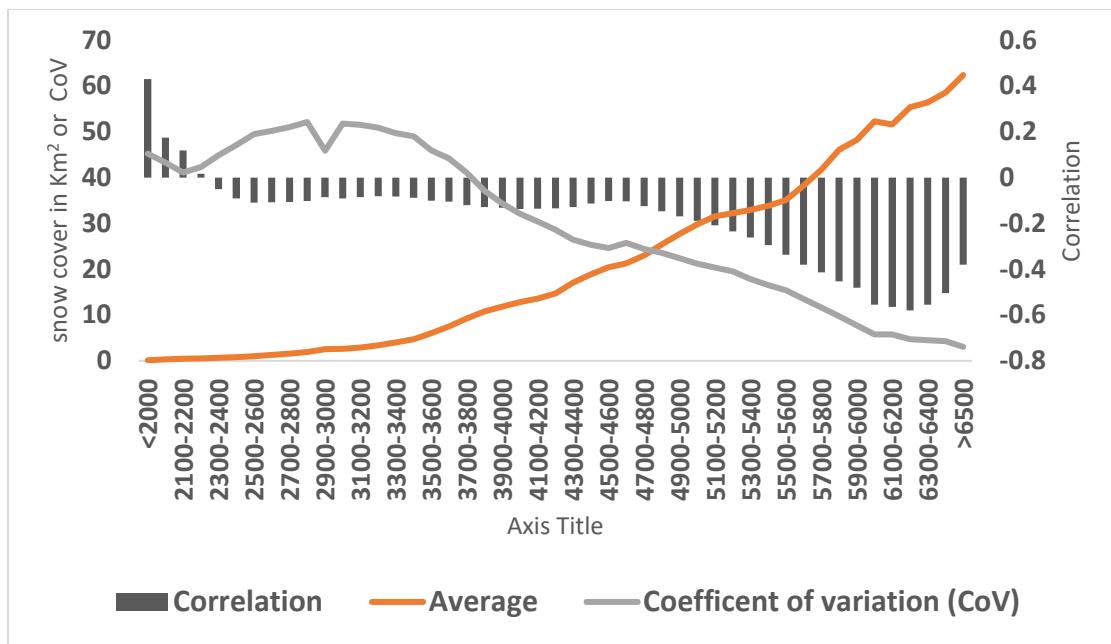
361

362

363

364

365 **Figure 6.** The snow cover trend in the Upper Karnali Basin varies across different sub-basins
366 from January–March and from October–December (A-D).

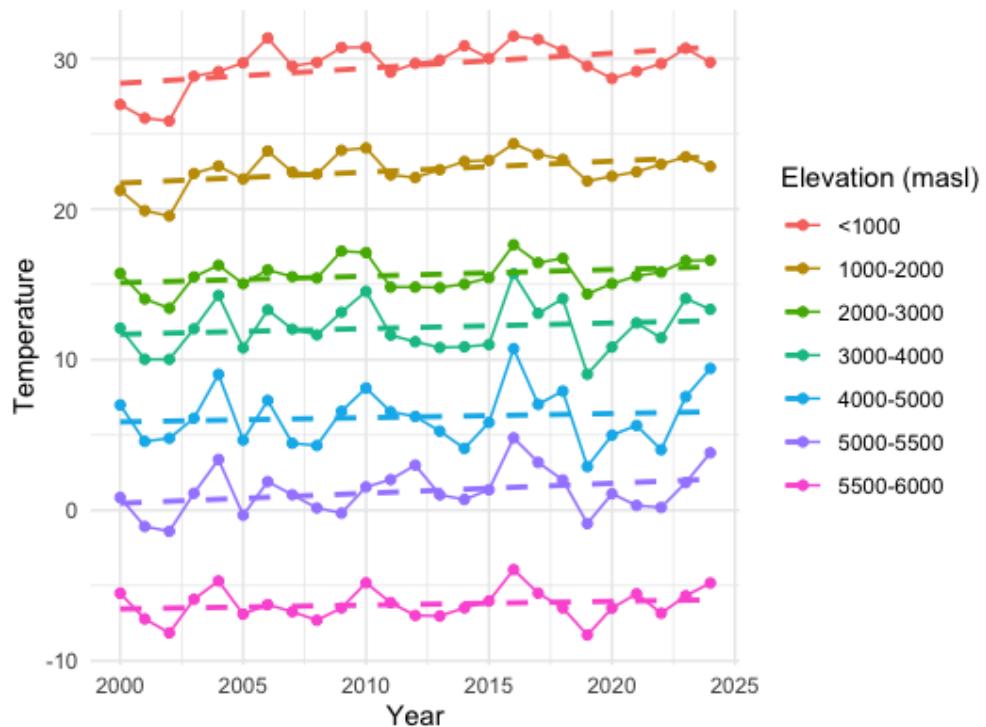

367 4.4. Snow Cover Dynamics across Elevation Zones

368 The dynamics of snow cover across elevation zones, categorized in 200-meter intervals from
369 ≤ 2000 m to ≥ 6500 m, reveal remarkable elevation-dependent patterns in correlation and
370 variability (Figure 7) with time (2002-2024). Snow cover in the lowest elevation zones shows a
371 weak positive correlation (0.12-0.43), suggesting a marginal increase. However, pronounced

372 interannual variability (CoV ~ 41-43%) is likely driven by fluctuating temperature and
373 precipitation regimes (Pendergrass, 2020).

374 Above 2300 m a.s.l., correlations shift to weak negative values (up to 5000 m a.s.l., $r = -0.05$ to -
375 0.17, reaching peak negativity at 6100-6200 m a.s.l. ($r = -0.56$), indicating a significant decline in
376 snow cover (Figure 7). This trend aligns with the impacts of global warming, where rising
377 temperatures disproportionately affect higher elevations, accelerating snowmelt and reducing
378 accumulation (Naegeli et al., 2019; Ren et al., 2023; Shen et al., 2021). The mean snow cover
379 increases with elevation, showing a marked rise from 3300 to 6500 m a.s.l. or above, except
380 between 5000-5200 m a.s.l, which exhibits a gradual rise in snow cover.

381 Above this elevation, the mean snow cover area rises sharply, coinciding with glaciers and
382 permanent snow zones. In contrast, the CoV increases with elevation up to 3100 m a.s.l. and then
383 trends sharply downward from 3100 m a.s.l. to 6500 m a.s.l. and beyond. This pattern indicates a
384 decline in interannual variability alongside increased negative correlations. The low inter-
385 variability reinforces the reliability of the declining trend in snow cover.



386

387 **Figure 7.** The average, coefficient of variation, and correlation of snow cover area (Source :
 388 MODIS) across various elevation bands with time (2002-2024).

389 To examine the relation between temperature and snow cover, the elevation bands were
 390 regrouped into seven broader bands: <1000, 1000–2000, 2000–3000, 3000–4000, 4000–5000,
 391 5000–5500, 5500–6000, and above 6000 m a.s.l. The temperature trend from 2002 to 2024
 392 across elevation bands in the Upper Karnali Basin, as evidenced by Sen's slope (Figure 8, Table
 393 3), shows a general increase. The highest rate of change is observed at lower elevations (<1000
 394 m: 0.0765°C/year). Mid-elevations (1000-2000m: 0.0576°C/year) and high elevations (5000–
 395 5500 m: 0.0643°C/year) also exhibit significant warming. However, statistical significance (P-
 396 value) weakens at higher elevations. This warming accelerates glacier retreat, reducing snow
 397 cover and impacting the hydrology of the Upper Karnali Basin by altering river flow patterns and
 398 leading to a declining glacier-fed water supply.

399

400

401 **Figure 8.** Temperature (source: MODIS) trend between 2002 and 2024 for different elevation
 402 bands


403

404

405 **Table 3.** Rate of temperature change in different elevation between 2000–2024)

Elevation bands (m a.s.l.)	Sen's slope(Sen, 1968)	P Value
<1000	0.0765	0.052
1000–2000	0.0576	0.058
2000–3000	0.0390	0.168
3000–4000	0.0410	0.528
4000–5000	0.0198	0.833
5000–5500	0.0643	0.154
5500–6000	0.0287	0.414

406 Figure 9 shows a strong negative correlation between land surface temperature and snow cover
 407 across elevation bands in the Upper Karnali Basin. Tau values range from -0.43 to -0.79. The
 408 correlation is strongest between 3000–5000 m a.s.l. (Tau = -0.77 to -0.79) and 5000–5500 m
 409 a.s.l. (Tau = -0.75), with all p-values <0.01, confirming statistical significance. Even at 5500–
 410 6000 m a.s.l. (Tau = -0.43, p = 0.00353), snow cover continues to decline. The impact is most
 411 severe at mid-to-high elevations, where warming accelerates snowmelt and glacier retreat,
 412 highlighting the vulnerability of the Upper Karnali Basin's hydrological balance to climate
 413 change.

414

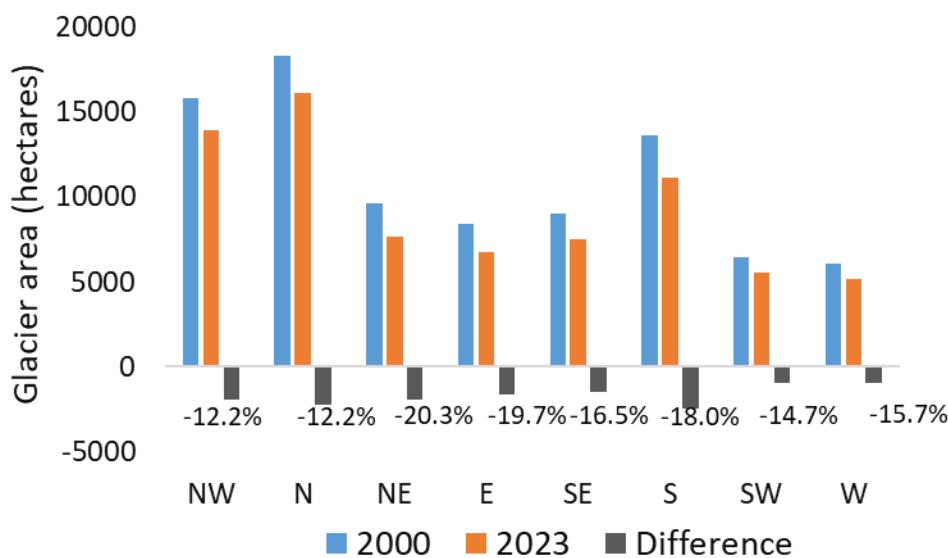
415 **Figure 9.** Relationship between snow cover and temperature ($^{\circ}\text{C}$) across elevation zones in the
 416 Upper Karnali Basin (2002–2024). The correlation (Kendall's Tau) shows a strong negative
 417 association across all elevations, especially between 3000–5500 m a.s.l., where warming has
 418 significantly reduced snow cover.

419 **Note:** Elevation bands below 2000 m are excluded due to minimal snow presence, high
 420 interannual variability, and limited data reliability.

421 **4.5. Snow Cover Trend in Glacier Basins (Landsat Data).**

422 We examined using Landsat data snow cover trends in 735 glacier basins, each containing at
 423 least one glacier in 2000 that was greater than 10 hectares, which are crucial for assessing glacial
 424 status, water security, and climate change impacts (Table 4). The minimum altitude of the glacier
 425 basin where all tributary glaciers meet was considered the outlet of the glacier basin. In these
 426 basins, snowfall restocks ice lost to melting, contributing to glacier stability. Reduced snow

427 cover in the glacier basins accelerates negative mass balance, leading to glacier retreat. These
428 glacier basins are at a minimum altitude above 4000 m a.s.l. with an average of ~5100 m a.s.l.
429 Twenty-five and 75 % lie below 4800 and 5330 m a.s.l., respectively. Besides other
430 meteorological parameters, current temperature trends and albedo patterns play a critical role in
431 glacier mass balance (Dowson et al., 2020; Ye & Tian, 2022). Higher temperatures directly
432 increase the snow melting rate, and a decrease in reflectivity of solar radiation leads to more
433 solar radiation being absorbed by the glacier surface, leading to accelerated melting. Declining
434 permanent snow cover in the glacier basin disrupts the glacier mass balance, affecting glacier
435 persistence, altering water availability, and accentuating climate-driven environmental changes.


436 The data reveal a significant decline in glacier area across 735 glacier basins between 2000 and
437 2023. The mean glacier area decreased from 119.0 ha in 2000 to 100.5 ha in 2023, reflecting an
438 average loss of 18.6 ha per basin. The total glacier area shrank by 13,633.2 ha, indicating
439 widespread glacier retreat. The percent of glacier area to total basin area declined from 53.23%
440 in 2000 to 44.93% in 2023. Statistical tests show high skewness (>3.9), suggesting that a few
441 large glaciers dominate the dataset. The Shapiro-Wilk test ($p < .001$) confirms a non-normal
442 distribution.

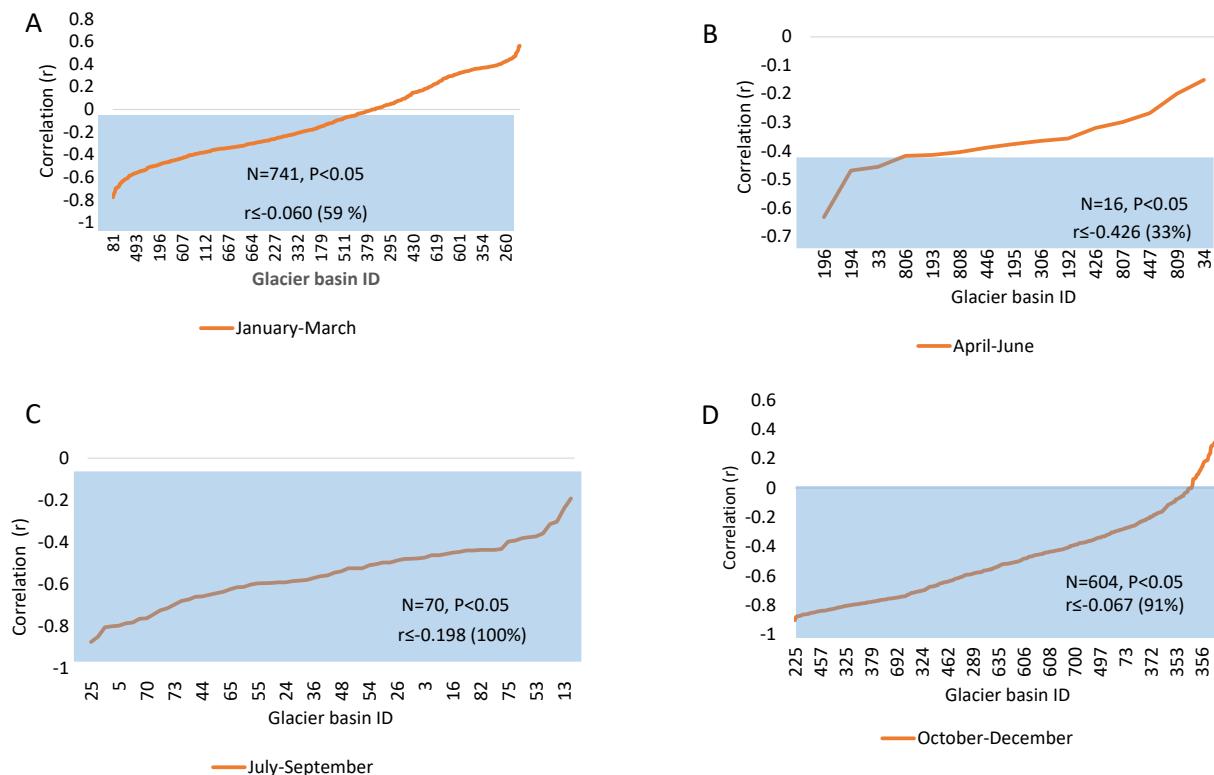
443 **Table 4.** Change in glacier area between 2000 and 2023.

Glacier basin count (N=735)	Glacier basin Area (hectares)	Glacier area (hectares)		Difference in glacier area (hectares)
		2000	2023	
Median	101.4	52.8	39.7	-10.0
Mean	223.6	119.0	100.5	-18.6
Std. Dev	368.1	187.1	169.9	27.2

Skewness	4.6	4.0	4.0	-4.0
Sum	164140.9	87379.9	73746.8	-13633.2

444 The glacier area has declined significantly across all basin directions from 2000 to 2023, with the
 445 basins oriented toward North, Northwest, and Northeast experiencing the largest losses, totaling
 446 6,126.9 hectares (Figure 10). The glaciers oriented towards North-east, East, and South slopes
 447 show the highest relative loss (%). The consistent loss across all directions highlights the
 448 ongoing effects of climate change on the region's glacier-fed water resources.

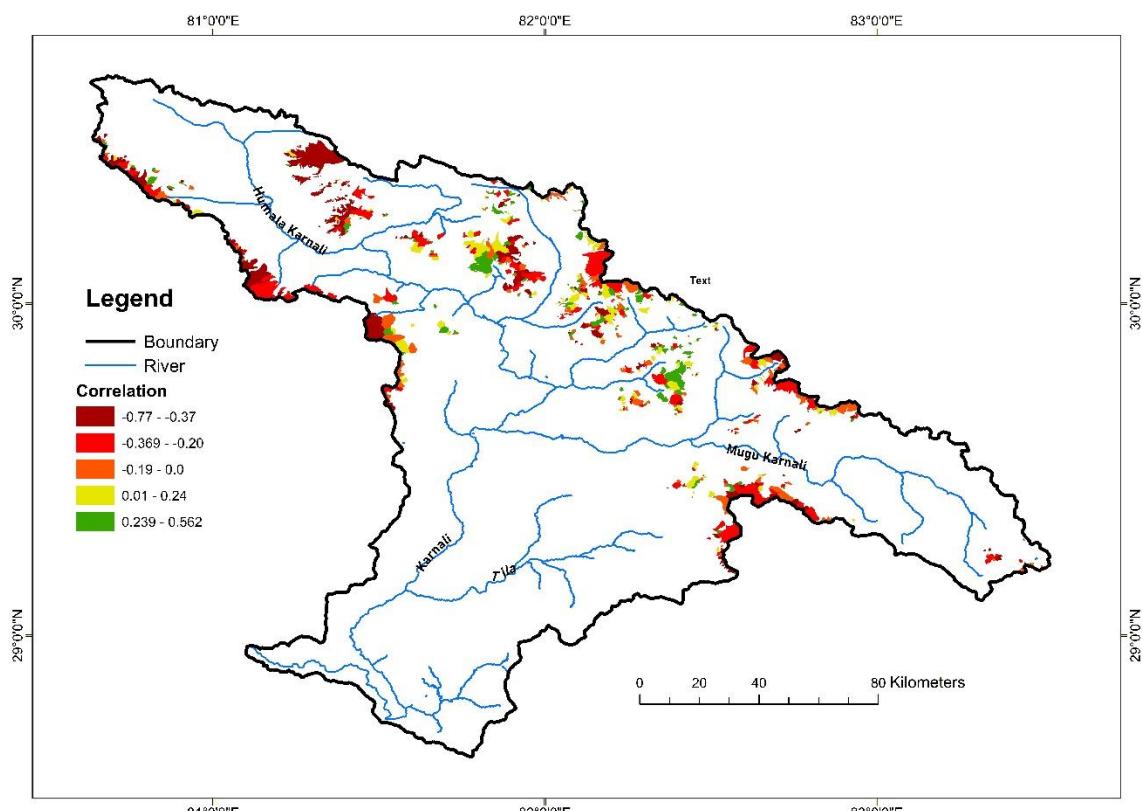
449


450 **Figure 10.** Change in glacier area in glacier basins by directions between 2000 and 2023.

451 Analysis of snow cover trends indicates that around 59% of glacier basins (n=735) demonstrate
 452 statistically significant negative correlations ($p<0.05$) from January to March. Among these,
 453 glacier basins with a correlation (r) value less than -0.44 represent 16.3% of the total (Figure 11,
 454 12, and 13). Basins with moderate negative correlations, ranging from -0.44 to -0.30, constitute
 455 approximately 19% of the overall total. Additionally, 36% of basins show a positive correlation,

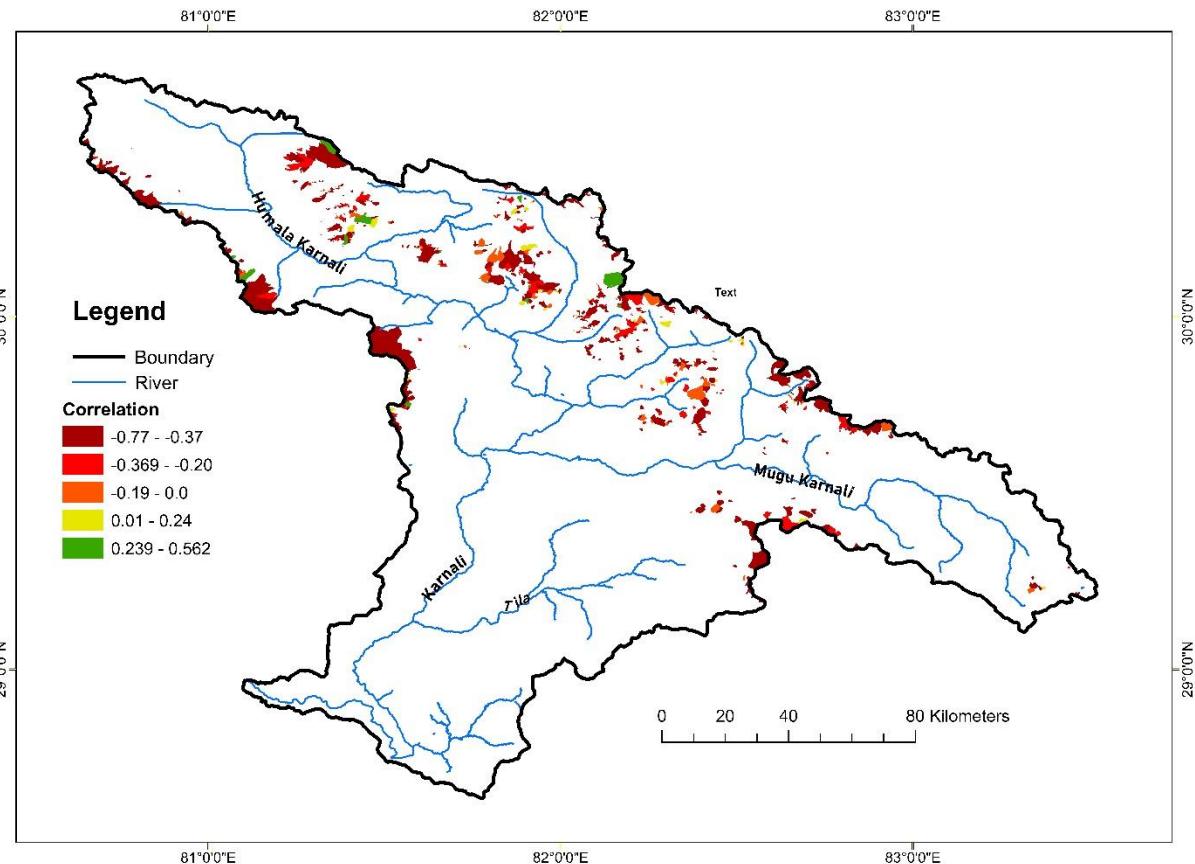
456 with 3% being statistically significant and 13% displaying a moderate correlation. The numerous
 457 glacier basins that exhibit negative correlations suggest a broader regional trend of declining
 458 snow cover over time during winter (January to March).

459 Similarly, during May–July, all 15 cloud-free glacier basins demonstrate a declining trend in snow
 460 cover from 2002 to 2024. Twelve of these basins exhibit a moderate negative correlation ($r < -$
 461 0.30). The trend in snow cover during July–September and October–December also indicates a
 462 decline. Sixty two percent of the 70 glacier basins show a statistically significant negative
 463 correlation ($p < 0.05$)


464

465

466 **Figure 11.** The correlation showing the snow cover change between 2002 and 2024 in different
467 glacier basins.


468 The snow cover trend between July–September and October–December for 22 years also
469 demonstrated a consistent decline in all glacier basins. Out of 604 basins selected for the
470 analysis, about 91% have shown a statistically significant negative correlation ($p<0.05$), and 15
471 % of glacier basins showed a moderate negative correlation, i.e., $r= -0.47$ to -0.30 (Figure 10).
472 The snow cover in the remaining basins exhibits a poor negative correlation yet indicates a
473 decline in snow cover over the period.

474
475 **Figure 12.** Snow cover trend on the Glacier Basins for January–March between 2000–2023
476 (Landsat 5, 7, and 8).

477

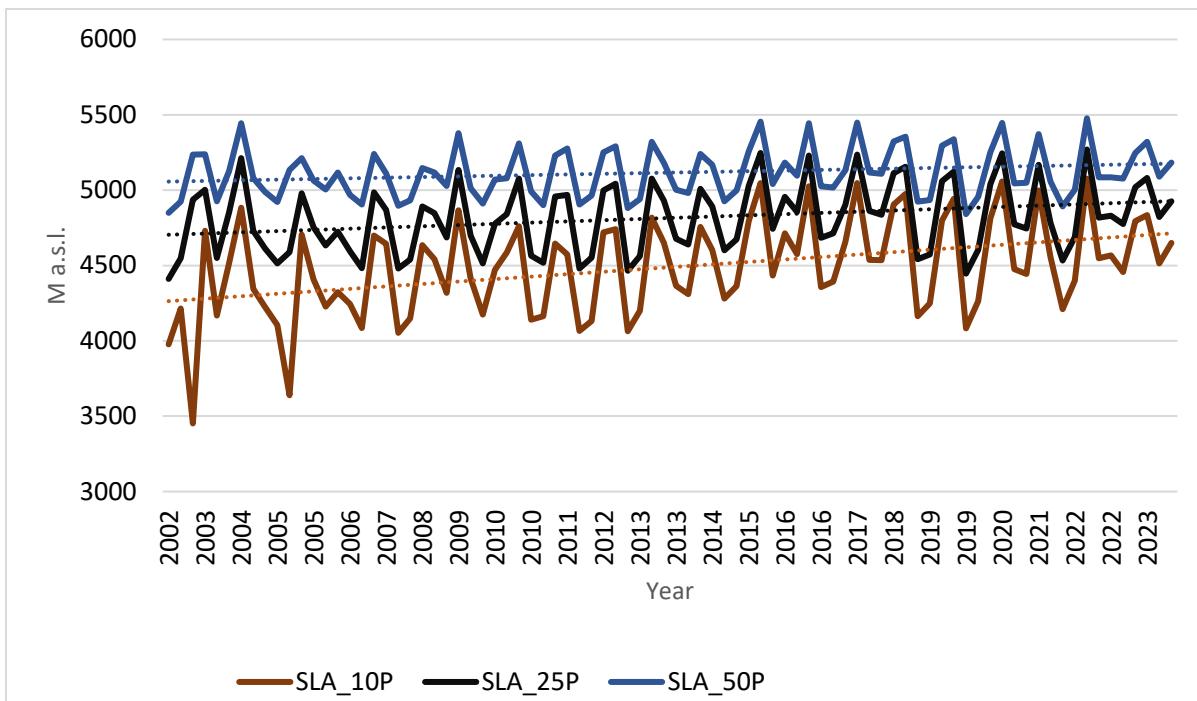
478

479

480 **Figure 13.** Snow cover trend on the glacier basins for October–December between 2000–2023
481 (Landsat 5, 7, and 8).

482 **4.6. Snowline Shift across Elevations**

483 Snow-covered areas were derived from the Landsat series 7, 8, and 9 by classifying snow using
484 the Normalized Difference Snow Index (NDSI) algorithm to analyze changes in the snowline.
485 This analysis was performed on the Google Earth Engine (GEE) platform. Snow pixels were
486 identified with an NDSI threshold of > 0.4 . The elevation-wise distribution of snow pixels was


487 then calculated. To determine the snowline's minimum elevation and its shift from 2002 to 2024,
488 three statistical thresholds were applied: the 10th, 25th, and 50th percentiles of the snow cover
489 distribution across various elevations.

490 The analysis of snowline altitude data from 2002 to 2024 reveals a significant upward trend
491 across all percentiles (Figure 14). The 10th percentile shows the largest increase, with a
492 Kendall's tau of 0.2662 and a Sen's slope of approximately 5.16 m/year, indicating that the
493 lower snowline is rising quickly (Table 5). The 25th percentile presents a moderate yet
494 statistically significant trend, with a Kendall's tau of 0.1938 and a Sen's slope of about 2.91
495 m/year. In contrast, the 50th percentile displays a gentler trend, with a Kendall's tau of 0.1483
496 and a Sen's slope of around 1.54 m/year, which remains statistically significant ($p < 0.05$).
497 Collectively, these findings suggest that the snowline is moving to higher elevations, reflecting
498 broader climatic changes that affect lower elevations more intensively than the median snowline
499 altitude.

500 **Table 5.** Statistical analysis of snow line altitude trends using Kendall's Tau and Sen's slope.

Snow Line Percentile	Kendall's Tau	p-value	Sen's Slope (m/year)	Significance
10th Percentile (SLA_10P)	0.2662	0.00042	5.16	Significant ($p < 0.001$)
25th Percentile (SLA_25P)	0.1938	0.01022	2.91	Significant ($p < 0.05$)
50th Percentile (SLA_50P)	0.1483	0.04942	1.54	Significant ($p < 0.05$)

501

502

503

504 **Figure 14.** Snowline shift using snow line of elevation of 10, 25 and 50 percentile

505 **5.0. Discussions**

506 This study offers important insights into the interactions between snow and ice cover in the
 507 Upper Karnali Basin (UKB) and climatic and topographic factors. The results reveal notable
 508 trends and fluctuations in snow cover, glacial retreat, and the elevation of the snowline, aligning
 509 with the wider patterns of climate change seen in the Himalayan region. We will discuss the key
 510 findings below in relation to existing literature and their impact on water resources, ecosystems,
 511 and local communities.

512 The study on the Upper Karnali Basin from 2002 to 2024 reveals significant insights into the
 513 relationship between snow cover area (SCA), temperature, and precipitation. The annual average
 514 SCA is 872 km^2 , with the highest snow cover occurring from January to March ($1528 \pm 333 \text{ km}^2$)

515 and the lowest from July to September ($169 \pm 38.3 \text{ km}^2$). The findings reveal a gradual decline in
516 snow cover across the Upper Karnali Basin (UKB) from 2002 to 2024, with an average loss of
517 $\sim 3.99 \text{ km}^2/\text{year}$.

518 There is a strong to moderate negative correlation between snow cover and temperature across
519 all seasons ($r = -0.59$ to -0.77 , $p < 0.05$), signifying that higher temperatures lead to reduced
520 snow cover. In contrast, precipitation exhibits a positive correlation with snow cover in winter
521 (January to March and October to December). The reduction in snow cover during winter
522 months (January–March) indicates a potential shift in precipitation patterns, with more falling as
523 rain instead of snow. The winter and pre-monsoon snowpack in the western Himalayas is heavily
524 influenced by the Westerly wind system, which is a key source of snowfall in the UKB (Syed et
525 al., 2006; Dimri & Dash, 2012). Consequently, the decline in winter snow cover may be due not
526 only to temperature-induced changes in precipitation but also to a possible weakening or
527 changing of the Westerlies, which needs to be further investigated. Such changes could lead to a
528 decrease in overall moisture inflow (Yadav et al., 2009).

529 This shift is temperature-dependent and thus elevation-dependent, resulting in increased
530 snowmelt, aligning with global warming trends (Wester et al., 2019). During the summer months
531 (April to September), however, precipitation negatively correlates with snow cover, falling
532 predominantly as rain, thus further enhancing snowmelt. Particularly, the period from July to
533 September reveals a statistically significant decrease in snow cover (Sen's Slope = -2.87 ,
534 $p < 0.05$), primarily driven by warmer temperatures and higher rainfall during the summer
535 monsoon, accelerating snowmelt.

536 Examining snow cover patterns in the UKB sub basins reveals notable seasonal and spatial
537 differences. The Humla Karnali sub basin has the largest average snow cover during January–
538 March, while downstream areas like Tila and Kawari exhibit less snow cover.
539 The interannual variability in snow cover highlights the sensitivity of snowpack to changing
540 temperature and precipitation patterns. This variability significantly impacts water availability, as
541 the observed reduction in snow cover could worsen water scarcity during the dry season,
542 affecting millions who depend on snowmelt for irrigation, drinking water, and hydropower
543 generation (Immerzeel et al., 2020; Pritchard, 2019). The strong negative correlation in
544 Downstream Karnali ($r = -0.47$, $p < 0.05$) reinforces the declining trend in snow cover, which
545 threatens water availability and ecosystem services in the region (Wester et al., 2019).
546 The outcomes emphasize the vulnerability of the UKB to climate change, with rising
547 temperatures and shifting precipitation patterns leading to reduced snow cover. Adaptive water
548 management strategies are essential to mitigate the impacts on water resources and local
549 communities.
550 The findings on snow cover dynamics across elevation zones in the Upper Karnali Basin reveal
551 significant elevation-dependent patterns, reflecting the influence of temperature fluctuations and
552 global warming. At lower elevations (≤ 2000 m a.s.l.), snow cover exhibits a weak positive
553 correlation (0.12–0.43), likely caused by occasional snowfall during short cold spells and a shift
554 between rain and snow (Pendergrass, 2020). These zones experience high year-to-year variability
555 ($\text{CoV} \sim 41\text{--}43\%$), making trends less reliable, which should be interpreted with caution. Similar
556 elevation-sensitive variability has also been reported in other Himalayan basins (Pepin et al.,
557 2015).

558 The transition from weak negative correlations (snow cover by elevation and year) above 2300 m
559 a.s.l. to the strongest negative correlation at 6100–6200 m a.s.l. ($r = -0.56$) corresponds with
560 evidence of elevation-dependent warming (EDW), where higher altitudes experience accelerated
561 warming, leading to reduced snow accumulation and increased melt rates. The sharp rise in mean
562 snow cover above 5000 m a.s.l. coincides with permanent snow and glacier zones, but the
563 decline in inter-annual variability (CoV) suggests a consistent reduction in snow cover,
564 particularly at mid-to-high elevations (3000–5000 m a.s.l.).

565 The nonlinear relationship between elevation and inter-annual snow cover variability (CoV)
566 proves particularly insightful. At 3000 m a.s.l. or below, the CoV reaches 41–43%, reflecting
567 transitional zones where slight temperature fluctuations determine the precipitation phase (rain
568 vs. snow). Above 3,000 m a.s.l., CoV drops to 25–30% as conditions remain persistently below
569 freezing, but the dominant driver shifts to insolation and temperature-modulated melt rates. This
570 aligns with Ren et al.'s (2023) findings on Tibetan Plateau glaciers, where albedo feedbacks
571 dominate mass balance above 5000 m a.s.l.

572 The strong negative correlation between land surface temperature and snow cover ($Tau = -0.43$
573 to -0.79) highlights the impact of rising temperatures on snowpack. The most severe declines
574 occur between 3000–5000 m a.s.l., where warming accelerates snowmelt and glacier retreat,
575 threatening water availability for river flows, agriculture, and hydropower (Immerzeel et al.,
576 2020; Bolch et al., 2012).

577 Between 2000 and 2023, glacier basins in the Upper Karnali Basin experienced significant ice
578 and snow loss. The mean glacier area per basin declined from 119.04 to 100.47 hectares with an
579 average loss of 18.6 hectares. While retreat was consistent across all aspects, north-facing basins
580 (N, NW, NE) saw the largest total area decline. This trend, driven by rising temperatures and

581 reduced snowfall that create a negative mass balance (Pepin et al., 2022; Ren et al., 2024; Ye &
582 Tian, 2022), threatens the persistence of glaciers and alters critical water resources.

583 Snow cover trends in glacier basins reveal a consistent decline across all seasons. From January
584 to March, a majority (59%) of the 735 basins analyzed exhibit a statistically significant negative
585 correlation ($p < 0.05$), with 16.3% of all basins showing a strong decline ($r < -0.44$). The trend is
586 even more pronounced in the post-monsoon and ablation seasons (October–December). From
587 July to September, 62% of basins (n=70) show a significant negative correlation, and in
588 October–December, this figure rises to 91% (n=604). This widespread reduction in snow cover is
589 linked to rising temperatures, which increase snowmelt rates and reduce albedo, further
590 accelerating glacier retreat (Dowson et al., 2020). These trends underscore the vulnerability of
591 the region's cryosphere to climate change, with serious implications for water security and
592 regional hydrology.

593 The seasonal snowline in the Upper Karnali Basin is rising steadily, with rates of 5.6 m per year
594 (10th percentile), 2.91 m per year (25th), and 1.54 m per year (50th). Although these are more
595 conservative than many regional estimates, our findings align with the broader Himalayan trend
596 of snowline elevation. Recent research reports faster increases, such as approximately 6.7–7.3 m
597 per year in the Ganga–Brahmaputra basins (Dixit et al., 2024) and roughly 8–14 m per year in
598 several Nepalese catchments (Sasaki et al., 2024), while the Langtang Basin shows a similar
599 increase of about 2.2 m per year (Pradhananga et al., 2025). This suggests a consistent retreat of
600 seasonal snow cover to higher elevations, which reduces the potential for snow accumulation to
601 sustain glacier mass balance.

602

603 **5.1. Feedback mechanisms and future projections**

604 The correlation between temperature and snow cover (τ ranging from -0.43 to -0.79 across
605 different elevations) confirms the presence of a reinforcing snow–albedo feedback in the Upper
606 Karnali Basin (UKB). Increasing land surface temperatures reduces snow cover, lowering
607 surface albedo and increasing shortwave radiation absorption. This process causes localized
608 warming of about 0.8 to 1.2 $^{\circ}\text{C}$, as estimated through Sen’s slope analysis, further promoting
609 melting and accelerating the feedback loop. Comparable snow–albedo feedback mechanisms
610 have been observed across the central and eastern Himalayas (Kääb et al., 2015; Bolch et al.,
611 2019; Bhattacharya et al., 2021; Salerno et al., 2021), underscoring the regional consistency of
612 cryospheric amplification.

613 In addition to snow cover analysis, glacier change data (Ghimire, 2025) were integrated with
614 long-term temperature and precipitation records to assess cryospheric variability. Relationships
615 among temperature, snow cover, and glacier extent across elevation bands were quantified using
616 Kendall’s τ and Sen’s slope, providing estimates of warming trends and snowline
617 responsiveness. Future cryospheric conditions were simulated using a degree-day, elevation-
618 band glacio-hydrological model forced with bias-corrected CMIP6 (NEX-GDDP) climate
619 projections under the SSP1-2.6 and SSP2-4.5 scenarios, enabling projections of glacier and snow
620 cover evolution through 2100 (Ghimire et al., 2025b)

621 Above 5,000 m a.s.l., Sen’s slope analysis indicates a mean warming rate of $+0.064$ $^{\circ}\text{C}$ per year,
622 comparable to the rates observed at mid-elevations (approximately $+0.058$ $^{\circ}\text{C}$ per year between
623 1,000 and 2,000 m). This elevation-dependent warming accelerates glacier thinning and shifts
624 the snow–rain boundary upward, thereby reducing accumulation periods and causing earlier melt
625 onset (Ghimire et. al., 2025). Similar warming trends, with mean annual temperature increases of

626 0.05–0.07 °C per year and glacier thinning rates of 0.3–1.0 m per year since 2000, have been
627 documented in the central Himalayas (Kääb et al., 2015; Bolch et al., 2019).

628 Under low-emission scenarios such as SSP1-2.6, high-altitude temperatures are projected to
629 increase by approximately 1 °C by 2100. Under the moderate SSP2-4.5 scenario, temperature
630 increases could reach 2 °C or more. Consequently, glacier areas are expected to decrease by 47–
631 69%. Snow-covered areas are projected to decline by 19–30%. (Ghimire et al., 2025b). This
632 would transform the basin's hydrology from nival (snowmelt-dominated) to pluvial (rain-
633 dominated), increasing flood risks during monsoons and drought susceptibility in dry seasons.

634 These projections align with other studies of Himalayan basins, which forecast reductions in
635 glacier area of 40–60% by mid-century (Bhattacharya et al., 2021; Salerno et al., 2021; Hock et
636 al., 2019). Comparable amplification mechanisms are also evident in the Andes and Alps, where
637 rapid glacier retreat and albedo-induced warming mirror trends observed in the Himalayas
638 (Rabatel et al., 2013; Vuille et al., 2018; Dussaillant et al., 2019; Beniston & Stoffel, 2014; Zemp
639 et al., 2019; Zekollari et al., 2019).

640 **6.0. Conclusions**

641 The study of snow and glacier cover dynamics in the Upper Karnali Basin from 2002 to 2024
642 reveals a persistent decline in snow cover, glacier area, and snowline elevation, driven by rising
643 temperatures and altered precipitation patterns.

644 The annual snow-covered area (SCA) has decreased by approximately 3.99 km² per year, with
645 the most significant reductions observed during the July-September monsoon period. The decline
646 in snow cover is statistically correlated with increasing temperatures, demonstrating the impact

647 of climate change on seasonal snow accumulation and melt cycles. The winter snow cover
648 variability suggests changes in snowfall patterns rather than a uniform decrease.

649 Notable seasonal and spatial differences in snow cover patterns are observed in the Sub basins of
650 UKB for two seasons, January–March and October–December. The upstream sub basins
651 experience less inconsistent snowfall than the downstream basins. During October–December,
652 snowfall is inconsistent in all basins, but more inconsistent in particularly China Karnali, Tila
653 and Downstream Karnali.

654 Elevation-dependent trend analysis confirms that snow cover at lower elevations (<2000 m a.s.l.)
655 exhibits high interannual variability, while higher elevations (>3000 m a.s.l.) show a significant
656 long-term decline. The strongest reductions occur between 3000–5000 m a.s.l., where warming
657 accelerates snowmelt and glacier retreat. The observed negative correlation between snow cover
658 and rising temperatures confirms the climate-driven reduction in snowpack, exacerbating the risk
659 of water shortages.

660 The study of glacier basins shows widespread retreat, with the mean glacier area declining from
661 119.05 hectares in 2000 to 100.47 hectares in 2023. Glacier retreat is most pronounced in north-
662 facing basins (N, NW, NE), where melting exceeds accumulation. The continuous decline in
663 snow cover across glacier basins indicates an ongoing negative mass balance, threatening long-
664 term glacier persistence.

665 Additionally, the snow line is gradually shifting upward, with the 10th, 25th, and 50th percentiles
666 rising by approximately 5.16, 2.91, and 1.54 meters per year, respectively, indicating a consistent
667 loss of seasonal snow accumulation.

668 Given the current warming trends (~0.0643°C/year above 5000 m a.s.l.), the UKB could
669 experience a decline of glacier area by 47–69 % and snow-covered area by 19–30 %. This would
670 transform the hydrology from snowmelt-dominated (nival) to rainfall-dominated (pluvial),
671 increasing the frequency of extreme weather events and altering regional water security
672 dynamics. The findings emphasize the need for proactive water resource management, improved
673 climate resilience strategies, and continuous monitoring of cryospheric changes to mitigate future
674 risks. Policymakers must prioritize adaptation measures, such as improved water storage
675 infrastructure and sustainable land-use practices, to ensure long-term water security in the Upper
676 Karnali Basin and beyond.

677 **Author contributions**

678 MG conceptualized the research, designed the methodology, conducted fieldwork, analyzed the
679 data, and drafted the manuscript. DS. and RC assisted in proposal writing, research design,
680 fieldwork, and data analysis. AT, TPPS, KPS, SBG, and SD contributed to procuring remote
681 sensing and climate data. PB and SK were responsible for procuring and updating MODIS data.
682 WY reviewed the manuscript and provided feedback to enhance its quality. NT and JK assisted
683 in GIS analysis. All authors contributed to revising the manuscript and provided input before
684 submission.

685 **Competing Interests**

686 The authors declare that they have no conflict of interest.

687 **Data availability**

688 MODIS, Landsat, Sentinel, ERA5 renalysis climate datasets, and NEX-GDDP data are publicly
689 available.

690 **Acknowledgments**

691 We express our gratitude to the Director of Tribhuvan University's Research Coordination and
692 Development Council (RCDC) for supporting the project titled "State and Dynamics of the
693 Cryosphere of the Upper Karnali Basin, Associated Hazards and Implications for Water
694 Resources and Livelihood" (Project Code TU-NPAR-077/78-ERG-15). This paper is a product
695 of that project. We appreciate the Evaluation and Monitoring Committee of RCDC for their
696 insightful feedback and suggestions, which greatly enhanced the manuscript. We also thank the
697 University Grants Commission for providing research funding. Authors would also like to
698 sincerely acknowledge the Sichuan Science and Technology Program (2024YFHZ0248) for
699 partial support. We also acknowledge the contributions of Google Earth Engine, ERA5, ESRI,
700 and other open-access resources for providing satellite imagery and data.

701 **Financial support**

702 This research was funded by the University Grants Commission (UGC), Kathmandu, through
703 Tribhuvan University's Research Coordination and Development Council (RCDC) under the
704 National Policy Area Research program. The Sichuan Science and Technology Program
705 (2024YFHZ0248) also provided partial funding for this research.

706 **References**

707 Anup, K.: Climate change and its impact on tourism in Nepal, *J. Tour. Hosp. Educ.*, 7, 25–43,
708 <https://doi.org/10.3126/jthe.v7i0.17693>, 2017.

709 Bajracharya, S. R., Bajracharya, O. R., Baidya, S., Maharjan, S. B., and Shrestha, F.: Climate
710 change impact on glaciers in the Langtang and Imja sub-basins of Nepal from late 70s to 2010,
711 in: AGU Fall Meeting Abstracts, San Francisco, CA, 15–19 December, C31B-0278, 2014.

712

713 Beniston, M. and Stoffel, M.: Assessing the impacts of climatic change on mountain water
714 resources, *Sci. Total Environ.*, 493, 1129–1137, <https://doi.org/10.1016/j.scitotenv.2013.11.122>,
715 2014.

716 Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Neckel, N.,
717 Yao, T., and Li, X.: High Mountain Asian glacier response to climate revealed by multi-temporal
718 satellite observations since the 1960s, *Nat. Commun.*, 12, 4133, <https://doi.org/10.1038/s41467-021-24180-y>, 2021.

720 Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U.: Automated delineation of debris-
721 covered glaciers based on ASTER data, in: *GeoInformation in Europe*, edited by: Gomarasca, M.
722 A., Millpress, Rotterdam, 403–410, 2007.

723 Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S.,
724 Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers,
725 *Science*, 336, 310–314, <https://doi.org/10.1126/science.1215828>, 2012.

726 Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget:
727 Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, *J.*
728 *Geophys. Res.-Earth Surf.*, 115, F03019, <https://doi.org/10.1029/2009JF001426>, 2010.

729 CBS: National Population and Housing Census 2021 – Province 6 (Karnali) results (online
730 tables), Central Bureau of Statistics, Nepal, 2021.

731 Desinayak, S., Shrestha, M. S., Gurung, D. R., and Murthy, M. S. R.: Recent changes in snow
732 cover extent over the Hindu Kush Himalaya, *Int. J. Climatol.*, 42, 6789–6803,
733 <https://doi.org/10.1002/joc.7038>, 2022.

734 Dimri, A. P. and Dash, S. K.: Wintertime climatic trends in the western Himalayas, *Clim.*
735 *Change*, 111, 775–800, <https://doi.org/10.1007/s10584-011-0201-y>, 2012.

736 Dixit, A., Goswami, A., Jain, S., and Das, P.: Assessing snow cover patterns in the Indus–
737 Ganga–Brahmaputra River Basins of the Hindu Kush Himalayas using snow persistence and
738 snow line as metrics, *Environ. Chall.*, 14, 100834, <https://doi.org/10.1016/j.envc.2023.100834>,
739 2024.

740 Dhital, M. R.: *Geology of the Nepal Himalaya: Regional Perspective*, Springer International
741 Publishing, Cham, Switzerland, 583 pp., <https://doi.org/10.1007/978-3-319-02496-7>, 2015.

742 Dowson, A. J., Sirguey, P., and Cullen, N. J.: Variability in glacier albedo and links to annual
743 mass balance for the Gardens of Eden and Allah, Southern Alps, New Zealand, *The Cryosphere*,
744 14, 3425–3448, <https://doi.org/10.5194/tc-14-3425-2020>, 2020.

745 Duan, S.-B., Li, Z.-L., Li, H., Götsche, F.-M., Wu, H., Zhao, W., Leng, P., Zhang, X., and Coll,
746 C.: Validation of Collection 6 MODIS land surface temperature product using in situ
747 measurements, *Remote Sens. Environ.*, 225, 16–29, <https://doi.org/10.1016/j.rse.2019.02.020>,
748 2019.

749 Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte,
750 P., and Ruiz, L.: Two decades of glacier mass loss along the Andes, *Nat. Geosci.*, 12, 802–808,
751 <https://doi.org/10.1038/s41561-019-0432-5>, 2019.

752 Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, *Clim. Res.*, 20,
753 253–257, <https://doi.org/10.3354/cr020253>, 2002.

754 Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J.,
755 Mauritsen, T., Palmer, M. D., Watanabe, M., and Wild, M.: The Earth's Energy Budget, Climate
756 Feedbacks, and Climate Sensitivity, in: *Climate Change 2021: The Physical Science Basis.*
757 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
758 on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
759 C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,
760 E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B.,
761 Cambridge University Press, Cambridge, UK and New York, NY, USA, [923–1054](#),
762 <https://doi.org/10.1017/9781009157896.009>, 2021.

763 Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product,
764 *Hydrol. Earth Syst. Sci.*, 13, 1361–1373, <https://doi.org/10.5194/hess-13-1361-2009>, 2009.

765 Gilbert, R. O.: *Statistical Methods for Environmental Pollution Monitoring*, Van Nostrand
766 Reinhold, New York, 272 pp., 1987.

767 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth
768 Engine: Planetary-scale geospatial analysis for everyone, *Remote Sens. Environ.*, 202, 18–27,
769 <https://doi.org/10.1016/j.rse.2017.06.031>, 2017.

770 Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya, S. R., and Murthy,
771 M. S. R.: Climate and topographic controls on snow cover dynamics in the Hindu Kush
772 Himalaya, *Int. J. Climatol.*, [37, 3873–3882](#), <https://doi.org/10.1002/joc.5063>, 2017.

773 Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K. J.: MODIS snow-
774 cover products, *Remote Sens. Environ.*, 83, 181–194, [https://doi.org/10.1016/S0034-4257\(02\)00095-0](https://doi.org/10.1016/S0034-4257(02)00095-0), 2002.

776 Heid, T. and Kääb, A.: Evaluation of existing image matching methods for deriving glacier
777 surface displacements from repeat optical satellite images, *Remote Sens. Environ.*, 118, 339–
778 355, <https://doi.org/10.1016/j.rse.2011.11.025>, 2012.

779 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
780 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo,
781 G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
782 Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
783 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
784 Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
785 global reanalysis, *Q. J. R. Meteorol. Soc.*, 146, 1999–2049, <https://doi.org/10.1002/qj.3803>,
786 2020.

787 Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A.,
788 Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High
789 Mountain Areas, in: *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate*,
790 edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
791 Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and
792 Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–
793 202, <https://doi.org/10.1017/9781009157964.004>, 2019.

794 Hunt, K. M. R., Turner, A. G., and Schiemann, R. K. H.: Western disturbances: a review,
795 Weather Clim. Dynam., 6, 43–65, <https://doi.org/10.5194/wcd-6-43-2025>, 2025.

796 Ghimire, M., Pangali Sharma, T. P., Chauhan, R., Gurung, S. B., Devkota, S., Sharma, K. P.,
797 Shrestha, D., Wei, Z., and Timalsina, N.: Status and changes in glaciers in the Upper Karnali
798 Basin, West Nepal: Assessing topographic influences on area, fragmentation, and volume, J.
799 Earth Syst. Sci., <https://doi.org/10.1007/s12040-025-02664-5>, 2025a.

800 Ghimire, M., Shrestha, D., Zhao, W., Chauhan, R., Gurung, S. B., Pangali Sharma, T. P.,
801 Sharma, K. P., Tamang, S., Timaisina, N., Devkota, S., Thapa, A., Koirala, S., Bhandari, P.,
802 Subedi, B., Lohani, U., Kutu, J., Rana, D., and Yanhong, W.: State and Dynamics of Cryosphere
803 of Upper Karnali Basin, Associated Hazards and Implications to Water Resources and
804 Livelihood, Project Code TU-NPAR-077/78-ERG-15, Tribhuvan University, Research
805 Coordination and Development Council (RCDC), Kathmandu, Nepal, 2025b.

806 Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S.,
807 Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U.,
808 Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepaul, S.,
809 Pacheco, P., Pak-sok, J., Poulton, C., Pradhan, S., Rangecroft, S., Smeets, S., Suzuki, T., van der
810 Schriek, T., Vivioli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and
811 vulnerability of the world's water towers, Nature, 577, 364–369, <https://doi.org/10.1038/s41586-019-1822-y>, 2020.

813 Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early
814 twenty-first-century glacier mass change in the Himalayas, Nature, 488, 495–498,
815 <https://doi.org/10.1038/nature11324>, 2012.

816 Kääb, A., Reynolds, J. M., and Haeberli, W.: Glacier and permafrost hazards in high mountains,
817 in: Global Change and Mountain Regions, edited by: Huber, U. M., Bugmann, H. K. M., and
818 Reasoner, M. A., Springer, Dordrecht, 225–234, https://doi.org/10.1007/1-4020-3508-X_23,
819 2005.

820 Khadka, N., Li, B., Wu, Q., Shrestha, F., Paudel, L., and Wang, W.: Glacial lake outburst floods
821 threaten China–Nepal transportation corridors, *Sci. Total Environ.*, 927, 172456,
822 <https://doi.org/10.1016/j.scitotenv.2024.172456>, 2024.

823 Khatiwada, K. R., Panthi, J., Shrestha, M. L., and Nepal, S.: Hydro-climatic variability in the
824 Karnali River basin of Nepal Himalaya, *Climate*, 4, 17, <https://doi.org/10.3390/cli4020017>,
825 2016.

826 Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, M. A.,
827 Vellore, R., Xu, Y., You, Q., and Ren, Y.: Unravelling climate change in the Hindu Kush
828 Himalaya: rapid warming in the mountains and increasing extremes, in: *The Hindu Kush*
829 *Himalaya Assessment: Mountains, Climate Change, Sustainability and People*, edited by:
830 Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., Springer International Publishing,
831 Cham, 57–97, https://doi.org/10.1007/978-3-319-92288-1_3, 2019.

832 Kulkarni, A. V., Rathore, B. P., and Singh, S. K.: Distribution of seasonal snow cover in central
833 and western Himalaya, *Ann. Glaciol.*, 51, 125–130,
834 <https://doi.org/10.3189/172756410791386445>, 2010.

835 Kulkarni, A. V., Shirsat, T. S., Kulkarni, A., Negi, H. S., Bahuguna, I. M., and Thamban, M.:
836 State of Himalayan cryosphere and implications for water security, *Water Security*, 14, 100101,
837 <https://doi.org/10.1016/j.wasec.2021.100101>, 2021.

838 LRMP: Land Resource Mapping Project (national soils/land-use inventory), Government of
839 Nepal, Kathmandu, Nepal, 1986.

840 Maskey, S., Thapa, B., and Rijal, K.: Snow cover variability and snowmelt in the Himalayan
841 region: A study using MODIS snow products, *J. Hydrol. Meteorol.*, 8, 1–10,
842 <https://doi.org/10.3126/jhm.v8i1.5920>, 2011b.

843 Maskey, S., Uhlenbrook, S., and Ojha, S.: An analysis of snow cover changes in the Himalayan
844 region using MODIS snow products and in-situ temperature data, *Clim. Change*, 108, 391–400,
845 <https://doi.org/10.1007/s10584-011-0033-6>, 2011a.

846 Mimura, N.: Sea-level rise caused by climate change and its implications for society, *Proc. Jpn.*
847 *Acad. Ser. B*, 89, 281–301, <https://doi.org/10.2183/pjab.89.281>, 2013.

848 Muhammad, S. and Thapa, A.: An improved Terra–Aqua MODIS snow cover and Randolph
849 Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002
850 and 2018, *Earth Syst. Sci. Data*, 12, 345–356, <https://doi.org/10.5194/essd-12-345-2020>, 2020.

851 Naegeli, K., Huss, M., and Hoelzle, M.: Change detection of bare-ice albedo in the Swiss Alps,
852 *The Cryosphere*, 13, 397–412, <https://doi.org/10.5194/tc-13-397-2019>, 2019.

853 Nyaupane, G. P. and Chhetri, N.: Vulnerability to climate change of nature-based tourism in the
854 Nepalese Himalayas, *Tour. Geogr.*, 11, 95–119, <https://doi.org/10.1080/14616680802643359>,
855 2009.

856 Pradhananga, D., Adhikary, S., Dhakal, B. N., Dhakal, A., Ghimire, A., Dhital, S., and
857 Manandhar, S.: Cryosphere change in the warming Himalaya: Snow cover and snowline trends
858 in Nepal’s Langtang Basin (1988–2024), *J. Tourism Himalayan Adv.*, 7, 14–26, 2025.

859 Parajka, J. and Blöschl, G.: Spatio-temporal combination of MODIS images – Potential for snow
860 cover mapping, *Water Resour. Res.*, 44, W03406, <https://doi.org/10.1029/2007WR006208>, 2008.

861 Parris, A. S., Bromirski, P., Burkett, V., Cayan, D. R., Culver, M. E., Hall, J., Horton, R. M.,
862 Knuuti, K., Moss, R. H., Obeysekera, J., Sallenger, A. H., and Weiss, J. L.: Global Sea Level
863 Rise Scenarios for the United States National Climate Assessment, NOAA Tech. Memo. OAR
864 CPO-1, 37 pp., 2012.

865 Pendergrass, A. G.: Changing degree of convective organization as a mechanism for dynamic
866 changes in extreme precipitation, *Curr. Clim. Change Rep.*, 6, 47–54,
867 <https://doi.org/10.1007/s40641-020-00156-z>, 2020.

868 Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E.,
869 Seibert, P., Serafin, S., Stocchi, P., and Zebisch, M.: Climate changes and their elevational
870 patterns in the mountains of the world, *Rev. Geophys.*, 60, e2020RG000730,
871 <https://doi.org/10.1029/2020RG000730>, 2022.

872 Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H.,
873 Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E.,
874 Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N.,
875 and Yang, D. Q.: Elevation-dependent warming in mountain regions of the world, *Nat. Clim.
876 Change*, 5, 424–430, <https://doi.org/10.1038/nclimate2563>, 2015.

877 Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O.,
878 Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V.,
879 Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and the Randolph Consortium: The Randolph

880 Glacier Inventory: a globally complete inventory of glaciers, *J. Glaciol.*, 60, 537–552,

881 <https://doi.org/10.3189/2014JoG13J176>, 2014.

882 Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, *Nature*,

883 569, 649–654, <https://doi.org/10.1038/s41586-019-1240-1>, 2019.

884 Ren, P., Pan, X., Liu, T., Huang, Y., Chen, X., Wang, X., Zhang, Y., and Ling, X.: Glacier

885 changes from 1990 to 2022 in the Aksu River Basin, western Tien Shan, *Remote Sens.*, 16, 1751,

886 <https://doi.org/10.3390/rs16101751>, 2024.

887 Ren, S., Jia, L., Menenti, M., and Zhang, J.: Changes in glacier albedo and the driving factors in

888 the Western Nyainqntanglha Mountains from 2001 to 2020, *J. Glaciol.*, 69, 1500–1514,

889 <https://doi.org/10.1017/jog.2023.33>, 2023.

890 Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for mapping snow cover from

891 MODIS, *Adv. Water Resour.*, 51, 367–380, <https://doi.org/10.1016/j.advwatres.2012.03.002>,

892 2013.

893 Salerno, F., Uccelli, A., Cristofanelli, P., Stocchi, P., Diolaiuti, G., Ma, Y., and Putero, D.: Local

894 cooling and drying induced by Himalayan glaciers, *Nat. Geosci.*, 16, 1120–1127,

895 <https://doi.org/10.1038/s41561-023-01331-y>, 2023.

896 Sasaki, O., Miles, E. S., Pellicciotti, F., Sakai, A., and Fujita, K.: Contrasting patterns of change

897 in snowline altitude across five Himalayan catchments, *EGUsphere* [preprint],

898 <https://doi.org/10.5194/egusphere-2024-2026>, 2024.

899 Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, *J. Am. Stat. Assoc.*,

900 63, 1379–1389, <https://doi.org/10.1080/01621459.1968.10480934>, 1968.

901 Shen, L., Zhang, Y., Ullah, S., Pepin, N., and Ma, Q.: Changes in snow depth under elevation-
902 dependent warming over the Tibetan Plateau, *Atmos. Sci. Lett.*, 22, e1041,
903 <https://doi.org/10.1002/asl.1041>, 2021.

904 Shrestha, M., Wang, L., Koike, T., Xue, Y., and Hirabayashi, Y.: Modeling the spatial
905 distribution of snow cover in the Dudhkoshi region of the Nepal Himalayas, *J. Hydrometeorol.*,
906 13, 204–222, <https://doi.org/10.1175/JHM-D-10-05005.1>, 2012.

907 Syed, F. S., Giorgi, F., Pal, J. S., and King, M. P.: Effect of remote forcings on the winter
908 precipitation of central southwest Asia part 1: observations, *Theor. Appl. Climatol.*, 86, 147–160,
909 <https://doi.org/10.1007/s00704-005-0217-1>, 2006.

910 Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis,
911 M., Yarleque, C., Elison Timm, O., Condom, T., Salzmann, N., and Sicart, J. E.: Rapid decline
912 of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead, *Earth-Sci.
913 Rev.*, 176, 195–213, <https://doi.org/10.1016/j.earscirev.2017.09.019>, 2018.

914 Wan, Z., Hook, S., and Hulley, G.: MODIS/Aqua Land Surface Temperature/Emissivity Daily
915 L3 Global 1km SIN Grid, Version 6, NASA EOSDIS Land Processes DAAC,
916 <https://doi.org/10.5067/MODIS/MYD11A1.006>, 2015.

917 Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B. (Eds.): *The Hindu Kush Himalaya
918 Assessment: Mountains, Climate Change, Sustainability and People*, Springer Nature, Cham,
919 Switzerland, 627 pp., <https://doi.org/10.1007/978-3-319-92288-1>, 2019.

920 Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., and Wilkes, A.: The
921 melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods,
922 *Conserv. Biol.*, 23, 520–530, <https://doi.org/10.1111/j.1523-1739.2009.01237.x>, 2009.

923 Yadav, R. K., Rupa Kumar, K., and Rajeevan, M.: Increasing influence of ENSO and decreasing
924 influence of AO/NAO in the recent decades over northwest India winter precipitation, *J.*
925 *Geophys. Res.-Atmos.*, 114, D12112, <https://doi.org/10.1029/2008JD011318>, 2009.

926 Ye, Y. and Tian, Y.: Interpreting changes in albedo and mass balance at White Glacier, Canadian
927 Arctic Archipelago, *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.*, XLIII-B3-2022, 793–
928 798, <https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-793-2022>, 2022.

929 Yu, W., Ma, M., Wang, X., Geng, L., Tan, J., and Shi, J.: Validation of MODIS land surface
930 temperature products using ground-based longwave radiation observations in the Heihe River
931 Basin, *Proc. SPIE*, 8174, 81741G, <https://doi.org/10.1117/12.898243>, 2011.

932 Yue, S. and Wang, C. Y.: The Mann–Kendall test modified by effective sample size to detect
933 trend in serially correlated hydrological series, *Water Resour. Manag.*, 18, 201–218,
934 <https://doi.org/10.1023/B:WARM.0000043140.61082.60>, 2004.

935 Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth,
936 H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and
937 Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to
938 2016, *Nature*, 568, 382–386, <https://doi.org/10.1038/s41586-019-1071-0>, 2019.

939 Zemp, M., Roer, I., Kääb, A., Hoelzle, M., Paul, F., and Haeberli, W. (Eds.): *Global glacier
940 changes: facts and figures*, United Nations Environment Programme and World Glacier
941 Monitoring Service, Nairobi, Kenya and Zurich, Switzerland, 88 pp., 2008.

942 Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., and Guo, Z.: A combined
943 Terra and Aqua MODIS land surface temperature and meteorological station data product for

944 China from 2003 to 2017, *Earth Syst. Sci. Data*, 12, 2555–2577, <https://doi.org/10.5194/essd-12-2555-2020>, 2020.

946 Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., and Li, A.: An analysis of land surface
947 temperature trends in the central Himalayan region based on MODIS products. *Remote Sensing*,
948 11(8), 900. <https://doi.org/10.3390/rs11080900>, 2019.