Dear Francis Chiew,

Thank you very much for your time and for providing insightful feedback that has
significantly improved our manuscript. We appreciate the opportunity to revise our work
and have addressed all the points you raised. Below, we provide a point-by-point
response to your comments and detail the corresponding changes made in the revised

manuscript.

Comment

The paper presents a modelling analysis to quantify the uncertainty in runoff and
hydrological drought projections arising from model calibration considerations (dry/wet
and data length) and climate change projections (CMIP6 GCMs and different SSPs). The
modelling was carried out using the SWAT hydrological model for four catchments in

Korea.

This is an okay paper and is a useful addition to the literature. The paper is simplistically
and nicely written, and whilst the study could have delved into nuances, the analysis here

is probably sufficient for the interpretation and conclusions.

The results show that the uncertainty in the climate change (in particular rainfall, the
study could specifically note this, as | am sure the range in the GCM rainfall projection is
much higher than the range in the temperature or PET projection) projections is
considerably higher than the differences in hydrological modelling considerations,
confirming what have been reported in many studies. Nevertheless, whilst this is true
when considering the sensitivity of runoff to changes in the climate inputs, the
uncertainty in hydrological non-stationarity (changes in runoff-rainfall relationship,
catchment response under higher temperature, PET and CO2 not seen in the historical
data, as models are extrapolated to predict the future using parameter values obtained
calibration against historical data) which is not considered in these studies, could be
high.

A couple of technical queries/comments below:



Response:

We sincerely thank the reviewer for their time, thoughtful evaluation, and constructive
comments on our manuscript. We are grateful for the positive assessment that our paper

is a "useful addition to the literature” and is "simplistically and nicely written."

The reviewer accurately summarizes the core objective of our study. Regarding the
potential for delving into further nuances, our primary goal was to provide a clear and
direct comparison of the major uncertainty sources (hydrological model calibration
choices and climate change projections). We believe this focused approach provides a
clear and valuable contribution, and we are pleased that the reviewer found the analysis
sufficient for the interpretation and conclusions. We believe that by addressing these
points and the specific technical queries that follow, the manuscript has been

significantly improved. Our detailed point-by-point responses are provided below.



Comment 1: Some periods could be easier to model than others resulting in higher
KGE values. How is this considered in the paper? through cross-sampling or cross-

consideration of all possible combinations of calibration lengths in different periods?

Response:

We thank the reviewer for raising this important point, which touches upon a core
strength of our experimental design. We acknowledge that model performance can
indeed be sensitive to the specific characteristics of the validation period. To address
this, we implemented a rigorous validation protocol that goes beyond a simple split-

sample approach.

Instead of validating the model against a single, continuous block of remaining years, we
performed a year-by-year validation. For example, for a model calibrated using data from
years 1 to 5, we did not evaluate its performance on the entire 6-20 year period as a
whole. Instead, we calculated 15 separate, single-year KGE values for year 6, year 7, and

so on, up to year 20.

This meticulous approach ensures that the model's predictive skill is tested against a
wide spectrum of individual annual hydrological conditions (including various dry,
normal, and wet years), rather than being smoothed over a long-term average. By strictly
separating each validation year from the calibration data, we obtain a more robust and
unbiased assessment of how calibration period length and conditions affect the model's
ability to predict outcomes in diverse, non-overlapping future scenarios. This
methodology is central to our goal of quantifying the uncertainty that arises from these

choices.

Changes made:

3.2 SWAT parameter calibration

The simulated runoff data were analyzed for performance using the Kling-Gupta Efficiency
(KGE; Gupta et al., 2009). KGE was developed to overcome some limitations of the commonly
used Nash-Sutcliffe Efficiency (NSE) in performance analysis (Gupta et al., 2009). The
attributes of KGE include focusing on a few basic required properties of any model simulation:
(1) bias in the mean, (i1) bias in the variability, and (ii1) cross-correlation with the observational
data (measuring differences in hydrograph shape and timing). The parameter optimization of
SWAT was performed as shown in Fig. S. 2, considering the data length of the calibration
period from 1 to 20 years. A rigorous validation scheme was adopted to prevent bias from

specific period characteristics and to ensure a robust evaluation of predictive performance. For



any given calibration period, the validation was not performed on the entire remaining period
as a single dataset. Instead, we conducted a year-by-year validation, calculating a separate KGE
value for each individual year not included in the calibration set. For instance, if a model was
calibrated on years 1-5 from a 20-year record, 15 distinct single-year KGE values were
calculated for years 6 through 20. This approach strictly separates calibration and validation
datasets and ensures that model performance is assessed across a diverse range of annual

hydrological conditions, providing a robust foundation for the subsequent uncertainty analysis.

Following parameter optimization, KGE values as shown in Fig. 2 were found to be suitable
for conducting the study, with all four dam basins achieving values above 0.60. The
performance improvements are as follows: AD’s KGE increased from 0.55 before calibration
to 0.64 after calibration, CJ’s from 0.68 to 0.75, HC’s from 0.70 to 0.80, and SJ’s from 0.50 to
0.73. This improvement in KGE after calibration underscores the robustness of the

hydrological models used and their enhanced capability in projecting future runoff.



Comment 2: We know that models calibrated against dry period will simulate the
dry period better than if calibrated against wet period and vice-versa. Could we
speculate (or perhaps even extend this analysis) what parameters we should use
then to mode/project the future (e.g., wetter versus drier future)? That said, the
uncertainty quantification in the paper provides an indication of how much this

would matter, at least for the modelling and catchments here.

Response:

The reviewer raises a fundamental and critical question in hydrological modeling for non-
stationary futures. As our response to the previous comment highlights, our year-by-year
validation protocol (detailed in Fig. 4) thoroughly assesses how parameters calibrated
under specific conditions (e.g., Dry Flow) perform across a wide variety of individual years

(dry, normal, and wet).

This detailed analysis reinforces the conclusion that no single parameter set can be
deemed universally optimal for an uncertain future that may be wetter or drier.
Therefore, rather than attempting to select a single "best" parameter set, the focus of
our study was to embrace this very issue as a key source of uncertainty. Our primary
goal was to quantify the magnitude of uncertainty stemming from hydrological modeling
choices (such as calibration data length and hydrological conditions). Our findings
indicate that while the choice of calibrated parameters is important, its contribution to
the total uncertainty is secondary to that of the climate projections. This underscores the
importance of an ensemble-based approach for future projections, which incorporates a

range of plausible hydrological model parameterizations.

Changes made:

4. Discussion

This study quantified the cascade of uncertainties caused by various factors in the process of
projecting future runoff and analyzing future hydrological drought. Previous studies
(Chegwidden et al., 2019; Wang et al., 2020) have reported that climate data from GCMs and
SSP scenarios are the primary sources of uncertainty in future hydrological analysis. The
results of this study also identified GCMs as the major contributor to uncertainty in future
hydrological analysis. However, recent research has begun to identify and quantify the
cascade of uncertainties caused by factors beyond GCMs and SSP scenarios (Chen et al.,
2022; Shi et al., 2022). This study focused on the uncertainties inherent in the calibration of

hydrological models, which are essential for future water resource management. Rather than



seeking a single optimal parameter set, the central aim of this study was to quantify the

uncertainty that arises from this very choice.

There have been limited studies that consider the uncertainties in runoff projection due to
various calibrated parameter cases (Lee et al., 2021a). However, this study further subdivided
the observation data used in the calibration period of hydrological model parameters by the
amount of data and hydrological conditions to quantify the uncertainties more precisely. The
results showed that hydrological conditions had a greater impact than the amount of
calibration data period on the uncertainties in the calibration of hydrological model

parameters.

This study went beyond merely projecting future runoff by also quantifying the cascade of
uncertainties in the analysis of future hydrological drought using this runoff projection. Many
studies on future drought prediction reported that hydrological drought becomes more
complex and uncertain due to its association with human activities and the use of future
climate data and hydrological models (Ashrafi et al., 2020; Satoh et al., 2022). Most existing
studies on future hydrological drought analysis focused on the severity and frequency of
droughts. However, this study quantified the cascade of uncertainties that arise in the process
of future drought analysis. Although the contribution of hydrological model uncertainty to
future hydrological drought may be lower compared to future runoff projections, the
characteristics of uncertainty differ between drought and runoff projections, clearly indicating
the necessity to separately analyze and consider these uncertainties in future hydrological

analyses.



Comment 3: | suggest using blue (i.e., good) colour for Figure 4?

Response:

We thank the reviewer for the constructive suggestion. We agree that a more intuitive
color scheme would improve the readability of Figure 4. Accordingly, the figure has been
revised using a blue-to-red color scale to represent KGE performance more clearly, which

enhances the visual interpretation of the results.

Changes made:

Basins Hydrological conditions for validation period

Dry Normal Wet
AD 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
CJ 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
HC 20 20 20
19 19 19
18 18 18
17 17 17
16 16 16
15 15 15
14 14 14
13 13 13
12 12 12
11 11 11
10 10 10
9 9 9
8 8 8
7 7 7
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
=

e bt D

U G000 SR 10y 10005
e e it B

ot e e e i B

LS LSS N S la g (o sl alanTon) TSN TS [o phl (v siNaTasl

U TGN 08D O — N W N 00D




KGE

Low High

Figure. 4. KGEs classified by hydrological conditions for the calibration-validation period



Comment 4: | assume that the paper used the QQM bias corrected GCM data as
input into SWOT for both the historical and future periods. It may be worth having a
look at the historical modelled versus observed runoff. | suspect that the modelling
with bias-corrected GCM data will underestimate the observed runoff, as the GCM is
likely to underestimate the serial correlation (or multi-day wet rainfall totals) (e.g.,
Charles et al. and Potter et al. 2020 HESS papers). This however may not (or may)

matter when considering the relative differences in the runoff projections.

Response:

We appreciate the reviewer's insightful comment on the potential limitations of GCM
data. To clarify, a critical distinction in our methodology is the data used for different
stages of the analysis. The SWAT model calibration and validation for the historical
period were conducted exclusively using observed meteorological data and observed
dam inflow records, not GCM outputs. Our model's historical performance was thus

validated against actual observations.

The bias-corrected GCM data were used solely for the projection of future runoff. We
acknowledge that GCMs have inherent limitations, such as underestimating serial
correlations in rainfall, which is an important factor contributing to uncertainty in future
projections. In our study, this inherent uncertainty stemming from the GCM data itself is
precisely what is captured and quantified by the 'GCM' factor in our ANOVA. To prevent
any misunderstanding, we will explicitly clarify in the methodology section (Chapter 2)
that observed data were used for model calibration/validation, while bias-corrected GCM

data were used for future projections.

Changes made:

2.3 Soil and water assessment tool (SWAT)

The SWAT was used to calibrate hydrological processes in our study basin. The SWAT is
particularly adept at simulating runoff and other hydrological variables under a wide range of
environmental conditions and is a robust, physically based, semi-distributed model. Its
efficiency in modelling hydrological cycles within basins relies on simple input variables to
produce detailed hydrological outputs. The capability of this model has been effectively shown
in various studies, including those in South Korea (Kim et al., 2022; Song et al., 2022).

The core of the SWAT model is the water balance equation, which integrates daily weather data

with land surface parameters to calculate water storage changes over time:



SWy = SW, + Zf:O(Rday - qurf —E, — Wseep — ng) (D

where SW, is the initial soil moisture content (mm), SW; is the total soil moisture per day
(mm), Rgqy is precipitation (mm), Qgrr is surface runoff (mm), E, is evapotranspiration

(mm), Wseeq is penetration, Qg is groundwater runoff (mm), and ¢ is time (day).

For rainfall-runoff analysis, the SWAT model is structured into several sub-basins, each of
which is further subdivided into Hydrologic Response Units (HRUs) based on different soil
types, land use and topography. Each HRU independently simulates parts of the hydrological
cycle, allowing a granular analysis of basin hydrology. This setup reflects the spatial
heterogeneity within the basin and allows continuous simulation of hydrological processes over
long time periods, enhancing the utility of the model for climate change studies. The model
was calibrated and validated using R-SWAT for parameter optimization. R-SWAT incorporates
the SUFI-2 algorithm, which is known for its rapid execution and precision in parameter
optimization, ensuring accurate and reliable simulation results (Nguyen et al., 2022). In this
study, the setup and evaluation of the SWAT model for the historical period were performed
using observed data. The model was forced with observed meteorological data, and the
parameters were calibrated and validated against historical daily dam inflow records for the

period 1980-2023.

2.5 General Circulation Models (GCMs)

In this study, M1 to M20 GCMs from the CMIP6 suite that have been consistently used in
studies for East Asia and Korea were selected for future runoff projection and hydrological
drought analysis. The details of the development institutions, model names and resolutions of

these 20 GCMs were presented in Table S2.

The climate data from the GCMs were evaluated using daily observed climate data provided
by the Korea Meteorological Administration (KMA). The evaluation used observed data from
the past period (1985-2014) to evaluate the future climate data from the GCMs, which were
analyzed for two future periods: the near future (NF) and the distance future (DF). The future

climate change scenarios used were SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are



divided into five pathways based on radiative forcing, reflecting different levels of future
mitigation and adaptation efforts (O’Neill et al., 2016). The SSPs are numbered from SSP1 to
SSP5, with SSP1 representing a sustainable green pathway and SSPS5 representing fossil fuel
driven development. The numbers 4.5 to 8.5 indicate the level of radiative forcing (4.5: 4.5 W
m-2, 7.0: 7.0 W m-2 and 8.5: 8.5 W m-2). For the analysis of future changes, the calibrated
SWAT model was then driven by bias-corrected future climate projection data from the 20
GCMs under the three SSP scenarios. This approach ensures that the model's baseline
performance is grounded in observational data, while the future analysis specifically assesses

the uncertainties propagated from the climate projections and hydrological modeling choices.



Comment 5: It is interesting that the uncertainty in the hydrological drought
projection is lower than the runoff projection. Can the modelling (or a bit more
analysis) shed some light? because of the lag/storage effect in runoff? because there
is less uncertainty in the multi-year characteristics in the GCM simulation compared

to the average rainfall?

Response:
This is a very interesting and accurate observation. The primary reason for the lower
quantified uncertainty in hydrological drought projections lies in the fundamental

difference between raw runoff and the Streamflow Drought Index (SDI).

Monthly runoff is a direct physical quantity (m3/s) with high variability. In contrast, the
SDI is a standardized statistical index derived from accumulating runoff over several
months. This calculation process inherently smooths out the high-frequency fluctuations
present in the monthly runoff data. As a result, the numerical range and variance of the
SDI values are naturally smaller than those of the raw runoff. In the ANOVA, this lower
total variance in the drought index directly leads to smaller calculated uncertainty
contributions. This explains not only the difference in the percentage contributions but

also why the overall pattern of uncertainty differs from that of the direct runoff analysis.

Changes made:

3.9.3 Uncertainty contribution of future hydrological drought

The quantification of uncertainty in future hydrological drought was conducted using
ANOVA. The uncertainty in future hydrological drought projections caused by SSP, GCM,
and hydrological modelling parameters was clearly quantified by ANOVA. Fig S.10 shows
the contribution of each factor to the total uncertainty. Among single-factor uncertainties,
GCM contributed the most, averaging over 30%. The largest contributor to the total

uncertainty, however, was the interaction between SSP and GCM, averaging over 50%.

Fig. 7 and Table 8§ present the contribution of hydrological modelling parameters to the
uncertainty in future drought projections. The uncertainty contribution from hydrological
model parameter estimation in future hydrological drought analysis averaged 2.7%, which is
lower than that observed for future runoff projections. The uncertainty contribution from
hydrological model calibration for future drought conditions was highest in HC, followed by
CJ, AD, and SJ, respectively. These results differ from those obtained in the runoff

projections. The contribution of uncertainty in hydrological drought analysis decreased for



AD and SJ, where uncertainty in future runoff projection due to hydrological model
calibration was relatively high. In contrast, HC showed high uncertainty contributions from
hydrological model calibration in both runoff and drought analyses. Monthly runoff is a
direct physical variable with high temporal volatility. In contrast, the SDI, used here to
quantify hydrological drought, is a processed statistical indicator. It is calculated by
accumulating and standardizing runoff over multi-month timescales. This integration process
acts as a filter, effectively smoothing the high-frequency variability of the raw runoff series.
Consequently, the absolute numerical fluctuation of the SDI is significantly smaller than that
of the runoff itself. This reduced total variance in the drought index is the primary reason why
the quantified uncertainty contributions appear lower and exhibit a different pattern compared
to the runoft analysis. This highlights that while the underlying drivers of uncertainty are the
same, their manifestation can differ depending on the temporal scale and the nature of the
hydrological variable being analyzed. These findings confirm the necessity to separately
analyze and consider uncertainties in future runoff projection and hydrological drought

analysis.

We believe that these revisions have thoroughly addressed the reviewer’s concerns and
have substantially strengthened the manuscript. We look forward to your positive

consideration of our revised work.
Sincerely,

Kim Jin Hyuck

on behalf of all authors



