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Abstract 13 

 Hydrological analysis utilizing a hydrological model requires a parameter calibration process, 14 

which is largely influenced by the length of calibration data period and prevailing hydrological 15 

conditions. This study aimed to quantify these uncertainties in future runoff projection and 16 

hydrological drought based on future climate data and the calibration data of the hydrological 17 

model. Future climate data were sourced from three Shared Socioeconomic Pathway (SSP) 18 

scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) of 20 general circulation models (GCMs). The 19 

Soil and Water Assessment Tool (SWAT) was employed as the hydrological model, and 20 

hydrological conditions were determined using the Streamflow Drought Index (SDI), with 21 

calibration data lengths ranging from 1 to 20 years considered. Subsequently, the uncertainty 22 

was quantified using Analysis of Variance (ANOVA). After calibrating the SWAT parameters, 23 

the validation performance was found to be influenced by the hydrological conditions of the 24 

calibration data. Hydrological model parameters calibrated using a dry period simulated runoff 25 

with 11.4% higher performance in dry conditions and 6.1% higher performance in normal 26 

conditions, while hydrological model parameters calibrated using a wet period simulated runoff 27 

with 5.1% higher performance in wet conditions. The uncertainty contribution of the 28 

hydrological model in estimating future runoff was analyzed to be 3.9~9.8%, particularly 29 

significant in the low runoff period. The uncertainty contribution in future hydrological drought 30 

analysis resulting from the calibration of hydrological model parameters was analyzed to be 31 

2.7% on average, which is lower than that of future runoff projection. 32 

 33 
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1. Introduction 36 

In the current global climate scenarios, characterized by significant warming trends, there are 37 

increased challenges in understanding and managing water systems (IPCC, 2014; IPCC, 2021). 38 

Water availability for runoff is directly influenced by precipitation, while temperature affects 39 

water availability through its effect on evapotranspiration rates (Mahabadi and Delavar, 2024). 40 

These climatic changes significantly affect the availability of water resources and increase the 41 

occurrence and severity of hydrological extreme events such as floods and droughts in different 42 

regions (Milly et al., 2008; Santos et al., 2021). Hydrological projection is crucial for 43 

sustainable water resource planning and management (Peng et al., 2022; Yang et al., 2023; 44 

Yang et al., 2024). Consequently, quantifying the uncertainty in hydrological projection is 45 

essential as it directly affects the effectiveness of these management strategies and decision-46 

making processes in ensuring the reliability and safety of water resources (Zhang et al., 2024). 47 

Droughts, which could become more severe due to climate change, begin with a lack of 48 

precipitation and lead to a decrease in streamflow and soil moisture deficiency, encompassing 49 

a complex hydrological cycle that adversely affects plant and crop growth and human life. 50 

Generally, droughts progress over time into meteorological, agricultural, hydrological, and 51 

socio-economic droughts, and become a fatal disaster if prolonged (Sheffield and Wood, 2012). 52 

Consequently, future droughts due to climate change has been actively conducted, with most 53 

studies concluding that droughts are becoming more frequent and severe (Sung et al., 2018; 54 

Kim et al., 2021). 55 

Hydrological drought requires an understanding of the hydrological cycle, including runoff, 56 

surface water, and groundwater. Runoff, a key indicator of hydrological drought, significantly 57 

affects the availability of water for agricultural, industrial, and domestic uses (Ghasemizade 58 

and Schirmer, 2013; Devia et al., 2015). Therefore, understanding and predicting runoff 59 

behavior is essential for hydrological drought analysis in water resource management and 60 

planning. While runoff data can be obtained from river observations within the region, there 61 

are limitations in observation technology and coverage. Consequently, simulated runoff data 62 

using regional meteorological data and hydrological models are utilized. Hydrological models 63 

simulate runoff by inputting meteorological data, soil data, and topographical data, allowing 64 

for the prediction of future hydrological cycles. However, these hydrological models are 65 

influenced by various factors, including the quality and quantity of input data, structural 66 

uncertainties of the models, and uncertainties in the calibration process (Xu et al., 2007; Renard 67 
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et al., 2010). Therefore, quantifying and recognizing these uncertainties is crucial to enhancing 68 

the reliability of future hydrological analysis (Feng et al., 2019). 69 

The future hydrological analyses considering uncertainty is essential for effective water 70 

management. These projections are largely based on General Circulation Models (GCMs) and 71 

hydrological models, which are critical tools for modelling the hydrological impacts of climate 72 

change. However, GCMs introduce significant uncertainty in future runoff prediction due to 73 

their inherent structural complexity and variability in scenario-based inputs (Broderick et al., 74 

2016). This uncertainty has a direct impact on the accuracy of runoff predictions and poses a 75 

significant challenge to water resource management. The selection and use of GCMs have a 76 

crucial role in shaping these uncertainties, making the consideration of a variety of GCMs and 77 

shared socioeconomic pathways (SSP) scenarios essential for managing uncertainties and 78 

improving projections (Vetter et al., 2015; Chae et al., 2024a). Indeed, Shi et al. (2022) had 79 

shown how different evapotranspiration models embedded in GCMs affect runoff prediction, 80 

highlighting GCMs and Representative Concentration Pathways (RCPs) as major factors 81 

affecting uncertainty. Similarly, Lee et al. (2021a) had shown how the choice of GCMs 82 

significantly affects prediction of water storage in wetlands under future climate scenarios. To 83 

understand these uncertainties, Wang et al. (2020) suggested the use of a broad ensemble of at 84 

least 10 GCMs, which allowed for a more comprehensive assessment of hydrological impacts 85 

and helped to reduce the inherent uncertainties associated with climate change. Thus, the use 86 

of a wide range of GCMs is an essential strategy for maximizing the effectiveness of water 87 

resource management under global climate change conditions. 88 

The hydrological model calibration involves significant uncertainty, especially when 89 

predicting future conditions. This process, crucial for aligning model parameters with historical 90 

data, often incorrectly assumes that parameters validated under past hydrological conditions 91 

will remain valid in the future. Thirel et al. (2015) and Fowler et al. (2016) demonstrated that 92 

models calibrated with historical climate data might not perform accurately under changed 93 

conditions, leading to substantial uncertainties in runoff projections. This challenge is 94 

exacerbated by the dependency of model parameters on the hydrological conditions prevalent 95 

during the calibration period (Merz et al., 2011; Coron et al., 2012). Effective calibration 96 

strategies, therefore, must consider variable climate scenarios to ensure model robustness. This 97 

involves rigorous calibration under diverse conditions to validate hydrological models' 98 

reliability in projecting future water resource availability (Saft et al., 2016; Dakhlaoui et al., 99 

2017). Furthermore, the interaction between model parameters and hydrological conditions 100 
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during these periods often complicates the calibration process, underscoring the need for robust 101 

validation techniques. The duration of the calibration period also contributes significantly to 102 

the uncertainty in runoff projection. Razavi and Tolson (2013) and Arsenault et al. (2018) 103 

highlighted the importance of sufficiently long calibration periods to ensure meaningful 104 

calibration and validation results. In addition, Kim et al. (2011) cautioned against using overly 105 

short calibration periods, as this can lead to large and unstable model performance variability 106 

during calibration and validation. Despite the emphasis on longer calibration periods, Perrin et 107 

al. (2007), Sun et al. (2017), Yu et al. (2023), and Ziarh et al. (2024) had found that an extended 108 

calibration data length does not guarantee improved model performance, suggesting a nuanced 109 

approach to calibration period selection. These insights underlined the complex interplay 110 

among calibration length, model parameter selection, and climatic variability in shaping the 111 

reliability of hydrological models. 112 

The rigorous quantification of uncertainties in hydrological modeling is essential to enhance 113 

the reliability of water resources planning and management. This study employs Analysis of 114 

Variance (ANOVA), a statistical method widely used in hydrological studies, to systematically 115 

quantify uncertainties in hydrological projections. ANOVA dissects the variance observed in 116 

projections into contributions from various sources of uncertainty, such as GCM outputs, SSP 117 

scenarios, and hydrological model parameters (Qi et al., 2016; Chae et al., 2024b). By 118 

identifying the dominant sources of variability and analyzing their interactions, ANOVA 119 

provides a clear understanding of how different factors drive uncertainties in hydrological 120 

projections. Recent applications of ANOVA in future hydrological studies demonstrated its 121 

effectiveness in understanding model-driven uncertainties (Chen et al., 2022; Yuan et al., 2022; 122 

Mo et al., 2024). 123 

This study focuses on the uncertainty in future hydrological analyses, which are influenced by 124 

hydrological model parameters during different calibration periods under future climate data 125 

and different hydrological conditions. This research utilizes the Soil and Water Assessment 126 

Tool (SWAT), a widely recognized hydrological model, to analyze the impact of hydrological 127 

conditions during the calibration period on the projection of future runoff and hydrological 128 

drought. Three SSP scenarios and 20 GCMs were used to consider uncertainty due to future 129 

climate, and different hydrological conditions according to the Streamflow Drought Index (SDI) 130 

and different calibration period data lengths from 1 to 20 years were used to consider 131 

uncertainty in hydrological model parameter calibration. This study aims to contribute to the 132 

https://doi.org/10.5194/egusphere-2025-1298
Preprint. Discussion started: 15 July 2025
c© Author(s) 2025. CC BY 4.0 License.



5 / 46 

 

refinement of hydrological modelling practices by quantifying the uncertainties associated with 133 

future runoff projection and hydrological drought analysis. 134 

This manuscript is structured as follows. In Section 2, the study area, datasets, and the 135 

methodologies used in this study are described, including the SWAT model, the ANOVA 136 

framework, and the statistical validation procedures. In Section 3, the results of the analysis 137 

are presented, showing the effects of calibration conditions on model performance and 138 

quantifying the uncertainty contributions from various sources for both future runoff and 139 

hydrological drought. In Section 4, the implications of these findings are discussed in the 140 

context of previous research. Finally, Section 5 summarizes the main conclusions of this study. 141 

 142 

2. Methodology 143 

2.1 Procedure 144 

The procedure of the study is as follows. First, topographic data for four dam basins in South 145 

Korea were established, taking into account the overall hydrological characteristics of the 146 

region, and observed dam inflow data were utilized to consider the length and hydrological 147 

conditions of the hydrological model calibration data. The length of the calibration data 148 

considered ranged from 1 to 20 years, and hydrological conditions were categorized using the 149 

Streamflow Drought Index (SDI). Subsequently, validation performance analysis was 150 

conducted, with calculations varying according to the length of calibration data and 151 

hydrological conditions (Dry, Normal, and Wet). For the study, future climate data from 20 152 

Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs and three SSP scenarios 153 

(SSP2-4.5, SSP3-7.0, and SSP5-8.5) were bias-corrected. Future runoff projection and 154 

hydrological drought were then analyzed using calibrated hydrological model parameters under 155 

different conditions along with the future climate data. Finally, the uncertainties in the future 156 

hydrological analysis were quantified using the Analysis of Variance (ANOVA). 157 

 158 

2.2 Study area and datasets 159 

The study areas selected in this study are the Andong (AD), Chungju (CJ), Habcheon (HC), 160 

and Seomjingang (SJ) dam basins located in Korea as shown in Fig. 1. To achieve stable 161 

calibration and validation results for a hydrological model, it is imperative to choose 162 
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catchments with extensive hydrological data records. This enables the accurate estimation of 163 

appropriate calibration data lengths through various testing periods of the hydrological model. 164 

Furthermore, incorporating a variety of basins is crucial to ensure that the findings of this study 165 

are not biased by specific hydrological conditions. These four basins, which have the longest 166 

hydrological records in Korea, are situated in major river basins as shown in Table S1: AD 167 

(1,584 km²) and HC (925 km²) in the southeastern Nakdong River basin, CJ (6,648 km²) in the 168 

southern Han River basin, and SJ (763 km²) in the southwestern Seomjin River basin. These 169 

regions are devoid of artificial structures, ensuring that runoff remains natural and unaltered. 170 

Located in different regions of Korea, these basins have a range of hydrological conditions and 171 

runoff characteristics, providing a representative cross-section of the country's hydrological 172 

characteristics. 173 

 174 

2.3 Soil and water assessment tool (SWAT) 175 

The SWAT was used to calibrate hydrological processes in our study basin. The SWAT is 176 

particularly adept at simulating runoff and other hydrological variables under a wide range of 177 

environmental conditions and is a robust, physically based, semi-distributed model. Its 178 

efficiency in modelling hydrological cycles within basins relies on simple input variables to 179 

produce detailed hydrological outputs. The capability of this model has been effectively shown 180 

in various studies, including those in South Korea (Kim et al., 2022; Song et al., 2022). 181 

The core of the SWAT model is the water balance equation, which integrates daily weather 182 

data with land surface parameters to calculate water storage changes over time: 183 

 184 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡
𝑖=0    (1) 185 

 186 

where 𝑆𝑊0 is the initial soil moisture content (mm), 𝑆𝑊𝑡 is the total soil moisture per day 187 

(mm), 𝑅𝑑𝑎𝑦 is precipitation (mm), 𝑄𝑠𝑢𝑟𝑓 is surface runoff (mm), 𝐸𝑎 is evapotranspiration 188 

(mm), 𝑊𝑠𝑒𝑒𝑑 is penetration, 𝑄𝑔𝑤 is groundwater runoff (mm), and 𝑡 is time (day). 189 

For rainfall-runoff analysis, the SWAT model is structured into several sub-basins, each of 190 

which is further subdivided into Hydrologic Response Units (HRUs) based on different soil 191 

types, land use and topography. Each HRU independently simulates parts of the hydrological 192 
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cycle, allowing a granular analysis of basin hydrology. This setup reflects the spatial 193 

heterogeneity within the basin and allows continuous simulation of hydrological processes over 194 

long time periods, enhancing the utility of the model for climate change studies. The model 195 

was calibrated and validated using R-SWAT for parameter optimization. R-SWAT 196 

incorporates the SUFI-2 algorithm, which is known for its rapid execution and precision in 197 

parameter optimization, ensuring accurate and reliable simulation results (Nguyen et al., 2022). 198 

 199 

2.4 Streamflow drought index (SDI) 200 

The drought index was used to classify hydrological conditions considering the calibration 201 

effect of periods with different hydrological conditions. SDI is a commonly used method for 202 

quantifying the severity and duration of drought conditions in a river basin. It is based on the 203 

comparison of observed streamflow with a historical reference period, usually the average 204 

streamflow over a long-term period. SDI which is a hydrological drought index, is calculated 205 

as Eq. 2. (Nalbantis and Tsakiris, 2009). 206 

 207 

𝑆𝐷𝐼𝑖,𝑘 =
𝑉𝑖,𝑘−𝑉̅𝑘

𝑆𝑘
      (2) 208 

 209 

where 𝑉𝑖,𝑘 is the runoff accumulated during the 𝑘th period in the 𝑖th year, and 𝑉̅𝑘 and 𝑆𝑘 210 

represent the average and standard deviation of the accumulated river flow, respectively.  211 

The critical level is mainly the average 𝑉̅𝑘. In small scale rivers, the runoff rate approximates 212 

the Log-normal distribution type and the probability distribution type is distorted. Therefore, 213 

the runoff rate must be converted to fit the normal distribution. When converting to a two-214 

variable log-normal distribution type, SDI is finally equal to Eq, 3, and 𝑦𝑖,𝑘 is a value obtained 215 

by taking the natural logarithm of the amount of river water, such as Eq. 4. 216 

 217 

𝑆𝐷𝐼𝑖,𝑘 =
𝑦𝑖,𝑘−𝑦̅𝑘

𝑆𝑦,𝑘
, 𝑖 = 1,2,⋯ , 𝑘 = 1,2,3,4     (3) 218 

 219 

𝑦𝑖,𝑘 = ln(𝑉𝑖,𝑘) , 𝐼 = 1,2,⋯ , 𝐾 = 1,2,3,4     (4) 220 
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 221 

To classify the hydrological conditions, this study categorized -0.5 and below as Dry, 0.5 and 222 

above as Wet, and -0.5 to 0.5 as Normal (Nalbantis and Tsakiris, 2009; Hong et al., 2015). 223 

 224 

2.5 General Circulation Models (GCMs) 225 

In this study, M1 to M20 GCMs from the CMIP6 suite that have been consistently used in 226 

studies for East Asia and Korea were selected for future runoff projection and hydrological 227 

drought analysis. The details of the development institutions, model names and resolutions of 228 

these 20 GCMs were presented in Table S2. 229 

The climate data from the GCMs were evaluated using daily observed climate data provided 230 

by the Korea Meteorological Administration (KMA). The evaluation used observed data from 231 

the past period (1985-2014) to evaluate the future climate data from the GCMs, which were 232 

analyzed for two future periods: the near future (NF) and the distance future (DF). The future 233 

climate change scenarios used were SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are 234 

divided into five pathways based on radiative forcing, reflecting different levels of future 235 

mitigation and adaptation efforts (O’Neill et al., 2016). The SSPs are numbered from SSP1 to 236 

SSP5, with SSP1 representing a sustainable green pathway and SSP5 representing fossil fuel 237 

driven development. The numbers 4.5 to 8.5 indicate the level of radiative forcing (4.5: 4.5 W 238 

m-2, 7.0: 7.0 W m-2 and 8.5: 8.5 W m-2). 239 

 240 

2.6 Bias correction using quantile mapping 241 

The GCMs data outputs in a gridded format with a fixed resolution, requiring the use of spatial 242 

interpolation methods. In this study, the inverse distance weighting (IDW) method was 243 

employed to spatially interpolate the GCM data based on the locations of the Korea 244 

Meteorological stations. Subsequently, to align the GCM data with the actual observational 245 

data, the quantile mapping method was utilized. This method adjusts the GCM data based on 246 

the quantile relationship between the cumulative distribution functions (cdf) of the GCM data 247 

and the observed data (Gudmundsson et al., 2012). The quantile mapping method is described 248 

by Eq (5). 249 

 250 
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𝑃𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑃𝑚))       (5) 251 

 252 

where, 𝑃𝑜 and 𝑃𝑚 represent observed and simulated climate variables, 𝐹𝑚 is the CDF of 𝑃𝑚 253 

and 𝐹𝑜
−1 is the inverse CDF corresponding to 𝑃𝑜. 254 

The quantile relationship can be also derived directly using parametric transformations. In this 255 

study, the linear method of parametric transformation was adopted as Eq. (6). 256 

 257 

𝑃̂ = 𝑎 + 𝑏𝑃𝑚       (6) 258 

 259 

where, 𝑃̂ represents the best estimate of 𝑃𝑜 and a and b are free parameters that are subject 260 

to calibration. 261 

 262 

2.7 Quantifying uncertainty 263 

The ANOVA used in this study is an effective statistical method that decomposes the total sum 264 

of squares (SST) into contributions from different sources and their interactions. This method 265 

would be particularly useful in the study framework, as it allows us to assess not only the 266 

individual effects of each source of uncertainty but also the combined effects of these sources 267 

interacting with each other (Bosshard et al., 2013; Lee et al., 2021a). 268 

For this analysis, the primary sources of uncertainty considered are General Circulation Models 269 

(GCMs), Shared Socioeconomic Pathway (SSP) scenarios, hydrological conditions (HC) 270 

during the calibration period, and period length (PL). Each of these sources could have a 271 

significant impact on the projections of hydrological models; therefore, their comprehensive 272 

evaluation is crucial (Morim et al., 2019; Yip et al., 2011). Higher-order interactions (e.g., 273 

three-way) were excluded as they are often difficult to interpret physically and can introduce 274 

noise into the model. 275 

 276 

𝑆𝑆𝑇 = 𝑆𝑆𝐺𝐶𝑀𝑠 + 𝑆𝑆𝑆𝑆𝑃𝑠 + 𝑆𝑆𝐻𝐶 + 𝑆𝑆𝑃𝐿 + 𝑆𝑆𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠(2−𝑤𝑎𝑦) + 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠       (7) 277 

 278 
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where each term (𝑆𝑆) indicates the sum of squares attributed to each factor or interaction. 279 

Here,𝑆𝑆𝐺𝐶𝑀𝑠, 𝑆𝑆𝑆𝑆𝑃𝑠, 𝑆𝑆𝐻𝐶, and 𝑆𝑆𝑃𝐿 represent the sum of squares due to GCMs, SSPs, HC, 280 

and PL, respectively, known as the main effects. The remaining terms represent the sum of 281 

squares due to the interactions among GCMs, SSPs, hydrological conditions, period length, 282 

their two-way interactions, and the residual error. 283 

The model setup for ANOVA considered 20 GCMs, three SSP scenarios, three hydrological 284 

conditions, and different calibration period lengths. This resulted in a total of 120 unique 285 

combinations for each basin analyzed. Initially, the SST, representing the total variation within 286 

the data, was calculated. Subsequently, the sum of squares attributable to each source of 287 

uncertainty was computed. To quantify the relative impact of each source, its contribution was 288 

calculated as the proportion of its Sum of Squares relative to the Total Sum of Squares. This 289 

provides a clear measure of the percentage of total uncertainty explained by each factor and 290 

interaction. 291 

The statistical robustness and validity of the ANOVA models were rigorously evaluated. First, 292 

the overall goodness-of-fit for each model was assessed using the Adjusted R-squared (𝑅𝑎𝑑𝑗
2 ), 293 

defined as Eq. (8). 294 

 295 

𝑅𝑎𝑑𝑗
2 = 1 −

(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
      (8) 296 

 297 

Where, 𝑅2 is the coefficient of determination, 𝑛 is the number of observations, and 𝑘 is the 298 

number of predictions. This metric is preferred over the Standard R-squared as it adjusts for 299 

the number of predictors in the model, providing a more accurate measure of model fit. 300 

Second, a residual analysis was conducted to verify that the core assumptions of ANOVA were 301 

met. The normality of residuals was a primary focus of this validation, examined both 302 

statistically with the Shapiro-Wilk test and visually using Quantile-Quantile (Q-Q) plots. The 303 

Shapiro-Wilk test evaluates the null hypothesis that the residuals are normally distributed. 304 

However, given the large sample size in this study, which can lead to statistically significant 305 

results even for minor deviations from normality, greater emphasis was placed on the visual 306 

inspection of Q-Q plots to assess practical adherence to the normality assumption. The 307 

assumption of homoscedasticity (constant variance of residuals) was also inspected using 308 
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Residuals vs. Fitted values plots. These validation steps ensure that the results of the 309 

uncertainty partitioning are statistically sound and reliable. All statistical analyses were 310 

performed using the R software environment. 311 

 312 

3. Results 313 

3.1 Determining the hydrological conditions 314 

The calculated SDI was shown in Fig. S. 1. The SDI values of AD and HC in the Nakdong 315 

River basin showed drought conditions similar to the actual events that occurred in 1994-1995, 316 

2009, 2014-2015, 2016, 2017 and 2022 (Karunakalage et al., 2024). Similarly, SDI values of 317 

CJ in the Han River basin accurately reflected the actual drought events of 2014-2015 and 2017 318 

(Lee et al., 2021b). Finally, those of SJ in the Seomjin River basin also represented the drought 319 

events of 1995, 2005-2006 and 2018-2019, demonstrating that the SDI was accurately 320 

calculated. Therefore, this study using the observed inflow data of the four basins could reflect 321 

the hydrological drought characteristics of the historical periods in South Korea. 322 

 323 

3.2 SWAT parameter calibration 324 

The simulated runoff data were analyzed for performance using the Kling-Gupta Efficiency 325 

(KGE; Gupta et al., 2009). KGE was developed to overcome some limitations of the commonly 326 

used Nash-Sutcliffe Efficiency (NSE) in performance analysis (Gupta et al., 2009). The 327 

attributes of KGE include focusing on a few basic required properties of any model simulation: 328 

(i) bias in the mean, (ii) bias in the variability, and (iii) cross-correlation with the observational 329 

data (measuring differences in hydrograph shape and timing). The parameter optimization of 330 

SWAT was performed as shown in Fig. S. 2, considering the data length of the calibration 331 

period from 1 to 20 years. 332 

Following parameter optimization, KGE values as shown in Fig. 2 were found to be suitable 333 

for conducting the study, with all four dam basins achieving values above 0.60. The 334 

performance improvements are as follows: AD’s KGE increased from 0.55 before calibration 335 

to 0.64 after calibration, CJ’s from 0.68 to 0.75, HC’s from 0.70 to 0.80, and SJ’s from 0.50 to 336 

0.73. This improvement in KGE after calibration underscores the robustness of the 337 

hydrological models used and their enhanced capability in projecting future runoff. 338 

 339 
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3.3 Effect of varying data length 340 

The validation performance according to the calibration data length was shown in Fig. 3. The 341 

impact of calibration data length on validation performance was analyzed, revealing a departure 342 

from previous studies, which suggested that longer calibration data lengths lead to more 343 

effective optimization of hydrological model parameters. Instead, the influence of calibration 344 

data length on performance is all different by basin. For AD, the best performance was 345 

observed with a 2-year period, averaging a KGE of 0.66, while the 1-year period resulted in 346 

the lowest performance with an average KGE of 0.48. The Inter Quartile Range (IQR) showed 347 

that variations were smaller for periods longer than 10 years (average IQR of 0.15) compared 348 

to those less than 10 years (average IQR of 0.20). For CJ, the optimal performance was at a 15-349 

year period with an average KGE of 0.72, and the lowest at a 4-year period with an average 350 

KGE of 0.58. The IQR values were 0.19 for periods under 10 years and 0.20 for periods over 351 

10 years, indicating minor differences due to length. For HC, the highest KGE of 0.77 was 352 

recorded at 19 years, and the lowest KGE of 0.66 at 1 year. The IQR for periods under 10 years 353 

was 0.19, and 0.10 for those over 10 years, showing that longer periods yielded less variability. 354 

In the case of SJ, a 9-year period had a KGE of 0.68, and a 20-year period had a KGE of 0.60, 355 

with IQRs of 0.23 for periods under 10 years and 0.21 for those over. While the best validation 356 

performance due to calibration data length varied by basin, it was observed that the differences 357 

due to the period decrease as the length increases. 358 

 359 

3.4 Effect of varying hydrological conditions 360 

The performance analyses based on the hydrological conditions of the calibration and 361 

validation periods are shown in Fig. S. 3 and Table 1. Fig. S. 3 shows the KGE values and the 362 

confidence level (prediction) for each hydrological condition during the validation period 363 

according to the SDI values. Overall, during the dry and normal validation periods, it was 364 

analyzed that lower SDI values (dry condition) correlated with higher KGE values. This 365 

indicates that SWAT parameters calibrated with dry validation period data effectively simulate 366 

runoff under Dry and Normal hydrological conditions. For wet validation periods, higher SDI 367 

values (wet condition) correlate with higher KGE values, indicating that SWAT parameters 368 

calibrated with wet calibration period data accurately simulate runoff under wet conditions. 369 

As shown in Table 1, the average KGE according to hydrological conditions is as follows. The 370 

KGE values for each dam basin, according to the hydrological conditions of the calibration-371 
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validation periods, are as follows: For AD, D-D (Dry-Dry; hydrological conditions for 372 

calibration and validation periods, respectively) was 0.480, higher than W-D (Wet-Dry) of 373 

0.382; D-N (Dry-Normal) was 0.573, higher than W-N (Wet-Normal) of 0.510; and W-W 374 

(Wet-Wet) was 0.642, higher than D-W (Dry-Wet) of 0.571. For CJ, D-D was 0.743, higher 375 

than W-D at 0.725; D-N was 0.643, higher than W-N at 0.615; and W-W was 0.706, higher 376 

than D-W at 0.674. For HC, D-D was 0.732, higher than W-D at 0.670; D-N was 0.738, higher 377 

than W-N at 0.714; and W-W was 0.769, higher than N-W (Normal-Wet) at 0.757. Lastly, for 378 

SJ, D-D was 0.557, higher than W-D at 0.515; D-N was 0.677, higher than W-N at 0.650; and 379 

W-W was 0.684, higher than D-W at 0.674. 380 

The performance evaluation classified by data length and hydrological conditions for validation 381 

are influenced by hydrological conditions for calibration, but the optimal data length for the 382 

best performance varies between basins as shown in Fig. 4. These results confirm the 383 

importance of uncertainty in hydrological models due to differences in hydrological conditions 384 

during the calibration and validation periods, as suggested by previous studies (Bai et al., 2022; 385 

Fowler et al., 2016). Furthermore, the different data lengths with high validation performance 386 

for each basin confirm the opinion that shorter calibration data lengths can be applied under 387 

limited data conditions (Perrin et al., 2007; Yu et al., 2023), instead of the traditional opinion 388 

that longer calibration data lengths are better for hydrological modelling (Arsenault et al., 2018; 389 

Kim et al., 2011). 390 

 391 

3.5 Bias correction for GCMs 392 

In this study, climate data from GCMs were bias-corrected using observed climate data from 393 

KMA weather stations located within each dam basin. Fig. S. 4 describes the root mean square 394 

error (RMSE), Pearson coefficient and standard deviation (SD) in a Taylor diagram. After bias 395 

correction, all GCMs’ climate data showed improved performance. The Pearson coefficient of 396 

precipitation increased from 0.04 to 0.99 and the RMSE decreased from 4.43 to 0.05. Similarly, 397 

the Pearson coefficients of the daily maximum and minimum temperatures averaged 1.00 and 398 

their RMSEs averaged 0.08. This is an indication that the GCM’s climate data after bias 399 

correction were appropriate for use in this study. 400 

 401 

3.6 Projection of climate variable 402 
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The future climate data from bias-corrected GCMs were depicted in Fig. 5 and Table S3. The 403 

future period was divided into NF and FF, and it was found that daily precipitation, maximum 404 

temperature, and minimum temperature all increased overall. Except for July and August, 405 

future precipitation generally increased, with significant rises particularly noted in April and 406 

May. In NF, the largest increase occurred in May under SSP2-4.5 with 51.4 mm, while in DF, 407 

the largest increase occurred in April under SSP5-8.5 with 59.8 mm. The largest decrease in 408 

NF was calculated for July under SSP5-8.5, and in DF it was most significant under SSP3-7.0, 409 

indicating considerable uncertainties in the GCMs during July and August, the months of the 410 

highest precipitation. 411 

With regard to maximum temperatures, the analysis shows that there has been an increase in 412 

all months except April in NF, especially in fall (September-November). This increase was 413 

more pronounced in the DF than in the NF, with the largest increases observed under SSP5-414 

8.5. Similarly, the minimum temperature was found to have increased in the future compared 415 

to the past, following the same trend as the maximum temperature. 416 

 417 

3.7 Projection future runoff 418 

3.7.1 Annual runoff change 419 

The future runoff was projected using climate data and hydrological model parameters as 420 

shown in Fig. S. 5. Overall, future runoff is expected to increase relative to the historical data, 421 

with more significant increases projected during DF than NF As the SSPs change (e.g. from 422 

SSP2-4.5 and SSP3-7.0 to SSP5-8.5), not all annual runoff show a consistent increase with the 423 

scenario change, as shown in Table 2. In particular, the increase in annual runoff under SSP5-424 

8.5 was not always higher than SSP2-4.5 or SSP3-7.0. These differences were analyzed to vary 425 

significantly between different basins and GCMs. 426 

For AD, the future seasonal runoff is likely to increase in all seasons except summer. This 427 

increase would be more pronounced during DF than NF, with the largest increases occurring 428 

under SSP5-8.5. For CJ, the future runoff is expected to increase compared to the past in all 429 

seasons, with the highest increase observed in DF under SSP3-7.0 and the lowest increase 430 

under SSP5-8.5. For HC, future runoff is expected to increase in all seasons except fall, with 431 

the greatest variability in fall under SSP3-7.0. For SJ, future runoff is projected to increase 432 

compared to the past in all scenarios except NF under SSP3-7.0. 433 
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 434 

3.7.2 Differences in projected future runoff due to hydrological model parameters 435 

The future runoff projections using many calibrated sets of hydrological model parameters 436 

were analyzed using the flow duration curve (FDC). In water resources planning and drought 437 

management, the differences in future runoff projections due to hydrological model parameters 438 

at low runoff are critical. These differences are shown in Fig. S. 6, and the differences in Q75 439 

for each basin and their proportions relative to the mean runoff are shown in Table 3. The basin 440 

with the largest differences due to hydrological conditions in the calibration period was 441 

analysed as HC. HC is a basin with relatively low precipitation and a small watershed area. CJ, 442 

the largest basin, was analysed to have a 5-6% difference in runoff by hydrological model 443 

parameters, which means that the effect of hydrological model calibration is larger in smaller 444 

basins. The overall trend shows larger variances in DF than NF, and these variances were more 445 

pronounced for SSP5-8.5 scenario than SSP2-4.5. This indicates the need to consider the 446 

variations caused by hydrological model parameters when managing water resources during 447 

both flood and drought periods. Table S4 details the top three GCMs that showed the most 448 

significant differences in runoff projections due to hydrological model parameters for each 449 

basin. Models, M5 and M6 were consistently identified as having the largest discrepancies in 450 

future runoff projections due to hydrological model parameters. 451 

 452 

3.8 Uncertainty contribution of future runoff projections 453 

3.8.1 Statistical significance of ANOVA results for future runoff projection 454 

Before assessing the significance of individual uncertainty sources, the statistical validity of 455 

the developed ANOVA models was confirmed. The goodness-of-fit for all monthly models 456 

across all four basins and both future periods (NF and DF) were exceptionally high, with 457 

Adjusted R-squared values consistently exceeding 0.99. This indicates that the selected factors 458 

and their two-way interactions explain more than 99% of the variance in the projected future 459 

runoff. Furthermore, a comprehensive residual analysis was conducted for each model. While 460 

statistical tests for normality, such as the Shapiro-Wilk test, are sensitive to large sample sizes, 461 

the visual inspection of Q-Q plots and Residuals vs. Fitted plots confirmed that the assumptions 462 

of normality and homoscedasticity were practically satisfied, ensuring the reliability of the 463 

subsequent significance testing (Fig. S. 7-8). 464 
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The factors related to the hydrological model calibration, HC and PL, were also found to be 465 

statistically significant for the future runoff projections. Table 4-5 summarizes the frequency 466 

of statistical significance (p < 0.05) for each factor across the four study basins. The values 467 

indicate the number of basins out of four where the factor was found to be significant. Although 468 

their influence was smaller than that of GCMs and SSPs, both HC and PL were significant (p 469 

< 0.05) in numerous months, particularly during the low-flow periods such as spring and winter. 470 

This result highlights that the calibration conditions should be considered an important source 471 

of uncertainty. 472 

Among the two-way interactions, the GCM:SSP interaction consistently showed the highest 473 

statistical significance (p < 0.001) across all months and basins, indicating that the effect of a 474 

GCM is strongly dependent on the chosen SSP scenario, and vice versa. Furthermore, 475 

interactions involving the calibration factors, such as GCM:HC and HC:PL, were also found 476 

to be statistically significant in various months. This finding is crucial as it demonstrates that 477 

the uncertainty stemming from hydrological model calibration does not act in isolation but 478 

interacts in a complex manner with future climate projections, thereby influencing the overall 479 

uncertainty of future runoff. 480 

 481 

3.8.2 Contribution of uncertainty using the ANOVA 482 

Fig. S. 9 shows the relative contributions of different factors to the uncertainties in future runoff 483 

projections for each basin. Fig. 6 specifically highlights the uncertainty contributions attributed 484 

to hydrological models. The differences in future climate data from the GCMs were found to 485 

be the largest source of uncertainty, contributing over 60%. This is more significant during NF 486 

than DF, due to the increased climate variability in GCM projections during the NF, as 487 

discussed in Section 3.6. 488 

The uncertainty contributions from hydrological models were most significant during the 489 

spring (Mar-May) and winter (Dec-Feb) periods, as shown in Table S5. The results of the 490 

analysis for each basin were as follows: For AD, the hydrological model uncertainty was most 491 

significant in spring (NF: 7.54%, and DF: 5.86%), with a maximum of 9.76% in June for NF 492 

and 7.54% in April for DF. In CJ, the highest uncertainties were also found for NF in winter 493 

(3.9%) and for DF in spring (3.96%). HC showed the highest uncertainty in winter (NF: 6.09%, 494 

and DF: 5.5%), with a maximum in November (NF: 9.76%, and DF: 8.92%). For SJ, the most 495 
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significant contributions were found in spring (NF: 5.58%, and DF: 3.88%). In the end, 496 

hydrological model uncertainties were more significant in months with lower runoff. 497 

 498 

3.9 Future hydrological drought uncertainty 499 

3.9.1 Future hydrological drought uncertainty according to hydrological conditions 500 

To quantify the uncertainty in the future hydrological drought analysis using the calibrated sets 501 

of hydrological model parameters, the Streamflow Drought Index (SDI) was used to calculate 502 

the hydrological drought conditions during the future period. For the uncertainty analysis, 503 

runoff data were considered for both historical and future periods. Table 6 shows the difference 504 

in the number of drought events under hydrological conditions during the calibration period 505 

after calculating SDIs for 3-month, 6-month, and 12-month durations. The difference in the 506 

number of drought events according to the hydrological conditions of the calibration period 507 

was analysed differently for each SSP and basin. The difference was significant for the shorter 508 

duration of 3 months. 509 

According to the analysis by basin, the difference in the number of drought events in the AD 510 

basin with a 3-month duration was calculated to be the largest, with an average of 4.93 events, 511 

followed by SJ, CJ, and HC. Between the near future (NF) and distant future (DF), the 512 

difference in the number of drought events under the overall hydrological conditions was larger 513 

in the NF, and this difference was calculated differently by basin, confirming the need for 514 

basin-specific analysis in water resource management planning. Therefore, the uncertainty 515 

quantification of the drought analysis was performed using the SDI with a duration of 3 months. 516 

 517 

3.9.2 Statistical significance of ANOVA results for future hydrological drought  518 

To confirm the statistical validity of the ANOVA models for the future hydrological drought 519 

analysis, the goodness-of-fit was evaluated. The models showed a high goodness-of-fit, with 520 

Adjusted R-squared values consistently greater than 0.99 for all annual models across the four 521 

basins. This indicates that the selected factors and their two-way interactions explain more than 522 

99% of the variance in the future drought projections, ensuring the reliability of the analysis. 523 

Table 7 summarizes the frequency of statistical significance (p < 0.05) for each factor, 524 

aggregated by decade, to provide a concise overview of the results across the entire future 525 
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period. The values indicate the number of basins (out of four) where the factor was found to be 526 

significant for the majority of years within that decade. The primary climate-related factors, 527 

GCM and SSP, were consistently identified as the most significant sources of uncertainty. As 528 

shown in Table 7, both factors were found to be highly significant across all four basins for all 529 

decades, underscoring the profound impact of climate model choice and emission scenarios on 530 

drought projections. 531 

The hydrological model calibration factors, HC and PL, also proved to be important sources of 532 

uncertainty. Both factors were statistically significant across all four basins for the entire future 533 

period. This finding reinforces that the hydrological conditions and data length used for model 534 

calibration have a persistent and significant influence on long-term hydrological drought 535 

assessments. 536 

Regarding the interaction effects, the GCM:SSP interaction was the most consistently 537 

significant, highlighting that the projected drought severity under a specific GCM is highly 538 

dependent on the emission scenario. Moreover, interactions involving calibration factors, 539 

particularly GCM:HC, GCM:PL, and HC:PL, were also found to be statistically significant 540 

across all basins and decades. This indicates that the uncertainty from calibration conditions 541 

does not merely add to the total uncertainty but also modulates the uncertainty stemming from 542 

climate models, which is a critical consideration for developing robust drought management 543 

strategies. In contrast, other interactions such as SSP:HC and SSP:PL were found to be not 544 

significant across the basins and decades. 545 

 546 

3.9.3 Uncertainty contribution of future hydrological drought 547 

The quantification of uncertainty in future hydrological drought was conducted using 548 

ANOVA. The uncertainty in future hydrological drought projections caused by SSP, GCM, 549 

and hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows 550 

the contribution of each factor to the total uncertainty. Among single-factor uncertainties, 551 

GCM contributed the most, averaging over 30%. The largest contributor to the total 552 

uncertainty, however, was the interaction between SSP and GCM, averaging over 50%. 553 

Fig. 7 and Table 8 present the contribution of hydrological modelling parameters to the 554 

uncertainty in future drought projections. The uncertainty contribution from hydrological 555 

model parameter estimation in future hydrological drought analysis averaged 2.7%, which is 556 

https://doi.org/10.5194/egusphere-2025-1298
Preprint. Discussion started: 15 July 2025
c© Author(s) 2025. CC BY 4.0 License.



19 / 46 

 

lower than that observed for future runoff projections. The uncertainty contribution from 557 

hydrological model calibration for future drought conditions was highest in HC, followed by 558 

CJ, AD, and SJ, respectively. These results differ from those obtained in the runoff 559 

projections. The contribution of uncertainty in hydrological drought analysis decreased for 560 

AD and SJ, where uncertainty in future runoff projection due to hydrological model 561 

calibration was relatively high. In contrast, HC showed high uncertainty contributions from 562 

hydrological model calibration in both runoff and drought analyses. For CJ, uncertainty from 563 

hydrological model calibration was relatively low in future runoff projections but increased in 564 

the hydrological drought analysis. These findings confirm the necessity to separately analyze 565 

and consider uncertainties in future runoff projection and hydrological drought analysis. 566 

 567 

4. Discussion 568 

This study quantified the cascade of uncertainties caused by various factors in the process of 569 

projecting future runoff and analyzing future hydrological drought. Previous studies 570 

(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and 571 

SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The 572 

results of this study also identified GCMs as the major contributor to uncertainty in future 573 

hydrological analysis. However, recent research has begun to identify and quantify the 574 

cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen et al., 575 

2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration of 576 

hydrological models, which are essential for future water resource management. 577 

There have been limited studies that consider the uncertainties in runoff projection due to 578 

various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided 579 

the observation data used in the calibration period of hydrological model parameters by the 580 

amount of data and hydrological conditions to quantify the uncertainties more precisely. The 581 

results showed that hydrological conditions had a greater impact than the amount of 582 

calibration data period on the uncertainties in the calibration of hydrological model 583 

parameters. 584 

This study went beyond merely projecting future runoff by also quantifying the cascade of 585 

uncertainties in the analysis of future hydrological drought using this runoff projection. Many 586 

studies on future drought prediction reported that hydrological drought becomes more 587 

complex and uncertain due to its association with human activities and the use of future 588 
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climate data and hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). Most existing 589 

studies on future hydrological drought analysis focused on the severity and frequency of 590 

droughts. However, this study quantified the cascade of uncertainties that arise in the process 591 

of future drought analysis. Although the contribution of hydrological model uncertainty to 592 

future hydrological drought may be lower compared to future runoff projections, the 593 

characteristics of uncertainty differ between drought and runoff projections, clearly indicating 594 

the necessity to separately analyze and consider these uncertainties in future hydrological 595 

analyses. 596 

 597 

5. Conclusion 598 

This study aimed to quantify the uncertainties in future runoff projections and hydrological 599 

drought analysis, considering various climate change scenarios and hydrological model 600 

calibrations. The SWAT model was used, and hydrological conditions were classified using 601 

the SDI. Additionally, 20 GCMs and three SSP scenarios were applied. The calibration data 602 

length ranged from 1 to 20 years, considering different hydrological conditions (Dry, Normal, 603 

Wet). 604 

The main findings are as follows: 605 

First, the validation performance of the calibrated hydrological model parameters depended 606 

significantly on the hydrological conditions of the calibration data. The hydrological model 607 

parameters calibrated with dry period data showed 11.4% higher performance under dry 608 

conditions and 6.1% higher performance under normal conditions. 609 

Second, the contribution of hydrological model uncertainty to future runoff projections 610 

ranged from 3.9% to 9.8%, with this uncertainty being more pronounced during low runoff 611 

periods. ANOVA results clearly indicated that GCMs contributed the most uncertainty, 612 

consistently accounting for over 60% on average, highlighting GCMs as the dominant source. 613 

In contrast, the contributions of SSP scenarios and hydrological model parameters were 614 

relatively smaller. 615 

Third, the contribution of hydrological model uncertainty in future hydrological drought 616 

analysis was on average 2.7%, lower than that observed for future runoff projections. The 617 

uncertainty contributions varied by basin, showing different patterns from runoff projections, 618 
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thus confirming the necessity for separate analyses of future runoff and hydrological drought 619 

uncertainties. 620 

The significance of this study lies in emphasizing the quantification of uncertainty from 621 

various sources, including hydrological conditions and calibration data length, in addition to 622 

climate model scenarios. The systematic approach using ANOVA provided insights into the 623 

dominant sources and interactions of uncertainties, offering important guidance for 624 

improving hydrological modeling practices and water resources planning under future climate 625 

scenarios. However, there remains a need to apply this methodology to other regions to 626 

generalize these findings further. 627 
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 842 

Figure. 1. Description of study area. 843 
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Figure. 2. KGE values before and after calibration 846 
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Figure. 3. Validation performances depending on data length of the calibration period 849 
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Figure. 4. KGEs classified by hydrological conditions for the calibration-validation period 852 
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 855 

Figure. 5. Projected annual changes in future precipitation (mm) and temperature (ºC) 856 
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Figure. 6. Contribution of hydrological model parameter to uncertainty in future runoff 859 

projection using ANOVA 860 
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 863 

Figure. 7. Contribution of hydrological model parameter to uncertainty in future 864 

hydrological drought analysis 865 
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 867 

Table 1. Validation performance according to hydrological conditions 868 

Basins 

Validation 

climatic 

conditions 

Calibration period hydrological conditions 

D N W 

AD 

D 0.480 0.401 0.382 

N 0.573 0.562 0.510 

W 0.571 0.621 0.642 

CJ 

D 0.743 0.727 0.725 

N 0.643 0.621 0.615 

W 0.674 0.686 0.706 

HC 

D 0.732 0.691 0.670 

N 0.738 0.719 0.714 

W 0.763 0.757 0.769 

SJ 

D 0.557 0.544 0.515 

N 0.677 0.671 0.650 

W 0.674 0.681 0.684 

 869 
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Table 2. Changes from historical to future runoff for four dam basins 871 

(unit: %) 872 

Basins SSPs 
NF DF 

Spring Summer Fall Winter Spring Summer Fall Winter 

AD 

SSP2-4.5 82.1 -9.9 10.8 178.3 92.6 -5.3 18.1 179.2 

SS3-7.0 84.3 -11.1 6.7 168.3 104.3 -6.3 16.4 188.9 

SSP5-8.5 91.0 -5.7 12.9 194.2 118.9 1.2 26.7 216.1 

CJ 

SSP2-4.5 184.6 25.1 34.7 242.8 191.7 32.4 47.3 252.7 

SS3-7.0 186.6 21.0 32.8 226.7 210.2 27.6 44.7 276.5 

SSP5-8.5 148.8 8.0 0.8 173.1 157.2 14.0 13.1 192.0 

HC 

SSP2-4.5 207.6 2.7 -19.7 95.4 222.7 8.1 -12.3 100.8 

SS3-7.0 213.7 -1.3 -22.5 91.2 243.4 6.8 -12.7 109.0 

SSP5-8.5 223.2 5.7 -15.2 110.0 268.8 14.8 -3.3 127.4 

SJ 

SSP2-4.5 170.9 1.5 7.7 60.5 181.4 5.9 18.4 63.3 

SS3-7.0 175.1 -2.1 7.3 58.6 198.9 5.6 17.9 75.6 

SSP5-8.5 181.1 5.5 12.9 75.1 217.2 14.0 29.7 88.6 

 873 
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Table 3. Differences in low runoff according to hydrological model parameters 875 

(unit: m³/s) 876 

Basins SSPs 
NF DF 

Q75 Differ Ratio (%) Q75 Differ Ratio (%) 

AD 

SSP2-4.5 7.24 10.28 7.00 10.42 

SSP3-7.0 7.04 9.58 7.71 9.56 

SSP5-8.5 7.43 9.32 7.88 9.94 

CJ 

SSP2-4.5 48.93 5.60 49.00 5.35 

SSP3-7.0 48.80 4.60 52.35 5.53 

SSP5-8.5 39.02 5.70 38.09 6.11 

HC 

SSP2-4.5 5.84 12.67 5.86 13.93 

SSP3-7.0 5.55 13.86 5.95 12.86 

SSP5-8.5 6.03 12.86 6.44 14.62 

SJ 

SSP2-4.5 4.61 9.84 4.51 9.61 

SSP3-7.0 4.23 11.24 4.64 9.76 

SSP5-8.5 4.64 9.37 4.97 9.12 
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Table 4. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 879 

monthly runoff during the NF period 880 

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 3/4 2/4 2/4 2/4 2/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 1/4 1/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 1/4 2/4 1/4 0/4 1/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

881 
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Table 5. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 882 

monthly runoff during the DF period 883 

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 
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Table 6. Differences in the number of drought events according to hydrological conditions 885 

(unit: occurrences) 886 

SSPs 
Basin AD CJ 

Duration 3 6 12 3 6 12 

245 
NF 5.65 1.65 0.10 1.60 0.55 0.15 

DF 4.80 0.90 0.30 1.65 0.85 0.45 

370 
NF 6.25 1.65 0.45 1.60 0.20 0.55 

DF 4.35 0.90 0.25 1.85 0.55 0.30 

585 
NF 3.95 1.65 0.25 2.35 0.50 0.40 

DF 4.55 0.90 0.20 1.75 0.65 0.60 

SSPs 
Basin HC SJ 

Duration 3 6 12 3 6 12 

245 
NF 0.40 0.25 0.10 1.45 0.60 0.15 

DF 0.45 1.25 0.85 2.00 0.30 0.10 

370 
NF 0.50 0.45 0.45 1.45 0.85 0.25 

DF 0.15 0.40 0.30 1.95 0.10 0.10 

585 
NF 0.55 0.20 0.15 2.50 0.30 0.35 

DF 0.45 0.30 0.50 1.65 0.35 0.30 
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Table 7. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 889 

hydrological drought 890 

Factor 2040s 2050s 2060s 2070s 2080s 2090s 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 
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Table 8. Uncertainty contribution in future hydrological drought analysis from hydrological 892 

model calibration 893 

(unit: %) 894 

Basins NF DF 

AD 1.89 1.64 

CJ 4.06 3.58 

HC 5.56 5.27 

SJ 0.26 0.26 
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