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Abstract

Climate change is rapidly altering snow conditions worldwide and northern regions are experiencing particularly
significant impacts. As these regions are experiencing warming }faster than the global average, understanding snow
distribution and its properties at both global and local scales is critical for effective water resource management and
environmental protection. While satellite data and point measurements provide valuable information for snow research
and models, they are often insufficient for capturing local-scale variability. To address this gap, we integrated UAV
LiDAR with daily reference measurements, snow course measurements and [&machine learning (MLD approach. By
using ML clustering, we generated high-resolution (1 m) snow depth and snow water equivalent (SWE) maps for two
study areas in northern Finland. Data were-was collected through in-four different field campaigns during the 2023—
2024 winter season. The results indicate that snow distribution in the study areas can be classified into three distinet
categories based on land cover: forested areas, transition zones with bushes, and open areas (namely peatlands), each
showing different snow accumulation and ablation dynamics. Cluster-based modelled SWE values for the snow
courses gave good overall accuracy, with RMSE values of 31-36 mm. Compared to snow course measurements, the
cluster-based model approach enhances the spatial and temporal coverage of continuous SWE estimates, offering
valuable insights into local snow patterns }Hﬂkg }the different sites. Our study highlights the influence of forests and
forest gaps on snow accumulation and melt processes, emphasizing their role in shaping snow distribution patterns
across different landscape types in the arctic boreal zone. The results improve boreal snow monitoring and water
resource management, aﬂd{offer Inew tools and high-resolution spatiotemporal data for local stakeholders working
with hydrological forecastin[g bnd climate adaptation and supporting satellite-based observations.

Keywords: remote sensing, drones, snow, arctic, mapping, spatial

1 Introduction

Snow is an important part of the hydrological cycle and is highly relevant for societies and ecosystems, especially in

ﬂligh latitudes and mountainous regionsL Snow cover, the-timing and distribution influenees—directly influences }en[

climate energy budget through snow albedo (Callaghan et al., 2011; Li et al., 2018), ecosystems and habitats, including
species and vegetation distribution (Thiebault & Young, 2020), biogeochemical processes in soils and seasonal ground
frost (Ala-Aho et al., 2021; Croghan et al., 2023; Jan & Painter, 2020). Additionally, snow resources have a major
impact on catchment, river and groundwater }w«a&%kbudgets1 and seasonal distribution (Merid et al., 2019). Snow-
covered areas are decreasing as global temperatures rise, leading to a consistent decline in snow water equivalent
(SWE) (Colombo et al., 2022; Faquseh & Grossi, 2024; Kunkel et al., 2016; Réisdnen, 2023; Y. Zhang & Ma, 2018).
A recent study by Gottlieb & Mankin (2024) shows that-how saewpack-March SWE has decreased in half of the
Northern Hemisphere river basins over the past 40 years with the highest decreases in the southwestern USA and

western, central and northern Europeaﬁd—%&deeﬁne&a#&lﬂghly%ela&eé&&h&maﬂ%&eﬂ% The timing and amount of
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snowmelt, along with the-SWE during-in the melting period, are crucial for local water balance and [ﬂoods monitoring
and regulation ['H:TBavay et al., 2013; Callaghan et al., 2011; Wang et al., 2016). Changes in snow conditions and
rising temperatures are causing earlier flood peaks in snowmelt-dominated catchments with a decline in streamflow
later in the year (Berghuijs & Hale, 2025; Engelhardt et al., 2014; Matti et al., 2017). Snowmelt significantly influences
near-surface hydrological effects (Muhic et al., 2023) and soil moisture in these regions (Okkonen et al., 2017).

Snow models are an important part of water resource planning and prediction. These models provide estimations of
snow related hydrological parameters for areas and times where ground observations are not available and can be used
for creating various scenarios. However, ffor the accurate prediction of snow-water resources, snow models require
high-resolution data as inputs, testing and validation. Satellite based remote sensing is still a rather & coarse reselution
tool and has limited accuracy with canopy cover (Muhuri et al., 2021; Rittger et al., 2020). [For example. currently

the accuracy and spatiotemporal availability of SWE from microwave satellite missions is not sufficient for
local scale water resource management planning (Tsang et al., 2022a). Gaffey & Bhardwaj (2020)concludes that
as only a few satellite sensors provide resolution required to capture local variability with multispectral or
infrared data, together with limited revisiting times, the usage of satellite products in snow research is still
limited. Thus, ground-based manual measurements, which are then fed to forfeeding-operational models, are still
conducted. The-snow-course-network-The national snow course measurement network — a manual snow depth and
density measurement protocol - %rovides important data for models and serves as a long-term historical dataset;
however, they—are this is time-consuming, the accuracy varies (Beaudoin-Galaise & Jutras, 2022; Kuusisto, 1984;
Mustonen, 1965), and temporal resolution is weeks to month. Thus, it is not ideal for capturing snow dynamics of
individual events or important hydrological variables such as peak snow depth or melt-out dates (Malek et al., 2020).

To bridge the knowledge and technical gap between remetremotely sensede and ground observations, uncrewed aerial
vehicles (UAV) have been proven to be efficient in the-snow depth and SWE estimations, svith-providing decent cost
efficiency and accuracy —(e-g-—(Adams et al., 2018; Niedzielski et al., 2018; Rauhala et al., 2023). Like satellite
platforms, alse-UAV systems can carry both optical and radar-based sensors and provide high resolution spatial
information. Photogrammetry, including multispectralRGB—and stereo-imagery, can result in centimeter-scale
accuracy in snow depth mapping over a catchment scale and has-is relatively low cost compared to radars like ground-
penetrating radar (GPR) and light detection and ranging (LiDAR) (Maier et al., 2022; Nolan et al., 2015; Rauhala et
al., 2023). [Combining snow depth data from LiDdAR and spectrometer sensors has also been used to model snow
density on a weekly basis at the Airborne Snow Observatory (ASO) (Pamter et al 2016)JH9*M7\+6FYL,1
photogrammetry-based products, like structure-from-motion (SfM), he : srequire
suited light conditions and lespecially-when measuring homegeneous heterogrnousheterogeneous snow surfacess J;zmd
are limited in penetrating dense vegetation_covers. —and-the-Thus, the decision between cost-effectiveness and
accuracy is dependent on the site characteristics (Rauhala et al., 2023; Rogers et al., 2020). Recently, LiDAR sensors
have become get-more affordable, compact and lightweight. Technical advancements, such as improved inertial
measurement units (IMUs) and global navigation satellite systems (GNSS), have enhanced their accuracy and
performance, making LiDAR more cost-effective and competitive compared to UAV photogrammetry (Bhardwaj et
al., 2016; Rogers et al., 2020). The UAV LiDAR technology potentially offers high accuracy over large spatial areas
and allows catchment-scale mapping alse-even under canopy cover, unaffected by overcast conditions or shadows
(Dharmadasa et al., 2022; Harder et al., 2020; Jacobs et al., 2021; Mazzotti et al., 2019). LiDAR based snow depth
data, when combined with models or density assumptions, can also be used to estimate the spatial distribution of SWE
in-on a landscape scale, in-awith decent cost-effectiveness (Broxton et al., 2019; Geissler et al., 2023).

Snow conditions are mostly controlled by temperature and precipitation (Mudryk et al., 2020; Mudryk et al., 2017),
and changes in global and local climate trends impact snow cover differently across regions. However, local snow
accumulation is dependent on on-site characteristics, such as topography, vegetation, and-weather and wind
distribution-patterns (Currier & Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest structure significantly affects
snow accumulation (Mazzotti et al., 2023), and SWE values for forested areas appear significantly higher than in
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tundra and shrub tundra zones (Busseau et al., 2017; Dharmadasa et al., 2023). [The effect of forest canopy strueture
teon snow melt also depends on the climate &s—because in cold regions the snow lasts longer in forests—thaﬁ—in—fe#esi

snowpack characteristics are spatlally different in forest gaps (Bouchard et al., 2022) and edges (Cumer et al., 2022;
Mazzotti et al., 2019). Vegetation changes, such as the northward retreat of the tree line, the densification of existing
vegetation and the migration of new species towards the poles, will also affect snow dynamics; and-itsthese effects
are not yet fully known (Aakala et al., 2014; Franke et al., 2017; Grace et al., 2002; Ropars & Boudreau, 2012). Eor
better-To enhance our understanding of snow processes_in sub-arctic and boreal regions, we need improved tools and
approaches, especially with localized high resolution spatial data.

Even though annual changes in snow cover are dominated by the-weather conditions, different patterns ;“clusters™;
of snow distribution and melting can be detected (Currier et al., 2022; Geissler et al., 2023; Matiu et al., 2021). These
snow distribution elusters-patterns are site-specific and are dictated by the-local site characteristics, and, importantly,
they can be extended to different years (Pflug & Lundquist, 2020; Sturm & Wagner, 2010). Yet, the approach of Pflug
& Lundquist (2020) would require several years of snow depth maps from the regions, which is not always feasible.
Revuelto et al. (2020) successfully modeled daily snow depth maps using in-situ measurements and time-lapse
photographs, and eellected-field data collected from two winters was estimated to be enough for the random forest
model to estimate snow depth for other years. Repetitive UAV surveys over the-winter seasons can siitarky-provide
spatial information ef-on snow cover, helping te-the identification ofy factors affecting snow distribution. Different
machine learning approaches have shown promising results in snow depth and SWE mapping for different regions (J.
Zhang et al., 2021), as they can reduce biases and enhance overall accuracy (King et al., 2020; Vafakhah et al., 2022).
ClustSnow, a ML framework based on kMeans and random forest clustering, first presented in Geissler et al. 2023

allows the determination of snow patterns (referred to as clusters) from repetitive spatial snow depth maps only. These

clusters can not only characterize areas with similar seasonal snow dynamics, but also serve as a temporally persistent
extrapolation basis (Geissler et al. 2024) of local field observations or sensor measurements, was-ablenabling e te-the
creation of daily estimate-spatial snow depth and SWE maps of entire winter seasons with-randemforest-based-medel
with anRMSE ~ 30-mm—inthe same-accuracies in the same magnitudes as the y—as—reference-underlying data
measurementsor modern snow models.—-but However However, ClustSnow requires a network of sensors that is not
feasible for many sites and was yet only tested on very small sites (0.22 km?) within central Europe. So far, the
ClustSnow framework has, however, not been tested within sub-arctic and boreal regions. vneertainties—and

ehaﬂenges—eaﬂ—fe%mere—tesﬂﬂg—m—éﬁfefei%eeﬂdmeﬂs—(Meloche et al., 2022; Revuelto et al., 2020)-—Especiathy;-the
s-(Geissler et al., 2023)-

Our study produces daily spatial daiy-snow depth and SWE estimates in different sites based on a combination of
LiDAR-based snow depth maps, snow course measurements, and continuous snow depth measurements. The field
data was collected during winter 2023-24 from two different sites in the-Finnish Lapland, each with long-term
monitoring infrastructure and existing snow course measurements, representing different vegetational and
topographical conditions typical for the-boreal and sub-arctic landscapes. The study applies ClustSnow workflow
(Geissler et al., 2023, 2024), a ML model based on spatially similar snow depth zones, to novel data and regions with
different climatic and environmental conditions. We-To our knowledge. this method has not yet been used in boreal
and sub-arctic areas but has proven to be a promising approach in the Alpine conditions. In comparison to the original

study by Geissler et al. (2023) this study applies the model with fewer ultrasonic sensors and LiDAR surveys, with
new climate and larger study areas. We also examine the ability of the UAV LiDAR to map snow depth in forested
boreal and subarctic areas in northern Finland and discuss how machine learning-derived snow depth clusters and
properties could be used to improve SWE estimates in our study areas with considerably better spatial and temporal

rcqolutlon comparcd to tradmonal opcranonal SNOW course measurements.
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2 Data and methods

2.1 Study areas

FFhfe%TLoktudy areas were chosen to present different environmental conditions efthefor Finnish Lapland and sub-
arctic and boreal zones, namely Pallas (Fig. 1a) and; Sodankyld (Fig. 1b). Al-Both sites have on-going snow course
measurements operated by the Finnish Environment Institute (SYKE), at least one ultrasonic snow depth sensor
together with weather station operated by the Finnish Meteorological institute (FMI). Data collected by SYKE and
FMI -and-all-data-is epen-aeceess-publicly available (Sect. 2.2.4).

Pallas (67°59° N, 24° 14’ E) is the northernmost ameng-of the study sites and is located the highest from the-sea level.
The land cover is mostly coniferous forests (63%), with mires and mixed forests (Table 1). Pallas

°C and-mean

°C—It has an-average-higher efthe-highest-average snow depths compared to the-ether
sitesSodankyld. Sodankyld is located in the middle part of Lapland (67° 21' N, 26° 37' E), the land cover is mainly
mire (63%), and the elevation range is low (Table 1). The Sodankyla site is #-part of the FMI research station, which
has daily weather observations sinee-starting from 1908 (The Finnish meteorological institute, 2025). Sedankylid-mean

Table 1. Meteorological and landscape characteristics for Pallas and Sodankyla.

Pallas Sodankyld Data source

Elevation range (—m) 267-350 178-183 NLS
Mean annual air temperature (°C) 2008-2024 0.5 0.9 FMI
Mean annual total precipitation (mm) 644 553 FMI
2008-2024
Average snow depth Nov-May (cm) 65 48 FMI
2008-2024
Average winter wind direction Nov-Apr (°) 199 182 FMI
Lidar extent (km?) 0.8 1.1
Land cover (%): deciduous 0.1 0.1 SYKE Corine land cover 2018

coniferous 62.7 27.0

Mixed 14.9 3.7

Mire 17.2 62.7

canopy closure <30 % 3.5 4.1

Data sources: FMI (2025), SYKE (2018), National Land Survey of Finland (NLS) (2020).
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Figure 1. The Llocation and maps of study sites (a) Sodankyld and (b) Pallas. Gray-The gray area represents UAV-flight
areas, and_the black points mark the manual snow sampling locations and-of the snow courses. Orthophoto were obtained
from the National Land Survey of Finland.

2.2 Field measurements

In our field campaigns, one snow-off and four snow-on and-ene-snew-eff LIDAR surveys were conducted in both
sites during the winter of 2023-2024. Snow-on campaigns were carried out at the beginning of January, the end of
March, the end of April, and the beginning of May, whereas the snow-off campaigns were deneconducted on May
30" for Sodankyld and June 7" for Pallas, just after snow melting and before the new vegetation growth season. The
aim was to capture the snowpack in its different winter stages-ef-winter: (i) new snowpack, ii) maximum snowpack,
and iii) late, melting snowpack); to distinguish areas in each site with similar snow patterns and variability (Fig. 2).
During Wwinter 2023-2024, the snow depths were above the average in Pallas and Sodankyla. 1a-At both sites, snow
depth-started-to-deereaseablation started in March 2024, interrupted by some major snowfall events but-inereased
agatn-tater-in April 2024 dueto-heavy-snowfall-events(Fig. S354, supplementary materials).
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Figure 2. Snow depths from each site's FMI stations. Sodankyli (a), and Pallas (b). Dark dashed lines represent the UAV
drene-campaign dates from the winter_of 2023-2024. The red line represents the long-term meanaverage snow depth for
ing-(2005-2024) and blue lines the daily snow depths frem-of this study’se winter season 2023-2024.

2.2.1 UAV LiDAR surveys

UAV LiDAR mapping was performed at Sodankyléd and Pallas using YellowScan Mapper+ (YellowScan, France),
equipped with an Applanix APX-15 inertial measurement unit and mounted on a DJI Matrice 300 RTK (DJI,
Shenzhen, China). The scanner operated with a 70.4° scanning angle and a 240 kHz pulse repetition frequency, with
both sites scanned at a cruising speed of 7 m/s, an altitude of 80 m above ground level, and a 70% overlap between
flight lines (Table S1. appendices). Trajectory correction was made-carried out in Applanix POSPac software using
continuously operating reference station (CORS) observations from the National Land Survey of Finland CORS

network as the reference data. [For more details on the LiDAR system and flight parameters, see Supplementary

materials (Table S1, appendices). \

We compared the accuracy of the digital terrain models (DTMs) between different data processing methods, using
five GCPs (ground control points) as a reference. In Yellowscan CloudStation, we tested two gridding strategies for

DTM generation—MinZ, which uses the minimum elevation value within each grid cell, and MeanZ, which averages
the elevation of all ground points in-for the-each cell. We alsoWe compared the accuracy of the DTMs between
different data processing methods, using 5 GCP (ground control point) as a reference. [The |5 [GCP plates were
spreaddistributed eventy-across the study areas during each|campaign/and geolocated with RTK GNSS devices, Emlid

RS2+ (Hungary) or Trimble GNSS system R12i (USA), which report 7-8mm horizontal and 14-15mm vertical RTK

accuracies.\

asR-(v4.1.2; Roussel et al., 2020)-and-}idR

paekages-(v0. 13 0; Roussel 2024)—m—Prfer—Dfl'—M—e&leu-l-&Heﬂ—Cllck or tap here to enter text.-(Roussel, 2024) Best
results were obtained when processing the point clouds with thelh&medebs—ﬁﬁ%n—t-h&@le&d%&&eﬁ MinZ method,
which was therefore used for the determination of DTMs from the ground-elassifi

2.2.3 Manual snow measurements

Manual snow depth and density measurements were conducted en—thesame—day—within six hours, after as-the
completion of the UAV EiDAR-flights-campaigns. Snow course measurements were camcd out followm;, the SYKE
snow survey Ql’()t()(,ol (Kuu51st0 1984; Mustonen, 1965) ¢ 5

feHewmg&h%S%ﬁléEﬁﬁeHﬁveyupm%eeeHKuusmto 1984 Mustonen 1965) Snow depth was measured every 50 m

and density every 200 m along the snow course transect in Pallas (Fig. 1a). In Sodankyld, where the snow course is

longer (4 km), —the-SWE was measured in-at 8-cight different sites along the snow course. These measurement
locataions were selected to —+epresenting-—represent different terrain types present in the study site (Fig. 1b). Snow
measurements points were geolocated using RTK GPS{GNSS Emlid RS2+ (Hungary) and Trimble GNSS system

R12i (USA)._In Pallas, snow depth is-was measured using fixed poles installed in the field, whereas in Sodankylé.
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measurements were taken manually with a wooden snow probe at predefined GPS-marked locations. Obtained data
was used as validation data for modelled maps.

2.2.4 Automatic daily snow depth measurements

S 5 8 A 5 sites—H-Sodankyld -
th(:—smdy—sﬁc—ls equlpped w1th three dai-ly—s&ew—dep{-h—ultrasomc Sensors (Campbcll Scwntmc SRSO) providing daily
snow depth recordings -aeress-different-environments-to-capture-the-variability-in-snow-eover-(Fig. 1b). The sensors
are operated by FMI and the data is open access (https://litdb.fmi.fi/index.php). Sensors are in open peatland
(N67°22.024', E26°39.070"), pine forest opening (N67°21.706', E26°38.031') and inside sparse pine forest
(N67°21.699', E26°38.051"). Pallas has one daily-snew-depth-ultrasonic sensor (Campbell Scientific SR50) providing
daily snow depth data. This sensor is located in Kenttirova (Fig. la) and is also operated by FMI
(https://en.ilmatieteenlaitos.fi/download-observations). -The sensor is located in the spruce forest in the upper part of
the study area (N67°59.237', E24°14.579").

2.2.5 Associating manual snow course measurements with automatic snow depth sensors

Manual snow depth measurements from snow courses were linearly interpolated to estimate snow depths between

measurement dates. To improve the accuracy of these estimates, the interpolated values were adjusted using daily

snow depth changes recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course measurement point.

the interpolated snow depth was corrected by adding the daily change observed at the representative snow depth
sensor. Unlike Pallas, where one reference sensor is available, Sodankyld has multiple ultrasonic snow depth sensors
distributed across different environments, allowing more representative corrections. Each snow course measurement

point is assigned to one of these environmental categories, ensuring that the most appropriate sensor was used for
correction. If the corrected snow depth estimate resulted in a negative value, it was set to zero.

2.3 Data analysis
2.3.1 LiDAR data processing

LiDAR data from each campaign were-was pre-processed using CloudStation software. As part of this process, we
performed strip alignment of the flight lines to generate an accurately georeferenced point cloud. To classify points
belonging to the ground, we applied the following parameters: steepness (which reflects terrain variation) was set to
0.2, the minimum object height (the vertical threshold above which an object is not considered part of the ground) was
set to 0.03 m, and point cloud thickness was set to 0.15 m|, Multiple combinations of parameters—such as minimum

object height and slope tolerance — were tested and visually evaluated against field observations and GCPs. The final
configuration effectively minimized misclassification and produced the most accurate and realistic DTMs for our
boreal study area. Theis same parameter set was applied consistently across all campaigns, including both bare-ground

and snow-covered conditions. Although snow accumulation can smooth terrain features and influence classification
(e.g.. reducing local slope). the selected settings vielded stable and reliable results across all conditionk]

Following classification, we generated two—types—of DFMs:MinZ-and MeanZ—where—the Zvalue represents—the
minimum and mean clevation. respecetively. for cach pixel DTMs with. Both DTMs were produced with a 10 cm spatial
resolution. MinZ method based DTM showed better correspondence with the GCP plates (Sect. 2.2.1) and was used
in the following analysis‘. [The DTMs generated using this method for the May campaign in Sodankyld showed lower
accuracy compared to those produced by other methods. Nevertheless, as the DTMs from the other campaigns and

sites were the most accurate when processed with CloudStation, we chose to apply the same method consistently
across all sites and campaigns, accepting the reduced accuracy for May. |In addition. for each campaign, the point

cloud data shows increments along the trajectory line borders of approximately 1-5 cm. The uplifts are presumably
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due to poorer georeferencing of points at the trajectory edges and presumably overlapping points from the two

trajectories can cause abnormal surfaces in DTMs. We tried to clean up the data from overlapping points, but the

overall accuracy of the DTM was degraded, so we chose to accept the inaccuracies in the UAV flight trajectory edge

rcgions.\

Further DTM processing was conducted using ArcGis Pro 3.2.0. The snow depth rasters were generated by calculating
the difference between twe-the snow-on and the snow-off DTMs_and :-ene-coleeted-during-the-winter season-and-the

€0 S o+ o are atia oruttohs SHOV

depthrasters-were-thenresampled to 1m resolution. Snow depth values falling outside a reasonable range (< -0.55 m;
> 2 m) were set to autl-zero to remove extreme outliers, while minor negative values close to zero were corrected to
zero (-0.55_m — 0_m). Missing values were filled by calculating the median value from surrounding cells, using the
neighberheed-median of the 5x5 neighboring cells-grid. The data was clipped to the area of interest (AOI), focusing
the analysis on the buffer zone of 150 m around the snow courses. The 4 DTMs were then stacked together to be used
as an input for the model (Chapter 2.3.2).

The error metrics were calculated using the 5 sround-centrel peintsGCPs areund-distributed in the study areas and-to
comparing-compare their accuracy to the derived DTMs following the suggestion of Rauhala et al. (2023). To estimate
the uncertainty of generated DTMs, the difference between UASV DTMs and RTK measured GCP elevation (Az) was
calculated following Equation 1:

Az, = DSMs; — zgcpt, (Eq 1)

where t is the date of survey, DTMs is the snow surface elevation from the UAVS survey, and zgcp is the GCP elevation
measured with RTK.

When the snow depth rasters are derived from two DTMs, their precision was estimated following Equation 2:
u= Jo(bz,)* + o(bz)?, (Eq2)

where o (Az; ) is the standard deviation for the difference between UAVS DTM and RTK measured GCP elevation
Az for every winter campaign and o (Az;) is the standard deviation for the difference between UAVS DTM and RTK
measured GCP elevation Az for the bare-ground campaign.

To estimate the trueness of the calculated snow depth rasters, error propagation for the mean error of snow-on and
bare-ground DTMs was calculated. It is calculated by finding the average of the differences between the UAVS DTMs
and the GCP elevations, following Equation 3:

m = u(dz;) - u(Aze), (Eq3)

where u(Az,) is the mean error for the difference between each snow-on campaign DTMs and GCPs, and u(Azg) is
the mean error for the difference between bare-ground campaign DTMs and GCPs.

2.3.2 Application of ClustSnow to LiDAR data sets

We applied the ClustSnow workflow first presented in Geissler et al. 2023 to our dataset. All analyses were performed
using R Statistical Software (v.4.3.0, R Core Team, 2023). We-usedTo obtain clusters, ClustSnow applies the k-means
(Hartigan & Wong, 1979) and random forest (Breiman, 2001) algorithms to a stack of snow depth (SD) rasters.
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Consequently, obtained clusters only rely on multitemporal snow observations and do not contain information on the
canopy or topography. As a first step, the k-Means algorithm groups a small subsample of cells based on their
similarity in observed snow depths to a user-defined number of clusters. Secondly, these sub-sampled and clustered
points are used to train a random forest model that, as a last step, is used to predict the probabilities (w) of all grid
cells (ij) to belong to the individual clusters (c). Hereafter, we refer to the ClustSnow output as cluster probabilities
(Wij,c) and the map containing the cluster numbers for each cell with the highest predicted probability is referred to as
cluster map. Cluster numbers are ordered based on the mean snow depth of the underlying srow-depthSD raster stack
to allow an easier interpretation and comparability. Therefore, the cluster number one is assigned to the cluster with
the highest mean snow depth and increases with mean snow depth until the user-defined number of clusters is reached.

2.3.3 Creating daily SD and SWE maps\

Cluster probabilities lat the snow course measurement locations (ij=s) (Ws.), which are assigned by normalizing, so
that they sum to one in each cluster according to Equation 4:

Wye = 5t (Eq. 4)

< %(Ws,c)

The synthetic daily snow depths for each cluster SD,. (t)_are calculated by multiplying the normalized probabilities by

the snow depth values of the corresponding snow course measurements and summing them for each cluster according
to Equation 5:

SD (t) = W5 - SDs(t) (Eq. 5)

The synthetic snow depth maps SD ;;(t) are generated by combining synthetic daily snow depth data (SD. (t)) with
cluster probabilities wij. and multiplying it with the time series data of that cluster (SD, (t)) according to Equation 6:

SDy;(t) = zc: Wije - SD:(1)) (Eq. 6)

The synthetic daily snow depth data for clusters was converted into SWE using semi-empiric Asnow model (Winkler

et al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or

scaling modules, and each module is activated depending on the change of snow depth between time steps. The model
has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023)_suggested that two of them are significantly
related to the site-specific climate variables. These two key parameters are maximum density of a snow layer (pmax)

and new snow density (p0). Only Sodankyld has snow measurements allowing the determination of p0. In other sites
the model was run with the values of p0 and pmax provided by Fontrodona-Bach et al. (2023). The rest of the 7
parameters were kept as default on Winkler et al. (2021). |

The daily SWE maps SWE;;(t)_are calculated using the synthetic snow depth data SD.. (t) _as an input for the model

and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using
Equation 7:

SWEy(t) =§(Wi}-,c X SWE.(t)) (Ea.7)

D.3.34 Model calibration and sensitivity

ClustSnow requires a set of parameters to be defined by the user. Most of these parameters showed no sensitivity in

the calibration performed in Geissler et al. (2024). The only and most sensitive parameter of ClustSnow is the number
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of the clusters (n_class) parameter. Different indices were tested to guide this decision using the NbClust R package
(v3.0.1; Charrad et al., 2014). For Sodankylé and Pallas these indices suggested an optimal number between one and
eight. Besides these indices, we performed a full sensitivity analysis of the ClustSnow workflow following Geissler

etal. 2024. Therefore all model parameters are Varled within reasonable ranges and the model was*sAs—Ge*ssler—et—al—

w run 1000 times w1th randomly chosen parameter combmatlons The Snow nroducts of all
model runs are evaluated against manual measurements to obtain te-ebtain-the-mmean and variance of the-different
goodness-of-fit metrics (RMSE, MAE, R). and-Tthese results of the sensitivity analysis performed are represented in

the sumalementarv material (Fig. Sl see appendlces)—"l:hw

Based on these results, and the low sensitivities of all parameters, parameter values suggested by Geissler et al. 202 3
were used, with the exception for the number of cluster (n_class). For comparability and because of the relatively low
topographical variation in our sites, we selected n_class to be three in this study for both sites. This number is lower

compared to the four clusters obtained in Geissler et al. 2023 and Geissler et al. 2024, but allows an easier comparison

with topographic or vegetation. Yet, to allow a better discussion of the effect of this key parameter on the results, we

rerun our analysis with n_class set to the optimum of six, obtained in the sensitivity analysis performed here for
comparisons (See Section 3.3.2).
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3 Results

3.1 The aAccuracy of UAV based lidar-LiDAR for mapping snow depth in boreal and sub-arctic zones

At all study sites, the snow depth measured from snow courses increaseds until March, after which it starts to decrease
due to spring melting (Table 2). Snow depth variation increased during the melting season, but in the April and May

campaigns, the var1ab111tv stablhzcd as snow had alrcadv melted in most areas. Wﬁm—eﬁsnew—dept-hs—melﬂeases

The uncertainty of the derived DTMs were studied by comparing GCP points to the UAV DTMs (Sect. 2.2.1). The

difference between UAV LiDAR snow depth maps and RTK measured GCP (Eq. 1) resulted in varying accuracies
between sites and campaigns and their RMSEs can be seen in Table 3. Weather conditions as well as the accuracy of
RTK signals might cause differences not directly related to the UAV LiDAR.

Table 2. Manual-Mean snow depth and SWE values and their standard deviations from manual snow course measurements
in different campaigns and sites en-in winter 2023-2024.

Site| Campaign | Mean snow depth (cm) | Standard deviation | n | Mean SWE (mm) | Standard deviation | n
Pallas January 73.8 421045 1259 269112
Pallas Macrh 982 63145 234.5 222|111
Pallas April 95.2 116]45 2397 316112
Pallas May 46.1 123]38 1489 38111
Sodankyld January 54.0 5.8]81 90.6 11.8 (10
Sodankyld March 62.1 9.4(81 141.5 258110
Sodankyld April 46.5 19.3]68 1379 537] 6
Sodankyld May 22.8 64120 94.2 2871 4

Table 3. The RMSE of the differences between GCP plates and LiBARUAV-snow-depthsDTMs and the precieionprecision
and trueness of snow depth maps derived from snow-depth-mapsDTMs in different campaigns and sites (Eq.1; Eq.2; Eq.3).

Metrics Campaign | Sodankyli (cm) | Pallas (cm) |
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January 3.1 6.8
March 6.5 1.2
April 53 3.8
RMSE (Eq. 1) May 28 71
June 24 5.1
All 11.2 53
January 6.6 8.8
March 45 4.7
Precision (Eq. 2) April 39 6.1
May 20.8 6.3
Mean 8.8 6.5
January 2.7 33
March 5.1 32
Trueness (Eq. 3) April 0.9 33
May 132 6.7
Mean 53 4.1

Table 3 also summarizes alse-the precisions of snow depth maps from standard deviations for each site calculated by
Equation- ¢2). The precision of the snow depth maps in Sodankyld is-was stable during the winter campaigns,
performing the-best in April (4.5 cm), but has-had an uncertainty of 20.8 cm in May. In Pallas the precision ranges
ranged from 4.7 cm in March to 8.8 cm in January. The error propagation for mean error, meaning_the trueness of
snow depth maps calculated by Equation- {3} are also concluded in Table 3. In Sodankyla, the trueness wasis the best

in April (0.9 cm), decreasing in May up to 13.2 cm, mostly caused by the computation of DTM with flooding of the
mire areas. Pallas also has-had the highest trueness in the beginning of the-winter with relatively stable accuracies
through the winter, ranging from 3.2 cm-3.3 cm in January-April and decreasing in May to 6.7 cm. During the main
melting season, localised open water and flooding areas especially in open peatland, cause laser beams to abserb-and

reflect differently in comparison to snow or ground surfaces, which can lead to uncertainties especially when using the

minimal elevation derived products. This can therefore affect the quality of May DTMs making them poorer in

comparison to other months.

3.2 Fhe Cluster characteristics of the snow-depth-clusters-show similarities ameng between sites

The characteristics of-differentsnow-depth-clusters derived using ClustSnow and their associated snow conditions at
each site were analyzed by grouping snow course measurements and environmental data according to their respective
cluster classifications.

3.2.1Cluster characteristics at Sodankyla snew-depth-and SWE-clusters

Cluster 1 covers 21% of the total Sodankyla area, typically located in forests or pine mires (Fig. 3). It has an average
canopy height of 4.6 m and is located typically less than a meter away from forests (Table 4). This cluster has the
highest average modelled snow depth and SWE through the winter. According to the medelClustSnow-derived snow
products, peak snow depth peaks-occurs at 14.3.2024 with-at 75 cm and peak SWE at 23.4.2024 with-at 164 mm
(Table 4). The snew-depth-starts-deereasing-ablation started after the peak but snow depth increased again at the end
of April due to heavy snowfall events, decreasing rapidly afterwards. From snow course measurements, the points
classified to this cluster show their snow depth peak in-on 26.3.2024 with an average of 72.5 cm snow depth (Fig.
S1S2, supplementary material). None of the 7 SWE measurement points of the snow course were classified to this
cluster (Fig. 3).
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Table 4. Cluster characteristics in relation to the entire study area of both sites

Figure 3. Sodankyli site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster

Site Sodankyli Pallas

Cluster 1 2 3 1 2 3
Frequency % 21 45 34 32 42 26
Mineral soil (forests) % 29 25 6 78 58 55
Grove mire (korpi) % 3 2 1 2 4 2
Pine mire (rime) % 49 19 5 17 18 9
Open mire (avosuo) % 20 54 87 3 20 33
CHM (m) mean 4.6 4.7 1.8 43 6.2 7.5
Distance to forest (m) mean 1 3 14 1 2 7.5
Max modelled snow depth (cm) 75 70 59 111 106 103
Max modelled SWE (mm) 164 147 114 267 247 234

Cluster 2 is the most common, covering 45% of the total area, and is primarily located in the transition zone between
forest and open areas, including forest gaps, mire edges, and forest-mire boundaries (Fig. 3). This cluster has a mean

canopy height of 4.7 m and is on average 3 meters away from cells classified as forests (Table 4). The modelled peak
snow depth occureds on 14.3.2024 (70 cm) and SWE at-on 23.4.2024 with-at 147 mm (Table 4). Snow course
measurements that are classified as cluster 2 have their snow depth peaking #-on 15.3.2024 with an average of 67 cm,
and SWE in-on 24.4.2024, with an average of 166 mm (Fig. S1S2, supplementary material).
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Cluster 3 predominantly occurs in open areas with a low canopy height, with 87% of the area classified as open mire.
This cluster consistently exhibits the lowest snow depths and SWE values compared to the others (Fig. S+S2,
supplementary material). The highest modelled snow depth and SWE values for cluster 3 are at the same time as for
other clusters, snow depth peaking onat 14.3.2024 (59 cm) and 23.4.2024 (114 mm). The snow course snow depths
and SWE from cluster 3 both peaked on 15.3.2024 with an average snow depth of 57 cm and SWE of 138 mm.

3.2.2 Pallas snow depth and SWE clusters

In Pallas, the three clusters derived from snow depth maps alse-show similar characteristics to those in Sodankylé
(Table 4). The mest-more common cluster 2 covers 42% of the study area, where-with cluster 1 coverings 32% and
cluster 3, as-is-the smallest, covering 26% of the area. The snow depth in the Pallas snow course began to decrease as
early as late February across all clusters (Fig. S2S3, supplementary material). Theis decline was less pronounced in
points classified as cluster 1 compared to the other two clusters. However, the timing of peak SWE, marking the onset
of snowmelt, was later in the spring compared with snow depth and varied among the clusters.

Cluster 1 is predominantly located in the forested areas, which accounts for 78% of the cluster, while the open areas
cover only 3% (Table 4). The mean canopy height is approximately 4.3m and the distance to the forest cells is less
than 1m, which is less than in other groups, suggesting smaller and denser forest types. Until January, the modelled
snow depths for cluster 1 followed similar snow depths with-to the other clusters, but after February they surpassed
those of other clusters and remain the highest until the end of the season (Fig. S2, supplementary material). Changes
in the snow depths between February and March are-were small, with occasional fluctuations. The modelled snow
depth of cluster 1 peakeds onat 28.3.2024 (111 cm) and the SWE peaks #s-on 10.5.2024 with SWE of 267 mm. Snow
measurements from the snow course show that points classified to this cluster hawve-had their peaks in snow depth ir
on 22.2.2024 and 25.4.2024 with both having an average snow depth of 102 cm and SWE in-on 25.4.2024 with 265
mm.

Cluster 2, identified as a transition zone, is typically located near forest edges, forest openings and small-scale open
mire areas (Fig. 4). Forested areas cover 58% of the cluster, while open mire areas contribute 20%. The mean canopy
height is approximately 6m with a 2.2m distance te-from the forest edges (Table 4). The snow depth patterns for this
cluster align with those of other clusters until late February, after which the snow depths in cluster 2 started to decrease.
The modelled snow depth peakeds in mid-March at-on 18.3.2024 with 106 cm, but also on 17.2.2024 with 105 cm.
The modelled SWE peaks-peaked later, on 28.4.204 with-at 247 mm and #-on 10.5.2024 with a SWE of 248 mm. The
results are similar to the manual snow course measurements, where points classified to this cluster have-had their SB
snow depth peak #-on 22.2.2024 (101 cm). However, snow course SWE peakeds twice, having an average of 227
mm in-on 27.3.2024 and 233 mm in-on 25.4.2024.

Cluster 3 covers 26% of the Pallas area and is marked by a mixture of forest (55%) and open mire (33%) environments
(Fig. 4). It has the greatest distance to-from forest cells and the tallest mean canopy height of 7.5 m (Table 4). This
cluster is typically found in open mires or high canopy forests. Modelled snow depths in cluster 3 are-were initially
the highest at the start of the season but exhibited a lower rate of increase compared to the other clusters after January
and remained the lowest throughout the rest of the season (Fig. S2S3, supplementary material). The peak modelled
snow depth, 103 cm, occurreds in late February, 17.2.2024, after which the snow depth steadily declineds. The
modelled SWE peak is-was at the same time as for cluster 2, at-on 28.4.2024 (237 mm). Snow course snow depth
measurements are-were the highest at-on 22.2.2024 with an average of 96 cm. SWE measurements from_the snow
course within this cluster are limited, with only five measurements taken during the melting period in late April and
early May. During this period, SWE values are-were initially low but peaked at 186 mm at-on 7.5.2024 (Fig. S2S3,
supplementary material).
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Figure 4. Pallas site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster
zones in relation to their vegetation.

3.2.4 UAV accuracy in comparison to clusters

To evaluate the accuracy of LIDAR-UAV snow depth by cluster in relation to the representativeness of reference
snow depth sensors, € "L S - S STCE, S se SD measurements
taken during the snow course were assigned to their representative cluster. When comparing the UAV-based LiDAR
HAV-SD maps and manual snow course SD measurements, the LIDAR maps consistently underestimate the snow
course measurements in both Pallas and Sodankyld (Fig. 5a, 5b). In Sodankyld, all snow course measurement
campaigns show similar correspondence to the LIDAR snow depth maps and variations among clusters are similar,
showing consistent agreement with snow course measurements (Fig. 5a). In Pallas the snow course measurements
classified as cluster 1 correspond the best to the LIDAR snow depth maps, while the largest discrepancies are observed
in cluster 3, typically located in wet mire areas (Fig. 5b). The accuracy of UAV LiDAR maps decreases towards the
melting season, where, especially in Pallas, the SD estimates are on average up to -30 cm of the snow course

measurements.
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Figure 5. Differences in Az,(cm) between the UAV-based LiIDAR YAV-snow depths and snow course measurements by each
campaign and representative cluster in (a) Sodankyli and (b) Pallas.

Snow course measurements and the UAV-based HAV-LiDAR snow depth_maps for each campaign were compared
with the reference snow depth sensor measurements of the study area (Fig. 1; Fig. 2) to define the overall
representativeness of the measurements and clusters. In Sodankyld, all the aforementioned datasets follow similar
patterns;: Celusters have-had similar mean snow depths as the sensors and are-were within the ranges of snow course
measurements (Fig. 6a), except in May, when the snow course snow depths de-did not match UAV LiDAR nor the
sensor snow depths. The highest snow depths are-were in forested cluster, and the reference sensor located in the forest
opening. In Pallas, the UAV LiDAR snow depth maps underestimate the snow height in relation to both snow course
measurements and reference snow measurement (Fig. 6b). Cluster 1 has the highest correspondence to the snow course
and reference sensor compared to the areas classified as other clusters.
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Figure 6. Reference sensor snow depths compared to UAV LiDAR snow depths by cluster in Sodankyli (a) and Pallas (b)
in each campaign. Dashed lines are the mean values of snow depths at each cluster.

3.3 Model validation
3.3.1 Comparison of modelling results to snow course data

The model creates daily snow depth and SWE estimates for the two study sites. These estimates were compared to the
snow course measurements and UAV LiDAR snow depth maps to estimate their accuracy (Table 5). The snow depth
predictions of modelled maps have an overall accuracy of 8.0 cm in Sodankyld and 5.8 ¢cm in Pallas compared to the
manual snow course measurements (Table 5). The SWE values differ from snow course measurements in Pallas, with
RMSE of 35.6 mm and 33.1 mm in Sodankyld during all measurements es-in winter 2023-2024. The predicted SWE
values of the Sodankyld snow course follow the observed snow course SWE values (Fig. 7a). The model tends to
slightly underestimate the SWE, particularly during the late season, but the median values of measurements fall within
the model’s predictive range. Model performance is the highest in February, with RMSE of 12 mm (n=7). In contrast,
the performance declines towards the end of the season with RMSE of 73 mm in May (n=4), as can be seen in table
7.1.

In Pallas, the modelled SWE values are typically within the range of manual SWE measurement values (Fig. 7b). The
model has an overall accuracy of 32 mm (Table 5), with its best performance observed early in the season, with RMSE
of 6 mm in November (n=12) and 8 mm in December (n=12), as shown in Ttable 5. The highest error, 59 mm (n=12),
occurs during the onset of the rapid snowmelt in early May. Despite this, the modelled SWE values successfully
capture the peak-seasonal peak in April and May, consistent with the snow course measurements.
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Figure 7. Fhe-mModelled SWE values in comparison to the-measured SWE values of the snow course in Sodankyli (a) and
Pallas (b) in 2023-2024.

Table 5. RMSE for Sodankyli and Pallas modelled SWE-RMSE

I Sodankyla | Pallas
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Date RMSE SD (cm) RMSE SWE (mm) Date RMSE SD (cm) | RMSE SWE (mm)
15.11.2023 6.3 (n=62) 15 (n=7) 2.11.2023 4.5 (n=46) 18 (n=12)
15.12.2023 5.9 (n=62) 13 (n=7) 16.11.2023 4.1 (n=46) 6 (n=12)
11.1.2024 4.6 (n=62) 16 (n=7) 1.12.2023 3.9 (n=46) 8 (n=12)
16.2.2024 5.0 (n=62) 12 (n=7) 14.12.2023 3.5 (n=46) 39 (n=12)
15.3.2024 6.4 (n=62) 30 (n=7) 9.1.2024 4.1 (n=45) 25 (n=12)
26.3.2024 6.7 (n=62) 32 (n=7) 22.2.2024 4.7 (n=45) 26 (n=12)
17.4.2024 9.2 (n=60) 37 (n=6) 5.3.2024 5.2 (n=46) 26 (n=12)
24.4.2024 13.8 (n=62) 50 (n=6) 21.3.2024 5.5 (n=46) 24 (n=12)
15.5.2024 9.7 (n=62) 73 (n=4) 27.3.2024 4.8 (n=46) 34 (n=11)
Mean 8.0 (n=555) 33.1 (n=58) 18.4.2024 6.3 (n=45) 53 (n=12)
25.4.2024 6.4 (n=45) 26 (n=12)
4.5.2024 6.7 (n=46) 59 (n=12)
7.5.2024 6.3 (n=46) 67 (n=12)
15.5.2024 8.1 (n=38) 25 (n=11)
21.5.2024 9.3 (n=46) 29 (n=3)
Mean 5.8 (n=677) 35.6 (n=169)
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Figure 8. Modelled SWE of the previous winters, (a) 2023-2024, (b) 2022-2023 and (c) 2021-2022, at Pallas in comparison
to the snow course SWE measurements.

ClustSnow-derived clusters therefore served as a valid extrapolation basis Fhe-elustering-and-snow-model(Seetion
2.3)provide-daily-maps-of snow-depth-and SWE-for-each-site- for snow depth and SWE measurements throughout the

entire snow season 2023-24. Previous application of ClustSnow suggest, that these clusters are not only suited to

extrapolate measurements of the same season in whifch the cluster’s underlying snow depth maps were acquired, but

are 1nstead transferable to other snow seasons (Gelssler et al 2024). %deﬁned%h&sters%aﬁb&%ed—feﬁether—yea{s

regaféess—eﬁaﬂﬂuai—ehaﬁges—m—s%eﬁ!—dep&h—aﬁd—wea{-h% Clusters defined by th is study’e-s snow el-}smbuﬂeﬂ—paﬁems
dataset of 2023-2024 were therefore used to see how well the model established-based-on-clustering-in-winter 2023~

2024-can reproduce previous years’ snow course measurements. SWE measurements from previous years are available
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for Pallas starting from 2021, although the number of measurements varies across years. The results show that SWE
values from the winter 2022-2023 snow course are aligned with the-model estimates, also capturing the peak SWE in
late April (Fig. 8b). The winter of 2021-2022 exhibits the greatest variability in snowline SWE measurements, with
the model overestimating SWE for most of that winter. In other winters, the model typically underestimates SWE
relative to snow course measurements. Additionally, the variance in SWE values across clusters is largest during the
winter of 2021-2022, reflecting greater variability in snow depth along the snow course. However, the average of the
SWE from the snow course en-in winter 2021-2022 aligns with cluster 3, and medel-ClustSnow successfully captures
the SWE peak in-at the beginning of May 2022. The model generally captures the snow course median SWE values
from the manual measurements, and the peak SWE values and its-their timing in previous winters.

3.3.2. Spatial accuracy of the model is influenced by spring floods and snow wind distribution

Figure 9 visualizes the modeled snow depths for the March campaign in Sodankyld, highlighting the influence of
clustering on snow depth predictions. The modeled snow depths align with the observed snow course measurements,
but the model struggles to accurately represent extreme high or low values of snow depths captured by the UAV
LiDAR. The figure also demonstrates the effect of adding more clusters to the model. For example, 6 clusters would
rovide more detailed snow depth estimates, but would still miss the actual variability of the snow depths. The UAV
LiDAR shows the spatial variability in snow depth between snow course measurement points, which are not captured

during the snow course measurement survey. To be able to evaluate the model performance spatially, comparisons
between modelled snow depth maps and UAV LiDAR maps were conducted for each of the campaigns. First, the
difference between the UAV LiDAR SD map and the model SD output was derived (Fig. 10 & 11):- tFhe differences
were then squared, averaged and the square root of the mean was calculated to obtain overall RMSE for the campaign
and model.
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Figure 9. The transect from Sodankyld modelled snow depths, UAV-based HAV-LiDAR snow depths and snow course
measurements and their representative clusters on 26.3.2024. The yellow line shows the model output of the model with the

615 number of clusters set to three, as used in this study. For comparisons, Fthe red line represents the model output with the
numbers of 6-clusters set to six-—aHowing-meore-detailed-snow-depth-estimates:
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Figure 10. Sodankyld model performance from different UAV_LiDAR YAV-campaigns. The values define the absolute
difference between LiDAR based snow depth maps and the modelled snow depth maps.

In Sodankyld, the analysis resulted in RMSEs varying from 6.2 cm to 11.0cm (January: 11.0 cm; March 8.2 cm; April;
8.8cm; May 6.2cm). The accuracy of the modeled snow depth maps is influenced more by the timing of the campaign
than by the specific location (Fig. 10). For instance, in an open mire area located in the southeastern section of the
snow course, the model's performance varies significantly, with difference ranging from 10-15 cm in March,
decreasing to less than 5 cm in May (Fig. 10, dashed box). Similarly, in the spruce dominated forest situated in the
southwestern part of the area, the highest accuracy is observed in April (difference <5 cm), whereas in January, the
model predictions exhibit a larger discrepancy, with errors ranging from 10—15 cm.

In Pallas, the model has higher inaccuracies compared to Sodankyléd, with RMSEs varying from 18.7 cm to 24.7 cm
(January: 22.4 cm; March 24.7 cm; April 22.7 cm; and May 18.7 cm). The model therefore performs its-best at the
beginning and at the end of the season. Spatially the model performs the-best particularly at the southern end of the
snow course, characterized by homogeneous pine and mixed forest (Fig. 11). In contrast, the model has the highest
errors in the broad Lompolonjankd mire area in the northeast, where the snow is on top of a flooding mire area, and
on the northern slopes of the bordering drumlins, where wind-driven snow accumulation is common. In these areas,
the model estimates over 30 cm difference to the UAV LiDAR map.
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4 Discussion
4.1. Snow and ice conditions impacted en-UAV LiDAR accuracy

UAV LiDAR mapping showed high accuracy in all study sites and conditions, with the average RMSE of UAV
LiDAR DTMs being 11.2 cm and 5.3 cm for Sodankyld and Pallas, respectively. These results align with previous
studies, which have reported RMSE values from snow depth maps ranging from 9 to 17 cm (Dharmadasa et al., 2022;
Geissler et al., 2023; Harder et al., 2020; Jacobs et al., 2021). However, our larger uncertainty and lesser accuracy was
noted in-especially in the late melting period with flooding conditions, which-that-might be impacted by laser beams
reflection from water bodies.

The trueness of the snow depth maps derived from DTM maps variesy between 0.9-13 cm_and and-typically-are ties
in-between4-em-and—6-em-in-forall-sites—and- RMSEs of individual DTMs vary between 1 and 7 cm (excluding an
outlier in Sodankyld, May 22.1 cm). The precisions here are based on the 5 GCP measurements as-suggested by
Dharmadasa et al. (2022). Pallas has the most stable conditions and Sodankyla has the actual lowest bias in April (0.9
cm). The accuracy of the GCP location measurement itself can affect the accuracy estimates. For example, one
measurement in Sodankyld (May) has—shows a large-significant difference to DTM, which decreases the overall
accuracy of the site. The point was not excluded from the calculations, as the error ean-may also be due to the DTM
calculation errors from flooding areas. The accuracy of UAV LiDAR snow depth mapping is dependent on several
factors, that-which can be divided into boresight errors, navigational errors, terrain- and vegetation-based errors, and
post-processing-errors (Deems et al., 2013; Pilarska et al., 2016). For example, fallen tree trunks, very dense

undergrowth or flooded marshes can pose challenges to point cloud classification and affect the output DTM quality
(Deems et al., 2013; Evans & Hudak, 2007)._Similarly, vegetation and terrain affect the accuracy of manual snow
depth measurements.
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The best accuracy of snow depth maps (0.9 cm) of all sites and campaigns was calculated from April datafrom
campaign in Sodankyld. Two previeus-days prior to before-the flight campaign, on 24.4.2024, approximately 10 cm
of new snow had fallen in the area, which helpeds to smooth the snow surface and to cover -previously melted or
frozen areas under the snow, which-eould-otherwise-positively affecting the laser's LIDAR signal reflection-or-the-and
hence the accuracy of the terrain model. ©#-In contrastsy, the trueness of snow depth maps in all sites is the-lowest in
May (Table 3). Our findings highlighted increased measurement inaccuracies during that period, aspossibly because
most of the snow had already melted and the-large areas were covered with slush and smooth water surfaces. This
posed challenges for the DTM algorithm lowest Z-value obtained in cell, meaning that the height of the reflected laser
beams in the water mass also affects the DTM elevations. The trueness values, on the other hand, are based on GCP

plates placed in the area, which were located on top of the remaining snow. When the snow is surrounded by water.

the model may be inaccurate and produce lower accuracy DTMs than when the surface is completely covered by either

Snow_or thdwed ground. %eh—aﬁﬂee&s%h&la&er—bema—feﬂeeﬂe& ?h%phenemeﬂemeaﬂ—b%seeﬂ—m%&pee}aﬂ%m

—Up Tto our knowledge, there is no

systematlcal review on wet snow affectmg laser beams. Howcvcr water gcncrallv has a low reflectivity in the infrared

wavelength range compared to solid surfaces, and the return signal detected by the sensor is influenced by factors such

as incidence angle and surface roughness ;—(Fernandez-Diaz et al., 2014; Paul et al., 2020). These factors likely
contributed to reduced accuracies y-of the surface detection in areas with localised open water during the melting
season. -The phenomenon can be seen especially in Sodankyld, which has the largest, typically flooding, mire areas
among sites, The-Rresults are-were similar with-for Rauhala et al. (2023), where the poorest accuracy of SfM method
based DTMs were collected during the late melting period in flooding areas. This is due to the manual snow course
measurements, where these flooding points are marked as having zero snow depth and BFMs-LiDAR-derived snow
depth maps still showing snow in these areas. Some Vvegetation types, such as dense coniferous forests, are known
to decrease the accuracy of different UAV methods of snow depth mapping (i.e Dharmadasa et al., 2022; Rauhala et
al., 2023), as coniferous canopy reduce or even prevents ground returns. If we expect the-cluster 1 to present forested
regions and cluster 3 to present open areas with low vegetation and compare the snow depth map accuracies to snow
course measurements, we cannot distinguish similar phenomena in Sodankylé or Pallas (Fig. 5). On both sites, the
best correspondence between snow course measurements and UAV LiDAR maps are in cluster 2, in forest openings.
In contrast, especially in Pallas, the biggest disparities occurreding in cluster 3. This ean-may be due to snow course
measurement poles lifting from the ground especially in wet areas where ground freezing and thawing move the pole

over timeduring-the-years.

Broxton & van Leeuwen (2020) recommended the SfM method for snow depth monitoring under certain conditions,
such as in gently sloping terrains and areas without dense forest cover. The UAV LiDAR method was selected over

the SfM method for this study due to_existing dense forest canopy dnd frequent ll;_ht condmons that would not dll()W
reliable SfM data acquistion ehe 5 speci g

canopy-ecover(Rauhala et al., 2023; Revuelto et al., 2021). With advancements in SfM camera technology, the StM
method could complement L1DAR monitoring, particularly in relatively flat regions like Sodankyld and Pallas.
Nevertheless, challenges remain for both methods in large mire areas. While the SfM struggles with surface
homogeneity, LIDAR faces accuracy issues in detecting bare ground under flooded, uneven and wet surfaces.
Additionally, manual snow depth measurements are also less accurate due to ice and water layers on the ground.

4.2 Site characteristics explaining the different snow depth clusters

Vegetation and topographySite-characteristies impacted-netably-te snow depth clustering in our boreal and sub-arctic
sites. EspeeiallySpecifically, we noted that canopy cover, open peatlands and transition zones with wind shelter had a
clear and similar influence on elustering-obtained clusters at in-both sites. Additionally, we noted that the clusters have
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similar snow dynamics in both sites. The number of clusters has a major impact on the suecess-performance of the
elassifieationclustering and ClustSnow ;-and how determined clusters relate to the site's vegetation and topography

characteristics.a

Thise study employed-applied ClustSnow with the number of clusters set to three, different-eategories-forelustering;
as initial tests demonstrated their suitability for representing different snow patterns in study areas_and three clusters
enable us to relate the snow depth patterns to vegetational patterns. —Ean equal number of clusters alse-provides a

basis for site comparability between the two study sites. Our analysis resuttedresulted in snow depth classification inte
for forests with different trunk heights (cluster 1):; transition zones between forests and open areas, including forest
edges and gaps (cluster 2):; and open areas (cluster 3), mainly peatlands. The results are consistent with those of
Mazzotti et al. (2023) who noted that snow accumulation patterns can be classified into three groups, based on the
relationship between canopy structure and ablation rate. [However, as also noted by Geissler et al. (2024), increasing

the number of clusters could, in some cases, improve the accuracy of the end products and increasing the number of

clusters would allow more detailed description of the snow patterns, as can also be seen in Figure 9. The sensitivity
analysis performed for this study's sites confirm this assumtion. We found that the highest accruacies of the
ClustSnow-derived snow products, evaluated against manual measurements, can be expected with the number of

clusters set to six. Especially when the study area has high elevational differences or has various topographical apects,

more clusters would better correspond to the depth patterns. The most uncertainties relaed to the model parametrization
of both models, the ClustSnow and Asnow model, are due to the number of clusters (Fig 1., see appendices). ]

In forested areas, distinguishing between clusters 1 and 2 remains challenging due to their similar site characteristics
(Tables 5 & 6). Forested areas present challenges for clustering because of varying snow height and dynamics
influenced by canopy cover and trunk size (L.-J. Meri6 et al., 2023). Forest gaps in the coniferous forests are known
to create clear and distinct variations in snow depth within the forests, and alse-SWE varies up to three times more in
unevenly distributed forests compared to evenly distributed forests (Woods et al., 2006). For this reason, forested areas
contained both clusters 1 and 2 in both sites. The-eCluster 1 receives the most snow and has the highest SWE values,
especially during the late winter (Fig. 7a; 7b). Lundquist et al. (2013) concluded that this is the typical situation in
cold climates, where snow lasts longer in forests than in forest openings. In both of our sites, snowmelt starts-the latest
and snow cover lasts-the longest in cluster 1. The forested areas in Sodankyld and Pallas are spruce dominated, where
the canopy shades the ground from the-sun radiation, reduces wind effects and traps snow, theugh-alse-himits-but also
limits snowfall reaching the ground. In this cluster, we expect the-snow accumulation to follow canopy structure
throughout the season and the ablation to be too weak-slow or constant to change it, as defined by Mazzotti et al.
(2023).

Cluster 2 is the most common cluster on both sites (Tables 5 & 6), likely since it can be foundedfound in both forested
and open environments. While the snow depth trends across cluster 1 and cluster 2 are similar, cluster 2 experiences
an earlier start of snowmelt in spring compared to forested cluster 1 (Fig. 7a; 7b). This indicates more short-wave
solar radiation exposure compared to cluster 1, where SWE peaks at the end of April before the melting begins. Cluster
2 characteristics correspond to previous studies, by Koutantou et al. (2022) and Meri6 et al. (2023), where canopy
structure influences snow accumulation, but in ablation subsequently disrupts these patterns, resulting in earlier timing
of snow loss. This phenemenen-can also be seen in the modeling outputs from the previous two winters in Pallas (Fig.
8), especially in winter 2022-23, when snowmelt in cluster 2 started simultaneously with cluster 3. These
characteristics are seen in both sites and support the location of the cluster 2 te-be-as being in transition zones between
open and forested areas.

Open areas are subject to wind redistribution and prolonged solar exposure resulting in lower and smoother snow
depth patterns, that-corresponding te-with the results of cluster 3. In cluster 3, snow depth starts decreasing notably

earlier than other clusters, in February 2024, suggesting faster melting due to both higher solar radiation and flooding.

29

{Commented [MY127]: RCI15




760

765

770

775

780

785

790

795

800

In the flooding mire areas, melting waters from below also accelerate snowmelt. Both snow depth and SWE values
are lower in this cluster in comparison to the-other clusters, corresponding-te-thewith results from L.-J. Merid et al.
(2023). An interesting aspect of the classification is the differentiation between the mires Lompolonjénkéa (box A; Fig.
4) and Vilisuo (box B; Fig. 4). Vilisuo mire, classified to cluster 2, is more sheltered, surrounded by forests and is
located at a higher altitude than the Lompolonjinké mire, which is classified as cluster 3. Vilisuo is drier and partly
artificially drained, while Lompolonjanka is larger-drained by a small natural stream, typically flooding in spring
(Marttila et al., 2021).

‘Thc clustering results support the results of other studies on snow distribution in boreal and sub-arctic sites. They also

support the ability of the ClustSnow ability to model various environments and sites, both in Alps and the Arctic
boreal zone. Moreover, the results suggest that ClustSnow is generally transferable to large sites as well as to the arctic
boreal climate. ﬂn a recent study from the Pallas site by L.-J. Meri0 et al. (2023), the variations in snow depth were
partially explained by canopy interception, longwave radiation emitted by trees, and wind-driven redistribution, which
contributed to snow deposition along forest edges in both forested and peatland environments. The snow depth was
higher within dense canopy, with the greatest accumulation observed in coniferous forest areas, followed by mixed
forests, transitional forest/shrubland, and open peatlands. In both Sodankyld and Pallas the dominant winter wind
direction is from the south, which leads to snow accumulation in forest canopy and their leeward side, where typically
the highest snow depths are measured, corresponding to the results from Dharmadasa et al. (2023). In Pallas this
results in snow accumulating particularly behind the drumlins north of the mire-Lompolonjanka mire (Fig. 4 Box A).
This is also reflected in the accuracy of the model in these areas - the three clusters may not be sufficient to account
for the particularly high snow depths of the northern sheltered slopes (Fig. 11). In comparison, snow dynamics in
Sodankyla are influenced by vegetation rather than by topographical variations, as the area itself is flat with elevation
differences of less than two meters. Forest structure is the main driver of snow accumulation, but short-wave radiation
can disrupt these patterns, especially on south-facing slopes where there is expected to be more early-season ablation
(Mazzotti et al., 2023). Weather further affects accumulation and ablation processes, leading to interannual variations
in snow distribution, explaining why the relationship between snow distribution and canopy structure varies by

location and year.

K-means clustering is widely used in many applications for partition datasets but is known to have problems associated
with centroid initialization, handling outliers and dealing with various data types (Ahmed et al., 2020; Morissette &
Chartier, 2013). Whlle more clusters might be able to capture finer details, such as directional classes (Mazzotti et al.,

2019), the ssifie g sthree clusters obtained in this study corresponds to_land-cover-#en-
d—l—l‘%&t—}eﬂ-d-l—ed{%geﬂ%r These results align with previous findings that emphasize the importance of canopy structure
in addition to topography and weather conditions on snow dynamics (Dharmadasa et al., 2023; Mazzotti et al., 2023).
For instance, Geissler et al (2023) classified their Alpine study area into four elassesclusters, further subdividing the
open elass—cluster into shaded and exposed subelassesclusters. Although using more than three clusters could

potentially improve the-finer scale spatial accuracy, as can be seen in Fig 9 and the number of clusters is always a
question of the-data used and left to the user to decide, as noted alse-in the study efby Geissler et al. (2023). Based
on our ebservations-observations, together with the results of the study by Geissler et al. (2024), we conclude that the
number of clusters is dependent on the landscape characteristics of the site and the purpose of the model output. If the
interest is to investigate the differences between snow dynamics in different environments, we recommend increasing
the cluster number to also include alse-shaded, exposed and potentially different forest types to capture local variability
(Currier & Lundquist, 2018; Fujihara et al., 2017; Mazzotti et al., 2020, 2023; Trujillo et al., 2007). Our sensitivity
dnalvsls also showed improvements in the SNOW Droducts with more clusters. Hewex«er—espeelﬂﬂ—y—m%epegﬁpme&l—y

three-clusters- In areas with a larger variety of terrain types, such as diverse slopes and orientations, more categories;
(4 to 65); could be justified.
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4.3 Lidar-based snow clustering and modeling produces SWE estimates comparable to snow surveys

The clustering derived from UAV LiDAR snow depth maps, combined with the Asnow model, produced snow depth
and SWE estimates with RMSEs of 8 cm and 33.1 mm in Sodankyld, and 5.8 cm and 35.6 mm in Pallas. The model
can reproduce the onset of snowmelt and peak SWE and, after one season of drone surveys, needs only daily snow
depth measurements as input. The localization of model parameters, especially pmax and p0, and the amount of daily
snow depth reference data for the identified clusters, improved the results.

The results are consistent with a similar study by Geissler et al. (2023), where the model errors were 8 cm for snow
depth and 35 mm for SWE in comparison to the-manual snow measurements. Winkler et al. (2021), the creators of the
presented Asnow model, produced a SWE RMSE value for their entire validation data set of about 30.8 mm, which is
consistent with other similar models and the results obtained in this study. Multilayered thermodynamic one-
dimensional models for SWE estimation, such as SNOWPACK, CROCUS and SNTHERM, obtained more accurate
results in the Langlois et al. (2009) study with an RMSE of 12.5-14.5 mm, but these models also require atmospheric
variables that are not ubiquitously available. Studies with CROCUS also have produced SWE estimates RMSE values
in the same order as this study (Vionnet et al., 2012) with an accuracy of 39.7 mm. Mortimer et al. (2020) studied the
long-term gridded SWE products and compared their results to snow course measurements. None of the 9 tested
products was-were significantly better than others, rather a multiproduct combination provided the most accurate
results. The lowest RMSE ever-in Finland was 33 mm, produced by ERAS. Thus, depending on the region and winter
climatic conditions, there may be variability in the modelling results and our UAV results are in typical measurement
estimate ranges.

The RMSE of the modelled snow depths s((Table 5) in Sodankyld
are higher than in Pallas, likely due to several factors The RMSEs were Ldl(.Llldth in comparison to manual snow
course measurements. In large mire areas, such as those found in Sodankyld, the formation of ice layers at the bottom
of the snowpack may compromise the accuracy of snow course measurements (Stuefer et al., 2020). Additionally, the
accuracy of snow depth maps in Sodankyld was reduced when parts of the areas were flooded in May (Table 3). Also,

normalizing snow depths when generating daily estimates for clusters ensures internal consistency but reduces local
variability, leading to an underestimation of extreme values. Even though the RMSE of the modeled snow depths
relative to snow course measurements in Pallas is lower than in Sodankyld, the RMSEs calculated for the entire study
area are higher in Pallas. Specifically, RMSE values range from 18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm
in Sodankyld. One contributing factor to the higher RMSE in Pallas is the accuracy of the snow course measurements
(Fig. 5). The errors arise from the use of interpolated snow course data as model input. These interpolations
overestimate actual snow depths in Pallas (Fig. 6), introducing a systematic bias. This overestimation of snow course
measurements also partially explains the higher RMSE of the Pallas SWE model compared to Sodankyld, even though
the modeled snow depth estimates for snow course were more accurate (Table 5). In contrast, UAV LiDAR-derived
snow depths for the entire Sodankylé region closely align with snow course measurements (Fig. 6), indicating better
agreement between manual measurements and broader regional snow depth estimates in this area.

Our-The ClustSnow model can detect SWE peaks in some of the clusters (Fig. S+S2; S2S3, supplementary material).
In Sodankyld, the SWE peak for cluster 2 aligns with the snow course measurements recorded at the dates between
22.4 and 24.4.2024. The model estimates SWE for cluster 3 to range between 107 and 114 mm from 14.3 to 23.4.2024
and the snow course data ef-for the cluster 3 indicates that SWE reaches its peak in mid-March before gradually
decreasing until the end of April, demonstrating good agreement with the-model estimates. However, while the timing
of the peak is well captured, a slight discrepancy remains in its magnitude. Due to the limited number of snow course
measurements classified within cluster 1, detecting meaningful correlations for this cluster was not possible. In Pallas,
the model estimates SWE peaks for cluster 1 and 2 on 10.5.2024, while for cluster 33, the peak is predicted to occur
earlier, on 28.4.2024. However, a slight temporal lag is observed as snow course measurements indicate that for
clusters 1 and 2 the SWE peaks on 25.4.2024. For cluster 3, the discrepancy is more pronounced, with observed SWE
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peaking already at the end of March. The results show regional differences in SWE accumulation and melt dynamics,
with the model capturing general trends but showing slight timing offsets, particularly in Pallas.

The model was validated at the Pallas site to assess its performance under different winter conditions from 2021 to
2023 from which no data was used in developing the model (Fig. 8). The results indicate that the model successfully
captures both the peak SWE and its timing, despite variations in winter conditions between different years. During the
2021-2022 winter, the variance in both snow course SWE and modeled SWE is notably higher compared to the other
winters. This increased variability is partly due to the fluctuating snow depths in that season due-caused byte both
mid-winter melt events and heavy snowfall events.

Several studies are-predicting increase in mixed and liquid precipitation in winter months in Finland and, particularly
in northern parts, increased solid precipitation and earlier springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020).
Rain-on-snow (RoS) events are expected to increase in the future for the northern Norway region during spring and
summer (Mooney & Li, 2021; Pall et al., 2019), potentially leading to an increase of such events alse-in northern
Finland too. Such events increase the liquid water content of the snowpack, leading to rapid saturation and accelerated
snowmelt, reducing snow depth faster than natural snowmelt processes (Yang et al., 2023). Even though Geissler et
al. (2023) noticed the Asnow model medets-limited the capacity efto mapping the SWE change quick-ehanges-during
RoS events, the SWE estimations of this model add value to operational snow course measurements by enabling
continuous monitoring of changes between monthly observations. This capability is especially valuable for capturing
rapid changes during events such as snow depth variations caused by melting_or; snowfall; erReS, where these
dynamics can be scaled across the entire study area rather than relying on data from a single reference sensor. By

integrating daily estimates from local snow depth sensors with snow course data and clusters, our approach enhances
event coverage in modeling. The model’s ability to capture peak snow depth and melt-out dates in real time, provided
that reference snow depth sensors transmit data online, offers essential data for hydrological observation networks and
improves the spatiotemporal resolution of snow course measurements.

4.4 Practical aspects and suggestions for future studies

' ‘ : asSH - -‘ aivet a

Snow monitoring data is essentialessential for flood prediction, infrastructure management, forecasting hydropower

production and for recreational use such as skiing. The forecasts derived from these data support river regulation and
broader water management practices. In addition, daily observations are utilized by various stakeholders, including

local businesses. These datasets also play a critical role in evaluating the impacts of climate change and informing the
development and implementation of adaptation strategies. Integrating UAV -based snow depth surveys into established
snow course areas—conducted over at least one winter season, and preferably across multiple years—can significantly
enhance the spatial representation of snow depth estimates. By applying clustering techniques to these survey data
within a region and validating the results against point-based snow course measurements, it is possible to upscale

localized measurements and improve the spatial and temporal resolution of hydrologic al monitoring. This combination

of observation-based clustering and high-resolution UAV data offers a promising approach for enhancing the
monitoring of snow cover dynamics at both site-specific and regional scales. The outcomes of this study suggest that
the applied ClustSnow workflow methedelogy-is transferable and could be effectively applied in other regions to
support improved snow monitoring and water resource management.

-This study applied intensive UAV LiDAR campaigns to capture fine detailed information on snowpack variability
also in forested areas, which are known to eause-errorsreduce spatial coverage of in UAV-based SfM methodology
(Broxton & van Leeuwen, 2020), especially in-and poor lighting conditions and dense forest canopy cover (Rauhala
et al., 2023; Revuelto et al., 2021). Regardless of the sensor used, the impact of winter conditions on the battery life
of the drone should be considered. The batteries of the DJI Matrcie 300 RTK had to be replaced up to five times
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during the flight campaign, especially in cold weather. Occasionally RTK coverage can also become a limiting factor
in remote areas, for example in Pallas in January, due to the temporary unavailability of the VRS signal. However,
especially in sparsely vegetated areas, the UAV SfM method could offer a more cost-efficient method for producing
3D data ef-on snow dynamics and support the output of more expensive UAV LiDAR. UAV data acquisition with
using LiDAR or SfM can also further support the spatiotemporal resolution of remote sensing products, as their usage
in local scale snow research is still limited due to spatial and temporal coverage issues (Muhuri et al., 2021; Stillinger
et al., 2023; Tsang et al., 2022b). As noted by Geissler et al. (2023), this method combinesing observations and
machine learning and can improve spatial representation of hyper-resolution models (Mazzotti et al., 2021) or advance
refining sub-grid variability in larger-scale models (Currier & Lundquist, 2018).

Mazzotti et al. (2023) indicated that the snow distribution patterns found at a specific location may not be consistent
from year to year, especially in changing weather conditions. The snow distribution patterns are site-specific, based
on -due-to-vegetational and topographical differences, and some clusters might have different responses to different
weather conditions. Espeeiatly—wWinters with abnormal snowfall cause differences in snow extents and snow depth
variability (Pflug & Lundquist, 2020). [In our study areas, the winter of 2023-2024 was exceptional in terms of snow
conditions. There were melt periods in the middle of winter, and spring seemed to arrive twice: first with a thaw in

early April, and then snow melted completely in May. On average, there was also more snow than during a typical

winter (Fig. 2), especially in early winter. The model was developed based on these specific snow conditions, which

means that winters with different characteristics may not align with the model’s calculated clusters. This may partly
explain, for example, the differences in SWE values for the winter of 2021-2022 (Fig. 8b). This winter also showed
the greatest variation in measured SWE values, indicating larger homogeneity in snow conditions during that winter. |

A follow-up year with different weather conditions could enhance and verify the representativeness of the clusters and
provide insights into interannual variability, as local snow distribution patterns show recurrent similarities (Sturm &
Wagner, 2010).

Improvements in the-input data quality can enhance the accuracy of the model, but the model also seems robust.;- Ffor
example, fer-improvements could be made to tackle Pallas site snow course measurement errors (Table 5). We would
recommend a more comprehensive network of snow depth sensors that could improve daily snow depth forecasts

based on snow course measurements, particularly in Pallas, where only limited data from the Kenttdrova snow depth

sensor is available. At least one reference sensor in each land cover type, corresponding to a cluster, would improve
the estimates. As fresh snow density and maximum snow density are among the most important parameters of the
model (Fontrodona-Bach et al., 2023), the model parameters should be localized for each site, rather than relying on
estimates based on literature. Additionally, as the greatest inaccuracies in snow course measurements at Pallas were
observed in mire areas, it is important to acknowledge that these regions are prone to largergreater errors in both
manual and UAV-based snow depth data collection. Beyond the influence of snow-forest interactions, our results also
emphasize the need to study snow accumulation and melt processes in extensive peatland areas, which are particularly
prevalent in the Arctic boreal zone.

5. Conclusions

This work combines emerging methods in close-range remote sensing and machine learning for high spatial and
temporal resolution estimates of snow depth and and-snow—water-equivalentSWE. The work is an important new
application of such methodology in the vast, yet relatively underexplored, boreal and sub-arctic snow regimes. The
study used-conducted an-iexatensive field campaigns at two well-established snow and hydrology research sites,
Sodankyld and Pallas in Finnish Lapland. The different sites represent different conditions, both in terms of
topography and there-were-alse-significant differences—in-weather conditions-between-the-different-eampaigns. The
snow depth maps from different areas and in different winter conditions are the first from these study areas at a
centimeter scale of accuracy and allow an evaluation of the method in relation to other snow depth and SWE products.
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TFhe-used-elusteringapproachThe ClustSnow workflow applied in this study -tegether-with-the-Aspow-medelhas the
potential for expandins-—the expansion of the current operational snow monitoring network to different sites. The
resulting SWE and snow depth maps are possible to be produced in areas with snow depth sensors in different terrain
types, or a regularly measured snow course with at least one snow depth sensor measuring daily. While the accuracy

of the snow course measurements must be considered, the existing snow courses provide a good basis for similar
approaches for local scale SWE and snow depth mapping in other boreal sites too. Even-Tthough clusters formed here
are based on only one winter and are site specific, we showed how they translate well to different winters with different
snow amounts at the sites. Founded on the well-established consistency of local-scale snow distribution between years,
the new technology applied in this research enables cost-effective solutions for SWE monitoring after one winter of
UAYV LiDAR surveys. Our work extends the previous applications of similar methods successfully to boreal taiga
snow, where forests greatly complicates any snow monitoring, remote sensing and-or modeling.

With climate change leading to increasing temperatures, + rchanges in precipitation regimes
and-and more frequent rain-on-snow events, this methodology provldes valuable tools for estimating rapid changes in
snow depth and SWE at both local and catchment scales. Such spatially and temporally refined estimates of the
snowpack condition are needed for catchment scale snow model validation and calibration, as well as to improve
resource planning and prediction.
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