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Abstract 

Climate change is rapidly altering snow conditions worldwide and northern regions are experiencing particularly 

significant impacts. As these regions are experiencing warming faster than the global average, understanding snow 15 

distribution and its properties at both global and local scales is critical for effective water resource management and 

environmental protection. While satellite data and point measurements provide valuable information for snow research 

and models, they are often insufficient for capturing local-scale variability. To address this gap, we integrated UAV 

LiDAR with daily reference measurements, snow course measurements and a machine learning (ML) approach. By 

using ML clustering, we generated high-resolution (1 m) snow depth and snow water equivalent (SWE) maps for two 20 

study areas in northern Finland. Data was collected through four different field campaigns during the 2023–2024 

winter season. The results indicate that snow distribution in the study areas can be classified into three categories 

based on land cover: forested areas, transition zones with bushes, and open areas (namely peatlands), each showing 

different snow accumulation and ablation dynamics. Cluster-based modelled SWE values for the snow courses gave 

good overall accuracy, with RMSE values of 31–36 mm. Compared to snow course measurements, the cluster-based 25 

model approach enhances the spatial and temporal coverage of continuous SWE estimates, offering valuable insights 

into local snow patterns at the different sites. Our study highlights the influence of forests and forest gaps on snow 

accumulation and melt processes, emphasizing their role in shaping snow distribution patterns across different 

landscape types in the arctic boreal zone. The results improve boreal snow monitoring and water resource 

management, offer new tools and high-resolution spatiotemporal data for local stakeholders working with hydrological 30 

forecasting and climate adaptation and support satellite-based observations. 
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1 Introduction 

Snow is an important part of the hydrological cycle and is highly relevant for societies and ecosystems, especially in 35 

high latitudes and mountainous regions. Snow cover, timing and distribution directly influences climate energy budget 

through snow albedo (Callaghan et al., 2011; Li et al., 2018), ecosystems and habitats, including species and vegetation 

distribution (Thiebault & Young, 2020), biogeochemical processes in soils and seasonal ground frost (Ala-Aho et al., 

2021; Croghan et al., 2023; Jan & Painter, 2020). Additionally, snow resources have a major impact on catchment, 

river and groundwater budgets, and seasonal distribution (Meriö et al., 2019). Snow-covered areas are decreasing as 40 

global temperatures rise, leading to a consistent decline in snow water equivalent (SWE) (Colombo et al., 2022; 

Faquseh & Grossi, 2024; Kunkel et al., 2016; Räisänen, 2023; Y. Zhang & Ma, 2018). A recent study by Gottlieb & 

Mankin (2024) shows how March SWE has decreased in half of the Northern Hemisphere river basins over the past 

40 years with the highest decreases in the southwestern USA and western, central and northern Europe. The timing 

and amount of snowmelt, along with SWE in the melting period, are crucial for local water balance and flood 45 
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monitoring and regulation (Bavay et al., 2013; Callaghan et al., 2011; Wang et al., 2016). Changes in snow conditions 

and rising temperatures are causing earlier flood peaks in snowmelt-dominated catchments with a decline in 

streamflow later in the year (Berghuijs & Hale, 2025; Engelhardt et al., 2014; Matti et al., 2017). Snowmelt 

significantly influences near-surface hydrological effects (Muhic et al., 2023) and soil moisture in these regions 

(Okkonen et al., 2017).  50 

 

Snow models are an important part of water resource planning and prediction. These models provide estimations of 

snow related hydrological parameters for areas and times where ground observations are not available and can be used 

for creating various scenarios. However, for the accurate prediction of snow-water resources, snow models require 

high-resolution data as inputs, testing and validation. Satellite based remote sensing is still a rather  coarse tool and 55 

has limited accuracy with canopy cover (Muhuri et al., 2021; Rittger et al., 2020). For example, currently, the 

accuracy and spatiotemporal availability of SWE from microwave satellite missions is not sufficient for local 

scale water resource management planning (Tsang et al., 2022a). Gaffey & Bhardwaj (2020)concludes that as 

only a few satellite sensors provide resolution required to capture local variability with multispectral or infrared 

data, together with limited revisiting times, the usage of satellite products in snow research is still limited . 60 

Thus, ground-based manual measurements, which are then fed to operational models, are still conducted. The national 

snow course measurement network – a manual snow depth and density measurement protocol - provides important 

data for models and serves as a long-term historical dataset; however,  this is time-consuming, the accuracy varies 

(Beaudoin-Galaise & Jutras, 2022; Kuusisto, 1984; Mustonen, 1965), and temporal resolution is weeks to month. 

Thus, it is not ideal for capturing snow dynamics of individual events or important hydrological variables such as peak 65 

snow depth or melt-out dates (Malek et al., 2020).  

 

To bridge the knowledge and technical gap between remotely sensed and ground observations, uncrewed aerial 

vehicles (UAV) have been proven to be efficient in snow depth and SWE estimations, providing decent cost efficiency 

and accuracy (Adams et al., 2018; Niedzielski et al., 2018; Rauhala et al., 2023). Like satellite platforms, UAV systems 70 

can carry both optical and radar-based sensors and provide high resolution spatial information. Photogrammetry, 

including multispectraland stereo-imagery, can result in centimeter-scale accuracy in snow depth mapping over a 

catchment scale and is relatively low cost compared to radars like ground-penetrating radar (GPR) and light detection 

and ranging (LiDAR) (Maier et al., 2022; Nolan et al., 2015; Rauhala et al., 2023). Combining snow depth data from 

LiDAR and spectrometer sensors has also been used to model snow density on a weekly basis at the Airborne Snow 75 

Observatory (ASO) (Painter et al., 2016) Yet, photogrammetry-based products, like structure-from-motion (SfM), 

require suited light conditions and heterogeneous snow surfaces and are limited in penetrating dense vegetation covers. 

Thus, the decision between cost-effectiveness and accuracy is dependent on the site characteristics (Rauhala et al., 

2023; Rogers et al., 2020). Recently, LiDAR sensors have become more affordable, compact and lightweight. 

Technical advancements, such as improved inertial measurement units (IMUs) and global navigation satellite systems 80 

(GNSS), have enhanced their accuracy and performance, making LiDAR more cost-effective and competitive 

compared to UAV photogrammetry (Bhardwaj et al., 2016; Rogers et al., 2020). The UAV LiDAR technology 

potentially offers high accuracy over large spatial areas and allows catchment-scale mapping even under canopy cover, 

unaffected by overcast conditions or shadows (Dharmadasa et al., 2022; Harder et al., 2020; Jacobs et al., 2021; 

Mazzotti et al., 2019). LiDAR based snow depth data, when combined with models or density assumptions, can also 85 

be used to estimate the spatial distribution of SWE on a landscape scale, with decent cost-effectiveness (Broxton et 

al., 2019; Geissler et al., 2023).  

 

Snow conditions are mostly controlled by temperature and precipitation (Mudryk et al., 2020; Mudryk et al., 2017), 

and changes in global and local climate trends impact snow cover differently across regions. However, local snow 90 

accumulation is dependent on on-site characteristics, such as topography, vegetation, weather and wind patterns 

(Currier & Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest structure significantly affects snow accumulation 

(Mazzotti et al., 2023), and SWE values for forested areas appear significantly higher than in tundra and shrub tundra 

zones (Busseau et al., 2017; Dharmadasa et al., 2023). The effect of forest canopy on snow melt also depends on the 
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climate, because in cold regions, the snow lasts longer in forests, whereas in warm climates, it stays longer in forest 95 

openings (Lundquist et al., 2013). Additionally, snowpack characteristics are spatially different in forest gaps 

(Bouchard et al., 2022) and edges (Currier et al., 2022; Mazzotti et al., 2019). Vegetation changes, such as the 

northward retreat of the tree line, the densification of existing vegetation and the migration of new species towards 

the poles, will also affect snow dynamics; these effects are not yet fully known (Aakala et al., 2014; Franke et al., 

2017; Grace et al., 2002; Ropars & Boudreau, 2012). To enhance our understanding of snow processes in sub-arctic 100 

and boreal regions, we need improved tools and approaches, especially with localized high resolution spatial data.   

 

Even though annual changes in snow cover are dominated by weather conditions, different patterns of snow 

distribution and melting can be detected (Currier et al., 2022; Geissler et al., 2023; Matiu et al., 2021). These snow 

distribution patterns are site-specific and are dictated by local site characteristics, and, importantly, they can be 105 

extended to different years (Pflug & Lundquist, 2020; Sturm & Wagner, 2010). Yet, the approach of Pflug & 

Lundquist (2020) would require several years of snow depth maps from the regions, which is not always feasible. 

Revuelto et al. (2020) successfully modeled daily snow depth maps using in-situ measurements and time-lapse 

photographs, and field data collected from two winters was estimated to be enough for the random forest model to 

estimate snow depth for other years. Repetitive UAV surveys over winter seasons can provide spatial information on 110 

snow cover, helping the identification of factors affecting snow distribution. Different machine learning approaches 

have shown promising results in snow depth and SWE mapping for different regions (J. Zhang et al., 2021), as they 

can reduce biases and enhance overall accuracy (King et al., 2020; Vafakhah et al., 2022). ClustSnow, a ML 

framework based on kMeans and random forest clustering, first presented in Geissler et al. 2023, allows the 

determination of snow patterns (referred to as clusters) from repetitive spatial snow depth maps only. These clusters 115 

can not only characterize areas with similar seasonal snow dynamics, but also serve as a temporally persistent 

extrapolation basis (Geissler et al. 2024) of local field observations or sensor measurements, enabling  the creation of 

daily spatial snow depth and SWE maps of entire winter seasons with accuracies in the same magnitudes as the 

underlying data or modern snow models. However, ClustSnow requires a network of sensors that is not feasible for 

many sites and was yet only tested on very small sites (0.22 km²) within central Europe. So far, the ClustSnow 120 

framework has, however, not been tested within sub-arctic and boreal regions. (Meloche et al., 2022; Revuelto et al., 

2020)(Geissler et al., 2023) 

 

Our study produces daily spatial snow depth and SWE estimates in different sites based on a combination of LiDAR-

based snow depth maps, snow course measurements, and continuous snow depth measurements. The field data was 125 

collected during winter 2023-24 from two different sites in Finnish Lapland, each with long-term monitoring 

infrastructure and existing snow course measurements, representing different vegetational and topographical 

conditions typical for boreal and sub-arctic landscapes. The study applies ClustSnow workflow (Geissler et al., 2023, 

2024), a ML model based on spatially similar snow depth zones, to novel data and regions with different climatic and 

environmental conditions. To our knowledge, this method has not yet been used in boreal and sub-arctic areas but has 130 

proven to be a promising approach in the Alpine conditions. In comparison to the original study by Geissler et al. 

(2023) this study applies the model with fewer ultrasonic sensors and LiDAR surveys, with new climate and larger 

study areas. We also examine the ability of the UAV LiDAR to map snow depth in forested boreal and subarctic areas 

in northern Finland and discuss how machine learning-derived snow depth clusters and properties could be used to 

improve SWE estimates in our study areas with considerably better spatial and temporal resolution compared to 135 

traditional operational snow course measurements.  
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2 Data and methods 

2.1 Study areas 

Two study areas were chosen to present different environmental conditions for Finnish Lapland and sub-arctic and 140 

boreal zones, namely Pallas (Fig. 1a) and Sodankylä (Fig. 1b). Both sites have on-going snow course measurements 

operated by the Finnish Environment Institute (SYKE), at least one ultrasonic snow depth sensor together with weather 

station operated by the Finnish Meteorological institute (FMI). Data collected by SYKE and FMI is publicly available 

(Sect. 2.2.4).  

 145 

Pallas (67∘ 59’ N, 24∘ 14’ E) is the northernmost of the study sites and is located the highest from sea level. The land 

cover is mostly coniferous forests (63%), with mires and mixed forests (Table 1). It has higher average snow depths 

compared to Sodankylä. Sodankylä is located in the middle part of Lapland (67° 21' N, 26° 37' E), the land cover is 

mainly mire (63%), and the elevation range is low (Table 1). The Sodankylä site is part of the FMI research station, 

which has daily weather observations starting from 1908 (The Finnish meteorological institute, 2025).  150 

 

Table 1. Meteorological and landscape characteristics for Pallas and Sodankylä. 

 Pallas Sodankylä Data source 

Elevation range (m) 267-350 178-183 NLS  

Mean annual air temperature (°C) 2008-2024 0.5 0.9 FMI 

Mean annual total precipitation (mm) 

2008-2024 

644 553 FMI 

Average snow depth Nov-May (cm)  

2008-2024 

65 48 FMI 

Average winter wind direction Nov-Apr (°) 199 182 FMI 

Lidar extent (km²) 0.8 1.1  

Land cover (%): deciduous 0.1 0.1 SYKE Corine land cover 2018 

coniferous 62.7 27.0  

Mixed 14.9 3.7  

Mire 17.2 62.7  

canopy closure <30 % 3.5 4.1  

Data sources: FMI (2025), SYKE (2018), National Land Survey of Finland (NLS) (2020). 

 

 155 

Figure 1. The location and maps of study sites (a) Sodankylä  and (b) Pallas. The gray area represent UAV-flight areas, and 

the black points mark the manual snow sampling locations of the snow courses. Orthophoto were obtained from the 

National Land Survey of Finland. 



5 

 

2.2 Field measurements 

In our field campaigns, one snow-off and four snow-on LiDAR surveys were conducted in both sites during the winter 160 

of 2023-2024. Snow-on campaigns were carried out at the beginning of January, the end of March, the end of April, 

and the beginning of May, whereas the snow-off campaigns were conducted on May 30th for Sodankylä and June 7th 

for Pallas, just after snow melting and before the new vegetation growth season. The aim was to capture the snowpack 

in its different winter stages (i) new snowpack, ii) maximum snowpack, and iii) late, melting snowpack) to distinguish 

areas in each site with similar snow patterns and variability (Fig. 2). During winter 2023-2024, the snow depths were 165 

above the average in Pallas and Sodankylä. At both sites, snow ablation started in March 2024, interrupted by some 

major snowfall events in April 2024 (Fig. S4, supplementary materials). 

 
Figure 2. Snow depths from each site's FMI stations. Sodankylä (a), and Pallas (b). Dark dashed lines represent the UAV 

campaign dates from the winter of 2023-2024. The red line represents the long-term average snow depth (2005-2024) and 170 

blue lines the daily snow depths of this study’s winter season 2023-2024. 

2.2.1 UAV LiDAR surveys 

UAV LiDAR mapping was performed at Sodankylä and Pallas using YellowScan Mapper+ (YellowScan, France), 

equipped with an Applanix APX-15 inertial measurement unit and mounted on a DJI Matrice 300 RTK (DJI, 

Shenzhen, China). The scanner operated with a 70.4° scanning angle and a 240 kHz pulse repetition frequency, with 175 

both sites scanned at a cruising speed of 7 m/s, an altitude of 80 m above ground level, and a 70% overlap between 

flight lines (Table S1. appendices).  Trajectory correction was carried out in Applanix POSPac software using 

continuously operating reference station (CORS) observations from the National Land Survey of Finland CORS 

network as the reference data. For more details on the LiDAR system and flight parameters, see Supplementary 

materials (Table S1, appendices). 180 
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We compared the accuracy of the digital terrain models (DTMs) between different data processing methods, using 

five GCPs (ground control points) as a reference. In Yellowscan CloudStation, we tested two gridding strategies for 

DTM generation — MinZ, which uses the minimum elevation value within each grid cell, and MeanZ, which averages 

the elevation of all ground points for each cell. We also compared the accuracy of the DTMs between different data 185 

processing methods, using 5 GCP (ground control point) as a reference. The 5 GCP plates were distributed across the 

study areas during each campaign and geolocated with RTK GNSS devices, Emlid RS2+ (Hungary) or Trimble GNSS 

system R12i (USA), which report 7-8mm horizontal and 14-15mm vertical RTK accuracies. Best results were obtained 

when processing the point clouds with the MinZ method, which was therefore used for the determination of DTMs 

from the point clouds.  190 

2.2.3 Manual snow measurements 

Manual snow depth and density measurements were conducted within six hours, after the completion of the UAV 

campaigns. Snow course measurements were carried out following the SYKE snow survey protocol (Kuusisto, 1984; 

Mustonen, 1965). (Kuusisto, 1984; Mustonen, 1965)Snow depth was measured every 50 m and density every 200 m 

along the snow course transect in Pallas (Fig. 1a). In Sodankylä, where the snow course is longer (4 km), SWE was 195 

measured at eight different sites along the snow course. These measurement locataions were selected to represent 

different terrain types present in the study site (Fig. 1b). Snow measurement points were geolocated using RTK GNSS 

Emlid RS2+ (Hungary) and Trimble GNSS system R12i (USA). In Pallas, snow depth was measured using fixed poles 

installed in the field, whereas in Sodankylä, measurements were taken manually with a wooden snow probe at 

predefined GPS-marked locations. Obtained data was used as validation data for modelled maps.2.2.4 Automatic 200 

daily snow depth measurements  

Sodankylä is equipped with three ultrasonic sensors (Campbell Scientific SR50) providing daily snow depth 

recordings (Fig. 1b). The sensors are operated by FMI and the data is open access (https://litdb.fmi.fi/index.php). 

Sensors are in open peatland (N67°22.024', E26°39.070'), pine forest opening (N67°21.706', E26°38.031') and inside 

sparse pine forest (N67°21.699', E26°38.051'). Pallas has one ultrasonic sensor (Campbell Scientific SR50) providing 205 

daily snow depth data. This sensor is located in Kenttärova (Fig. 1a) and is also operated by FMI 

(https://en.ilmatieteenlaitos.fi/download-observations). The sensor is located in the spruce forest in the upper part of 

the study area (N67°59.237', E24°14.579'). 

2.2.5 Associating manual snow course measurements with automatic snow depth sensors 

Manual snow depth measurements from snow courses were linearly interpolated to estimate snow depths between 210 

measurement dates. To improve the accuracy of these estimates, the interpolated values were adjusted using daily 

snow depth changes recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course measurement point, 

the interpolated snow depth was corrected by adding the daily change observed at the representative snow depth 

sensor. Unlike Pallas, where one reference sensor is available, Sodankylä has multiple ultrasonic snow depth sensors 

distributed across different environments, allowing more representative corrections. Each snow course measurement 215 

point is assigned to one of these environmental categories, ensuring that the most appropriate sensor was used for 

correction. If the corrected snow depth estimate resulted in a negative value, it was set to zero. 

2.3 Data analysis   

2.3.1 LiDAR data processing 

LiDAR data from each campaign was pre-processed using CloudStation software. As part of this process, we 220 

performed strip alignment of the flight lines to generate an accurately georeferenced point cloud. To classify points 

belonging to the ground, we applied the following parameters: steepness (which reflects terrain variation) was set to 

0.2, the minimum object height (the vertical threshold above which an object is not considered part of the ground) was 
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set to 0.03 m, and point cloud thickness was set to 0.15 m. Multiple combinations of parameters—such as minimum 

object height and slope tolerance — were tested and visually evaluated against field observations and GCPs. The final 225 

configuration effectively minimized misclassification and produced the most accurate and realistic DTMs for our 

boreal study area. The same parameter set was applied consistently across all campaigns, including both bare-ground 

and snow-covered conditions. Although snow accumulation can smooth terrain features and influence classification 

(e.g., reducing local slope), the selected settings yielded stable and reliable results across all conditions. 

Following classification, we generated DTMs with a 10 cm spatial resolution. MinZ method based DTM showed 230 

better correspondence with the GCP plates (Sect. 2.2.1) and was used in the following analysis. The DTMs generated 

using this method for the May campaign in Sodankylä showed lower accuracy compared to those produced by other 

methods. Nevertheless, as the DTMs from the other campaigns and sites were the most accurate when processed with 

CloudStation, we chose to apply the same method consistently across all sites and campaigns, accepting the reduced 

accuracy for May. In addition, for each campaign, the point cloud data shows increments along the trajectory line 235 

borders of approximately 1-5 cm. The uplifts are presumably due to poorer georeferencing of points at the trajectory 

edges and presumably overlapping points from the two trajectories can cause abnormal surfaces in DTMs. We tried 

to clean up the data from overlapping points, but the overall accuracy of the DTM was degraded, so we chose to accept 

the inaccuracies in the UAV flight trajectory edge regions. 

 240 

Further DTM processing was conducted using ArcGis Pro 3.2.0. The snow depth rasters were generated by calculating 

the difference between the snow-on and the snow-off DTMs and resampled to 1m resolution. Snow depth values 

falling outside a reasonable range (< -0.5 m; > 2 m) were set to zero to remove extreme outliers, while minor negative 

values close to zero were corrected to zero (-0.5 m – 0 m). Missing values were filled by calculating the median value 

from surrounding cells, using the median of the 5x5 neighboring cells. The data was clipped to the area of interest 245 

(AOI), focusing the analysis on the buffer zone of 150 m around the snow courses. The 4 DTMs were then stacked 

together to be used as an input for the model (Chapter 2.3.2). 

 

The error metrics were calculated using the 5 GCPs distributed in the study areas to compare their accuracy to the 

derived DTMs following the suggestion of Rauhala et al. (2023). To estimate the uncertainty of generated DTMs, the 250 

difference between UAV DTMs and RTK measured GCP elevation (Δz) was calculated following Equation 1:  

𝛥𝑧𝑡 = 𝐷𝑆𝑀𝑠𝑡 − 𝑧𝐺𝐶𝑃𝑡,    (Eq 1) 

 

where t is the date of survey, DTMS is the snow surface elevation from the UAV survey, and zGCP is the GCP elevation 

measured with RTK. 255 

 

When the snow depth rasters are derived from two DTMs, their precision was estimated following Equation 2: 

𝒖 =  √𝜎(Δ𝑧𝑡)² +  𝜎(Δ𝑧𝐺)²,    (Eq 2) 

where 𝜎(Δ𝑧𝑡  ) is the standard deviation for the difference between UAV DTM and RTK measured GCP elevation Δ𝑧 

for every winter campaign and 𝜎(Δ𝑧𝐺) is the standard deviation for the difference between UAV DTM and RTK 260 

measured GCP elevation Δ𝑧 for the bare-ground campaign.  

To estimate the trueness of the calculated snow depth rasters, error propagation for the mean error of snow-on and 

bare-ground DTMs was calculated. It is calculated by finding the average of the differences between the UAV DTMs 

and the GCP elevations, following Equation 3: 

𝒎 =  𝜇(Δ𝑧𝑡) − 𝜇(Δ𝑧𝐺),     (Eq 3) 265 
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where 𝜇(Δ𝑧𝑡) is the mean error for the difference between each snow-on campaign DTMs and GCPs, and 𝜇(Δ𝑧𝐺) is 

the mean error for the difference between bare-ground campaign DTMs and GCPs. 

2.3.2 Application of ClustSnow to LiDAR data sets 

We applied the ClustSnow workflow first presented in Geissler et al. 2023 to our dataset. All analyses were performed 

using R Statistical Software (v.4.3.0, R Core Team, 2023). To obtain clusters, ClustSnow applies the k-means 270 

(Hartigan & Wong, 1979) and random forest (Breiman, 2001) algorithms to a stack of snow depth (SD) rasters. 

Consequently, obtained clusters only rely on multitemporal snow observations and do not contain information on the 

canopy or topography. As a first step, the k-Means algorithm groups a small subsample of cells based on their 

similarity in observed snow depths to a user-defined number of clusters. Secondly, these sub-sampled and clustered 

points are used to train a random forest model that, as a last step, is used to predict the probabilities (w) of all grid 275 

cells (ij) to belong to the individual clusters (c). Hereafter, we refer to the ClustSnow output as cluster probabilities 

(wij,c) and the map containing the cluster numbers for each cell with the highest predicted probability is referred to as 

cluster map. Cluster numbers are ordered based on the mean snow depth of the underlying SD raster stack to allow an 

easier interpretation and comparability. Therefore, the cluster number one is assigned to the cluster with the highest 

mean snow depth and increases with mean snow depth until the user-defined number of clusters is reached.  280 

2.3.3 Creating daily SD and SWE maps 

Cluster probabilities at the snow course measurement locations (ij=s) (ws,c), which are assigned by normalizing, so 

that they sum to one in each cluster according to Equation 4: 

 

𝑤𝑠,𝑐̂ =  
𝑤𝑠,𝑐

∑
𝑠

(𝑤𝑠,𝑐)
     (Eq. 4) 285 

 

The synthetic daily snow depths for each cluster 𝑆𝐷𝑐 (𝑡) are calculated by multiplying the normalized probabilities by 

the snow depth values of the corresponding snow course measurements and summing them for each cluster according 

to Equation 5: 

 290 

𝑆𝐷𝑐 (𝑡) = 𝑤𝑠,𝑐̂ ⋅ 𝑆𝐷𝑠(𝑡)   (Eq. 5) 

 

The synthetic snow depth  maps 𝑆𝐷 𝑖𝑗(𝑡) are generated by combining synthetic daily snow depth data (𝑆𝐷𝑐 (𝑡)) with 

cluster probabilities wij,c  and multiplying it with the time series data of that cluster (𝑆𝐷𝑐 (𝑡)) according to Equation 6: 

 295 

𝑆𝐷 𝑖𝑗(𝑡)  =
∑
𝑐

 (𝑤𝑖𝑗,𝑐  ⋅ 𝑆𝐷𝑐(𝑡))   (Eq. 6) 

 

The synthetic daily snow depth data for clusters was converted into SWE using semi-empiric Δsnow model (Winkler 

et al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or 

scaling modules, and each module is activated depending on the change of snow depth between time steps. The model 300 

has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023)  suggested that two of them are significantly 

related to the site-specific climate variables. These two key parameters are maximum density of a snow layer (ρmax) 

and new snow density (ρ0). Only Sodankylä has snow measurements allowing the determination of ρ0. In other sites 

the model was run with the values of ρ0 and ρmax provided by Fontrodona-Bach et al. (2023). The rest of the 7 

parameters were kept as default on Winkler et al. (2021).  305 

The daily SWE maps 𝑆𝑊𝐸𝑖𝑗(𝑡) are calculated using the synthetic snow depth data 𝑆𝐷𝑐 (𝑡)  as an input for the model 

and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using 

Equation 7: 
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𝑆𝑊𝐸𝑖𝑗(𝑡) =
∑
𝑐

 (𝑊𝑖𝑗,𝑐  ×  𝑆𝑊𝐸𝑐(𝑡))  (Eq. 7) 310 

2.3.4 Model calibration and sensitivity 

ClustSnow requires a set of parameters to be defined by the user. Most of these parameters showed no sensitivity in 

the calibration performed in Geissler et al. (2024). The only and most sensitive parameter of ClustSnow is the number 

of the clusters (n_class) parameter. Different indices were tested to guide this decision using the NbClust R package 

(v3.0.1; Charrad et al., 2014). For Sodankylä and Pallas these indices suggested an optimal number between one and 315 

eight. Besides these indices, we performed a full sensitivity analysis of the ClustSnow workflow following Geissler 

et al. 2024. Therefore, all model parameters are varied within reasonable ranges and the model was run 1000 times 

with randomly chosen parameter combinations. The snow products of all model runs are evaluated against manual 

measurements to obtain mean and variance of different goodness-of-fit metrics (RMSE, MAE, R). The results of the 

sensitivity analysis performed are presented in the supplementary material (Fig. S1, see appendices). 320 

Based on these results, and the low sensitivities of all parameters, parameter values suggested by Geissler et al. 2023 

were used, with the exception for the number of cluster (n_class). For comparability and because of the relatively low 

topographical variation in our sites, we selected n_class to be three in this study for both sites. This number is lower 

compared to the four clusters obtained in Geissler et al. 2023 and Geissler et al. 2024, but allows an easier comparison 

with topographic or vegetation. Yet, to allow a better discussion of the effect of this key parameter on the results, we 325 

rerun our analysis with n_class set to the optimum of six, obtained in the sensitivity analysis performed here for 

comparisons (See Section 3.3.2). 

3 Results 

3.1 The accuracy of UAV based LiDAR for mapping snow depth in boreal and sub-arctic zones  

At all study sites, the snow depth measured from snow courses increased until March, after which it starts to decrease 330 

due to spring melting (Table 2). Snow depth variation increased during the melting season, but in the April and May 

campaigns, the variability stabilized as snow had already melted in most areas. The uncertainty of the derived DTMs 

were studied by comparing GCP points to the UAV DTMs (Sect. 2.2.1). The difference between UAV LiDAR snow 

depth maps and RTK measured GCP (Eq. 1) resulted in varying accuracies between sites and campaigns and their 

RMSEs can be seen in Table 3. Weather conditions as well as the accuracy of RTK signals might cause differences 335 

not directly related to the UAV LiDAR. 

Table 2. Mean snow depth and SWE values and their standard deviations from manual snow course measurements in 

different campaigns and sites in winter 2023-2024. 

 

 340 

Site Campaign Mean snow depth (cm) Standard deviation n Mean SWE (mm) Standard deviation n 

Pallas January  73.8 4.2 45 125.9 26.9 12 

Pallas Macrh  98.2 6.3 45 234.5 22.2 11 

Pallas April  95.2 11.6 45 239.7 31.6 12 

Pallas May  46.1 12.3 38 148.9 38.1 11 

Sodankylä January  54.0 5.8 81 90.6 11.8 10 

Sodankylä March  62.1 9.4 81 141.5 25.8 10 

Sodankylä April  46.5 19.3 68 137.9 53.7 6 

Sodankylä May  22.8 6.4 20 94.2 28.7 4 
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Table 3. The RMSE of the differences between GCP plates and DTMs and the precision and trueness of snow depth maps 

derived from DTMs in different campaigns and sites (Eq.1; Eq.2; Eq.3). 

Metrics Campaign Sodankylä (cm) Pallas (cm) 

RMSE (Eq. 1) 

January 3.1 6.8 

March 6.5 1.2 

April 5.3 3.8 

May 22.8 7.1 

June 2.4 5.1 

All 11.2 5.3 

Precision (Eq. 2) 

January 6.6 8.8 

March 4.5 4.7 

April 3.9 6.1 

May 20.8 6.3 

Mean 8.8 6.5 

Trueness (Eq. 3) 

January 2.7 3.3 

March 5.1 3.2 

April 0.9 3.3 

May 13.2 6.7 

Mean 5.3 4.1 

 

Table 3 also summarizes the precision of snow depth maps from standard deviations for each site calculated by 

Equation 2. The precision of the snow depth maps in Sodankylä was stable during the winter campaigns, performing 345 

best in April (4.5 cm), but had an uncertainty of 20.8 cm in May. In Pallas the precision ranged from 4.7 cm in March 

to 8.8 cm in January. The error propagation for mean error, meaning the trueness of snow depth maps calculated by 

Equation 3 are also concluded in Table 3. In Sodankylä, the trueness was the best in April (0.9 cm), decreasing in May 

up to 13.2 cm, mostly caused by the computation of DTM with flooding of the mire areas. Pallas also had the highest 

trueness in the beginning of winter with relatively stable accuracies through the winter, ranging from 3.2 cm-3.3 cm 350 

in January-April and decreasing in May to 6.7 cm. During the main melting season, localised open water and flooding 

areas especially in open peatland, cause laser beams to reflect differently in comparison to snow or ground surfaces, 

which can lead to uncertainties especially when using the minimal elevation derived products. This can therefore affect 

the quality of May DTMs making them poorer in comparison to other months. 

3.2 Cluster characteristics show similarities between sites 355 

The characteristics of clusters derived using ClustSnow and their associated snow conditions at each site were 

analyzed by grouping snow course measurements and environmental data according to their respective cluster 

classifications.  

3.2.1 Cluster characteristics at Sodankylä  

Cluster 1 covers 21% of the total Sodankylä area, typically located in forests or pine mires (Fig. 3). It has an average 360 

canopy height of 4.6 m and is located typically less than a meter away from forests (Table 4). This cluster has the 

highest average modelled snow depth and SWE through the winter. According to the ClustSnow-derived snow 

products, peak snow depth occurs at 14.3.2024 at 75 cm and peak SWE at 23.4.2024 at 164 mm (Table 4). The ablation 

started after the peak but snow depth increased again at the end of April due to heavy snowfall events, decreasing 

rapidly afterwards. From snow course measurements, the points classified to this cluster show their snow depth peak 365 

on 26.3.2024 with an average of 72.5 cm snow depth (Fig. S2, supplementary material). None of the 7 SWE 

measurement points of the snow course were classified to this cluster (Fig. 3). 
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Figure 3. Sodankylä site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 370 

zones in relation to their canopy height and land cover. 

Table 4. Cluster characteristics in relation to the entire study area of both sites 

Site Sodankylä Pallas 

Cluster 1 2 3 1 2 3 

Frequency % 21 45 34 32 42 26 

Mineral soil (forests) % 29 25 6 78 58 55 

Grove mire (korpi) % 3 2 1 2 4 2 

Pine mire (räme) % 49 19 5 17 18 9 

Open mire (avosuo) % 20 54 87 3 20 33 

CHM (m) mean 4.6 4.7 1.8 4.3 6.2 7.5 

Distance to forest (m) mean 1 3 14 1 2 7.5 

Max modelled snow depth (cm) 75 70 59 111 106 103 

Max modelled SWE (mm) 164 147 114 267 247 234 

 

Cluster 2 is the most common, covering 45% of the total area, and is primarily located in the transition zone between 

forest and open areas, including forest gaps, mire edges, and forest-mire boundaries (Fig. 3). This cluster has a mean 375 

canopy height of 4.7 m and is on average 3 meters away from cells classified as forests (Table 4). The modelled peak 

snow depth occured on 14.3.2024 (70 cm) and SWE on 23.4.2024 at 147 mm (Table 4). Snow course measurements 

that are classified as cluster 2 have their snow depth peaking on 15.3.2024 with an average of 67 cm, and SWE on 

24.4.2024, with an average of 166 mm (Fig. S2, supplementary material). 

 380 
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Cluster 3 predominantly occurs in open areas with a low canopy height, with 87% of the area classified as open mire. 

This cluster consistently exhibits the lowest snow depths and SWE values compared to the others (Fig. S2, 

supplementary material). The highest modelled snow depth and SWE values for cluster 3 are at the same time as for 

other clusters, snow depth peaking on 14.3.2024 (59 cm) and 23.4.2024 (114 mm). The snow course snow depths and 

SWE from cluster 3 both peaked on 15.3.2024 with an average snow depth of 57 cm and SWE of 138 mm. 385 

3.2.2 Pallas snow depth and SWE clusters 

In Pallas, the three clusters derived from snow depth maps show similar characteristics to those in Sodankylä (Table 

4). The more common cluster 2 covers 42% of the study area, with cluster 1 covering 32% and cluster 3, asthe smallest, 

covering 26% of the area. The snow depth in the Pallas snow course began to decrease as early as late February across 

all clusters (Fig. S3, supplementary material). This decline was less pronounced in points classified as cluster 1 390 

compared to the other two clusters. However, the timing of peak SWE, marking the onset of snowmelt, was later in 

the spring compared with snow depth and varied among the clusters.  

 

Cluster 1 is predominantly located in the forested areas, which accounts for 78% of the cluster, while the open areas 

cover only 3% (Table 4). The mean canopy height is approximately 4.3m and the distance to the forest cells is less 395 

than 1m, which is less than in other groups, suggesting smaller and denser forest types. Until January, the modelled 

snow depths for cluster 1 followed similar snow depths to the other clusters, but after February they surpassed those 

of other clusters and remain the highest until the end of the season (Fig. S2, supplementary material). Changes in the 

snow depths between February and March were small, with occasional fluctuations. The modelled snow depth of 

cluster 1 peaked on 28.3.2024 (111 cm) and the SWE peaks on 10.5.2024 with SWE of 267 mm. Snow measurements 400 

from the snow course show that points classified to this cluster had their peaks in snow depth on 22.2.2024 and 

25.4.2024 with both having an average snow depth of 102 cm and SWE on 25.4.2024 with 265 mm.  

 

Cluster 2, identified as a transition zone, is typically located near forest edges, forest openings and small-scale open 

mire areas (Fig. 4). Forested areas cover 58% of the cluster, while open mire areas contribute 20%. The mean canopy 405 

height is approximately 6m with a 2.2m distance from the forest edges (Table 4). The snow depth patterns for this 

cluster align with those of other clusters until late February, after which the snow depths in cluster 2 started to decrease. 

The modelled snow depth peaked in mid-March on 18.3.2024 with 106 cm, but also on 17.2.2024 with 105 cm. The 

modelled SWE peaked later, on 28.4.204 at 247 mm and on 10.5.2024 with a SWE of 248 mm. The results are similar 

to the manual snow course measurements, where points classified to this cluster had their snow depth peak on 410 

22.2.2024 (101 cm). However, snow course SWE peaked twice, having an average of 227 mm on 27.3.2024 and 233 

mm on 25.4.2024. 

 

Cluster 3 covers 26% of the Pallas area and is marked by a mixture of forest (55%) and open mire (33%) environments 

(Fig. 4). It has the greatest distance from forest cells and the tallest mean canopy height of 7.5 m (Table 4). This cluster 415 

is typically found in open mires or high canopy forests. Modelled snow depths in cluster 3 were initially the highest 

at the start of the season but exhibited a lower rate of increase compared to the other clusters after January and 

remained the lowest throughout the rest of the season (Fig. S3, supplementary material). The peak modelled snow 

depth, 103 cm, occurred in late February, 17.2.2024, after which the snow depth steadily declined. The modelled SWE 

peak was at the same time as for cluster 2, on 28.4.2024 (237 mm). Snow course snow depth measurements were the 420 

highest on 22.2.2024 with an average of 96 cm. SWE measurements from the snow course within this cluster are 

limited, with only five measurements taken during the melting period in late April and early May. During this period, 

SWE values were initially low but peaked at 186 mm on 7.5.2024 (Fig. S3, supplementary material).  
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Figure 4. Pallas site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 425 

zones in relation to their vegetation. 

3.2.4 UAV accuracy in comparison to clusters 

To evaluate the accuracy of LiDAR-UAV snow depth by cluster in relation to the representativeness of reference 

snow depth sensors, SD measurements taken during the snow course were assigned to their representative cluster. 

When comparing the UAV-based LiDAR SD maps and manual snow course SD measurements, the LiDAR maps 430 

consistently underestimate the snow course measurements in both Pallas and Sodankylä (Fig. 5a, 5b). In Sodankylä, 

all snow course measurement campaigns show similar correspondence to the LiDAR snow depth maps and variations 

among clusters are similar, showing consistent agreement with snow course measurements (Fig. 5a).  In Pallas the 

snow course measurements classified as cluster 1 correspond the best to the LiDAR snow depth maps, while the largest 

discrepancies are observed in cluster 3, typically located in wet mire areas (Fig. 5b).  The accuracy of UAV LiDAR 435 

maps decreases towards the melting season, where, especially in Pallas, the SD estimates are on average up to -30 cm 

of the snow course measurements. 

 



14 

 

 
Figure 5. Differences in 𝜟𝒛𝒕(cm) between the UAV-based LiDAR snow depths and snow course measurements by each 440 

campaign and representative cluster in (a) Sodankylä and (b) Pallas. 

Snow course measurements and the UAV-based LiDAR snow depth maps for each campaign were compared with the 

reference snow depth sensor measurements of the study area (Fig. 1; Fig. 2) to define the overall representativeness 

of the measurements and clusters. In Sodankylä, all the aforementioned datasets follow similar patterns: Clusters had 

similar mean snow depths as the sensors and were within the ranges of snow course measurements (Fig. 6a), except 445 

in May, when the snow course snow depths did not match UAV LiDAR nor the sensor snow depths. The highest snow 

depths were in forested cluster, and the reference sensor located in the forest opening. In Pallas, the UAV LiDAR 

snow depth maps underestimate the snow height in relation to both snow course measurements and reference snow 

measurement (Fig. 6b). Cluster 1 has the highest correspondence to the snow course and reference sensor compared 

to the areas classified as other clusters.   450 
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Figure 6. Reference sensor snow depths compared to UAV LiDAR snow depths by cluster in Sodankylä (a) and Pallas (b) 

in each campaign. Dashed lines are the mean values of snow depths at each cluster. 

3.3 Model validation  455 

3.3.1 Comparison of modelling results to snow course data 

The model creates daily snow depth and SWE estimates for the two study sites. These estimates were compared to the 

snow course measurements and UAV LiDAR snow depth maps to estimate their accuracy (Table 5). The snow depth 

predictions of modelled maps have an overall accuracy of 8.0 cm in Sodankylä and 5.8 cm in Pallas compared to the 

manual snow course measurements (Table 5). The SWE values differ from snow course measurements in Pallas, with 460 

RMSE of 35.6 mm and 33.1 mm in Sodankylä during all measurements in winter 2023-2024. The predicted SWE 

values of the Sodankylä snow course follow the observed snow course SWE values (Fig. 7a). The model tends to 

slightly underestimate the SWE, particularly during the late season, but the median values of measurements fall within 

the model’s predictive range. Model performance is the highest in February, with RMSE of 12 mm (n=7). In contrast, 

the performance declines towards the end of the season with RMSE of 73 mm in May (n=4), as can be seen in table 465 

7.1. 

 

In Pallas, the modelled SWE values are typically within the range of manual SWE measurement values (Fig. 7b). The 

model has an overall accuracy of 32 mm (Table 5), with its best performance observed early in the season, with RMSE 

of 6 mm in November (n=12) and 8 mm in December (n=12), as shown in Table 5. The highest error, 59 mm (n=12), 470 

occurs during the onset of the rapid snowmelt in early May. Despite this, the modelled SWE values successfully 

capture the seasonal peak in April and May, consistent with the snow course measurements.  
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Figure 7. Modelled SWE values in comparison to measured SWE values of the snow course in Sodankylä (a) and Pallas (b) 

in 2023-2024. 475 

Table 5. RMSE for Sodankylä and Pallas modelled SWE  

Sodankylä Pallas 

Date RMSE SD (cm) RMSE SWE (mm) Date RMSE SD (cm) RMSE SWE (mm) 

15.11.2023 6.3 (n=62) 15 (n=7) 2.11.2023 4.5 (n =46) 18 (n=12) 

15.12.2023 5.9 (n=62) 13 (n=7) 16.11.2023 4.1 (n=46) 6 (n=12) 

11.1.2024 4.6 (n=62) 16 (n=7) 1.12.2023 3.9 (n=46) 8 (n=12) 

16.2.2024 5.0 (n=62) 12 (n=7) 14.12.2023 3.5 (n=46) 39 (n=12) 

15.3.2024 6.4 (n=62) 30 (n=7) 9.1.2024 4.1 (n=45) 25 (n=12) 

26.3.2024 6.7 (n=62) 32 (n=7) 22.2.2024 4.7 (n=45) 26 (n=12) 

17.4.2024 9.2 (n=60) 37 (n=6) 5.3.2024 5.2 (n=46) 26 (n=12) 

24.4.2024 13.8 (n=62) 50 (n=6) 21.3.2024 5.5 (n=46) 24 (n=12) 

15.5.2024 9.7 (n=62) 73 (n=4) 27.3.2024 4.8 (n=46) 34 (n=11) 

Mean 8.0 (n=555) 33.1 (n=58) 18.4.2024 6.3 (n=45) 53 (n=12) 

   25.4.2024 6.4 (n=45) 26 (n=12) 

   4.5.2024 6.7 (n=46) 59 (n=12) 

   7.5.2024 6.3 (n=46) 67 (n=12) 

   15.5.2024 8.1 (n=38) 25 (n=11) 

   21.5.2024 9.3 (n=46) 29 (n=3) 

   Mean 5.8 (n=677) 35.6 (n=169) 
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Figure 8. Modelled SWE of the previous winters, (a) 2023-2024, (b) 2022-2023 and (c) 2021-2022, at Pallas in comparison 

to the snow course SWE measurements. 

ClustSnow-derived clusters therefore served as a valid extrapolation basis for snow depth and SWE measurements 480 

throughout the entire snow season 2023-24. Previous application of ClustSnow suggests that these clusters are not 

only suited to extrapolate measurements of the same season in which the cluster’s underlying snow depth maps were 

acquired, but are instead transferable to other snow seasons (Geissler et al. 2024). Clusters defined by this study’s 

snow dataset of 2023-2024 were therefore used to see how well the model can reproduce previous years’ snow course 

measurements. SWE measurements from previous years are available for Pallas starting from 2021, although the 485 

number of measurements varies across years. The results show that SWE values from the winter 2022-2023 snow 

course are aligned with model estimates, also capturing the peak SWE in late April (Fig. 8b). The winter of 2021–

2022 exhibits the greatest variability in snowline SWE measurements, with the model overestimating SWE for most 
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of that winter. In other winters, the model typically underestimates SWE relative to snow course measurements. 

Additionally, the variance in SWE values across clusters is largest during the winter of 2021–2022, reflecting greater 490 

variability in snow depth along the snow course. However, the average of the SWE from the snow course in winter 

2021-2022 aligns with cluster 3, and ClustSnow successfully captures the SWE peak at the beginning of May 2022. 

The model generally captures the snow course median SWE values from the manual measurements, and the peak 

SWE values and their timing in previous winters.  

3.3.2. Spatial accuracy of the model is influenced by spring floods and snow wind distribution 495 

Figure 9 visualizes the modeled snow depths for the March campaign in Sodankylä, highlighting the influence of 

clustering on snow depth predictions. The modeled snow depths align with the observed snow course measurements, 

but the model struggles to accurately represent extreme high or low values of snow depths captured by the UAV 

LiDAR. The figure also demonstrates the effect of adding more clusters to the model. For example, 6 clusters would 

provide more detailed snow depth estimates, but would still miss the actual variability of the snow depths. The UAV 500 

LiDAR shows the spatial variability in snow depth between snow course measurement points, which are not captured 

during the snow course measurement survey. To be able to evaluate the model performance spatially, comparisons 

between modelled snow depth maps and UAV LiDAR maps were conducted for each of the campaigns. First, the 

difference between the UAV LiDAR SD map and the model SD output was derived (Fig. 10 & 11); the differences 

were then squared, averaged and the square root of the mean was calculated to obtain overall RMSE for the campaign 505 

and model.  
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 510 
Figure 9. The transect from Sodankylä modelled snow depths, UAV-based LiDAR snow depths and snow course 

measurements and their representative clusters on 26.3.2024. The yellow line shows the model output of the model with the 

number of clusters set to three, as used in this study. For comparisons, the red line represents the model output with the 

numbers of clusters set to six. 
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 515 
Figure 10. Sodankylä model performance from different UAV LiDAR campaigns. The values define the absolute difference 

between LiDAR based snow depth maps and the modelled snow depth maps. 

In Sodankylä, the analysis resulted in RMSEs varying from 6.2 cm to 11.0cm (January: 11.0 cm; March 8.2 cm; April; 

8.8cm; May 6.2cm). The accuracy of the modeled snow depth maps is influenced more by the timing of the campaign 

than by the specific location (Fig. 10). For instance, in an open mire area located in the southeastern section of the 520 

snow course, the model's performance varies significantly, with difference ranging from 10–15 cm in March, 

decreasing to less than 5 cm in May (Fig. 10, dashed box). Similarly, in the spruce dominated forest situated in the 

southwestern part of the area, the highest accuracy is observed in April (difference < 5 cm), whereas in January, the 

model predictions exhibit a larger discrepancy, with errors ranging from 10–15 cm. 

 525 

In Pallas, the model has higher inaccuracies compared to Sodankylä, with RMSEs varying from 18.7 cm to 24.7 cm 

(January: 22.4 cm; March 24.7 cm; April 22.7 cm; and May 18.7 cm). The model therefore performs best at the 

beginning and at the end of the season. Spatially the model performs best particularly at the southern end of the snow 

course, characterized by homogeneous pine and mixed forest (Fig. 11). In contrast, the model has the highest errors 

in the broad Lompolonjänkä mire area in the northeast, where the snow is on top of a flooding mire area, and on the 530 

northern slopes of the bordering drumlins, where wind-driven snow accumulation is common. In these areas, the 

model estimates over 30 cm difference to the UAV LiDAR map.  
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Figure 11. Pallas model performance from different UAV LiDAR campaigns. The values define the absolute difference 

between UAV LiDAR snow depth maps and the model output. 535 

4 Discussion 

4.1. Snow and ice conditions impacted UAV LiDAR accuracy 

UAV LiDAR mapping showed high accuracy in all study sites and conditions, with the average RMSE of UAV 

LiDAR DTMs being 11.2 cm and 5.3 cm for Sodankylä and Pallas, respectively. These results align with previous 

studies, which have reported RMSE values from snow depth maps ranging from 9 to 17 cm  (Dharmadasa et al., 2022; 540 

Geissler et al., 2023; Harder et al., 2020; Jacobs et al., 2021). However, our larger uncertainty and lesser accuracy was 

noted especially in the late melting period with flooding conditions, whichmight be impacted by laser beams reflection 

from water bodies.   

 

The trueness of the snow depth maps derived from DTM maps varies between 0.9-13 cm and RMSEs of individual 545 

DTMs vary between 1 and 7 cm (excluding an outlier in Sodankylä, May 22.1 cm). The precisions here are based on 

the 5 GCP measurements suggested by Dharmadasa et al. (2022). Pallas has the most stable conditions and Sodankylä 

has the actual lowest bias in April (0.9 cm). The accuracy of the GCP location measurement itself can affect the 

accuracy estimates. For example, one measurement in Sodankylä (May) shows a significant difference to DTM, which 

decreases the overall accuracy of the site. The point was not excluded from the calculations, as the error may also be 550 

due to the DTM calculation errors from flooding areas. The accuracy of UAV LiDAR snow depth mapping is 

dependent on several factors, which can be divided into boresight errors, navigational errors, terrain- and vegetation-

based errors, and post-processing-errors (Deems et al., 2013; Pilarska et al., 2016). For example, fallen tree trunks, 

very dense undergrowth or flooded marshes can pose challenges to point cloud classification and affect the output 

DTM quality (Deems et al., 2013; Evans & Hudak, 2007). Similarly, vegetation and terrain affect the accuracy of 555 

manual snow depth measurements. 
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The best accuracy of snow depth maps (0.9 cm) of all sites and campaigns was calculated from April campaign in 

Sodankylä. Two days prior to the flight campaign, on 24.4.2024, approximately 10 cm of new snow had fallen in the 560 

area, which helped to smooth the snow surface and to cover previously melted or frozen areas under the snow, 

positively affecting the LiDAR signal and hence the accuracy of the terrain model. In contrast, the trueness of snow 

depth maps in all sites is lowest in May (Table 3). Our findings highlighted increased measurement inaccuracies during 

that period, possibly because most of the snow had already melted and large areas were covered with slush and smooth 

water surfaces. This posed challenges for the DTM algorithm lowest Z-value obtained in cell, meaning that the height 565 

of the reflected laser beams in the water mass also affects the DTM elevations. The trueness values, on the other hand, 

are based on GCP plates placed in the area, which were located on top of the remaining snow. When the snow is 

surrounded by water, the model may be inaccurate and produce lower accuracy DTMs than when the surface is 

completely covered by either snow or thawed ground.  To our knowledge, there is no systematical review on wet snow 

affecting laser beams. However, water generally has a low reflectivity in the infrared wavelength range compared to 570 

solid surfaces, and the return signal detected by the sensor is influenced by factors such as incidence angle and surface 

roughness (Fernandez-Diaz et al., 2014; Paul et al., 2020). These factors likely contributed to reduced accuracies of 

the surface detection in areas with localised open water during the melting season. The phenomenon can be seen 

especially in Sodankylä, which has the largest, typically flooding, mire areas among sites. Results were similar for 

Rauhala et al. (2023), where the poorest accuracy of SfM method based DTMs were collected during the late melting 575 

period in flooding areas. This is due to the manual snow course measurements, where these flooding points are marked 

as having zero snow depth and LiDAR-derived snow depth maps still showing snow in these areas. Some vegetation 

types, such as dense coniferous forests, are known to decrease the accuracy of different UAV methods of snow depth 

mapping (i.e Dharmadasa et al., 2022; Rauhala et al., 2023), as coniferous canopy reduce or even prevents ground 

returns. If we expect cluster 1 to present forested regions and cluster 3 to present open areas with low vegetation and 580 

compare the snow depth map accuracies to snow course measurements, we cannot distinguish similar phenomena in 

Sodankylä or Pallas (Fig. 5). On both sites, the best correspondence between snow course measurements and UAV 

LiDAR maps are in cluster 2, in forest openings. In contrast, especially in Pallas, the biggest disparities occurred in 

cluster 3. This may be due to snow course measurement poles lifting from the ground especially in wet areas where 

ground freezing and thawing move the pole over time.  585 

 

Broxton & van Leeuwen (2020) recommended the SfM method for snow depth monitoring under certain conditions, 

such as in gently sloping terrains and areas without dense forest cover. The UAV LiDAR method was selected over 

the SfM method for this study due to existing dense forest canopy and frequent light conditions that would not allow 

reliable SfM data acquistion (Rauhala et al., 2023; Revuelto et al., 2021). With advancements in SfM camera 590 

technology, the SfM method could complement LiDAR monitoring, particularly in relatively flat regions like 

Sodankylä and Pallas. Nevertheless, challenges remain for both methods in large mire areas. While the SfM struggles 

with surface homogeneity, LiDAR faces accuracy issues in detecting bare ground under flooded, uneven and wet 

surfaces. Additionally, manual snow depth measurements are also less accurate due to ice and water layers on the 

ground. 595 

4.2 Site characteristics explaining the different snow depth clusters  

Vegetation and topography impacted snow depth clustering in our boreal and sub-arctic sites. Specifically, we noted 

that canopy cover, open peatlands and transition zones with wind shelter had a clear and similar influence on obtained 

clusters at both sites. Additionally, we noted that the clusters have similar snow dynamics in both sites. The number 

of clusters has a major impact on the performance of the clustering and ClustSnow and how determined clusters relate 600 

to the site's vegetation and topography characteristics. 

 

This study applied ClustSnow with the number of clusters set to three, as initial tests demonstrated their suitability for 

representing different snow patterns in study areas and three clusters enable us to relate the snow depth patterns to 
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vegetational patterns. an equal number of clusters provides a basis for site comparability between the two study sites. 605 

Our analysis resulted in snow depth classification for forests with different trunk heights (cluster 1); transition zones 

between forests and open areas, including forest edges and gaps (cluster 2); and open areas (cluster 3), mainly 

peatlands. The results are consistent with those of Mazzotti et al. (2023) who noted that snow accumulation patterns 

can be classified into three groups, based on the relationship between canopy structure and ablation rate. However, as 

also noted by Geissler et al. (2024), increasing the number of clusters could, in some cases, improve the accuracy of 610 

the end products and increasing the number of clusters would allow more detailed description of the snow patterns, as 

can also be seen in Figure 9. The sensitivity analysis performed for this study's sites confirm this assumtion. We found 

that the highest accruacies of the ClustSnow-derived snow products, evaluated against manual measurements, can be 

expected with the number of clusters set to six. Especially when the study area has high elevational differences or has 

various topographical apects, more clusters would better correspond to the depth patterns. The most uncertainties 615 

relaed to the model parametrization of both models, the ClustSnow and Δsnow model, are due to the number of clusters 

(Fig 1., see appendices).  

 

In forested areas, distinguishing between clusters 1 and 2 remains challenging due to their similar site characteristics 

(Tables 5 & 6). Forested areas present challenges for clustering because of varying snow height and dynamics 620 

influenced by canopy cover and trunk size (L.-J. Meriö et al., 2023). Forest gaps in the coniferous forests are known 

to create clear and distinct variations in snow depth within the forests, and SWE varies up to three times more in 

unevenly distributed forests compared to evenly distributed forests (Woods et al., 2006). For this reason, forested areas 

contained both clusters 1 and 2 in both sites. Cluster 1 receives the most snow and has the highest SWE values, 

especially during the late winter (Fig. 7a; 7b).  Lundquist et al. (2013) concluded that this is the typical situation in 625 

cold climates, where snow lasts longer in forests than in forest openings. In both of our sites, snowmelt starts latest 

and snow cover last longest in cluster 1. The forested areas in Sodankylä and Pallas are spruce dominated, where the 

canopy shades the ground from sun radiation, reduces wind effects and traps snow, but also limits snowfall reaching 

the ground. In this cluster, we expect snow accumulation to follow canopy structure throughout the season and the 

ablation to be too slow or constant to change it, as defined by Mazzotti et al. (2023). 630 

 

Cluster 2 is the most common cluster on both sites (Tables 5 & 6), likely since it can be found in both forested and 

open environments. While the snow depth trends across cluster 1 and cluster 2 are similar, cluster 2 experiences an 

earlier start of snowmelt in spring compared to forested cluster 1 (Fig. 7a; 7b). This indicates more short-wave solar 

radiation exposure compared to cluster 1, where SWE peaks at the end of April before the melting begins. Cluster 2 635 

characteristics correspond to previous studies, by Koutantou et al. (2022) and Meriö et al. (2023), where canopy 

structure influences snow accumulation, but in ablation subsequently disrupts these patterns, resulting in earlier timing 

of snow loss. This can also be seen in the modeling outputs from the previous two winters in Pallas (Fig. 8), especially 

in winter 2022-23, when snowmelt in cluster 2 started simultaneously with cluster 3. These characteristics are seen in 

both sites and support the location of the cluster 2 as being in transition zones between open and forested areas.  640 

 

Open areas are subject to wind redistribution and prolonged solar exposure resulting in lower and smoother snow 

depth patterns, corresponding with the results of cluster 3. In cluster 3, snow depth starts decreasing notably earlier 

than other clusters, in February 2024, suggesting faster melting due to both higher solar radiation and flooding. In the 

flooding mire areas, melting waters from below also accelerate snowmelt. Both snow depth and SWE values are lower 645 

in this cluster in comparison to other clusters, corresponding with results from L.-J. Meriö et al. (2023). An interesting 

aspect of the classification is the differentiation between the mires Lompolonjänkä (box A; Fig. 4) and Välisuo (box 

B; Fig. 4). Välisuo mire, classified to cluster 2, is more sheltered, surrounded by forests and is located at a higher 

altitude than the Lompolonjänkä mire, which is classified as cluster 3. Välisuo is drier and partly artificially drained, 

while Lompolonjänkä is drained by a small natural stream, typically flooding in spring (Marttila et al., 2021). 650 

 

The clustering results support the results of other studies on snow distribution in boreal and sub-arctic sites. They also 

support the ability of the ClustSnow ability to model various environments and sites, both in Alps and the Arctic 
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boreal zone. Moreover, the results suggest that ClustSnow is generally transferable to large sites as well as to the arctic 

boreal climate. In a recent study from the Pallas site by L.-J. Meriö et al. (2023), the variations in snow depth were 655 

partially explained by canopy interception, longwave radiation emitted by trees, and wind-driven redistribution, which 

contributed to snow deposition along forest edges in both forested and peatland environments. The snow depth was 

higher within dense canopy, with the greatest accumulation observed in coniferous forest areas, followed by mixed 

forests, transitional forest/shrubland, and open peatlands. In both Sodankylä and Pallas the dominant winter wind 

direction is from the south, which leads to snow accumulation in forest canopy and their leeward side, where typically 660 

the highest snow depths are measured, corresponding to the results from Dharmadasa et al. (2023). In Pallas this 

results in snow accumulating particularly behind the drumlins north of the Lompolonjänkä mire (Fig. 4 Box A). This 

is also reflected in the accuracy of the model in these areas - the three clusters may not be sufficient to account for the 

particularly high snow depths of the northern sheltered slopes (Fig. 11).  In comparison, snow dynamics in Sodankylä 

are influenced by vegetation rather than by topographical variations, as the area itself is flat with elevation differences 665 

of less than two meters.  Forest structure is the main driver of snow accumulation, but short-wave radiation can disrupt 

these patterns, especially on south-facing slopes where there is expected to be more early-season ablation (Mazzotti 

et al., 2023). Weather further affects accumulation and ablation processes, leading to interannual variations in snow 

distribution, explaining why the relationship between snow distribution and canopy structure varies by location and 

year. 670 

 

K-means clustering is widely used in many applications for partition datasets but is known to have problems associated 

with centroid initialization, handling outliers and dealing with various data types (Ahmed et al., 2020; Morissette & 

Chartier, 2013). While more clusters might be able to capture finer details, such as directional classes (Mazzotti et al., 

2019), the three clusters obtained in this study corresponds to land-cover These results align with previous findings 675 

that emphasize the importance of canopy structure in addition to topography and weather conditions on snow dynamics 

(Dharmadasa et al., 2023; Mazzotti et al., 2023). For instance, Geissler et al (2023) classified their Alpine study area 

into four clusters, further subdividing the open cluster into shaded and exposed clusters. Although using more than 

three clusters could potentially improve finer scale spatial accuracy, as can be seen in Fig 9 and  the number of clusters 

is always a question of data used and left to the user to decide, as noted in the study by Geissler et al. (2023). Based 680 

on our observations, together with the results of the study by Geissler et al. (2024), we conclude that the number of 

clusters is dependent on the landscape characteristics of the site and the purpose of the model output. If the interest is 

to investigate the differences between snow dynamics in different environments, we recommend increasing the cluster 

number to also include shaded, exposed and potentially different forest types to capture local variability (Currier & 

Lundquist, 2018; Fujihara et al., 2017; Mazzotti et al., 2020, 2023; Trujillo et al., 2007). Our sensitivity analysis also 685 

showed improvements in the snow products with more clusters. In areas with a larger variety of terrain types, such as 

diverse slopes and orientations, more categories (4 to 6) could be justified. 

4.3 Lidar-based snow clustering and modeling produces SWE estimates comparable to snow surveys 

The clustering derived from UAV LiDAR snow depth maps, combined with the Δsnow model, produced snow depth 

and SWE estimates with RMSEs of 8 cm and 33.1 mm in Sodankylä, and 5.8 cm and 35.6 mm in Pallas. The model 690 

can reproduce the onset of snowmelt and peak SWE and, after one season of drone surveys, needs only daily snow 

depth measurements as input. The localization of model parameters, especially ρmax and ρ0, and the amount of daily 

snow depth reference data for the identified clusters, improved the results.  

 

The results are consistent with a similar study by Geissler et al. (2023), where the model errors were 8 cm for snow 695 

depth and 35 mm for SWE in comparison to manual snow measurements. Winkler et al. (2021), the creators of the 

presented Δsnow model, produced a SWE RMSE value for their entire validation data set of about 30.8 mm, which is 

consistent with other similar models and the results obtained in this study. Multilayered thermodynamic one-

dimensional models for SWE estimation, such as SNOWPACK, CROCUS and SNTHERM, obtained more accurate 

results in the Langlois et al. (2009) study with an RMSE of 12.5-14.5 mm, but these models also require atmospheric 700 
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variables that are not ubiquitously available. Studies with CROCUS also have produced SWE estimates RMSE values 

in the same order as this study (Vionnet et al., 2012) with an accuracy of 39.7 mm. Mortimer et al. (2020) studied the 

long-term gridded SWE products and compared their results to snow course measurements. None of the 9 tested 

products were significantly better than others, rather a multiproduct combination provided the most accurate results. 

The lowest RMSE in Finland was 33 mm, produced by ERA5. Thus, depending on the region and winter climatic 705 

conditions, there may be variability in the modelling results and our UAV results are in typical measurement estimate 

ranges. 

 

The RMSE of the modelled snow depths (Table 5) in Sodankylä are higher than in Pallas, likely due to several factors. 

The RMSEs were calculated in comparison to manual snow course measurements. In large mire areas, such as those 710 

found in Sodankylä, the formation of ice layers at the bottom of the snowpack may compromise the accuracy of snow 

course measurements (Stuefer et al., 2020). Additionally, the accuracy of snow depth maps in Sodankylä was reduced 

when parts of the areas were flooded in May (Table 3). Also, normalizing snow depths when generating daily estimates 

for clusters ensures internal consistency but reduces local variability, leading to an underestimation of extreme values. 

Even though the RMSE of the modeled snow depths relative to snow course measurements in Pallas is lower than in 715 

Sodankylä, the RMSEs calculated for the entire study area are higher in Pallas. Specifically, RMSE values range from 

18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm in Sodankylä. One contributing factor to the higher RMSE in 

Pallas is the accuracy of the snow course measurements (Fig. 5). The errors arise from the use of interpolated snow 

course data as model input. These interpolations overestimate actual snow depths in Pallas (Fig. 6), introducing a 

systematic bias. This overestimation of snow course measurements also partially explains the higher RMSE of the 720 

Pallas SWE model compared to Sodankylä, even though the modeled snow depth estimates for snow course were 

more accurate (Table 5). In contrast, UAV LiDAR-derived snow depths for the entire Sodankylä region closely align 

with snow course measurements (Fig. 6), indicating better agreement between manual measurements and broader 

regional snow depth estimates in this area. 

 725 

The ClustSnow model can detect SWE peaks in some of the clusters (Fig. S2; S3, supplementary material). In 

Sodankylä, the SWE peak for cluster 2 aligns with the snow course measurements recorded at the dates between 22.4 

and 24.4.2024. The model estimates SWE for cluster 3 to range between 107 and 114 mm from 14.3 to 23.4.2024 and 

the snow course data for the cluster 3 indicates that SWE reaches its peak in mid-March before gradually decreasing 

until the end of April, demonstrating good agreement with model estimates. However, while the timing of the peak is 730 

well captured, a slight discrepancy remains in its magnitude. Due to the limited number of snow course measurements 

classified within cluster 1, detecting meaningful correlations for this cluster was not possible. In Pallas, the model 

estimates SWE peaks for cluster 1 and 2 on 10.5.2024, while for cluster 33, the peak is predicted to occur earlier, on 

28.4.2024. However, a slight temporal lag is observed as snow course measurements indicate that for clusters 1 and 2 

the SWE peaks on 25.4.2024. For cluster 3, the discrepancy is more pronounced, with observed SWE peaking already 735 

at the end of March. The results show regional differences in SWE accumulation and melt dynamics, with the model 

capturing general trends but showing slight timing offsets, particularly in Pallas.  

 

The model was validated at the Pallas site to assess its performance under different winter conditions from 2021 to 

2023 from which no data was used in developing the model (Fig. 8). The results indicate that the model successfully 740 

captures both the peak SWE and its timing, despite variations in winter conditions between different years. During the 

2021–2022 winter, the variance in both snow course SWE and modeled SWE is notably higher compared to the other 

winters. This increased variability is partly due to the fluctuating snow depths in that season caused by both mid-

winter melt events and heavy snowfall events.   

 745 

Several studies predict increase in mixed and liquid precipitation in winter months in Finland and, particularly in 

northern parts, increased solid precipitation and earlier springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020). 

Rain-on-snow (RoS) events are expected to increase in the future for the northern Norway region during spring and 

summer (Mooney & Li, 2021; Pall et al., 2019), potentially leading to an increase of such events in northern Finland 
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too. Such events increase the liquid water content of the snowpack, leading to rapid saturation and accelerated 750 

snowmelt, reducing snow depth faster than natural snowmelt processes (Yang et al., 2023). Even though Geissler et 

al. (2023) noticed the Δsnow model limited the capacity to map the SWE change during RoS events, the SWE 

estimations of this model add value to operational snow course measurements by enabling continuous monitoring of 

changes between monthly observations. This capability is especially valuable for capturing rapid changes during 

events such as snow depth variations caused by melting or snowfall , where these dynamics can be scaled across the 755 

entire study area rather than relying on data from a single reference sensor. By integrating daily estimates from local 

snow depth sensors with snow course data and clusters, our approach enhances event coverage in modeling. The 

model’s ability to capture peak snow depth and melt-out dates in real time, provided that reference snow depth sensors 

transmit data online, offers essential data for hydrological observation networks and improves the spatiotemporal 

resolution of snow course measurements.  760 

4.4 Practical aspects and suggestions for future studies  

Snow monitoring data is essential for flood prediction, infrastructure management, forecasting hydropower production 

and for recreational use such as skiing. The forecasts derived from these data support river regulation and broader 

water management practices. In addition, daily observations are utilized by various stakeholders, including local 

businesses. These datasets also play a critical role in evaluating the impacts of climate change and informing the 765 

development and implementation of adaptation strategies. Integrating UAV-based snow depth surveys into established 

snow course areas—conducted over at least one winter season, and preferably across multiple years—can significantly 

enhance the spatial representation of snow depth estimates. By applying clustering techniques to these survey data 

within a region and validating the results against point-based snow course measurements, it is possible to upscale 

localized measurements and improve the spatial and temporal resolution of hydrological monitoring. This combination 770 

of observation-based clustering and high-resolution UAV data offers a promising approach for enhancing the 

monitoring of snow cover dynamics at both site-specific and regional scales. The outcomes of this study suggest that 

the applied ClustSnow workflow is transferable and could be effectively applied in other regions to support improved 

snow monitoring and water resource management. 

This study applied intensive UAV LiDAR campaigns to capture fine detailed information on snowpack variability 775 

also in forested areas, which are known to reduce spatial coverage of  UAV-based SfM methodology (Broxton & van 

Leeuwen, 2020), especially in poor lighting conditions and dense forest canopy cover (Rauhala et al., 2023; Revuelto 

et al., 2021). Regardless of the sensor used, the impact of winter conditions on the battery life of the drone should be 

considered.  The batteries of the DJI Matrcie 300 RTK had to be replaced up to five times during the flight campaign, 

especially in cold weather. Occasionally RTK coverage can also become a limiting factor in remote areas, for example 780 

in Pallas in January, due to the temporary unavailability of the VRS signal. However, especially in sparsely vegetated 

areas, the UAV SfM method could offer a more cost-efficient method for producing 3D data on snow dynamics and 

support the output of more expensive UAV LiDAR. UAV data acquisition using LiDAR or SfM can also further 

support the spatiotemporal resolution of remote sensing products, as their usage in local scale snow research is still 

limited due to spatial and temporal coverage issues (Muhuri et al., 2021; Stillinger et al., 2023; Tsang et al., 2022b). 785 

As noted by Geissler et al. (2023), this method combines observations and machine learning and can improve spatial 

representation of hyper-resolution models (Mazzotti et al., 2021) or advance refining sub-grid variability in larger-

scale models (Currier & Lundquist, 2018). 

 

Mazzotti et al. (2023) indicated that the snow distribution patterns found at a specific location may not be consistent 790 

from year to year, especially in changing weather conditions. The snow distribution patterns are site-specific, based 

on vegetational and topographical differences, and some clusters might have different responses to different weather 

conditions. Winters with abnormal snowfall cause differences in snow extents and snow depth variability (Pflug & 

Lundquist, 2020). In our study areas, the winter of 2023–2024 was exceptional in terms of snow conditions. There 

were melt periods in the middle of winter, and spring seemed to arrive twice: first with a thaw in early April, and then 795 

snow melted completely in May. On average, there was also more snow than during a typical winter (Fig. 2), especially 
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in early winter. The model was developed based on these specific snow conditions, which means that winters with 

different characteristics may not align with the model’s calculated clusters. This may partly explain, for example, the 

differences in SWE values for the winter of 2021–2022 (Fig. 8b). This winter also showed the greatest variation in 

measured SWE values, indicating larger homogeneity in snow conditions during that winter. A follow-up year with 800 

different weather conditions could enhance and verify the representativeness of the clusters and provide insights into 

interannual variability, as local snow distribution patterns show recurrent similarities (Sturm & Wagner, 2010).   

 

Improvements in input data quality can enhance the accuracy of the model, but the model also seems robust. For 

example, improvements could be made to tackle Pallas site snow course measurement errors (Table 5). We would 805 

recommend a more comprehensive network of snow depth sensors that could improve daily snow depth forecasts 

based on snow course measurements, particularly in Pallas, where only limited data from the Kenttärova snow depth 

sensor is available. At least one reference sensor in each land cover type, corresponding to a cluster, would improve 

the estimates. As fresh snow density and maximum snow density are among the most important parameters of the 

model (Fontrodona-Bach et al., 2023), the model parameters should be localized for each site, rather than relying on 810 

estimates based on literature. Additionally, as the greatest inaccuracies in snow course measurements at Pallas were 

observed in mire areas, it is important to acknowledge that these regions are prone to greater errors in both manual 

and UAV-based snow depth data collection. Beyond the influence of snow-forest interactions, our results also 

emphasize the need to study snow accumulation and melt processes in extensive peatland areas, which are particularly 

prevalent in the Arctic boreal zone. 815 

5. Conclusions 

This work combines emerging methods in close-range remote sensing and machine learning for high spatial and 

temporal resolution estimates of snow depth and SWE. The work is an important new application of such methodology 

in the vast, yet relatively underexplored, boreal and sub-arctic snow regimes.  The study conducted extensive field 

campaigns at two well-established snow and hydrology research sites, Sodankylä and Pallas in Finnish Lapland. The 820 

different sites represent different conditions, both in terms of topography and weather conditions. The snow depth 

maps from different areas and in different winter conditions are the first from these study areas at a centimeter scale 

of accuracy and allow an evaluation of the method in relation to other snow depth and SWE products.  

 

The ClustSnow workflow applied in this study has the potential for the expansion of the current operational snow 825 

monitoring network to different sites. The resulting SWE and snow depth maps are possible to be produced in areas 

with snow depth sensors in different terrain types, or a regularly measured snow course with at least one snow depth 

sensor measuring daily. While the accuracy of the snow course measurements must be considered, the existing snow 

courses provide a good basis for similar approaches for local scale SWE and snow depth mapping in other boreal sites 

too. Though clusters formed here are based on only one winter and are site specific, we showed how they translate 830 

well to different winters with different snow amounts at the sites. Founded on the well-established consistency of 

local-scale snow distribution between years, the new technology applied in this research enables cost-effective 

solutions for SWE monitoring after one winter of UAV LiDAR surveys. Our work extends the previous applications 

of similar methods successfully to boreal taiga snow, where forests greatly complicate any snow monitoring, remote 

sensing or modeling.  835 

 

With climate change leading to increasing temperatures, changes in precipitation regimes and more frequent rain-on-

snow events, this methodology provides valuable tools for estimating rapid changes in snow depth and SWE at both 

local and catchment scales. Such spatially and temporally refined estimates of snowpack condition are needed for 

catchment scale snow model validation and calibration, as well as to improve resource planning and prediction. 840 
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