
Dear Francis Chiew, 

Thank you very much for your time and for providing insightful feedback that has 

significantly improved our manuscript. We appreciate the opportunity to revise our work 

and have addressed all the points you raised. Below, we provide a point-by-point 

response to your comments and detail the corresponding changes made in the revised 

manuscript. 

 

Comment 

The paper presents a modelling analysis to quantify the uncertainty in runoff and 

hydrological drought projections arising from model calibration considerations (dry/wet 

and data length) and climate change projections (CMIP6 GCMs and different SSPs). The 

modelling was carried out using the SWAT hydrological model for four catchments in 

Korea. 

This is an okay paper and is a useful addition to the literature. The paper is simplistically 

and nicely written, and whilst the study could have delved into nuances, the analysis here 

is probably sufficient for the interpretation and conclusions. 

The results show that the uncertainty in the climate change (in particular rainfall, the 

study could specifically note this, as I am sure the range in the GCM rainfall projection is 

much higher than the range in the temperature or PET projection) projections is 

considerably higher than the differences in hydrological modelling considerations, 

confirming what have been reported in many studies. Nevertheless, whilst this is true 

when considering the sensitivity of runoff to changes in the climate inputs, the 

uncertainty in hydrological non-stationarity (changes in runoff-rainfall relationship, 

catchment response under higher temperature, PET and CO2 not seen in the historical 

data, as models are extrapolated to predict the future using parameter values obtained 

calibration against historical data) which is not considered in these studies, could be 

high. 

A couple of technical queries/comments below: 

 

 

 



Response: 

We sincerely thank the reviewer for their time, thoughtful evaluation, and constructive 

comments on our manuscript. We are grateful for the positive assessment that our paper 

is a "useful addition to the literature" and is "simplistically and nicely written." 

The reviewer accurately summarizes the core objective of our study. Regarding the 

potential for delving into further nuances, our primary goal was to provide a clear and 

direct comparison of the major uncertainty sources (hydrological model calibration 

choices and climate change projections). We believe this focused approach provides a 

clear and valuable contribution, and we are pleased that the reviewer found the analysis 

sufficient for the interpretation and conclusions. We believe that by addressing these 

points and the specific technical queries that follow, the manuscript has been 

significantly improved. Our detailed point-by-point responses are provided below. 

 

  



Comment 1: Some periods could be easier to model than others resulting in higher 

KGE values. How is this considered in the paper? through cross-sampling or cross-

consideration of all possible combinations of calibration lengths in different periods? 

Response: 

We thank the reviewer for raising this important point, which touches upon a core 

strength of our experimental design. We acknowledge that model performance can 

indeed be sensitive to the specific characteristics of the validation period. To address 

this, we implemented a rigorous validation protocol that goes beyond a simple split-

sample approach. 

Instead of validating the model against a single, continuous block of remaining years, we 

performed a year-by-year validation. For example, for a model calibrated using data from 

years 1 to 5, we did not evaluate its performance on the entire 6-20 year period as a 

whole. Instead, we calculated 15 separate, single-year KGE values for year 6, year 7, and 

so on, up to year 20. 

This meticulous approach ensures that the model's predictive skill is tested against a 

wide spectrum of individual annual hydrological conditions (including various dry, 

normal, and wet years), rather than being smoothed over a long-term average. By strictly 

separating each validation year from the calibration data, we obtain a more robust and 

unbiased assessment of how calibration period length and conditions affect the model's 

ability to predict outcomes in diverse, non-overlapping future scenarios. This 

methodology is central to our goal of quantifying the uncertainty that arises from these 

choices. 

Changes made: 

3.2 SWAT parameter calibration 

The simulated runoff data were analyzed for performance using the Kling-Gupta Efficiency 

(KGE; Gupta et al., 2009). KGE was developed to overcome some limitations of the commonly 

used Nash-Sutcliffe Efficiency (NSE) in performance analysis (Gupta et al., 2009). The 

attributes of KGE include focusing on a few basic required properties of any model simulation: 

(i) bias in the mean, (ii) bias in the variability, and (iii) cross-correlation with the observational 

data (measuring differences in hydrograph shape and timing). The parameter optimization of 

SWAT was performed as shown in Fig. S. 2, considering the data length of the calibration 

period from 1 to 20 years. A rigorous validation scheme was adopted to prevent bias from 

specific period characteristics and to ensure a robust evaluation of predictive performance. For 



any given calibration period, the validation was not performed on the entire remaining period 

as a single dataset. Instead, we conducted a year-by-year validation, calculating a separate KGE 

value for each individual year not included in the calibration set. For instance, if a model was 

calibrated on years 1-5 from a 20-year record, 15 distinct single-year KGE values were 

calculated for years 6 through 20. This approach strictly separates calibration and validation 

datasets and ensures that model performance is assessed across a diverse range of annual 

hydrological conditions, providing a robust foundation for the subsequent uncertainty analysis. 

Following parameter optimization, KGE values as shown in Fig. 2 were found to be suitable 

for conducting the study, with all four dam basins achieving values above 0.60. The 

performance improvements are as follows: AD’s KGE increased from 0.55 before calibration 

to 0.64 after calibration, CJ’s from 0.68 to 0.75, HC’s from 0.70 to 0.80, and SJ’s from 0.50 to 

0.73. This improvement in KGE after calibration underscores the robustness of the 

hydrological models used and their enhanced capability in projecting future runoff. 

 

  



Comment 2: We know that models calibrated against dry period will simulate the 

dry period better than if calibrated against wet period and vice-versa. Could we 

speculate (or perhaps even extend this analysis) what parameters we should use 

then to mode/project the future (e.g., wetter versus drier future)? That said, the 

uncertainty quantification in the paper provides an indication of how much this 

would matter, at least for the modelling and catchments here. 

Response: 

The reviewer raises a fundamental and critical question in hydrological modeling for non-

stationary futures. As our response to the previous comment highlights, our year-by-year 

validation protocol (detailed in Fig. 4) thoroughly assesses how parameters calibrated 

under specific conditions (e.g., Dry Flow) perform across a wide variety of individual years 

(dry, normal, and wet). 

This detailed analysis reinforces the conclusion that no single parameter set can be 

deemed universally optimal for an uncertain future that may be wetter or drier. 

Therefore, rather than attempting to select a single "best" parameter set, the focus of 

our study was to embrace this very issue as a key source of uncertainty. Our primary 

goal was to quantify the magnitude of uncertainty stemming from hydrological modeling 

choices (such as calibration data length and hydrological conditions). Our findings 

indicate that while the choice of calibrated parameters is important, its contribution to 

the total uncertainty is secondary to that of the climate projections. This underscores the 

importance of an ensemble-based approach for future projections, which incorporates a 

range of plausible hydrological model parameterizations. 

Changes made: 

4. Discussion 

This study quantified the cascade of uncertainties caused by various factors in the process of 

projecting future runoff and analyzing future hydrological drought. Previous studies 

(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and 

SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The 

results of this study also identified GCMs as the major contributor to uncertainty in future 

hydrological analysis. However, recent research has begun to identify and quantify the 

cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen et al., 

2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration of 

hydrological models, which are essential for future water resource management. Rather than 



seeking a single optimal parameter set, the central aim of this study was to quantify the 

uncertainty that arises from this very choice. 

There have been limited studies that consider the uncertainties in runoff projection due to 

various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided 

the observation data used in the calibration period of hydrological model parameters by the 

amount of data and hydrological conditions to quantify the uncertainties more precisely. The 

results showed that hydrological conditions had a greater impact than the amount of 

calibration data period on the uncertainties in the calibration of hydrological model 

parameters. 

This study went beyond merely projecting future runoff by also quantifying the cascade of 

uncertainties in the analysis of future hydrological drought using this runoff projection. Many 

studies on future drought prediction reported that hydrological drought becomes more 

complex and uncertain due to its association with human activities and the use of future 

climate data and hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). Most existing 

studies on future hydrological drought analysis focused on the severity and frequency of 

droughts. However, this study quantified the cascade of uncertainties that arise in the process 

of future drought analysis. Although the contribution of hydrological model uncertainty to 

future hydrological drought may be lower compared to future runoff projections, the 

characteristics of uncertainty differ between drought and runoff projections, clearly indicating 

the necessity to separately analyze and consider these uncertainties in future hydrological 

analyses. 

 

  



Comment 3: I suggest using blue (i.e., good) colour for Figure 4? 

Response: 

We thank the reviewer for the constructive suggestion. We agree that a more intuitive 

color scheme would improve the readability of Figure 4. Accordingly, the figure has been 

revised using a blue-to-red color scale to represent KGE performance more clearly, which 

enhances the visual interpretation of the results. 

Changes made: 

Basins Hydrological conditions for validation period 

Dry Normal Wet 

AD 

   

CJ 

   

HC 

   

SJ 

   



 

 

Figure. 4. KGEs classified by hydrological conditions for the calibration-validation period 

 

  



Comment 4: I assume that the paper used the QQM bias corrected GCM data as 

input into SWOT for both the historical and future periods. It may be worth having a 

look at the historical modelled versus observed runoff. I suspect that the modelling 

with bias-corrected GCM data will underestimate the observed runoff, as the GCM is 

likely to underestimate the serial correlation (or multi-day wet rainfall totals) (e.g., 

Charles et al. and Potter et al. 2020 HESS papers). This however may not (or may) 

matter when considering the relative differences in the runoff projections. 

Response: 

We appreciate the reviewer's insightful comment on the potential limitations of GCM 

data. To clarify, a critical distinction in our methodology is the data used for different 

stages of the analysis. The SWAT model calibration and validation for the historical 

period were conducted exclusively using observed meteorological data and observed 

dam inflow records, not GCM outputs. Our model's historical performance was thus 

validated against actual observations. 

The bias-corrected GCM data were used solely for the projection of future runoff. We 

acknowledge that GCMs have inherent limitations, such as underestimating serial 

correlations in rainfall, which is an important factor contributing to uncertainty in future 

projections. In our study, this inherent uncertainty stemming from the GCM data itself is 

precisely what is captured and quantified by the 'GCM' factor in our ANOVA. To prevent 

any misunderstanding, we will explicitly clarify in the methodology section (Chapter 2) 

that observed data were used for model calibration/validation, while bias-corrected GCM 

data were used for future projections. 

Changes made: 

2.3 Soil and water assessment tool (SWAT) 

The SWAT was used to calibrate hydrological processes in our study basin. The SWAT is 

particularly adept at simulating runoff and other hydrological variables under a wide range of 

environmental conditions and is a robust, physically based, semi-distributed model. Its 

efficiency in modelling hydrological cycles within basins relies on simple input variables to 

produce detailed hydrological outputs. The capability of this model has been effectively shown 

in various studies, including those in South Korea (Kim et al., 2022; Song et al., 2022). 

The core of the SWAT model is the water balance equation, which integrates daily weather data 

with land surface parameters to calculate water storage changes over time: 



 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)
𝑡
𝑖=0    (1) 

 

where 𝑆𝑊0 is the initial soil moisture content (mm), 𝑆𝑊𝑡 is the total soil moisture per day 

(mm), 𝑅𝑑𝑎𝑦 is precipitation (mm), 𝑄𝑠𝑢𝑟𝑓 is surface runoff (mm), 𝐸𝑎 is evapotranspiration 

(mm), 𝑊𝑠𝑒𝑒𝑑 is penetration, 𝑄𝑔𝑤 is groundwater runoff (mm), and 𝑡 is time (day). 

For rainfall-runoff analysis, the SWAT model is structured into several sub-basins, each of 

which is further subdivided into Hydrologic Response Units (HRUs) based on different soil 

types, land use and topography. Each HRU independently simulates parts of the hydrological 

cycle, allowing a granular analysis of basin hydrology. This setup reflects the spatial 

heterogeneity within the basin and allows continuous simulation of hydrological processes over 

long time periods, enhancing the utility of the model for climate change studies. The model 

was calibrated and validated using R-SWAT for parameter optimization. R-SWAT incorporates 

the SUFI-2 algorithm, which is known for its rapid execution and precision in parameter 

optimization, ensuring accurate and reliable simulation results (Nguyen et al., 2022). In this 

study, the setup and evaluation of the SWAT model for the historical period were performed 

using observed data. The model was forced with observed meteorological data, and the 

parameters were calibrated and validated against historical daily dam inflow records for the 

period 1980-2023. 

 

2.5 General Circulation Models (GCMs) 

In this study, M1 to M20 GCMs from the CMIP6 suite that have been consistently used in 

studies for East Asia and Korea were selected for future runoff projection and hydrological 

drought analysis. The details of the development institutions, model names and resolutions of 

these 20 GCMs were presented in Table S2. 

The climate data from the GCMs were evaluated using daily observed climate data provided 

by the Korea Meteorological Administration (KMA). The evaluation used observed data from 

the past period (1985-2014) to evaluate the future climate data from the GCMs, which were 

analyzed for two future periods: the near future (NF) and the distance future (DF). The future 

climate change scenarios used were SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are 



divided into five pathways based on radiative forcing, reflecting different levels of future 

mitigation and adaptation efforts (O’Neill et al., 2016). The SSPs are numbered from SSP1 to 

SSP5, with SSP1 representing a sustainable green pathway and SSP5 representing fossil fuel 

driven development. The numbers 4.5 to 8.5 indicate the level of radiative forcing (4.5: 4.5 W 

m-2, 7.0: 7.0 W m-2 and 8.5: 8.5 W m-2). For the analysis of future changes, the calibrated 

SWAT model was then driven by bias-corrected future climate projection data from the 20 

GCMs under the three SSP scenarios. This approach ensures that the model's baseline 

performance is grounded in observational data, while the future analysis specifically assesses 

the uncertainties propagated from the climate projections and hydrological modeling choices. 

 

  



Comment 5: It is interesting that the uncertainty in the hydrological drought 

projection is lower than the runoff projection. Can the modelling (or a bit more 

analysis) shed some light? because of the lag/storage effect in runoff? because there 

is less uncertainty in the multi-year characteristics in the GCM simulation compared 

to the average rainfall? 

Response: 

This is a very interesting and accurate observation. The primary reason for the lower 

quantified uncertainty in hydrological drought projections lies in the fundamental 

difference between raw runoff and the Streamflow Drought Index (SDI). 

Monthly runoff is a direct physical quantity (m³/s) with high variability. In contrast, the 

SDI is a standardized statistical index derived from accumulating runoff over several 

months. This calculation process inherently smooths out the high-frequency fluctuations 

present in the monthly runoff data. As a result, the numerical range and variance of the 

SDI values are naturally smaller than those of the raw runoff. In the ANOVA, this lower 

total variance in the drought index directly leads to smaller calculated uncertainty 

contributions. This explains not only the difference in the percentage contributions but 

also why the overall pattern of uncertainty differs from that of the direct runoff analysis. 

Changes made: 

3.9.3 Uncertainty contribution of future hydrological drought 

The quantification of uncertainty in future hydrological drought was conducted using 

ANOVA. The uncertainty in future hydrological drought projections caused by SSP, GCM, 

and hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows 

the contribution of each factor to the total uncertainty. Among single-factor uncertainties, 

GCM contributed the most, averaging over 30%. The largest contributor to the total 

uncertainty, however, was the interaction between SSP and GCM, averaging over 50%. 

Fig. 7 and Table 8 present the contribution of hydrological modelling parameters to the 

uncertainty in future drought projections. The uncertainty contribution from hydrological 

model parameter estimation in future hydrological drought analysis averaged 2.7%, which is 

lower than that observed for future runoff projections. The uncertainty contribution from 

hydrological model calibration for future drought conditions was highest in HC, followed by 

CJ, AD, and SJ, respectively. These results differ from those obtained in the runoff 

projections. The contribution of uncertainty in hydrological drought analysis decreased for 



AD and SJ, where uncertainty in future runoff projection due to hydrological model 

calibration was relatively high. In contrast, HC showed high uncertainty contributions from 

hydrological model calibration in both runoff and drought analyses. Monthly runoff is a 

direct physical variable with high temporal volatility. In contrast, the SDI, used here to 

quantify hydrological drought, is a processed statistical indicator. It is calculated by 

accumulating and standardizing runoff over multi-month timescales. This integration process 

acts as a filter, effectively smoothing the high-frequency variability of the raw runoff series. 

Consequently, the absolute numerical fluctuation of the SDI is significantly smaller than that 

of the runoff itself. This reduced total variance in the drought index is the primary reason why 

the quantified uncertainty contributions appear lower and exhibit a different pattern compared 

to the runoff analysis. This highlights that while the underlying drivers of uncertainty are the 

same, their manifestation can differ depending on the temporal scale and the nature of the 

hydrological variable being analyzed. These findings confirm the necessity to separately 

analyze and consider uncertainties in future runoff projection and hydrological drought 

analysis. 

 

We believe that these revisions have thoroughly addressed the reviewer’s concerns and 

have substantially strengthened the manuscript. We look forward to your positive 

consideration of our revised work. 

Sincerely, 

Kim Jin Hyuck 

on behalf of all authors 

 


