Dear Francis Chiew,

Thank you very much for your time and for providing insightful feedback that has
significantly improved our manuscript. We appreciate the opportunity to revise our work
and have addressed all the points you raised. Below, we provide a point-by-point
response to your comments and detail the corresponding changes made in the revised

manuscript.

Comment

The paper presents a modelling analysis to quantify the uncertainty in runoff and
hydrological drought projections arising from model calibration considerations (dry/wet
and data length) and climate change projections (CMIP6 GCMs and different SSPs). The
modelling was carried out using the SWAT hydrological model for four catchments in

Korea.

This is an okay paper and is a useful addition to the literature. The paper is simplistically
and nicely written, and whilst the study could have delved into nuances, the analysis here

is probably sufficient for the interpretation and conclusions.

The results show that the uncertainty in the climate change (in particular rainfall, the
study could specifically note this, as | am sure the range in the GCM rainfall projection is
much higher than the range in the temperature or PET projection) projections is
considerably higher than the differences in hydrological modelling considerations,
confirming what have been reported in many studies. Nevertheless, whilst this is true
when considering the sensitivity of runoff to changes in the climate inputs, the
uncertainty in hydrological non-stationarity (changes in runoff-rainfall relationship,
catchment response under higher temperature, PET and CO2 not seen in the historical
data, as models are extrapolated to predict the future using parameter values obtained
calibration against historical data) which is not considered in these studies, could be
high.

A couple of technical queries/comments below:



Response:

We sincerely thank the reviewer for their time, thoughtful evaluation, and constructive
comments on our manuscript. We are grateful for the positive assessment that our paper

is a "useful addition to the literature” and is "simplistically and nicely written."

The reviewer accurately summarizes the core objective of our study. Regarding the
potential for delving into further nuances, our primary goal was to provide a clear and
direct comparison of the major uncertainty sources (hydrological model calibration
choices and climate change projections). We believe this focused approach provides a
clear and valuable contribution, and we are pleased that the reviewer found the analysis
sufficient for the interpretation and conclusions. We believe that by addressing these
points and the specific technical queries that follow, the manuscript has been

significantly improved. Our detailed point-by-point responses are provided below.



Comment 1: Some periods could be easier to model than others resulting in higher
KGE values. How is this considered in the paper? through cross-sampling or cross-

consideration of all possible combinations of calibration lengths in different periods?

Response:

We thank the reviewer for raising this important point, which touches upon a core
strength of our experimental design. We acknowledge that model performance can
indeed be sensitive to the specific characteristics of the validation period. To address
this, we implemented a rigorous validation protocol that goes beyond a simple split-

sample approach.

Instead of validating the model against a single, continuous block of remaining years, we
performed a year-by-year validation. For example, for a model calibrated using data from
years 1 to 5, we did not evaluate its performance on the entire 6-20 year period as a
whole. Instead, we calculated 15 separate, single-year KGE values for year 6, year 7, and

so on, up to year 20.

This meticulous approach ensures that the model's predictive skill is tested against a
wide spectrum of individual annual hydrological conditions (including various dry,
normal, and wet years), rather than being smoothed over a long-term average. By strictly
separating each validation year from the calibration data, we obtain a more robust and
unbiased assessment of how calibration period length and conditions affect the model's
ability to predict outcomes in diverse, non-overlapping future scenarios. This
methodology is central to our goal of quantifying the uncertainty that arises from these

choices.

Changes made:

3.2 SWAT parameter calibration

The simulated runoff data were analyzed for performance using the Kling-Gupta Efficiency
(KGE; Gupta et al., 2009). KGE was developed to overcome some limitations of the commonly
used Nash-Sutcliffe Efficiency (NSE) in performance analysis (Gupta et al., 2009). The
attributes of KGE include focusing on a few basic required properties of any model simulation:
(1) bias in the mean, (i1) bias in the variability, and (ii1) cross-correlation with the observational
data (measuring differences in hydrograph shape and timing). The parameter optimization of
SWAT was performed as shown in Fig. S. 2, considering the data length of the calibration
period from 1 to 20 years. A rigorous validation scheme was adopted to prevent bias from

specific period characteristics and to ensure a robust evaluation of predictive performance. For



any given calibration period, the validation was not performed on the entire remaining period
as a single dataset. Instead, we conducted a year-by-year validation, calculating a separate KGE
value for each individual year not included in the calibration set. For instance, if a model was
calibrated on years 1-5 from a 20-year record, 15 distinct single-year KGE values were
calculated for years 6 through 20. This approach strictly separates calibration and validation
datasets and ensures that model performance is assessed across a diverse range of annual

hydrological conditions, providing a robust foundation for the subsequent uncertainty analysis.

Following parameter optimization, KGE values as shown in Fig. 2 were found to be suitable
for conducting the study, with all four dam basins achieving values above 0.60. The
performance improvements are as follows: AD’s KGE increased from 0.55 before calibration
to 0.64 after calibration, CJ’s from 0.68 to 0.75, HC’s from 0.70 to 0.80, and SJ’s from 0.50 to
0.73. This improvement in KGE after calibration underscores the robustness of the

hydrological models used and their enhanced capability in projecting future runoff.



Comment 2: We know that models calibrated against dry period will simulate the
dry period better than if calibrated against wet period and vice-versa. Could we
speculate (or perhaps even extend this analysis) what parameters we should use
then to mode/project the future (e.g., wetter versus drier future)? That said, the
uncertainty quantification in the paper provides an indication of how much this

would matter, at least for the modelling and catchments here.

Response:

The reviewer raises a fundamental and critical question in hydrological modeling for non-
stationary futures. As our response to the previous comment highlights, our year-by-year
validation protocol (detailed in Fig. 4) thoroughly assesses how parameters calibrated
under specific conditions (e.g., Dry Flow) perform across a wide variety of individual years

(dry, normal, and wet).

This detailed analysis reinforces the conclusion that no single parameter set can be
deemed universally optimal for an uncertain future that may be wetter or drier.
Therefore, rather than attempting to select a single "best" parameter set, the focus of
our study was to embrace this very issue as a key source of uncertainty. Our primary
goal was to quantify the magnitude of uncertainty stemming from hydrological modeling
choices (such as calibration data length and hydrological conditions). Our findings
indicate that while the choice of calibrated parameters is important, its contribution to
the total uncertainty is secondary to that of the climate projections. This underscores the
importance of an ensemble-based approach for future projections, which incorporates a

range of plausible hydrological model parameterizations.

Changes made:

4. Discussion

This study quantified the cascade of uncertainties caused by various factors in the process of
projecting future runoff and analyzing future hydrological drought. Previous studies
(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and
SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The
results of this study also identified GCMs as the major contributor to uncertainty in future
hydrological analysis. However, recent research has begun to identify and quantify the
cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen et al.,
2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration of

hydrological models, which are essential for future water resource management. Rather than



seeking a single optimal parameter set, the central aim of this study was to quantify the

uncertainty that arises from this very choice.

There have been limited studies that consider the uncertainties in runoff projection due to
various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided
the observation data used in the calibration period of hydrological model parameters by the
amount of data and hydrological conditions to quantify the uncertainties more precisely. The
results showed that hydrological conditions had a greater impact than the amount of
calibration data period on the uncertainties in the calibration of hydrological model

parameters.

This study went beyond merely projecting future runoff by also quantifying the cascade of
uncertainties in the analysis of future hydrological drought using this runoff projection. Many
studies on future drought prediction reported that hydrological drought becomes more
complex and uncertain due to its association with human activities and the use of future
climate data and hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). Most existing
studies on future hydrological drought analysis focused on the severity and frequency of
droughts. However, this study quantified the cascade of uncertainties that arise in the process
of future drought analysis. Although the contribution of hydrological model uncertainty to
future hydrological drought may be lower compared to future runoff projections, the
characteristics of uncertainty differ between drought and runoff projections, clearly indicating
the necessity to separately analyze and consider these uncertainties in future hydrological

analyses.



Comment 3: | suggest using blue (i.e., good) colour for Figure 4?

Response:

We thank the reviewer for the constructive suggestion. We agree that a more intuitive
color scheme would improve the readability of Figure 4. Accordingly, the figure has been
revised using a blue-to-red color scale to represent KGE performance more clearly, which

enhances the visual interpretation of the results.

Changes made:

Basins Hydrological conditions for validation period

Dry Normal Wet
AD 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
CJ 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
HC 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
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Figure. 4. KGEs classified by hydrological conditions for the calibration-validation period



Comment 4: | assume that the paper used the QQM bias corrected GCM data as
input into SWOT for both the historical and future periods. It may be worth having a
look at the historical modelled versus observed runoff. | suspect that the modelling
with bias-corrected GCM data will underestimate the observed runoff, as the GCM is
likely to underestimate the serial correlation (or multi-day wet rainfall totals) (e.g.,
Charles et al. and Potter et al. 2020 HESS papers). This however may not (or may)

matter when considering the relative differences in the runoff projections.

Response:

We appreciate the reviewer's insightful comment on the potential limitations of GCM
data. To clarify, a critical distinction in our methodology is the data used for different
stages of the analysis. The SWAT model calibration and validation for the historical
period were conducted exclusively using observed meteorological data and observed
dam inflow records, not GCM outputs. Our model's historical performance was thus

validated against actual observations.

The bias-corrected GCM data were used solely for the projection of future runoff. We
acknowledge that GCMs have inherent limitations, such as underestimating serial
correlations in rainfall, which is an important factor contributing to uncertainty in future
projections. In our study, this inherent uncertainty stemming from the GCM data itself is
precisely what is captured and quantified by the 'GCM' factor in our ANOVA. To prevent
any misunderstanding, we will explicitly clarify in the methodology section (Chapter 2)
that observed data were used for model calibration/validation, while bias-corrected GCM

data were used for future projections.

Changes made:

2.3 Soil and water assessment tool (SWAT)

The SWAT was used to calibrate hydrological processes in our study basin. The SWAT is
particularly adept at simulating runoff and other hydrological variables under a wide range of
environmental conditions and is a robust, physically based, semi-distributed model. Its
efficiency in modelling hydrological cycles within basins relies on simple input variables to
produce detailed hydrological outputs. The capability of this model has been effectively shown
in various studies, including those in South Korea (Kim et al., 2022; Song et al., 2022).

The core of the SWAT model is the water balance equation, which integrates daily weather data

with land surface parameters to calculate water storage changes over time:



SWy = SW, + Zf:O(Rday - qurf —E, — Wseep — ng) (D

where SW, is the initial soil moisture content (mm), SW; is the total soil moisture per day
(mm), Rgqy is precipitation (mm), Qgrr is surface runoff (mm), E, is evapotranspiration

(mm), Wseeq is penetration, Qg is groundwater runoff (mm), and ¢ is time (day).

For rainfall-runoff analysis, the SWAT model is structured into several sub-basins, each of
which is further subdivided into Hydrologic Response Units (HRUs) based on different soil
types, land use and topography. Each HRU independently simulates parts of the hydrological
cycle, allowing a granular analysis of basin hydrology. This setup reflects the spatial
heterogeneity within the basin and allows continuous simulation of hydrological processes over
long time periods, enhancing the utility of the model for climate change studies. The model
was calibrated and validated using R-SWAT for parameter optimization. R-SWAT incorporates
the SUFI-2 algorithm, which is known for its rapid execution and precision in parameter
optimization, ensuring accurate and reliable simulation results (Nguyen et al., 2022). In this
study, the setup and evaluation of the SWAT model for the historical period were performed
using observed data. The model was forced with observed meteorological data, and the
parameters were calibrated and validated against historical daily dam inflow records for the

period 1980-2023.

2.5 General Circulation Models (GCMs)

In this study, M1 to M20 GCMs from the CMIP6 suite that have been consistently used in
studies for East Asia and Korea were selected for future runoff projection and hydrological
drought analysis. The details of the development institutions, model names and resolutions of

these 20 GCMs were presented in Table S2.

The climate data from the GCMs were evaluated using daily observed climate data provided
by the Korea Meteorological Administration (KMA). The evaluation used observed data from
the past period (1985-2014) to evaluate the future climate data from the GCMs, which were
analyzed for two future periods: the near future (NF) and the distance future (DF). The future

climate change scenarios used were SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are



divided into five pathways based on radiative forcing, reflecting different levels of future
mitigation and adaptation efforts (O’Neill et al., 2016). The SSPs are numbered from SSP1 to
SSP5, with SSP1 representing a sustainable green pathway and SSPS5 representing fossil fuel
driven development. The numbers 4.5 to 8.5 indicate the level of radiative forcing (4.5: 4.5 W
m-2, 7.0: 7.0 W m-2 and 8.5: 8.5 W m-2). For the analysis of future changes, the calibrated
SWAT model was then driven by bias-corrected future climate projection data from the 20
GCMs under the three SSP scenarios. This approach ensures that the model's baseline
performance is grounded in observational data, while the future analysis specifically assesses

the uncertainties propagated from the climate projections and hydrological modeling choices.



Comment 5: It is interesting that the uncertainty in the hydrological drought
projection is lower than the runoff projection. Can the modelling (or a bit more
analysis) shed some light? because of the lag/storage effect in runoff? because there
is less uncertainty in the multi-year characteristics in the GCM simulation compared

to the average rainfall?

Response:
This is a very interesting and accurate observation. The primary reason for the lower
quantified uncertainty in hydrological drought projections lies in the fundamental

difference between raw runoff and the Streamflow Drought Index (SDI).

Monthly runoff is a direct physical quantity (m3/s) with high variability. In contrast, the
SDI is a standardized statistical index derived from accumulating runoff over several
months. This calculation process inherently smooths out the high-frequency fluctuations
present in the monthly runoff data. As a result, the numerical range and variance of the
SDI values are naturally smaller than those of the raw runoff. In the ANOVA, this lower
total variance in the drought index directly leads to smaller calculated uncertainty
contributions. This explains not only the difference in the percentage contributions but

also why the overall pattern of uncertainty differs from that of the direct runoff analysis.

Changes made:

3.9.3 Uncertainty contribution of future hydrological drought

The quantification of uncertainty in future hydrological drought was conducted using
ANOVA. The uncertainty in future hydrological drought projections caused by SSP, GCM,
and hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows
the contribution of each factor to the total uncertainty. Among single-factor uncertainties,
GCM contributed the most, averaging over 30%. The largest contributor to the total

uncertainty, however, was the interaction between SSP and GCM, averaging over 50%.

Fig. 7 and Table 8§ present the contribution of hydrological modelling parameters to the
uncertainty in future drought projections. The uncertainty contribution from hydrological
model parameter estimation in future hydrological drought analysis averaged 2.7%, which is
lower than that observed for future runoff projections. The uncertainty contribution from
hydrological model calibration for future drought conditions was highest in HC, followed by
CJ, AD, and SJ, respectively. These results differ from those obtained in the runoff

projections. The contribution of uncertainty in hydrological drought analysis decreased for



AD and SJ, where uncertainty in future runoff projection due to hydrological model
calibration was relatively high. In contrast, HC showed high uncertainty contributions from
hydrological model calibration in both runoff and drought analyses. Monthly runoff is a
direct physical variable with high temporal volatility. In contrast, the SDI, used here to
quantify hydrological drought, is a processed statistical indicator. It is calculated by
accumulating and standardizing runoff over multi-month timescales. This integration process
acts as a filter, effectively smoothing the high-frequency variability of the raw runoff series.
Consequently, the absolute numerical fluctuation of the SDI is significantly smaller than that
of the runoff itself. This reduced total variance in the drought index is the primary reason why
the quantified uncertainty contributions appear lower and exhibit a different pattern compared
to the runoft analysis. This highlights that while the underlying drivers of uncertainty are the
same, their manifestation can differ depending on the temporal scale and the nature of the
hydrological variable being analyzed. These findings confirm the necessity to separately
analyze and consider uncertainties in future runoff projection and hydrological drought

analysis.

We believe that these revisions have thoroughly addressed the reviewer’s concerns and
have substantially strengthened the manuscript. We look forward to your positive

consideration of our revised work.
Sincerely,

Kim Jin Hyuck

on behalf of all authors



General Comments

The manuscript addresses relevant scientific questions within the scope of the
journal. It presents novel ideas, as this exact combination of uncertainty drivers—
GCM, SSP, calibration period length, hydrological conditions during calibration, and
model parameter uncertainty—has not been investigated previously (to my
knowledge). Interesting conclusions are reached: GCMs contribute most in general,
while model uncertainty contributions differ for general future runoff and drought

prediction (lower for drought prediction).

Answer)

We sincerely thank you for your thorough and constructive review. We are very grateful
for your positive assessment, particularly your recognition that our work addresses
relevant scientific questions, presents a novel combination of uncertainty drivers, and
reaches interesting conclusions. Your insightful feedback has been invaluable in helping

us to further strengthen the manuscript.



The methodology is valid but quite complex and not always straightforward. An
overview plot or flowchart would help clarify how the different simulations are
organized and how the combination of GCMs, SSPs, calibration periods, hydrological
conditions, and parameter sets is applied. Figures and tables are informative but
must be clarified (more extensive captions and axis labels). Overall, this is a strong
and complex manuscript with interesting results. Minor clarifications regarding
methodology, figure/table captions, and interpretation of results would further

strengthen the clarity.

Answer)

Thank you for these excellent suggestions. We agree that the multi-step methodology,
involving several interacting uncertainty drivers (GCM, SSP, HC, PL), can be complex to
follow. We also agree that several captions and labels needed more detail to improve

clarity.

To address the methodological complexity, we have added a new comprehensive
concept as Figure 1 in the manuscript. We have also revised Section 2.1 (Procedure) to
explicitly refer to this new figure, which now serves as a visual guide to the steps
described.

Furthermore, following your general advice, we have reviewed and revised the captions
for figures and tables throughout the manuscript to be more descriptive, self-

explanatory, and include clear axis definitions where needed.

2.1 Procedure

The procedure of the study is as follows. The overall workflow, illustrating the main phases of
data processing, model setup, and analysis, is visualized in Fig. 1. First, topographic data for
four dam basins in South Korea were established, taking into account the overall hydrological
characteristics of the region, and observed dam inflow data were utilized to consider the length
and hydrological conditions of the hydrological model calibration data. The length of the
calibration data considered ranged from 1 to 20 years, and hydrological conditions were
categorized using the Streamflow Drought Index (SDI). Subsequently, validation performance
analysis was conducted, with calculations varying according to the length of calibration data

and hydrological conditions (Dry, Normal, and Wet). For the study, future climate data from 20



Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs and three SSP scenarios
(SSP2-4.5, SSP3-7.0, and SSP5-8.5) were bias-corrected. Future runoff projection and
hydrological drought were then analyzed using calibrated hydrological model parameters under
different conditions along with the future climate data. Finally, the uncertainties in the future

hydrological analysis were quantified using the Analysis of Variance (ANOVA).
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Figure. 1. Uncertainty concept in this study



Specific Comments
Methodology and Simulation Setup

Lines 284-286 mention 120 simulations, but the description of 20 GCMs, 3 SSPs, 3
hydrological conditions, and 20 calibration period lengths (not multiplying to 120,
but 3600, though probably | misunderstood something) is confusing, especially
when also using three different durations (3, 6, and 12 months) to determine the

hydrologic conditions (HC).

Answer)
Thank you for highlighting this major point of confusion and our sincere apologies for
this misleading error. You are absolutely correct, and we are grateful for your meticulous

review.

The 120 unique combinations mentioned in our manuscript was a significant error in the

text. Your calculation is correct.

The actual analysis setup, as correctly inferred by you and detailed in our new flowchart
(Figure 2), consists of 60 climate scenarios (20 GCMs x 3 SSPs) combined with 60 distinct
hydrological model parameterization types (3 Hydrological Conditions x 20 Period
Lengths). This results in a full set of 3,600 combinations (60 x 60) for each basin, and the
ANOVA was applied to this complete dataset.

We have completely rewritten this paragraph in Section 2.7 to remove the incorrect "120
combinations" reference and to clearly describe the full 3,600-combination set that forms
the basis of our ANOVA.

2.7 Quantifying uncertainty

The ANOVA used in this study is an effective statistical method that decomposes the total sum
of squares (SST) into contributions from different sources and their interactions. This method
would be particularly useful in the study framework, as it allows us to assess not only the
individual effects of each source of uncertainty but also the combined effects of these sources

interacting with each other (Bosshard et al., 2013; Lee et al., 2021a).

For this analysis, the primary sources of uncertainty considered are General Circulation Models

(GCMs), Shared Socioeconomic Pathway (SSP) scenarios, hydrological conditions (HC)



during the calibration period, and period length (PL). Each of these sources could have a
significant impact on the projections of hydrological models; therefore, their comprehensive
evaluation is crucial (Morim et al., 2019; Yip et al., 2011). Higher-order interactions (e.g.,
three-way) were excluded as they are often difficult to interpret physically and can introduce

noise into the model.

SST = SSGCMs + SSSSPS + SSHC + SSPL + SSInteractions(Z—way) + SSResiduals (7)

where each term (SS) indicates the sum of squares attributed to each factor or interaction.
Here,SSgcms> SSssps, SShe, and SSpy, represent the sum of squares due to GCMs, SSPs, HC,
and PL, respectively, known as the main effects. The remaining terms represent the sum of
squares due to the interactions among GCMs, SSPs, hydrological conditions, period length,

their two-way interactions, and the residual error.

The model setup for ANOVA was designed to analyze the set of projections. As detailed in the
flowchart (Fig. 1), this set was generated by combining 60 climate data (20 GCMs x 3 SSPs)
with 60 distinct hydrological model parameterization (3 HC x 20 PL). This resulted in a total
of 3,600 combinations for each basin analyzed. Initially, the SST, representing the total
variation within the data, was calculated. Subsequently, the sum of squares attributable to each
source of uncertainty was computed. To quantify the relative impact of each source, its
contribution was calculated as the proportion of its Sum of Squares relative to the Total Sum
of Squares. This provides a clear measure of the percentage of total uncertainty explained by

each factor and interaction.

The statistical robustness and validity of the ANOVA models were rigorously evaluated. First,
the overall goodness-of-fit for each model was assessed using the Adjusted R-squared (Ridj),

defined as Eq. (8).

(1-R?»)(n-1)
n—-k-1

Rig=1- (8)



Where, R? is the coefficient of determination, n is the number of observations, and k is the
number of predictions. This metric is preferred over the Standard R-squared as it adjusts for

the number of predictors in the model, providing a more accurate measure of model fit.

Second, a residual analysis was conducted to verify that the core assumptions of ANOVA were
met. The normality of residuals was a primary focus of this validation, examined both
statistically with the Shapiro-Wilk test and visually using Quantile-Quantile (Q-Q) plots. The
Shapiro-Wilk test evaluates the null hypothesis that the residuals are normally distributed.
However, given the large sample size in this study, which can lead to statistically significant
results even for minor deviations from normality, greater emphasis was placed on the visual
inspection of Q-Q plots to assess practical adherence to the normality assumption. The
assumption of homoscedasticity (constant variance of residuals) was also inspected using
Residuals vs. Fitted values plots. These validation steps ensure that the results of the uncertainty
partitioning are statistically sound and reliable. All statistical analyses were performed using

the R software environment.



Figure S.2 helps, but the explanation remains unclear

Answer)

Thank you for this specific feedback. You are correct that the original caption for Figure
S.2. Description of calibration period data lengths in this study was too brief and
uninformative. We agree that this figure is important for understanding our experimental

design for defining the Period Length (PL) uncertainty factor.
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Figure. S. 2. Schematic illustration of the calibration period selection strategy. The horizontal
axis represents the full historical data period (1980-2023). The vertical axis represents the
calibration period length (PL) from 1 to 20 years. The red arrows illustrate the specific years
of data used for calibration corresponding to each data length.



Results and Interpretation

An overview of the four basins’ properties (land use, precipitation, slope, etc.) and
how they differ would help interpret differences in uncertainty contributions, as far
as | could see this was not done apart from differentiating between the catchment
size. But since there are quite large differences between the catchments, this should

be discussed more in depth.

Answer)
This is an excellent point. The reviewer is correct that we selected the basins based on
their natural state, but we failed to use their physical and climatic characteristics to

interpret the differences in our results.

We apologize if this was not clear, but the detailed characteristics (Area, Mean Temp,
Mean Precip, Land Use Ratios) were already provided in Table S1 in the Supplementary

Information.

However, we completely agree with the core of your comment: we did not discuss these

differences in depth in the main text. To address this significant omission:

We have revised Section 2.2 (Study area and datasets) to more clearly summarize the
diversity of the basins (e.g., precipitation ranges from 1,045 mm to 1,330 mm) and to

more strongly signpost the reader to Table S1 for details.

More importantly, we have added a new discussion point to Section 4 (Discussion) that
explicitly links these basin characteristics (e.g., differences in precipitation and area) to
the observed differences in uncertainty contributions, addressing why basins like HCH

and SJ show such different sensitivities.

2.2 Study area and datasets

The study areas selected in this study are the Andong (AD), Chungju (CJ), Habcheon (HCH),
and Seomjingang (SJ) dam basins located in Korea as shown in Fig. 2. To achieve stable
calibration and validation results for a hydrological model, it is imperative to choose
catchments with extensive hydrological data records. This enables the accurate estimation of
appropriate calibration data lengths through various testing periods of the hydrological model.

Furthermore, incorporating a variety of basins is crucial to ensure that the findings of this study



are not biased by specific hydrological conditions. These four basins, which have the longest
hydrological records in Korea, are situated in major river basins. Detailed basin characteristics
are provided in Table S1. While all four basins are located in temperate climate zones and are
predominantly forested (Forest ratio > 75%, except for CJ at 61.7%), they represent a diverse
range of hydrological and climatic conditions. While all four basins are located in temperate
climate zones and are predominantly forested (Forest ratio > 75%, except for CJ at 61.7%),
they represent a diverse range of hydrological and climatic conditions. Area varies significantly
from 763 km? (SJ) to 6,648 km? (CJ). Mean annual precipitation also ranges from 1,045.7 mm
(AD) to 1,329.8 mm (SJ). These regions are devoid of artificial structures (Urban ratio < 5.3%
for all basins), ensuring that runoff remains natural and unaltered. Located in different regions
of Korea, these basins have a range of hydrological conditions and runoff characteristics,

providing a representative cross-section of the country's hydrological characteristics.

Table S1. Information of study area

Basins Area Aver. Temp Aver. Prec. Urban ratio Forest ratio
(km2) (°C) (mm) (%) (%)
AD 1,584 12.2 1,045.7 0.7 78.8
CJ 6,648 11.7 1,214.3 53 61.7
HCH 925 13.2 1,289.9 2.0 78.3
SJ 763 13.3 1,329.8 1.5 75.4

4. Discussion

This study quantified the cascade of uncertainties caused by various factors in the process of
projecting future runoff and analyzing future hydrological drought. Previous studies
(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and
SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The results
of this study also identified GCMs as the major contributor to uncertainty in future runofft
analysis. This aligns with findings such as Her et al. (2019), who demonstrated that GCM
uncertainty is dominant for rapid hydrological components, whereas parameter uncertainty
becomes more significant for slower. However, recent research has begun to identify and
quantify the cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen
et al., 2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration

of hydrological models, which are essential for future water resource management. Rather than



seeking a single optimal parameter set, the central aim of this study was to quantify the

uncertainty that arises from this very choice.

There have been limited studies that consider the uncertainties in runoff projection due to
various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided
the observation data used in the calibration period of hydrological model parameters by the
amount of data and hydrological conditions to quantify the uncertainties more precisely. The
results showed that hydrological conditions had a greater impact than the amount of calibration

data period on the uncertainties in the calibration of hydrological model parameters.

This study went beyond merely projecting future runoff by also quantifying the cascade of
uncertainties in the analysis of future hydrological drought using this runoft projection. Many
studies on future drought prediction reported that hydrological drought becomes more complex
and uncertain due to its association with human activities and the use of future climate data and
hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). For example, Gao et al. (2020),
also using an ANOVA approach, found that for low flows, GCM and RCP uncertainty became
increasingly pronounced. Most existing studies on future hydrological drought analysis
focused on the severity and frequency of droughts. However, this study quantified the cascade
of uncertainties that arise in the process of future drought analysis. Although the contribution
of hydrological model uncertainty to future hydrological drought may be lower compared to
future runoff projections, the characteristics of uncertainty differ between drought and runoff
projections, clearly indicating the necessity to separately analyze and consider these

uncertainties in future hydrological analyses.

Furthermore, the basin-specific characteristics presented in Table S1 help interpret the differing
uncertainty contributions seen in the results. For example, in the hydrological drought analysis
(Fig. 8), the uncertainty from model calibration was highest in HCH (5.56%) but lowest in SJ
(0.26%), despite their similar areas (925 km? vs 763 km?). A key difference is that the SJ basin
receives significantly higher mean annual precipitation (1,329.8 mm) compared to HCH
(1,289.9 mm) and especially AD (1,045.7 mm). This suggests that basins with lower
precipitation (like HCH and AD) may be more hydrologically sensitive to calibration data
selection, leading to higher model-driven uncertainty, whereas the wetter conditions in SJ

create a more robust (less sensitive) hydrological response regardless of calibration choice.



It would also be interesting to have an explanation of why some catchments yield a
rather moderate KGE of 0.64.

Answer)

This is a fair question. The reviewer is correct to note that the KGE for the Andong (AD)
basin (0.64) is 'moderate’ relative to the high performance achieved in the HCH basin
(0.80).

While a KGE of 0.64 is still considered 'Good' performance according to standard
hydrological literature (Zhang et al., 2025), we agree this difference warrants explanation.
This lower performance is not a flaw in the calibration methodology, but rather reflects

the inherent, well-known hydrological complexities of the AD basin itself.

The primary reason is that the AD basin's historical period includes severe, record-
breaking drought events (e.g., 2014-2015). As noted in our own manuscript (Section 3.1,
citing Karunakalage et al., 2024), these extreme, non-linear outlier events are inherently

difficult for hydrological models to capture perfectly, which lowers the overall KGE score.

Furthermore, other recent studies modeling the AD basin have also reported validation
statistics in the 'Good' but not 'Very Good' range. For example, Han et al. (2019)
reported validation NSE values of 0.52-0.69 for the Andong Dam basin. Similarly, Lee et
al. (2020), in a study of the Nakdong River basin, reported NSE values as low as 0.59 for

dam inflows including Andong Dam.

Therefore, we interpret the 0.64 KGE as a realistic and acceptable performance for this

specific and challenging-to-model catchment.

Zhang, J., Kong, D., Li, J., Qiy, J., Zhang, Y., Gu, X, & Guo, M. (2025). Comparison and
integration of hydrological models and machine learning models in global monthly

streamflow simulation. Journal of Hydrology, 650, 132549.

Lee, J., Lee, Y., Woo, S., Kim, W., & Kim, S. (2020). Evaluation of water quality interaction
by dam and weir operation using SWAT in the Nakdong River Basin of South Korea.
Sustainability, 12(17), 6845.

Han, J., Lee, D, Lee, S., Chung, S. W., Kim, S. J.,, Park, M., Lim, K. J & Kim, J. (2019).
Evaluation of the effect of channel geometry on streamflow and water quality modeling

and modification of channel geometry module in SWAT: A case study of the Andong
Dam Watershed. Water, 11(4), 718.






Line 607-609: clarify what is meant by the statement that the parameter set
calibrated with dry periods shows higher performance—higher than the set

calibrated for normal or wet conditions?

Answer)

Thank you for pointing out this ambiguity. You are correct that the original sentence was
unclear by not specifying the basis for the comparison. The 11.4% and 6.1% figures
represent the average improvement when comparing parameters calibrated in a dry
period against parameters calibrated in a wet period. We have revised this key finding in

the Conclusion to make this comparison explicit.

5. Conclusion

This study aimed to quantify the uncertainties in future runoff projections and hydrological
drought analysis, considering various climate change scenarios and hydrological model
calibrations. SWAT was used, and hydrological conditions were classified using the SDI.
Additionally, 20 GCMs and three SSP scenarios were applied. The calibration data length
ranged from 1 to 20 years, considering different hydrological conditions (Dry, Normal, Wet).

The main findings are as follows:

First, the validation performance of the calibrated hydrological model parameters depended
significantly on the hydrological conditions of the calibration data. For instance, when
compared against parameters calibrated using wet period data, hydrological model parameters
calibrated with dry period data showed an average of 11.4% higher performance when
validated under dry conditions and 6.1% higher performance when validated under normal

conditions.

Second, the contribution of hydrological model uncertainty to future runoff projections ranged
from 3.9% to 9.8%, with this uncertainty being more pronounced during low runoff periods.
ANOVA results clearly indicated that GCMs contributed the most uncertainty, consistently
accounting for over 60% on average, highlighting GCMs as the dominant source. In contrast,

the contributions of SSP scenarios and hydrological model parameters were relatively smaller.

Third, the contribution of hydrological model uncertainty in future hydrological drought



analysis was on average 2.7%, lower than that observed for future runoff projections. The
uncertainty contributions varied by basin, showing different patterns from runoff projections,
thus confirming the necessity for separate analyses of future runoff and hydrological drought

uncertainties.

The significance of this study lies in emphasizing the quantification of uncertainty from various
sources, including hydrological conditions and calibration data length, in addition to climate
model scenarios. The systematic approach using ANOVA provided insights into the dominant
sources and interactions of uncertainties, offering important guidance for improving
hydrological modeling practices and water resources planning under future climate scenarios.
However, there remains a need to apply this methodology to other regions to generalize these

findings further.



Conclusion: uncertainty in future Streamflow Drought Index (SDI) due to model
parameter uncertainty (HC and PL) was on average 2.7%, whereas uncertainty for
general runoff prediction was (more?) seasonally and catchment dependent, and
generally higher. The implications of these findings could be made clearer, as |
assume it means that predictions of low-flow periods are less sensitive to

hydrological conditions in the calibration period than overall runoff predictions.

Answer)
This is a very interesting and accurate observation. We agree that the implications of this

finding are important and require a clear explanation.

The primary reason for the lower quantified uncertainty in hydrological drought (SDI) lies
in the fundamental difference between raw monthly runoff and the Streamflow Drought
Index (SDI).

Monthly runoff is a direct physical variable with high temporal volatility. In contrast, the
SDI, used here to quantify hydrological drought, is a processed statistical indicator. It is
calculated by accumulating and standardizing runoff over multi-month timescales (e.g.,
3-month SDI). This integration process acts as a filter, effectively smoothing the high-

frequency variability of the raw runoff series.

Consequently, the absolute numerical fluctuation (and total variance) of the SDI is
significantly smaller than that of the runoff itself. In our ANOVA, this reduced total
variance in the drought index is the primary reason why the quantified uncertainty
contributions from the model parameters (HC and PL) appear lower and exhibit a

different pattern compared to the runoff analysis.

Realizing this was a key point needing clarification, we have added a detailed explanation

to the revised manuscript in Section 3.9.3 to clarify this exact point.

3.9.3 Uncertainty contribution of future hydrological drought

The quantification of uncertainty in future hydrological drought was conducted using ANOVA.
The uncertainty in future hydrological drought projections caused by SSP, GCM, and
hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows the
contribution of each factor to the total uncertainty. Among single-factor uncertainties, GCM

contributed the most, averaging over 30%. The largest contributor to the total uncertainty,



however, was the interaction between SSP and GCM, averaging over 50%.

Fig. 8 and Table 8 present the percentage contribution of hydrological modelling parameters to
the total uncertainty of the future 3-month SDI value. The uncertainty contribution from
hydrological model parameter estimation in future hydrological drought analysis averaged
2.7%, which is lower than that observed for future runoff projections. The uncertainty
contribution from hydrological model calibration for future drought conditions was highest in
HCH, followed by CJ, AD, and SJ, respectively. These results differ from those obtained in the
runoff projections. The contribution of uncertainty in hydrological drought analysis decreased
for AD and SJ, where uncertainty in future runoff projection due to hydrological model
calibration was relatively high. In contrast, HCH showed high uncertainty contributions from
hydrological model calibration in both runoff and drought analyses. Monthly runoff is a direct
physical variable with high temporal volatility. In contrast, the SDI, used here to quantify
hydrological drought, is a processed statistical indicator. It is calculated by accumulating and
standardizing runoff over multi-month timescales. This integration process acts as a filter,
effectively smoothing the high-frequency variability of the raw runoff series. Consequently,
the absolute numerical fluctuation of the SDI is significantly smaller than that of the runoff
itself. This reduced total variance in the drought index is the primary reason why the quantified
uncertainty contributions appear lower and exhibit a different pattern compared to the runoff
analysis. This highlights that while the underlying drivers of uncertainty are the same, their
manifestation can differ depending on the temporal scale and the nature of the hydrological
variable being analyzed. These findings confirm the necessity to separately analyze and

consider uncertainties in future runoff projection and hydrological drought analysis.



Figures and Tables

Figure 2: Boxplots over all model chains before and after calibration—clarify whether
the x-axis representing “number of years for the calibration period” refers simply to
the length of the modeling period for pre-calibration conditions. The meaning of the

different structures in the boxplots could perhaps be simplified or clarified.

Answer)

Thank you for this very specific and important question. You have identified a key point
of confusion in this figure (which is now renumbered to Figure 3 in our revised
manuscript). You are absolutely correct that the x-axis (1-20) in the 'Before' (pre-

calibration) panel is confusing, and the original caption was too brief.

To clarify the figure's structure: The x-axis (1-20) defines the specific before

calibration/after calibration data split. For any given x-axis value (e.g., '5'"):

The 'After-5' boxplot shows the distribution of KGE values for the model calibrated on 5

years, evaluated on its corresponding calibration years.

The 'Before-5' boxplot shows the distribution of KGE values for the default, uncalibrated

model, evaluated on the exact same validation years as the 'After-5' model.

This structure allows for a direct, fair comparison, demonstrating that the calibration
process (‘After') consistently outperforms the default model ('‘Before') when tested on the

same data.
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Figure. 3. Comparison of KGE values for the four basins using default parameters (Before)



and calibrated parameters (After). The x-axis (1-20) represents the calibration data length,
which defines the before calibration/after calibration data split.



Figure 4: clearly indicate which wet (w), dry (d), and normal (n) conditions

correspond to calibration and validation periods.

Answer)
Thank you for this critical feedback. You are correct that the original caption for this
complex figure (now numbered Figure 4) was insufficient and did not explain the figure's

hierarchical structure, making it difficult to interpret.
To improve clarity, we have made two key changes in the revised manuscript:

We had already updated the color scheme (based on previous feedback) from the
original to a more intuitive scale where Blue indicates high KGE (good performance) and

Red indicates low KGE (poor performance).

Based on your specific suggestion, we have completely rewritten the caption for Figure 4.
The new caption now explicitly details the structure: the main rows (Basins), the main
columns (Validation Conditions), and, within each heatmap, the y-axis (Calibration

Length) and x-axis (Calibration Conditions).
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Figure. 5. Heatmap matrix of KGE performance by calibration and validation conditions. The
four main rows represent the basins (AD, CJ, HC, SJ). The three main columns (labeled 'Dry’,
'Normal', 'Wet') represent the hydrological conditions of the validation period. Within each
individual heatmap, the y-axis represents the calibration data length (1-20 years), and the x-
axis (labeled D, N, W) represents the hydrological conditions of the calibration period. Blue
indicates high KGE (good performance) and red indicates low KGE (poor performance).



Figure 6: discussion on what causes the differences in contribution of different
drivers would be useful. While the two drivers selected in the figure highlight
differences, Figure S.9 seems more comprehensive; it may belong in the main text

instead of the appendix.

Answer)
Thank you for this valuable suggestion regarding the presentation of the uncertainty
results. We completely agree with you that Figure S.9 is a crucial figure that provides a

comprehensive overview of all uncertainty drivers (GCM, SSP, HC, PL, and interactions).

Our rationale for placing Figure 7 (the new number) in the main text was to specifically
highlight the novel findings of this study. While many studies have already confirmed
that GCMs and SSPs are the dominant sources (which Fig. S.9 also shows), the core focus
of our paper is to quantify the specific, often overlooked, uncertainty contribution
stemming from the hydrological model calibration (HC and PL). To better integrate your
excellent point, we have revised the text in Section 3.8.2. The revised text now explicitly
introduces Figure S.9 first as the comprehensive overview (confirming the dominance of
GCMs), and then introduces Figure 7 as the figure that specifically isolates and details

the hydrological model uncertainty, which is the central theme of our paper.

3.8.2 Contribution of uncertainty using the ANOVA

A comprehensive overview of the relative contributions from all factors to the uncertainties in
future runoff projections for each basin is provided in Fig. S. 9. As confirmed in Fig. S. 9, the
differences in future climate data from the GCMs were found to be the largest source of
uncertainty, consistently contributing over 60%. This contribution is more significant during
NF than DF, as discussed in Section 3.6. Fig. 6 specifically highlights the uncertainty

contributions attributed to hydrological models.

The uncertainty contributions from hydrological models were most significant during the
spring (Mar-May) and winter (Dec-Feb) periods, as shown in Table S5. The results of the
analysis for each basin were as follows: For AD, the hydrological model uncertainty was most
significant in spring (NF: 7.54%, and DF: 5.86%), with a maximum of 9.76% in June for NF
and 7.54% in April for DF. In CJ, the highest uncertainties were also found for NF in winter
(3.9%) and for DF in spring (3.96%). HCH showed the highest uncertainty in winter (NF:



6.09%, and DF: 5.5%), with a maximum in November (NF: 9.76%, and DF: 8.92%). For SJ,
the most significant contributions were found in spring (NF: 5.58%, and DF: 3.88%). In the

end, hydrological model uncertainties were more significant in months with lower runoff.



Figure 7: clarify what is being shown—number of drought events?

Answer)
Thank you for this critical question, which identifies that the figure and its
description were unclear. You are correct to question it; this figure (now

renumbered to Figure 8) does not show the number of drought events.

Instead, it shows the percentage contribution (%) of the hydrological model
factors (HC, PL, and their interaction) to the total uncertainty of the future 3-
month SDI value (which is the standardized metric we use for hydrological

drought analysis).

We have revised the text in Section 3.9.3 (specifically the sentence introducing
Figure 8) to explicitly state that this figure shows the percentage contribution to

the uncertainty of the 3-month SDI.

We have also rewritten the caption for Figure 8 to make this distinction clear.

3.9.3 Uncertainty contribution of future hydrological drought

The quantification of uncertainty in future hydrological drought was conducted using ANOVA.
The uncertainty in future hydrological drought projections caused by SSP, GCM, and
hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows the
contribution of each factor to the total uncertainty. Among single-factor uncertainties, GCM
contributed the most, averaging over 30%. The largest contributor to the total uncertainty,

however, was the interaction between SSP and GCM, averaging over 50%.

Fig. 8 and Table 8 present the percentage contribution of hydrological modelling parameters to
the total uncertainty of the future 3-month SDI value. The uncertainty contribution from
hydrological model parameter estimation in future hydrological drought analysis averaged
2.7%, which is lower than that observed for future runoff projections. The uncertainty
contribution from hydrological model calibration for future drought conditions was highest in
HCH, followed by CJ, AD, and SJ, respectively. These results differ from those obtained in the

runoff projections. The contribution of uncertainty in hydrological drought analysis decreased



for AD and SJ, where uncertainty in future runoff projection due to hydrological model
calibration was relatively high. In contrast, HCH showed high uncertainty contributions from
hydrological model calibration in both runoff and drought analyses. Monthly runoff is a direct
physical variable with high temporal volatility. In contrast, the SDI, used here to quantify
hydrological drought, is a processed statistical indicator. It is calculated by accumulating and
standardizing runoff over multi-month timescales. This integration process acts as a filter,
effectively smoothing the high-frequency variability of the raw runoff series. Consequently,
the absolute numerical fluctuation of the SDI is significantly smaller than that of the runoff
itself. This reduced total variance in the drought index is the primary reason why the quantified
uncertainty contributions appear lower and exhibit a different pattern compared to the runoff
analysis. This highlights that while the underlying drivers of uncertainty are the same, their
manifestation can differ depending on the temporal scale and the nature of the hydrological
variable being analyzed. These findings confirm the necessity to separately analyze and

consider uncertainties in future runoff projection and hydrological drought analysis.
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Table 3: provide a clearer definition, including what Q75 difference represents
(difference in long-term discharge at the 75th quantile over different model
parameterizations) and how the ratio relates to mean runoff. A large ratio meaning

should be clarified.

Answer)

Thank you, this is a very important point. The original caption was too brief and failed to
define the key metrics in the table, leading to valid confusion. As this table is critical for
understanding the implications of calibration on drought-related flows, we have

completely rewritten the caption.
Q75 (75% exceedance flow) is used here as our indicator for low-flow conditions.

The Q75 Differ (m3/s) column represents the physical difference in flow (range, max-min)
of the projected Q75 values, when comparing results from parameter sets calibrated

under different hydrological conditions (Dry, Normal, Wet).

The Ratio (%) column then expresses this physical flow difference ('Q75 Differ') as a

percentage of the mean projected Q75 flow for that scenario.

Therefore, as you correctly inferred, a 'large ratio' signifies that the absolute difference in
projected low flow (in m3/s) is large relative to the mean, indicating high sensitivity to

the calibration conditions.

We have rewritten the caption for Table 3 to include these precise definitions, ensuring

the table is now self-explanatory.

Table 3. Differences in projected low-flow (Q75) based on HC. Q75 Differ (m?/s) is the
difference (range, max-min) in the magnitude of projected Q75 (75% exceedance flow)
values when comparing results from models calibrated under different hydrological

conditions (Dry, Normal, and Wet).

(unit: m3/s)

Basin SSP NF DF
SIS S Qs Differ Ratio (%) Qs Differ Ratio (%)
AD SSP2-4.5 7.24 10.28 7.00 10.42




SSP3-7.0 7.04 9.58 7.71 9.56

SSP5-8.5 7.43 9.32 7.88 9.94

SSP2-4.5 48.93 5.60 49.00 5.35

cJ SSP3-7.0 48.80 4.60 52.35 5.53
SSP5-8.5 39.02 5.70 38.09 6.11

SSP2-4.5 5.84 12.67 5.86 13.93

HCH SSP3-7.0 5.55 13.86 5.95 12.86
SSP5-8.5 6.03 12.86 6.44 14.62

SSP2-4.5 4.61 9.84 4.51 9.61

SJ SSP3-7.0 4.23 11.24 4.64 9.76
SSP5-8.5 4.64 9.37 4.97 9.12




Figure S1: consider adding horizontal lines for the defined thresholds to indicate

which condition each year would fall into.

Answer)

This is a very helpful suggestion for improving the figure's readability. We agree
completely. We have updated Figure S1 by adding two horizontal lines at the defined
thresholds (SDI = 0.5 and SDI = -0.5) to clearly visualize the 'Dry’, 'Normal', and 'Wet'

categories, as recommended.

2]
1. Wet
3 01 7 a WawE B
-1 Dry L ll
_2_
1980 1985 1990 1995 2000 2005 2010 2015 2020
Period
(a) AD
2_
1_
3 01 T N
-1 II
-2
1980 1985 1990 1995 2000 2005 2010 2015 2020
Period
(b) CJ
7]
1_.
20 [
1] - I g == 5
-2
1980 1985 1990 1995 2000 2005 2010 2015 2020
Period

(¢c) HCH



9]

1
I | N B

-1 - -I [ | II L
]

1980 1985 1990 1995 2000 2005 2010 2015 2020

Period
(d) SJ

Figure S. 1. Hydrological conditions defined by Streamflow Drought Index for the historical
period



Figures and Tables: axis titles are often missing; captions should be more extensive
to improve interpretability.

Answer)

Thank you for this general, but very important, advice regarding the overall clarity of our
figures and tables. We agree completely. Manuscript: In addition to addressing the
specific items you pointed out, we have taken your advice to heart. We have conducted
a thorough review of all figures and tables (including those in the Supplementary
Information) to ensure every caption is comprehensive and self-explanatory, and that all
axis titles are present and clear. We believe this has significantly improved the overall

readability and quality of the manuscript, and we appreciate your constructive feedback.



Language and Terminology
Line 70: minor rephrasing could improve clarity.
Use “SWAT was used” instead of “the SWAT.”

Avoid using “HC” for both the basin and an uncertainty driver.

Asnwer)
We are very grateful for these specific and helpful corrections to our language and

terminology. We agree with all three points.

Line 70: You were correct, the original sentence ("..analyses... is...") was grammatically

incorrect. We have revised this sentence for clarity and grammatical accuracy.

'the SWAT": Thank you. We have run a find-and-replace and corrected this term to
'SWAT' throughout the entire manuscript.

'HC' Abbreviation: This was an excellent point and a significant potential source of
confusion. Thank you for catching this. We have changed the abbreviation for the
Habcheon basin to HCH in all text, figures, and tables to avoid any overlap with '"HC'

(Hydrological Conditions).

The future hydrological analysis considering uncertainty is essential for effective water
management. These projections are largely based on General Circulation Models (GCMs) and
hydrological models, which are critical tools for modelling the hydrological impacts of climate
change. However, GCMs introduce significant uncertainty in future runoff prediction due to
their inherent structural complexity and variability in scenario-based inputs (Broderick et al.,
2016). This uncertainty has a direct impact on the accuracy of runoff predictions and poses a
significant challenge to water resource management. The selection and use of GCMs have a
crucial role in shaping these uncertainties, making the consideration of a variety of GCMs and
shared socioeconomic pathways (SSP) scenarios essential for managing uncertainties and
improving projections (Vetter et al., 2015; Chae et al., 2024a). Indeed, Shi et al. (2022) had
shown how different evapotranspiration models embedded in GCMs affect runoff prediction,
highlighting GCMs and Representative Concentration Pathways (RCPs) as major factors
affecting uncertainty. Similarly, Lee et al. (2021a) had shown how the choice of GCMs



significantly affects prediction of water storage in wetlands under future climate scenarios. To
understand these uncertainties, Wang et al. (2020) suggested the use of a broad ensemble of at
least 10 GCMs, which allowed for a more comprehensive assessment of hydrological impacts
and helped to reduce the inherent uncertainties associated with climate change. Thus, the use
of a wide range of GCMs is an essential strategy for maximizing the effectiveness of water

resource management under global climate change conditions.



References and Context

The authors properly credit related work and clearly separate their own
contributions. Including Gao et al. (2020, DOI: 10.5194/hess-24-3251-2020) and Her
et al. (2019, DOI: 10.1038/s41598-019-41334-7) in the discussion could further

strengthen the context, as these studies seem quite relevant.

Answer)
Thank you for these excellent and highly relevant references. We have reviewed both
papers and agree that they significantly strengthen the context and discussion of our

findings.
We have integrated both references into our revised Section 4 (Discussion):

We have cited Her et al. (2019) in the first paragraph of the Discussion. Their finding—
that GCM uncertainty is dominant for rapid components like runoff, while parameter
uncertainty is dominant for slower components like groundwater—provides strong
support for our results showing GCMs are the major uncertainty source for our runoff

projections.

We have cited Gao et al. (2020) in the third paragraph of the Discussion. Their work,
which also uses ANOVA to assess uncertainty in low flows (droughts), provides valuable
context and corroboration for our own findings on the uncertainty drivers in hydrological

drought analysis (Section 3.9.3).

4. Discussion

This study quantified the cascade of uncertainties caused by various factors in the process of
projecting future runoff and analyzing future hydrological drought. Previous studies
(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and
SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The results
of this study also identified GCMs as the major contributor to uncertainty in future runoff
analysis. This aligns with findings such as Her et al. (2019), who demonstrated that GCM
uncertainty is dominant for rapid hydrological components, whereas parameter uncertainty
becomes more significant for slower. However, recent research has begun to identify and

quantify the cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen



et al., 2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration
of hydrological models, which are essential for future water resource management. Rather than
seeking a single optimal parameter set, the central aim of this study was to quantify the

uncertainty that arises from this very choice.

There have been limited studies that consider the uncertainties in runoff projection due to
various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided
the observation data used in the calibration period of hydrological model parameters by the
amount of data and hydrological conditions to quantify the uncertainties more precisely. The
results showed that hydrological conditions had a greater impact than the amount of calibration

data period on the uncertainties in the calibration of hydrological model parameters.

This study went beyond merely projecting future runoff by also quantifying the cascade of
uncertainties in the analysis of future hydrological drought using this runoff projection. Many
studies on future drought prediction reported that hydrological drought becomes more complex
and uncertain due to its association with human activities and the use of future climate data and
hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). For example, Gao et al. (2020),
also using an ANOVA approach, found that for low flows, GCM and RCP uncertainty became
increasingly pronounced. Most existing studies on future hydrological drought analysis
focused on the severity and frequency of droughts. However, this study quantified the cascade
of uncertainties that arise in the process of future drought analysis. Although the contribution
of hydrological model uncertainty to future hydrological drought may be lower compared to
future runoff projections, the characteristics of uncertainty differ between drought and runoff
projections, clearly indicating the necessity to separately analyze and consider these

uncertainties in future hydrological analyses.

Furthermore, the basin-specific characteristics presented in Table S1 help interpret the differing
uncertainty contributions seen in the results. For example, in the hydrological drought analysis
(Fig. 8), the uncertainty from model calibration was highest in HCH (5.56%) but lowest in SJ
(0.26%), despite their similar areas (925 km? vs 763 km?). A key difference is that the SJ basin
receives significantly higher mean annual precipitation (1,329.8 mm) compared to HCH
(1,289.9 mm) and especially AD (1,045.7 mm). This suggests that basins with lower
precipitation (like HCH and AD) may be more hydrologically sensitive to calibration data
selection, leading to higher model-driven uncertainty, whereas the wetter conditions in SJ

create a more robust (less sensitive) hydrological response regardless of calibration choice.






The title, “Insights into uncertainties in future drought analysis using hydrological

simulation model,” is appropriate.

The abstract is concise and complete, although it could mention the large
contributions from GCM and SSP.

Original Comment (Eng): "The abstract is concise and complete, although it

could mention the large contributions from GCM and SSP."

Answer)

This is a very valuable suggestion. We agree that mentioning the dominant contribution
from GCMs provides crucial context for our novel findings on the hydrological model's
uncertainty. We have revised the Abstract. We added a clause that, while our ANOVA
results confirm that GCMs are the dominant source of total uncertainty, the specific focus
of our study was to quantify the contribution from the hydrological model calibration

process itself.

Abstract

Hydrological analysis utilizing a hydrological model requires a parameter calibration process,
which is largely influenced by the length of calibration data period and prevailing hydrological
conditions. This study aimed to quantify these uncertainties in future runoff projection and
hydrological drought based on future climate data and the calibration data of the hydrological
model. Future climate data were sourced from three Shared Socioeconomic Pathway (SSP)
scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) of 20 general circulation models (GCMs). The
Soil and Water Assessment Tool (SWAT) was employed as the hydrological model, and
hydrological conditions were determined using the Streamflow Drought Index (SDI), with
calibration data lengths ranging from 1 to 20 years considered. Subsequently, the uncertainty
was quantified using Analysis of Variance (ANOVA). After calibrating SWAT parameters, the
validation performance was found to be influenced by the hydrological conditions of the
calibration data. Hydrological model parameters calibrated using a dry period simulated runoff
with 11.4% higher performance in dry conditions and 6.1% higher performance in normal
conditions, while hydrological model parameters calibrated using a wet period simulated runoff
with 5.1% higher performance in wet conditions. While the ANOVA results confirmed that

GCMs are the dominant source of total uncertainty, the uncertainty contribution from the



hydrological model calibration in estimating future runoff was analyzed to be 3.9~9.8%,
particularly significant in the low runoff period. The uncertainty contribution in future
hydrological drought analysis resulting from the calibration of hydrological model parameters

was analyzed to be 2.7% on average, which is lower than that of future runoff projection.



Presentation and Complexity

The overall presentation is well structured, but due to the complexity of quantifying
multiple uncertainty drivers, some sections are hard to follow. The ratio of results to
discussion could be slightly adjusted, as some discussion points are already

presented within the results section (but this is also a matter of taste).

The manuscript’s novelty and strength lie in interpreting all the uncertainty drivers
collectively, this is stated. But in the Abstract and Conclusion, the focus lies on the
contributions of model uncertainty, the reasoning behind that could be made more
clear. Also, | was expecting something like Figure S.9. within the manuscript, as this

gives a great overview of all drivers’ contributions in my opinion.

Answer)
We would like to once again express our sincere gratitude for your final overarching
comments on the manuscript's Presentation and Complexity. We agree with your

assessment entirely.

As you correctly pointed out, the methodology is complex, and our original presentation
did not sufficiently guide the reader through our analytical framework or the narrative of

our findings. Your feedback was crucial in helping us improve this.

Based on your suggestions, we have made the following key revisions, which are detailed

in the point-by-point responses above:

To address the methodological complexity: We have added a new Flowchart as Figure 1
and revised Section 2.1 to refer to it. We also clarified the 3,600 simulation combinations
(Sec. 2.7) and performed a thorough review of all figure and table captions (e.g., Fig. 3, 4,

8, S1, Table 3) to make them self-explanatory and clear, as you recommended.

To clarify the manuscript's narrative and focus: You made a crucial point about the
apparent disconnect between our focus on "model uncertainty” (in the
Abstract/Conclusion) and the comprehensive results (like Fig. S.9) showing GCMs are

dominant. This was a key insight.

We have revised the Abstract and Conclusion (Sec. 5) to first acknowledge that GCMs are

indeed the dominant source, and then clarify that the specific novelty and focus of this



study is the quantification of the often-overlooked hydrological model calibration

uncertainty.

This directly addresses your excellent point about Figure S.9. As detailed in our response
(and modified in Sec. 3.8.2), we now explicitly introduce Fig. S.9 in the text as the
comprehensive overview of all drivers, while justifying that the main text figure (now Fig.

7) is presented to specifically detail our novel findings.

We are confident that these revisions, guided by your detailed and insightful review,
have significantly improved the clarity, focus, and overall strength of the manuscript. We
thank you again for your valuable time and constructive feedback, which has been

invaluable in enhancing our paper.

Sincerely,

Kim Jin Hyuck

on behalf of all authors



