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Abstract 13 

 Hydrological analysis utilizing a hydrological model requires a parameter calibration process, 14 

which is largely influenced by the length of calibration data period and prevailing hydrological 15 

conditions. This study aimed to quantify these uncertainties in future runoff projection and 16 

hydrological drought based on future climate data and the calibration data of the hydrological 17 

model. Future climate data were sourced from three Shared Socioeconomic Pathway (SSP) 18 

scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) of 20 general circulation models (GCMs). The 19 

Soil and Water Assessment Tool (SWAT) was employed as the hydrological model, and 20 

hydrological conditions were determined using the Streamflow Drought Index (SDI), with 21 

calibration data lengths ranging from 1 to 20 years considered. Subsequently, the uncertainty 22 

was quantified using Analysis of Variance (ANOVA). After calibrating SWAT parameters, the 23 

validation performance was found to be influenced by the hydrological conditions of the 24 

calibration data. Hydrological model parameters calibrated using a dry period simulated runoff 25 

with 11.4% higher performance in dry conditions and 6.1% higher performance in normal 26 

conditions, while hydrological model parameters calibrated using a wet period simulated runoff 27 

with 5.1% higher performance in wet conditions. While the ANOVA results confirmed that 28 

GCMs are the dominant source of total uncertainty, the uncertainty contribution from the 29 

hydrological model calibration in estimating future runoff was analyzed to be 3.9~9.8%, 30 

particularly significant in the low runoff period. The uncertainty contribution in future 31 

hydrological drought analysis resulting from the calibration of hydrological model parameters 32 

was analyzed to be 2.7% on average, which is lower than that of future runoff projection. 33 

 34 
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1. Introduction 36 

In the current global climate scenarios, characterized by significant warming trends, there are 37 

increased challenges in understanding and managing water systems (IPCC, 2014; IPCC, 2021). 38 

Water availability for runoff is directly influenced by precipitation, while temperature affects 39 

water availability through its effect on evapotranspiration rates (Mahabadi and Delavar, 2024). 40 

These climatic changes significantly affect the availability of water resources and increase the 41 

occurrence and severity of hydrological extreme events such as floods and droughts in different 42 

regions (Milly et al., 2008; Santos et al., 2021; Song and Chung, 2025). Hydrological projection 43 

is crucial for sustainable water resource planning and management (Peng et al., 2022; Yang et 44 

al., 2023; Yang et al., 2024). Consequently, quantifying the uncertainty in hydrological 45 

projection is essential as it directly affects the effectiveness of these management strategies and 46 

decision-making processes in ensuring the reliability and safety of water resources (Zhang et 47 

al., 2024). 48 

Droughts, which could become more severe due to climate change, begin with a lack of 49 

precipitation and lead to a decrease in streamflow and soil moisture deficiency, encompassing 50 

a complex hydrological cycle that adversely affects plant and crop growth and human life. 51 

Generally, droughts progress over time into meteorological, agricultural, hydrological, and 52 

socio-economic droughts, and become a fatal disaster if prolonged (Sheffield and Wood, 2012). 53 

Consequently, future droughts due to climate change has been actively conducted, with most 54 

studies concluding that droughts are becoming more frequent and severe (Sung et al., 2018; 55 

Kim et al., 2021). 56 

Hydrological drought requires an understanding of the hydrological cycle, including runoff, 57 

surface water, and groundwater. Runoff, a key indicator of hydrological drought, significantly 58 

affects the availability of water for agricultural, industrial, and domestic uses (Ghasemizade 59 

and Schirmer, 2013; Devia et al., 2015). Therefore, understanding and predicting runoff 60 

behavior is essential for hydrological drought analysis in water resource management and 61 

planning. While runoff data can be obtained from river observations within the region, there 62 

are limitations in observation technology and coverage. Consequently, simulated runoff data 63 

using regional meteorological data and hydrological models are utilized. Hydrological models 64 

simulate runoff by inputting meteorological data, soil data, and topographical data, allowing 65 

for the prediction of future hydrological cycles. However, these hydrological models are 66 

influenced by various factors, including the quality and quantity of input data, structural 67 

uncertainties of the models, and uncertainties in the calibration process (Xu et al., 2007; Renard 68 
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et al., 2010). Therefore, quantifying and recognizing these uncertainties is crucial to enhancing 69 

the reliability of future hydrological analysis (Feng et al., 2019). 70 

The future hydrological analysis considering uncertainty is essential for effective water 71 

management. These projections are largely based on General Circulation Models (GCMs) and 72 

hydrological models, which are critical tools for modelling the hydrological impacts of climate 73 

change. However, GCMs introduce significant uncertainty in future runoff prediction due to 74 

their inherent structural complexity and variability in scenario-based inputs (Broderick et al., 75 

2016). This uncertainty has a direct impact on the accuracy of runoff predictions and poses a 76 

significant challenge to water resource management. The selection and use of GCMs have a 77 

crucial role in shaping these uncertainties, making the consideration of a variety of GCMs and 78 

shared socioeconomic pathways (SSP) scenarios essential for managing uncertainties and 79 

improving projections (Vetter et al., 2015; Chae et al., 2024a). Indeed, Shi et al. (2022) had 80 

shown how different evapotranspiration models embedded in GCMs affect runoff prediction, 81 

highlighting GCMs and Representative Concentration Pathways (RCPs) as major factors 82 

affecting uncertainty. Similarly, Lee et al. (2021a) had shown how the choice of GCMs 83 

significantly affects prediction of water storage in wetlands under future climate scenarios. To 84 

understand these uncertainties, Wang et al. (2020) suggested the use of a broad ensemble of at 85 

least 10 GCMs, which allowed for a more comprehensive assessment of hydrological impacts 86 

and helped to reduce the inherent uncertainties associated with climate change. Thus, the use 87 

of a wide range of GCMs is an essential strategy for maximizing the effectiveness of water 88 

resource management under global climate change conditions. 89 

The hydrological model calibration involves significant uncertainty, especially when 90 

predicting future conditions. This process, crucial for aligning model parameters with historical 91 

data, often incorrectly assumes that parameters validated under past hydrological conditions 92 

will remain valid in the future. Thirel et al. (2015) and Fowler et al. (2016) demonstrated that 93 

models calibrated with historical climate data might not perform accurately under changed 94 

conditions, leading to substantial uncertainties in runoff projections. This challenge is 95 

exacerbated by the dependency of model parameters on the hydrological conditions prevalent 96 

during the calibration period (Merz et al., 2011; Coron et al., 2012). Effective calibration 97 

strategies, therefore, must consider variable climate scenarios to ensure model robustness. This 98 

involves rigorous calibration under diverse conditions to validate hydrological models' 99 

reliability in projecting future water resource availability (Saft et al., 2016; Dakhlaoui et al., 100 

2017). Furthermore, the interaction between model parameters and hydrological conditions 101 
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during these periods often complicates the calibration process, underscoring the need for robust 102 

validation techniques. The duration of the calibration period also contributes significantly to 103 

the uncertainty in runoff projection. Razavi and Tolson (2013) and Arsenault et al. (2018) 104 

highlighted the importance of sufficiently long calibration periods to ensure meaningful 105 

calibration and validation results. In addition, Kim et al. (2011) cautioned against using overly 106 

short calibration periods, as this can lead to large and unstable model performance variability 107 

during calibration and validation. Despite the emphasis on longer calibration periods, Perrin et 108 

al. (2007), Sun et al. (2017), Yu et al. (2023), and Ziarh et al. (2024) had found that an extended 109 

calibration data length does not guarantee improved model performance, suggesting a nuanced 110 

approach to calibration period selection. These insights underlined the complex interplay 111 

among calibration length, model parameter selection, and climatic variability in shaping the 112 

reliability of hydrological models. 113 

The rigorous quantification of uncertainties in hydrological modeling is essential to enhance 114 

the reliability of water resources planning and management. This study employs Analysis of 115 

Variance (ANOVA), a statistical method widely used in hydrological studies, to systematically 116 

quantify uncertainties in hydrological projections. ANOVA dissects the variance observed in 117 

projections into contributions from various sources of uncertainty, such as GCM outputs, SSP 118 

scenarios, and hydrological model parameters (Qi et al., 2016; Chae et al., 2024b; Chae et al., 119 

2025). By identifying the dominant sources of variability and analyzing their interactions, 120 

ANOVA provides a clear understanding of how different factors drive uncertainties in 121 

hydrological projections. Recent applications of ANOVA in future hydrological studies 122 

demonstrated its effectiveness in understanding model-driven uncertainties (Chen et al., 2022; 123 

Yuan et al., 2022; Mo et al., 2024). 124 

This study focuses on the uncertainty in future hydrological analyses, which are influenced by 125 

hydrological model parameters during different calibration periods under future climate data 126 

and different hydrological conditions. This research utilizes the Soil and Water Assessment 127 

Tool (SWAT), a widely recognized hydrological model, to analyze the impact of hydrological 128 

conditions during the calibration period on the projection of future runoff and hydrological 129 

drought. Three SSP scenarios and 20 GCMs were used to consider uncertainty due to future 130 

climate, and different hydrological conditions according to the Streamflow Drought Index (SDI) 131 

and different calibration period data lengths from 1 to 20 years were used to consider 132 

uncertainty in hydrological model parameter calibration. This study aims to contribute to the 133 
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refinement of hydrological modelling practices by quantifying the uncertainties associated with 134 

future runoff projection and hydrological drought analysis. 135 

This manuscript is structured as follows. In Section 2, the study area, datasets, and the 136 

methodologies used in this study are described, including SWAT, the ANOVA framework, and 137 

the statistical validation procedures. In Section 3, the results of the analysis are presented, 138 

showing the effects of calibration conditions on model performance and quantifying the 139 

uncertainty contributions from various sources for both future runoff and hydrological drought. 140 

In Section 4, the implications of these findings are discussed in the context of previous research. 141 

Finally, Section 5 summarizes the main conclusions of this study. 142 

 143 

2. Methodology 144 

2.1 Procedure 145 

The procedure of the study is as follows. The overall workflow, illustrating the main phases of 146 

data processing, model setup, and analysis, is visualized in Fig. 1. First, topographic data for 147 

four dam basins in South Korea were established, taking into account the overall hydrological 148 

characteristics of the region, and observed dam inflow data were utilized to consider the length 149 

and hydrological conditions of the hydrological model calibration data. The length of the 150 

calibration data considered ranged from 1 to 20 years, and hydrological conditions were 151 

categorized using the Streamflow Drought Index (SDI). Subsequently, validation performance 152 

analysis was conducted, with calculations varying according to the length of calibration data 153 

and hydrological conditions (Dry, Normal, and Wet). For the study, future climate data from 154 

20 Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs and three SSP scenarios 155 

(SSP2-4.5, SSP3-7.0, and SSP5-8.5) were bias-corrected. Future runoff projection and 156 

hydrological drought were then analyzed using calibrated hydrological model parameters under 157 

different conditions along with the future climate data. Finally, the uncertainties in the future 158 

hydrological analysis were quantified using the Analysis of Variance (ANOVA). 159 

 160 

2.2 Study area and datasets 161 

The study areas selected in this study are the Andong (AD), Chungju (CJ), Habcheon (HCH), 162 

and Seomjingang (SJ) dam basins located in Korea as shown in Fig. 2. To achieve stable 163 
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calibration and validation results for a hydrological model, it is imperative to choose 164 

catchments with extensive hydrological data records. This enables the accurate estimation of 165 

appropriate calibration data lengths through various testing periods of the hydrological model. 166 

Furthermore, incorporating a variety of basins is crucial to ensure that the findings of this study 167 

are not biased by specific hydrological conditions. These four basins, which have the longest 168 

hydrological records in Korea, are situated in major river basins. Detailed basin characteristics 169 

are provided in Table S1. While all four basins are located in temperate climate zones and are 170 

predominantly forested (Forest ratio > 75%, except for CJ at 61.7%), they represent a diverse 171 

range of hydrological and climatic conditions. While all four basins are located in temperate 172 

climate zones and are predominantly forested (Forest ratio > 75%, except for CJ at 61.7%), 173 

they represent a diverse range of hydrological and climatic conditions. Area varies significantly 174 

from 763 km² (SJ) to 6,648 km² (CJ). Mean annual precipitation also ranges from 1,045.7 mm 175 

(AD) to 1,329.8 mm (SJ). These regions are devoid of artificial structures (Urban ratio < 5.3% 176 

for all basins), ensuring that runoff remains natural and unaltered. Located in different regions 177 

of Korea, these basins have a range of hydrological conditions and runoff characteristics, 178 

providing a representative cross-section of the country's hydrological characteristics. 179 

 180 

2.3 Soil and water assessment tool (SWAT) 181 

SWAT was used to calibrate hydrological processes in our study basin. SWAT is particularly 182 

adept at simulating runoff and other hydrological variables under a wide range of 183 

environmental conditions and is a robust, physically based, semi-distributed model. Its 184 

efficiency in modelling hydrological cycles within basins relies on simple input variables to 185 

produce detailed hydrological outputs. The capability of this model has been effectively shown 186 

in various studies, including those in South Korea (Kim et al., 2022; Song et al., 2022). 187 

The core of SWAT is the water balance equation, which integrates daily weather data with land 188 

surface parameters to calculate water storage changes over time: 189 

 190 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡
𝑖=0    (1) 191 

 192 
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where 𝑆𝑊0 is the initial soil moisture content (mm), 𝑆𝑊𝑡 is the total soil moisture per day 193 

(mm), 𝑅𝑑𝑎𝑦 is precipitation (mm), 𝑄𝑠𝑢𝑟𝑓 is surface runoff (mm), 𝐸𝑎 is evapotranspiration 194 

(mm), 𝑊𝑠𝑒𝑒𝑑 is penetration, 𝑄𝑔𝑤 is groundwater runoff (mm), and 𝑡 is time (day). 195 

For rainfall-runoff analysis, SWAT is structured into several sub-basins, each of which is 196 

further subdivided into Hydrologic Response Units (HRUs) based on different soil types, land 197 

use and topography. Each HRU independently simulates parts of the hydrological cycle, 198 

allowing a granular analysis of basin hydrology. This setup reflects the spatial heterogeneity 199 

within the basin and allows continuous simulation of hydrological processes over long time 200 

periods, enhancing the utility of the model for climate change studies. The model was 201 

calibrated and validated using R-SWAT for parameter optimization. R-SWAT incorporates the 202 

SUFI-2 algorithm, which is known for its rapid execution and precision in parameter 203 

optimization, ensuring accurate and reliable simulation results (Nguyen et al., 2022). In this 204 

study, the setup and evaluation of SWAT for the historical period were performed using 205 

observed data. The model was forced with observed meteorological data, and the parameters 206 

were calibrated and validated against historical daily dam inflow records for the period 1980-207 

2023. 208 

 209 

2.4 Streamflow drought index (SDI) 210 

The drought index was used to classify hydrological conditions considering the calibration 211 

effect of periods with different hydrological conditions. SDI is a commonly used method for 212 

quantifying the severity and duration of drought conditions in a river basin. It is based on the 213 

comparison of observed streamflow with a historical reference period, usually the average 214 

streamflow over a long-term period. SDI which is a hydrological drought index, is calculated 215 

as Eq. 2. (Nalbantis and Tsakiris, 2009). 216 

 217 

𝑆𝐷𝐼𝑖,𝑘 =
𝑉𝑖,𝑘−𝑉̅𝑘

𝑆𝑘
      (2) 218 

 219 

where 𝑉𝑖,𝑘 is the runoff accumulated during the 𝑘th period in the 𝑖th year, and 𝑉̅𝑘 and 𝑆𝑘 220 

represent the average and standard deviation of the accumulated river flow, respectively.  221 
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The critical level is mainly the average 𝑉̅𝑘. In small scale rivers, the runoff rate approximates 222 

the Log-normal distribution type and the probability distribution type is distorted. Therefore, 223 

the runoff rate must be converted to fit the normal distribution. When converting to a two-224 

variable log-normal distribution type, SDI is finally equal to Eq, 3, and 𝑦𝑖,𝑘 is a value obtained 225 

by taking the natural logarithm of the amount of river water, such as Eq. 4. 226 

 227 

𝑆𝐷𝐼𝑖,𝑘 =
𝑦𝑖,𝑘−𝑦̅𝑘

𝑆𝑦,𝑘
, 𝑖 = 1,2,⋯ , 𝑘 = 1,2,3,4     (3) 228 

 229 

𝑦𝑖,𝑘 = ln(𝑉𝑖,𝑘) , 𝐼 = 1,2,⋯ , 𝐾 = 1,2,3,4     (4) 230 

 231 

To classify the hydrological conditions, this study categorized -0.5 and below as Dry, 0.5 and 232 

above as Wet, and -0.5 to 0.5 as Normal (Nalbantis and Tsakiris, 2009; Hong et al., 2015). 233 

 234 

2.5 General Circulation Models (GCMs) 235 

In this study, M1 to M20 GCMs from the CMIP6 suite that have been consistently used in 236 

studies for East Asia and Korea were selected for future runoff projection and hydrological 237 

drought analysis. The details of the development institutions, model names and resolutions of 238 

these 20 GCMs were presented in Table S2. 239 

The climate data from the GCMs were evaluated using daily observed climate data provided 240 

by the Korea Meteorological Administration (KMA). The evaluation used observed data from 241 

the past period (1985-2014) to evaluate the future climate data from the GCMs, which were 242 

analyzed for two future periods: the near future (NF) and the distance future (DF). The future 243 

climate change scenarios used were SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are 244 

divided into five pathways based on radiative forcing, reflecting different levels of future 245 

mitigation and adaptation efforts (O’Neill et al., 2016). The SSPs are numbered from SSP1 to 246 

SSP5, with SSP1 representing a sustainable green pathway and SSP5 representing fossil fuel 247 

driven development. The numbers 4.5 to 8.5 indicate the level of radiative forcing (4.5: 4.5 W 248 

m-2, 7.0: 7.0 W m-2 and 8.5: 8.5 W m-2). For the analysis of future changes, the calibrated 249 

SWAT was then driven by bias-corrected future climate projection data from the 20 GCMs 250 
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under the three SSP scenarios. This approach ensures that the model's baseline performance is 251 

grounded in observational data, while the future analysis specifically assesses the uncertainties 252 

propagated from the climate projections and hydrological modeling choices. 253 

 254 

2.6 Bias correction using quantile mapping 255 

The GCMs data outputs in a gridded format with a fixed resolution, requiring the use of spatial 256 

interpolation methods. In this study, the inverse distance weighting (IDW) method was 257 

employed to spatially interpolate the GCM data based on the locations of the Korea 258 

Meteorological stations. Subsequently, to align the GCM data with the actual observational 259 

data, the quantile mapping method was utilized. This method adjusts the GCM data based on 260 

the quantile relationship between the cumulative distribution functions (cdf) of the GCM data 261 

and the observed data (Gudmundsson et al., 2012). The quantile mapping method is described 262 

by Eq (5). 263 

 264 

𝑃𝑜 = 𝐹𝑜
−1(𝐹𝑚(𝑃𝑚))       (5) 265 

 266 

where, 𝑃𝑜 and 𝑃𝑚 represent observed and simulated climate variables, 𝐹𝑚 is the CDF of 𝑃𝑚 267 

and 𝐹𝑜
−1 is the inverse CDF corresponding to 𝑃𝑜. 268 

The quantile relationship can be also derived directly using parametric transformations. In this 269 

study, the linear method of parametric transformation was adopted as Eq. (6). 270 

 271 

𝑃̂ = 𝑎 + 𝑏𝑃𝑚       (6) 272 

 273 

where, 𝑃̂ represents the best estimate of 𝑃𝑜 and a and b are free parameters that are subject 274 

to calibration. 275 

 276 

2.7 Quantifying uncertainty 277 
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The ANOVA used in this study is an effective statistical method that decomposes the total sum 278 

of squares (SST) into contributions from different sources and their interactions. This method 279 

would be particularly useful in the study framework, as it allows us to assess not only the 280 

individual effects of each source of uncertainty but also the combined effects of these sources 281 

interacting with each other (Bosshard et al., 2013; Lee et al., 2021a). 282 

For this analysis, the primary sources of uncertainty considered are General Circulation Models 283 

(GCMs), Shared Socioeconomic Pathway (SSP) scenarios, hydrological conditions (HC) 284 

during the calibration period, and period length (PL). Each of these sources could have a 285 

significant impact on the projections of hydrological models; therefore, their comprehensive 286 

evaluation is crucial (Morim et al., 2019; Yip et al., 2011). Higher-order interactions (e.g., 287 

three-way) were excluded as they are often difficult to interpret physically and can introduce 288 

noise into the model. 289 

 290 

𝑆𝑆𝑇 = 𝑆𝑆𝐺𝐶𝑀𝑠 + 𝑆𝑆𝑆𝑆𝑃𝑠 + 𝑆𝑆𝐻𝐶 + 𝑆𝑆𝑃𝐿 + 𝑆𝑆𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠(2−𝑤𝑎𝑦) + 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠       (7) 291 

 292 

where each term (𝑆𝑆) indicates the sum of squares attributed to each factor or interaction. 293 

Here,𝑆𝑆𝐺𝐶𝑀𝑠, 𝑆𝑆𝑆𝑆𝑃𝑠, 𝑆𝑆𝐻𝐶, and 𝑆𝑆𝑃𝐿 represent the sum of squares due to GCMs, SSPs, HC, 294 

and PL, respectively, known as the main effects. The remaining terms represent the sum of 295 

squares due to the interactions among GCMs, SSPs, hydrological conditions, period length, 296 

their two-way interactions, and the residual error. 297 

The model setup for ANOVA was designed to analyze the set of projections. As detailed in the 298 

flowchart (Fig. 1), this set was generated by combining 60 climate data (20 GCMs × 3 SSPs) 299 

with 60 distinct hydrological model parameterization (3 HC × 20 PL). This resulted in a total 300 

of 3,600 combinations for each basin analyzed. Initially, the SST, representing the total 301 

variation within the data, was calculated. Subsequently, the sum of squares attributable to each 302 

source of uncertainty was computed. To quantify the relative impact of each source, its 303 

contribution was calculated as the proportion of its Sum of Squares relative to the Total Sum 304 

of Squares. This provides a clear measure of the percentage of total uncertainty explained by 305 

each factor and interaction. 306 
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The statistical robustness and validity of the ANOVA models were rigorously evaluated. First, 307 

the overall goodness-of-fit for each model was assessed using the Adjusted R-squared (𝑅𝑎𝑑𝑗
2 ), 308 

defined as Eq. (8). 309 

 310 

𝑅𝑎𝑑𝑗
2 = 1 −

(1−𝑅2)(𝑛−1)

𝑛−𝑘−1
      (8) 311 

 312 

Where, 𝑅2 is the coefficient of determination, 𝑛 is the number of observations, and 𝑘 is the 313 

number of predictions. This metric is preferred over the Standard R-squared as it adjusts for 314 

the number of predictors in the model, providing a more accurate measure of model fit. 315 

Second, a residual analysis was conducted to verify that the core assumptions of ANOVA were 316 

met. The normality of residuals was a primary focus of this validation, examined both 317 

statistically with the Shapiro-Wilk test and visually using Quantile-Quantile (Q-Q) plots. The 318 

Shapiro-Wilk test evaluates the null hypothesis that the residuals are normally distributed. 319 

However, given the large sample size in this study, which can lead to statistically significant 320 

results even for minor deviations from normality, greater emphasis was placed on the visual 321 

inspection of Q-Q plots to assess practical adherence to the normality assumption. The 322 

assumption of homoscedasticity (constant variance of residuals) was also inspected using 323 

Residuals vs. Fitted values plots. These validation steps ensure that the results of the 324 

uncertainty partitioning are statistically sound and reliable. All statistical analyses were 325 

performed using the R software environment. 326 

 327 

3. Results 328 

3.1 Determining the hydrological conditions 329 

The calculated SDI was shown in Fig. S. 1. The SDI values of AD and HCH in the Nakdong 330 

River basin showed drought conditions similar to the actual events that occurred in 1994-1995, 331 

2009, 2014-2015, 2016, 2017 and 2022 (Karunakalage et al., 2024). Similarly, SDI values of 332 

CJ in the Han River basin accurately reflected the actual drought events of 2014-2015 and 2017 333 

(Lee et al., 2021b). Finally, those of SJ in the Seomjin River basin also represented the drought 334 

events of 1995, 2005-2006 and 2018-2019, demonstrating that the SDI was accurately 335 
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calculated. Therefore, this study using the observed inflow data of the four basins could reflect 336 

the hydrological drought characteristics of the historical periods in South Korea. 337 

 338 

3.2 SWAT parameter calibration 339 

The simulated runoff data were analyzed for performance using the Kling-Gupta Efficiency 340 

(KGE; Gupta et al., 2009). KGE was developed to overcome some limitations of the commonly 341 

used Nash-Sutcliffe Efficiency (NSE) in performance analysis (Gupta et al., 2009). The 342 

attributes of KGE include focusing on a few basic required properties of any model simulation: 343 

(i) bias in the mean, (ii) bias in the variability, and (iii) cross-correlation with the observational 344 

data (measuring differences in hydrograph shape and timing). The parameter optimization of 345 

SWAT was performed using 20 different data lengths, from 1 to 20 years. The specific for 346 

these calibration periods, illustrating which historical years correspond to each length, is 347 

schematically shown in Fig. S. 2. A rigorous validation scheme was adopted to prevent bias 348 

from specific period characteristics and to ensure a robust evaluation of predictive performance. 349 

For any given calibration period, the validation was not performed on the entire remaining 350 

period as a single dataset. Instead, we conducted a year-by-year validation, calculating a 351 

separate KGE value for each individual year not included in the calibration set. For instance, if 352 

a model was calibrated on years 1-5 from a 20-year record, 15 distinct single-year KGE values 353 

were calculated for years 6 through 20. This approach strictly separates calibration and 354 

validation datasets and ensures that model performance is assessed across a diverse range of 355 

annual hydrological conditions, providing a robust foundation for the subsequent uncertainty 356 

analysis. 357 

Following parameter optimization, KGE values as shown in Fig. 3 were found to be suitable 358 

for conducting the study, with all four dam basins achieving values above 0.60. The 359 

performance improvements are as follows: AD’s KGE increased from 0.55 before calibration 360 

to 0.64 after calibration, CJ’s from 0.68 to 0.75, HCH’s from 0.70 to 0.80, and SJ’s from 0.50 361 

to 0.73. This improvement in KGE after calibration underscores the robustness of the 362 

hydrological models used and their enhanced capability in projecting future runoff. 363 

 364 

3.3 Effect of varying data length 365 

The validation performance according to the calibration data length was shown in Fig. 4. The 366 

impact of calibration data length on validation performance was analyzed, revealing a departure 367 
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from previous studies, which suggested that longer calibration data lengths lead to more 368 

effective optimization of hydrological model parameters. Instead, the influence of calibration 369 

data length on performance is all different by basin. For AD, the best performance was 370 

observed with a 2-year period, averaging a KGE of 0.66, while the 1-year period resulted in 371 

the lowest performance with an average KGE of 0.48. The Inter Quartile Range (IQR) showed 372 

that variations were smaller for periods longer than 10 years (average IQR of 0.15) compared 373 

to those less than 10 years (average IQR of 0.20). For CJ, the optimal performance was at a 15-374 

year period with an average KGE of 0.72, and the lowest at a 4-year period with an average 375 

KGE of 0.58. The IQR values were 0.19 for periods under 10 years and 0.20 for periods over 376 

10 years, indicating minor differences due to length. For HCH, the highest KGE of 0.77 was 377 

recorded at 19 years, and the lowest KGE of 0.66 at 1 year. The IQR for periods under 10 years 378 

was 0.19, and 0.10 for those over 10 years, showing that longer periods yielded less variability. 379 

In the case of SJ, a 9-year period had a KGE of 0.68, and a 20-year period had a KGE of 0.60, 380 

with IQRs of 0.23 for periods under 10 years and 0.21 for those over. While the best validation 381 

performance due to calibration data length varied by basin, it was observed that the differences 382 

due to the period decrease as the length increases. 383 

 384 

3.4 Effect of varying hydrological conditions 385 

The performance analyses based on the hydrological conditions of the calibration and 386 

validation periods are shown in Fig. S. 3 and Table 1. Fig. S. 3 shows the KGE values and the 387 

confidence level (prediction) for each hydrological condition during the validation period 388 

according to the SDI values. Overall, during the dry and normal validation periods, it was 389 

analyzed that lower SDI values (dry condition) correlated with higher KGE values. This 390 

indicates that SWAT parameters calibrated with dry validation period data effectively simulate 391 

runoff under Dry and Normal hydrological conditions. For wet validation periods, higher SDI 392 

values (wet condition) correlate with higher KGE values, indicating that SWAT parameters 393 

calibrated with wet calibration period data accurately simulate runoff under wet conditions. 394 

As shown in Table 1, the average KGE according to hydrological conditions is as follows. The 395 

KGE values for each dam basin, according to the hydrological conditions of the calibration-396 

validation periods, are as follows: For AD, D-D (Dry-Dry; hydrological conditions for 397 

calibration and validation periods, respectively) was 0.480, higher than W-D (Wet-Dry) of 398 

0.382; D-N (Dry-Normal) was 0.573, higher than W-N (Wet-Normal) of 0.510; and W-W 399 
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(Wet-Wet) was 0.642, higher than D-W (Dry-Wet) of 0.571. For CJ, D-D was 0.743, higher 400 

than W-D at 0.725; D-N was 0.643, higher than W-N at 0.615; and W-W was 0.706, higher 401 

than D-W at 0.674. For HCH, D-D was 0.732, higher than W-D at 0.670; D-N was 0.738, 402 

higher than W-N at 0.714; and W-W was 0.769, higher than N-W (Normal-Wet) at 0.757. 403 

Lastly, for SJ, D-D was 0.557, higher than W-D at 0.515; D-N was 0.677, higher than W-N at 404 

0.650; and W-W was 0.684, higher than D-W at 0.674. 405 

The performance evaluation classified by data length and hydrological conditions for validation 406 

are influenced by hydrological conditions for calibration, but the optimal data length for the 407 

best performance varies between basins as shown in Fig. 5. These results confirm the 408 

importance of uncertainty in hydrological models due to differences in hydrological conditions 409 

during the calibration and validation periods, as suggested by previous studies (Bai et al., 2022; 410 

Fowler et al., 2016). Furthermore, the different data lengths with high validation performance 411 

for each basin confirm the opinion that shorter calibration data lengths can be applied under 412 

limited data conditions (Perrin et al., 2007; Yu et al., 2023), instead of the traditional opinion 413 

that longer calibration data lengths are better for hydrological modelling (Arsenault et al., 2018; 414 

Kim et al., 2011). 415 

 416 

3.5 Bias correction for GCMs 417 

In this study, climate data from GCMs were bias-corrected using observed climate data from 418 

KMA weather stations located within each dam basin. Fig. S. 4 describes the root mean square 419 

error (RMSE), Pearson coefficient and standard deviation (SD) in a Taylor diagram. After bias 420 

correction, all GCMs’ climate data showed improved performance. The Pearson coefficient of 421 

precipitation increased from 0.04 to 0.99 and the RMSE decreased from 4.43 to 0.05. Similarly, 422 

the Pearson coefficients of the daily maximum and minimum temperatures averaged 1.00 and 423 

their RMSEs averaged 0.08. This is an indication that the GCM’s climate data after bias 424 

correction were appropriate for use in this study. 425 

 426 

3.6 Projection of climate variable 427 

The future climate data from bias-corrected GCMs were depicted in Fig. 6 and Table S3. The 428 

future period was divided into NF and FF, and it was found that daily precipitation, maximum 429 

temperature, and minimum temperature all increased overall. Except for July and August, 430 

future precipitation generally increased, with significant rises particularly noted in April and 431 
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May. In NF, the largest increase occurred in May under SSP2-4.5 with 51.4 mm, while in DF, 432 

the largest increase occurred in April under SSP5-8.5 with 59.8 mm. The largest decrease in 433 

NF was calculated for July under SSP5-8.5, and in DF it was most significant under SSP3-7.0, 434 

indicating considerable uncertainties in the GCMs during July and August, the months of the 435 

highest precipitation. 436 

With regard to maximum temperatures, the analysis shows that there has been an increase in 437 

all months except April in NF, especially in fall (September-November). This increase was 438 

more pronounced in the DF than in the NF, with the largest increases observed under SSP5-439 

8.5. Similarly, the minimum temperature was found to have increased in the future compared 440 

to the past, following the same trend as the maximum temperature. 441 

 442 

3.7 Projection future runoff 443 

3.7.1 Annual runoff change 444 

The future runoff was projected using climate data and hydrological model parameters as 445 

shown in Fig. S. 5. Overall, future runoff is expected to increase relative to the historical data, 446 

with more significant increases projected during DF than NF As the SSPs change (e.g. from 447 

SSP2-4.5 and SSP3-7.0 to SSP5-8.5), not all annual runoff show a consistent increase with the 448 

scenario change, as shown in Table 2. In particular, the increase in annual runoff under SSP5-449 

8.5 was not always higher than SSP2-4.5 or SSP3-7.0. These differences were analyzed to vary 450 

significantly between different basins and GCMs. 451 

For AD, the future seasonal runoff is likely to increase in all seasons except summer. This 452 

increase would be more pronounced during DF than NF, with the largest increases occurring 453 

under SSP5-8.5. For CJ, the future runoff is expected to increase compared to the past in all 454 

seasons, with the highest increase observed in DF under SSP3-7.0 and the lowest increase 455 

under SSP5-8.5. For HCH, future runoff is expected to increase in all seasons except fall, with 456 

the greatest variability in fall under SSP3-7.0. For SJ, future runoff is projected to increase 457 

compared to the past in all scenarios except NF under SSP3-7.0. 458 

 459 

3.7.2 Differences in projected future runoff due to hydrological model parameters 460 
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The future runoff projections using many calibrated sets of hydrological model parameters 461 

were analyzed using the flow duration curve (FDC). In water resources planning and drought 462 

management, the differences in future runoff projections due to hydrological model parameters 463 

at low runoff are critical. These differences are shown in Fig. S. 6, and the differences in Q75 464 

for each basin and their proportions relative to the mean runoff are shown in Table 3. The basin 465 

with the largest differences due to hydrological conditions in the calibration period was 466 

analysed as HCH. HCH is a basin with relatively low precipitation and a small watershed area. 467 

CJ, the largest basin, was analysed to have a 5-6% difference in runoff by hydrological model 468 

parameters, which means that the effect of hydrological model calibration is larger in smaller 469 

basins. The overall trend shows larger variances in DF than NF, and these variances were more 470 

pronounced for SSP5-8.5 scenario than SSP2-4.5. This indicates the need to consider the 471 

variations caused by hydrological model parameters when managing water resources during 472 

both flood and drought periods. Table S4 details the top three GCMs that showed the most 473 

significant differences in runoff projections due to hydrological model parameters for each 474 

basin. Models, M5 and M6 were consistently identified as having the largest discrepancies in 475 

future runoff projections due to hydrological model parameters. 476 

 477 

3.8 Uncertainty contribution of future runoff projections 478 

3.8.1 Statistical significance of ANOVA results for future runoff projection 479 

Before assessing the significance of individual uncertainty sources, the statistical validity of 480 

the developed ANOVA models was confirmed. The goodness-of-fit for all monthly models 481 

across all four basins and both future periods (NF and DF) were exceptionally high, with 482 

Adjusted R-squared values consistently exceeding 0.99. This indicates that the selected factors 483 

and their two-way interactions explain more than 99% of the variance in the projected future 484 

runoff. Furthermore, a comprehensive residual analysis was conducted for each model. While 485 

statistical tests for normality, such as the Shapiro-Wilk test, are sensitive to large sample sizes, 486 

the visual inspection of Q-Q plots and Residuals vs. Fitted plots confirmed that the assumptions 487 

of normality and homoscedasticity were practically satisfied, ensuring the reliability of the 488 

subsequent significance testing (Fig. S. 7-8). 489 

The factors related to the hydrological model calibration, HC and PL, were also found to be 490 

statistically significant for the future runoff projections. Table 4-5 summarizes the frequency 491 

of statistical significance (p < 0.05) for each factor across the four study basins. The values 492 
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indicate the number of basins out of four where the factor was found to be significant. Although 493 

their influence was smaller than that of GCMs and SSPs, both HC and PL were significant (p 494 

< 0.05) in numerous months, particularly during the low-flow periods such as spring and winter. 495 

This result highlights that the calibration conditions should be considered an important source 496 

of uncertainty. 497 

Among the two-way interactions, the GCM:SSP interaction consistently showed the highest 498 

statistical significance (p < 0.001) across all months and basins, indicating that the effect of a 499 

GCM is strongly dependent on the chosen SSP scenario, and vice versa. Furthermore, 500 

interactions involving the calibration factors, such as GCM:HC and HC:PL, were also found 501 

to be statistically significant in various months. This finding is crucial as it demonstrates that 502 

the uncertainty stemming from hydrological model calibration does not act in isolation but 503 

interacts in a complex manner with future climate projections, thereby influencing the overall 504 

uncertainty of future runoff. 505 

 506 

3.8.2 Contribution of uncertainty using the ANOVA 507 

A comprehensive overview of the relative contributions from all factors to the uncertainties in 508 

future runoff projections for each basin is provided in Fig. S. 9. As confirmed in Fig. S. 9, the 509 

differences in future climate data from the GCMs were found to be the largest source of 510 

uncertainty, consistently contributing over 60%. This contribution is more significant during 511 

NF than DF, as discussed in Section 3.6. Fig. 6 specifically highlights the uncertainty 512 

contributions attributed to hydrological models. 513 

The uncertainty contributions from hydrological models were most significant during the 514 

spring (Mar-May) and winter (Dec-Feb) periods, as shown in Table S5. The results of the 515 

analysis for each basin were as follows: For AD, the hydrological model uncertainty was most 516 

significant in spring (NF: 7.54%, and DF: 5.86%), with a maximum of 9.76% in June for NF 517 

and 7.54% in April for DF. In CJ, the highest uncertainties were also found for NF in winter 518 

(3.9%) and for DF in spring (3.96%). HCH showed the highest uncertainty in winter (NF: 519 

6.09%, and DF: 5.5%), with a maximum in November (NF: 9.76%, and DF: 8.92%). For SJ, 520 

the most significant contributions were found in spring (NF: 5.58%, and DF: 3.88%). In the 521 

end, hydrological model uncertainties were more significant in months with lower runoff. 522 

 523 
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3.9 Future hydrological drought uncertainty 524 

3.9.1 Future hydrological drought uncertainty according to hydrological conditions 525 

To quantify the uncertainty in the future hydrological drought analysis using the calibrated sets 526 

of hydrological model parameters, the Streamflow Drought Index (SDI) was used to calculate 527 

the hydrological drought conditions during the future period. For the uncertainty analysis, 528 

runoff data were considered for both historical and future periods. Table 6 shows the difference 529 

in the number of drought events under hydrological conditions during the calibration period 530 

after calculating SDIs for 3-month, 6-month, and 12-month durations. The difference in the 531 

number of drought events according to the hydrological conditions of the calibration period 532 

was analysed differently for each SSP and basin. The difference was significant for the shorter 533 

duration of 3 months. 534 

According to the analysis by basin, the difference in the number of drought events in the AD 535 

basin with a 3-month duration was calculated to be the largest, with an average of 4.93 events, 536 

followed by SJ, CJ, and HCH. Between the near future (NF) and distant future (DF), the 537 

difference in the number of drought events under the overall hydrological conditions was larger 538 

in the NF, and this difference was calculated differently by basin, confirming the need for 539 

basin-specific analysis in water resource management planning. Therefore, the uncertainty 540 

quantification of the drought analysis was performed using the SDI with a duration of 3 months. 541 

 542 

3.9.2 Statistical significance of ANOVA results for future hydrological drought  543 

To confirm the statistical validity of the ANOVA models for the future hydrological drought 544 

analysis, the goodness-of-fit was evaluated. The models showed a high goodness-of-fit, with 545 

Adjusted R-squared values consistently greater than 0.99 for all annual models across the four 546 

basins. This indicates that the selected factors and their two-way interactions explain more than 547 

99% of the variance in the future drought projections, ensuring the reliability of the analysis. 548 

Table 7 summarizes the frequency of statistical significance (p < 0.05) for each factor, 549 

aggregated by decade, to provide a concise overview of the results across the entire future 550 

period. The values indicate the number of basins (out of four) where the factor was found to be 551 

significant for the majority of years within that decade. The primary climate-related factors, 552 

GCM and SSP, were consistently identified as the most significant sources of uncertainty. As 553 

shown in Table 7, both factors were found to be highly significant across all four basins for all 554 
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decades, underscoring the profound impact of climate model choice and emission scenarios on 555 

drought projections. 556 

The hydrological model calibration factors, HC and PL, also proved to be important sources of 557 

uncertainty. Both factors were statistically significant across all four basins for the entire future 558 

period. This finding reinforces that the hydrological conditions and data length used for model 559 

calibration have a persistent and significant influence on long-term hydrological drought 560 

assessments. 561 

Regarding the interaction effects, the GCM:SSP interaction was the most consistently 562 

significant, highlighting that the projected drought severity under a specific GCM is highly 563 

dependent on the emission scenario. Moreover, interactions involving calibration factors, 564 

particularly GCM:HC, GCM:PL, and HC:PL, were also found to be statistically significant 565 

across all basins and decades. This indicates that the uncertainty from calibration conditions 566 

does not merely add to the total uncertainty but also modulates the uncertainty stemming from 567 

climate models, which is a critical consideration for developing robust drought management 568 

strategies. In contrast, other interactions such as SSP:HC and SSP:PL were found to be not 569 

significant across the basins and decades. 570 

 571 

3.9.3 Uncertainty contribution of future hydrological drought 572 

The quantification of uncertainty in future hydrological drought was conducted using ANOVA. 573 

The uncertainty in future hydrological drought projections caused by SSP, GCM, and 574 

hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows the 575 

contribution of each factor to the total uncertainty. Among single-factor uncertainties, GCM 576 

contributed the most, averaging over 30%. The largest contributor to the total uncertainty, 577 

however, was the interaction between SSP and GCM, averaging over 50%. 578 

Fig. 8 and Table 8 present the percentage contribution of hydrological modelling parameters 579 

to the total uncertainty of the future 3-month SDI value. The uncertainty contribution from 580 

hydrological model parameter estimation in future hydrological drought analysis averaged 581 

2.7%, which is lower than that observed for future runoff projections. The uncertainty 582 

contribution from hydrological model calibration for future drought conditions was highest in 583 

HCH, followed by CJ, AD, and SJ, respectively. These results differ from those obtained in the 584 

runoff projections. The contribution of uncertainty in hydrological drought analysis decreased 585 
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for AD and SJ, where uncertainty in future runoff projection due to hydrological model 586 

calibration was relatively high. In contrast, HCH showed high uncertainty contributions from 587 

hydrological model calibration in both runoff and drought analyses. Monthly runoff is a direct 588 

physical variable with high temporal volatility. In contrast, the SDI, used here to quantify 589 

hydrological drought, is a processed statistical indicator. It is calculated by accumulating and 590 

standardizing runoff over multi-month timescales. This integration process acts as a filter, 591 

effectively smoothing the high-frequency variability of the raw runoff series. Consequently, 592 

the absolute numerical fluctuation of the SDI is significantly smaller than that of the runoff 593 

itself. This reduced total variance in the drought index is the primary reason why the quantified 594 

uncertainty contributions appear lower and exhibit a different pattern compared to the runoff 595 

analysis. This highlights that while the underlying drivers of uncertainty are the same, their 596 

manifestation can differ depending on the temporal scale and the nature of the hydrological 597 

variable being analyzed. These findings confirm the necessity to separately analyze and 598 

consider uncertainties in future runoff projection and hydrological drought analysis. 599 

 600 

4. Discussion 601 

This study quantified the cascade of uncertainties caused by various factors in the process of 602 

projecting future runoff and analyzing future hydrological drought. Previous studies 603 

(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and 604 

SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The 605 

results of this study also identified GCMs as the major contributor to uncertainty in future 606 

runoff analysis. This aligns with findings such as Her et al. (2019), who demonstrated that 607 

GCM uncertainty is dominant for rapid hydrological components, whereas parameter 608 

uncertainty becomes more significant for slower. However, recent research has begun to 609 

identify and quantify the cascade of uncertainties caused by factors beyond GCMs and SSP 610 

scenarios (Chen et al., 2022; Shi et al., 2022). This study focused on the uncertainties inherent 611 

in the calibration of hydrological models, which are essential for future water resource 612 

management. Rather than seeking a single optimal parameter set, the central aim of this study 613 

was to quantify the uncertainty that arises from this very choice. 614 

There have been limited studies that consider the uncertainties in runoff projection due to 615 

various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided 616 

the observation data used in the calibration period of hydrological model parameters by the 617 
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amount of data and hydrological conditions to quantify the uncertainties more precisely. The 618 

results showed that hydrological conditions had a greater impact than the amount of calibration 619 

data period on the uncertainties in the calibration of hydrological model parameters. 620 

This study went beyond merely projecting future runoff by also quantifying the cascade of 621 

uncertainties in the analysis of future hydrological drought using this runoff projection. Many 622 

studies on future drought prediction reported that hydrological drought becomes more complex 623 

and uncertain due to its association with human activities and the use of future climate data and 624 

hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). For example, Gao et al. (2020), 625 

also using an ANOVA approach, found that for low flows, GCM and RCP uncertainty became 626 

increasingly pronounced. Most existing studies on future hydrological drought analysis 627 

focused on the severity and frequency of droughts. However, this study quantified the cascade 628 

of uncertainties that arise in the process of future drought analysis. Although the contribution 629 

of hydrological model uncertainty to future hydrological drought may be lower compared to 630 

future runoff projections, the characteristics of uncertainty differ between drought and runoff 631 

projections, clearly indicating the necessity to separately analyze and consider these 632 

uncertainties in future hydrological analyses. 633 

Furthermore, the basin-specific characteristics presented in Table S1 help interpret the differing 634 

uncertainty contributions seen in the results. For example, in the hydrological drought analysis 635 

(Fig. 8), the uncertainty from model calibration was highest in HCH (5.56%) but lowest in SJ 636 

(0.26%), despite their similar areas (925 km² vs 763 km²). A key difference is that the SJ basin 637 

receives significantly higher mean annual precipitation (1,329.8 mm) compared to HCH 638 

(1,289.9 mm) and especially AD (1,045.7 mm). This suggests that basins with lower 639 

precipitation (like HCH and AD) may be more hydrologically sensitive to calibration data 640 

selection, leading to higher model-driven uncertainty, whereas the wetter conditions in SJ 641 

create a more robust (less sensitive) hydrological response regardless of calibration choice. 642 

 643 

5. Conclusion 644 

This study aimed to quantify the uncertainties in future runoff projections and hydrological 645 

drought analysis, considering various climate change scenarios and hydrological model 646 

calibrations. SWAT was used, and hydrological conditions were classified using the SDI. 647 

Additionally, 20 GCMs and three SSP scenarios were applied. The calibration data length 648 

ranged from 1 to 20 years, considering different hydrological conditions (Dry, Normal, Wet). 649 
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The main findings are as follows: 650 

First, the validation performance of the calibrated hydrological model parameters depended 651 

significantly on the hydrological conditions of the calibration data. For instance, when 652 

compared against parameters calibrated using wet period data, hydrological model parameters 653 

calibrated with dry period data showed an average of 11.4% higher performance when 654 

validated under dry conditions and 6.1% higher performance when validated under normal 655 

conditions. 656 

Second, the contribution of hydrological model uncertainty to future runoff projections ranged 657 

from 3.9% to 9.8%, with this uncertainty being more pronounced during low runoff periods. 658 

ANOVA results clearly indicated that GCMs contributed the most uncertainty, consistently 659 

accounting for over 60% on average, highlighting GCMs as the dominant source. In contrast, 660 

the contributions of SSP scenarios and hydrological model parameters were relatively smaller. 661 

Third, the contribution of hydrological model uncertainty in future hydrological drought 662 

analysis was on average 2.7%, lower than that observed for future runoff projections. The 663 

uncertainty contributions varied by basin, showing different patterns from runoff projections, 664 

thus confirming the necessity for separate analyses of future runoff and hydrological drought 665 

uncertainties. 666 

The significance of this study lies in emphasizing the quantification of uncertainty from various 667 

sources, including hydrological conditions and calibration data length, in addition to climate 668 

model scenarios. The systematic approach using ANOVA provided insights into the dominant 669 

sources and interactions of uncertainties, offering important guidance for improving 670 

hydrological modeling practices and water resources planning under future climate scenarios. 671 

However, there remains a need to apply this methodology to other regions to generalize these 672 

findings further. 673 
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Figure. 1. Uncertainty concept in this study 919 
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Figure. 2. Description of study area. 923 
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Figure. 3. Comparison of KGE values for the four basins using default parameters (Before) 926 

and calibrated parameters (After). The x-axis (1-20) represents the calibration data length, 927 

which defines the before calibration/after calibration data split.  928 
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Figure. 4. Validation performances depending on data length of the calibration period 930 
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Figure. 5. Heatmap matrix of KGE performance by calibration and validation conditions. 933 

The four main rows represent the basins (AD, CJ, HC, SJ). The three main columns (labeled 934 

'Dry', 'Normal', 'Wet') represent the hydrological conditions of the validation period. Within 935 
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each individual heatmap, the y-axis represents the calibration data length (1-20 years), and 936 

the x-axis (labeled D, N, W) represents the hydrological conditions of the calibration period. 937 

Blue indicates high KGE (good performance) and red indicates low KGE (poor 938 

performance).  939 
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Figure. 6. Projected annual changes in future precipitation (mm) and temperature (ºC) 942 
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Figure. 7. Contribution of hydrological model parameter to uncertainty in future runoff 945 

projection using ANOVA 946 
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 949 

Figure. 8. Contribution of hydrological model parameters to the total uncertainty in the 950 

future 3-month SDI.  951 
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 952 

Table 1. Validation performance according to hydrological conditions 953 

Basins 

Validation 

climatic 

conditions 

Calibration period hydrological conditions 

D N W 

AD 

D 0.480 0.401 0.382 

N 0.573 0.562 0.510 

W 0.571 0.621 0.642 

CJ 

D 0.743 0.727 0.725 

N 0.643 0.621 0.615 

W 0.674 0.686 0.706 

HCH 

D 0.732 0.691 0.670 

N 0.738 0.719 0.714 

W 0.763 0.757 0.769 

SJ 

D 0.557 0.544 0.515 

N 0.677 0.671 0.650 

W 0.674 0.681 0.684 

 954 

  955 
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Table 2. Changes from historical to future runoff for four dam basins 956 

(unit: %) 957 

Basins SSPs 
NF DF 

Spring Summer Fall Winter Spring Summer Fall Winter 

AD 

SSP2-4.5 82.1 -9.9 10.8 178.3 92.6 -5.3 18.1 179.2 

SS3-7.0 84.3 -11.1 6.7 168.3 104.3 -6.3 16.4 188.9 

SSP5-8.5 91.0 -5.7 12.9 194.2 118.9 1.2 26.7 216.1 

CJ 

SSP2-4.5 184.6 25.1 34.7 242.8 191.7 32.4 47.3 252.7 

SS3-7.0 186.6 21.0 32.8 226.7 210.2 27.6 44.7 276.5 

SSP5-8.5 148.8 8.0 0.8 173.1 157.2 14.0 13.1 192.0 

HCH 

SSP2-4.5 207.6 2.7 -19.7 95.4 222.7 8.1 -12.3 100.8 

SS3-7.0 213.7 -1.3 -22.5 91.2 243.4 6.8 -12.7 109.0 

SSP5-8.5 223.2 5.7 -15.2 110.0 268.8 14.8 -3.3 127.4 

SJ 

SSP2-4.5 170.9 1.5 7.7 60.5 181.4 5.9 18.4 63.3 

SS3-7.0 175.1 -2.1 7.3 58.6 198.9 5.6 17.9 75.6 

SSP5-8.5 181.1 5.5 12.9 75.1 217.2 14.0 29.7 88.6 

 958 

  959 



46 / 51 

 

Table 3. Differences in projected low-flow (Q75) based on HC. Q75 Differ (m³/s) is the 960 

difference (range, max-min) in the magnitude of projected Q75 (75% exceedance flow) 961 

values when comparing results from models calibrated under different hydrological 962 

conditions (Dry, Normal, and Wet). 963 

(unit: m³/s) 964 

Basins SSPs 
NF DF 

Q75 Differ Ratio (%) Q75 Differ Ratio (%) 

AD 

SSP2-4.5 7.24 10.28 7.00 10.42 

SSP3-7.0 7.04 9.58 7.71 9.56 

SSP5-8.5 7.43 9.32 7.88 9.94 

CJ 

SSP2-4.5 48.93 5.60 49.00 5.35 

SSP3-7.0 48.80 4.60 52.35 5.53 

SSP5-8.5 39.02 5.70 38.09 6.11 

HCH 

SSP2-4.5 5.84 12.67 5.86 13.93 

SSP3-7.0 5.55 13.86 5.95 12.86 

SSP5-8.5 6.03 12.86 6.44 14.62 

SJ 

SSP2-4.5 4.61 9.84 4.51 9.61 

SSP3-7.0 4.23 11.24 4.64 9.76 

SSP5-8.5 4.64 9.37 4.97 9.12 

 965 
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Table 4. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 967 

monthly runoff during the NF period 968 

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 3/4 2/4 2/4 2/4 2/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 1/4 1/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 1/4 2/4 1/4 0/4 1/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

969 
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Table 5. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 970 

monthly runoff during the DF period 971 

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 

  972 
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Table 6. Differences in the number of drought events according to hydrological conditions 973 

(unit: occurrences) 974 

SSPs 
Basin AD CJ 

Duration 3 6 12 3 6 12 

245 
NF 5.65 1.65 0.10 1.60 0.55 0.15 

DF 4.80 0.90 0.30 1.65 0.85 0.45 

370 
NF 6.25 1.65 0.45 1.60 0.20 0.55 

DF 4.35 0.90 0.25 1.85 0.55 0.30 

585 
NF 3.95 1.65 0.25 2.35 0.50 0.40 

DF 4.55 0.90 0.20 1.75 0.65 0.60 

SSPs 
Basin HCH SJ 

Duration 3 6 12 3 6 12 

245 
NF 0.40 0.25 0.10 1.45 0.60 0.15 

DF 0.45 1.25 0.85 2.00 0.30 0.10 

370 
NF 0.50 0.45 0.45 1.45 0.85 0.25 

DF 0.15 0.40 0.30 1.95 0.10 0.10 

585 
NF 0.55 0.20 0.15 2.50 0.30 0.35 

DF 0.45 0.30 0.50 1.65 0.35 0.30 
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Table 7. Frequency of statistical significance (p < 0.05) of uncertainty sources for future 977 

hydrological drought 978 

Factor 2040s 2050s 2060s 2070s 2080s 2090s 

GCM 4/4 4/4 4/4 4/4 4/4 4/4 

SSP 4/4 4/4 4/4 4/4 4/4 4/4 

HC 4/4 4/4 4/4 4/4 4/4 4/4 

PL 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:SSP 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:HC 4/4 4/4 4/4 4/4 4/4 4/4 

GCM:PL 4/4 4/4 4/4 4/4 4/4 4/4 

SSP:HC 0/4 0/4 0/4 0/4 0/4 0/4 

SSP:PL 0/4 0/4 0/4 0/4 0/4 0/4 

HC:PL 4/4 4/4 4/4 4/4 4/4 4/4 
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Table 8. Uncertainty contribution in future hydrological drought analysis from hydrological 980 

model calibration 981 

(unit: %) 982 

Basins NF DF 

AD 1.89 1.64 

CJ 4.06 3.58 

HCH 5.56 5.27 

SJ 0.26 0.26 
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