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Abstract 

Climate change is rapidly altering snow conditions worldwide and northern regions are experiencing particularly 

significant impacts. As these regions are experiencing warming faster than the global average, understanding snow 15 

distribution and its properties at both global and local scales is critical for effective water resource management and 

environmental protection. While satellite data and point measurements provide valuable information for snow research 

and models, they are often insufficient for capturing local-scale variability. To address this gap, we integrated UAV 

LiDAR with daily reference measurements, snow course measurements and a machine learning (ML) approach. By 

using ML clustering, we generated high-resolution (1 m) snow depth and snow water equivalent (SWE) maps for two 20 

study areas in northern Finland. Data were was collected through in four different field campaigns during the 2023–

2024 winter season. The results indicate that snow distribution in the study areas can be classified into three distinct 

categories based on land cover: forested areas, transition zones with bushes, and open areas (namely peatlands), each 

showing different snow accumulation and ablation dynamics. Cluster-based modelled SWE values for the snow 

courses gave good overall accuracy, with RMSE values of 31–36 mm. Compared to snow course measurements, the 25 

cluster-based model approach enhances the spatial and temporal coverage of continuous SWE estimates, offering 

valuable insights into local snow patterns in at the different sites. Our study highlights the influence of forests and 

forest gaps on snow accumulation and melt processes, emphasizing their role in shaping snow distribution patterns 

across different landscape types in the arctic boreal zone. The results improve boreal snow monitoring and water 

resource management, and offer new tools and high-resolution spatiotemporal data for local stakeholders working 30 

with hydrological forecasting and climate adaptation and supporting satellite-based observations. 
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1 Introduction 

Snow is an important part of the hydrological cycle and is highly relevant for societies and ecosystems, especially in 35 

high latitudes and mountainous regions. Snow cover, the timing and distribution influences directly influences on 

climate energy budget through snow albedo (Callaghan et al., 2011; Li et al., 2018), ecosystems and habitats, including 

species and vegetation distribution (Thiebault & Young, 2020), biogeochemical processes in soils and seasonal ground 

frost (Ala-Aho et al., 2021; Croghan et al., 2023; Jan & Painter, 2020). Additionally, snow resources have a major 

impact on catchment, river and groundwater water budgets, and seasonal distribution (Meriö et al., 2019). Snow-40 

covered areas are decreasing as global temperatures rise, leading to a consistent decline in snow water equivalent 

(SWE) (Colombo et al., 2022; Faquseh & Grossi, 2024; Kunkel et al., 2016; Räisänen, 2023; Y. Zhang & Ma, 2018). 

A recent study by Gottlieb & Mankin (2024) shows that how snowpack March SWE has decreased in half of the 

Northern Hemisphere river basins over the past 40 years with the highest decreases in the southwestern USA and 

western, central and northern Europeand the declines are highly related to human actions. The timing and amount of 45 
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snowmelt, along with the SWE during in the melting period, are crucial for local water balance and floods monitoring 

and regulation (i.e., Bavay et al., 2013; Callaghan et al., 2011; Wang et al., 2016). Changes in snow conditions and 

rising temperatures are causing earlier flood peaks in snowmelt-dominated catchments with a decline in streamflow 

later in the year (Berghuijs & Hale, 2025; Engelhardt et al., 2014; Matti et al., 2017). Snowmelt significantly influences 

near-surface hydrological effects (Muhic et al., 2023) and soil moisture in these regions (Okkonen et al., 2017).  50 

 

Snow models are an important part of water resource planning and prediction. These models provide estimations of 

snow related hydrological parameters for areas and times where ground observations are not available and can be used 

for creating various scenarios. However, for the accurate prediction of snow-water resources, snow models require 

high-resolution data as inputs, testing and validation. Satellite based remote sensing is still a rather a coarse resolution 55 

tool and has limited accuracy with canopy cover (Muhuri et al., 2021; Rittger et al., 2020). For example, currently, 

the accuracy and spatiotemporal availability of SWE from microwave satellite missions is not sufficient for 

local scale water resource management planning (Tsang et al., 2022a). Gaffey & Bhardwaj (2020)concludes that 

as only a few satellite sensors provide resolution required to capture local variability with multispectral or 

infrared data, together with limited revisiting times, the usage of satellite products in snow research is still 60 

limited. Thus, ground-based manual measurements, which are then fed to  for feeding operational models, are still 

conducted. The snow course network The national snow course measurement network – a manual snow depth and 

density measurement protocol - provides important data for models and serves as a long-term historical dataset; 

however, they are this is time-consuming, the accuracy varies (Beaudoin-Galaise & Jutras, 2022; Kuusisto, 1984; 

Mustonen, 1965), and temporal resolution is weeks to month. Thus, it is not ideal for capturing snow dynamics of 65 

individual events or important hydrological variables such as peak snow depth or melt-out dates (Malek et al., 2020).  

 

To bridge the knowledge and technical gap between remotremotely sensede and ground observations, uncrewed aerial 

vehicles (UAV) have been proven to be efficient in the snow depth and SWE estimations, with providing decent cost 

efficiency and accuracy  (e.g., (Adams et al., 2018; Niedzielski et al., 2018; Rauhala et al., 2023). Like satellite 70 

platforms, also UAV systems can carry both optical and radar-based sensors and provide high resolution spatial 

information. Photogrammetry, including multispectralRGB and stereo-imagery, can result in centimeter-scale 

accuracy in snow depth mapping over a catchment scale and has is relatively low cost compared to radars like ground-

penetrating radar (GPR) and light detection and ranging (LiDAR) (Maier et al., 2022; Nolan et al., 2015; Rauhala et 

al., 2023). Combining snow depth data from LiDdAR and spectrometer sensors has also been used to model snow 75 

density on a weekly basis at the Airborne Snow Observatory (ASO) (Painter et al., 2016) HoweverYet, 

photogrammetry-based products, like structure-from-motion (SfM), have limitations in lighting conditionsrequire 

suited light conditions and  especially when measuring homogeneous heterogrnousheterogeneous snow surfacess  and 

are limited in penetrating dense vegetation covers. , and the Thus, the decision between cost-effectiveness and 

accuracy is dependent on the site characteristics (Rauhala et al., 2023; Rogers et al., 2020). Recently, LiDAR sensors 80 

have become got more affordable, compact and lightweight. Technical advancements, such as improved inertial 

measurement units (IMUs) and global navigation satellite systems (GNSS), have enhanced their accuracy and 

performance, making LiDAR more cost-effective and competitive compared to UAV photogrammetry (Bhardwaj et 

al., 2016; Rogers et al., 2020). The UAV LiDAR technology potentially offers high accuracy over large spatial areas 

and allows catchment-scale mapping also even under canopy cover, unaffected by overcast conditions or shadows 85 

(Dharmadasa et al., 2022; Harder et al., 2020; Jacobs et al., 2021; Mazzotti et al., 2019). LiDAR based snow depth 

data, when combined with models or density assumptions, can also be used to estimate the spatial distribution of SWE 

in on a landscape scale, in awith decent cost-effectiveness (Broxton et al., 2019; Geissler et al., 2023).  

 

Snow conditions are mostly controlled by temperature and precipitation (Mudryk et al., 2020; Mudryk et al., 2017), 90 

and changes in global and local climate trends impact snow cover differently across regions. However, local snow 

accumulation is dependent on on-site characteristics, such as topography, vegetation, and weather and wind 

distribution patterns (Currier & Lundquist, 2018; Mazzotti et al., 2019, 2023). Forest structure significantly affects 

snow accumulation (Mazzotti et al., 2023), and SWE values for forested areas appear significantly higher than in 
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tundra and shrub tundra zones (Busseau et al., 2017; Dharmadasa et al., 2023). The effect of forest canopy structure 95 

toon snow melt also depends on the climate, as because in cold regions, the snow lasts longer in forests than in forest 

openings, whereas in warm climates, it stays longer in forest clearings openings (Lundquist et al., 2013). Additionally, 

snowpack characteristics are spatially different in forest gaps (Bouchard et al., 2022) and edges (Currier et al., 2022; 

Mazzotti et al., 2019). Vegetation changes, such as the northward retreat of the tree line, the densification of existing 

vegetation and the migration of new species towards the poles, will also affect snow dynamics; and itsthese effects 100 

are not yet fully known (Aakala et al., 2014; Franke et al., 2017; Grace et al., 2002; Ropars & Boudreau, 2012). For 

better To enhance our understanding of snow processes in sub-arctic and boreal regions, we need improved tools and 

approaches, especially with localized high resolution spatial data.   

 

Even though annual changes in snow cover are dominated by the weather conditions, different patterns , “clusters”, 105 

of snow distribution and melting can be detected (Currier et al., 2022; Geissler et al., 2023; Matiu et al., 2021). These 

snow distribution clusters patterns are site-specific and are dictated by the local site characteristics, and, importantly, 

they can be extended to different years (Pflug & Lundquist, 2020; Sturm & Wagner, 2010). Yet, the approach of Pflug 

& Lundquist (2020) would require several years of snow depth maps from the regions, which is not always feasible. 

Revuelto et al. (2020) successfully modeled daily snow depth maps using in-situ measurements and time-lapse 110 

photographs, and collected field data collected from two winters was estimated to be enough for the random forest 

model to estimate snow depth for other years. Repetitive UAV surveys over the winter seasons can similarly provide 

spatial information of on snow cover, helping to the identification ofy factors affecting snow distribution. Different 

machine learning approaches have shown promising results in snow depth and SWE mapping for different regions (J. 

Zhang et al., 2021), as they can reduce biases and enhance overall accuracy (King et al., 2020; Vafakhah et al., 2022). 115 

ClustSnow, a ML framework based on kMeans and random forest clustering, first presented in Geissler et al. 2023, 

allows the determination of snow patterns (referred to as clusters) from repetitive spatial snow depth maps only. These 

clusters can not only characterize areas with similar seasonal snow dynamics, but also serve as a temporally persistent 

extrapolation basis (Geissler et al. 2024) of local field observations or sensor measurements, was ablenabling e to the 

creation of daily estimate spatial snow depth and SWE maps of entire winter seasons with random forest-based model 120 

with an RMSE ~ 30 mm, in the same accuracies in the same magnitudes as the y as reference underlying data 

measurementsor modern snow models.. , but However However, ClustSnow requires a network of sensors that is not 

feasible for many sites and was yet only tested on very small sites (0.22 km²) within central Europe. So far, the 

ClustSnow framework has, however, not been tested within sub-arctic and boreal regions. uUncertainties and 

challenges call for more testing in different conditions (Meloche et al., 2022; Revuelto et al., 2020) . Especially, the 125 

accurate definition of SWE from snow depth clusters still presents challenges (Geissler et al., 2023).  

 

Our study produces daily spatial daily snow depth and SWE estimates in different sites based on a combination of 

LiDAR-based snow depth maps, snow course measurements, and continuous snow depth measurements. The field 

data was collected during winter 2023-24 from two different sites in the Finnish Lapland, each with long-term 130 

monitoring infrastructure and existing snow course measurements, representing different vegetational and 

topographical conditions typical for the boreal and sub-arctic landscapes. The study applies ClustSnow workflow 

(Geissler et al., 2023, 2024), a ML model based on spatially similar snow depth zones, to novel data and regions with 

different climatic and environmental conditions. We To our knowledge, this method has not yet been used in boreal 

and sub-arctic areas but has proven to be a promising approach in the Alpine conditions. In comparison to the original 135 

study by Geissler et al. (2023) this study applies the model with fewer ultrasonic sensors and LiDAR surveys, with 

new climate and larger study areas. We also examine the ability of the UAV LiDAR to map snow depth in forested 

boreal and subarctic areas in northern Finland and discuss how machine learning-derived snow depth clusters and 

properties could be used to improve SWE estimates in our study areas with considerably better spatial and temporal 

resolution compared to traditional operational snow course measurements.  140 

In this study, we investigate the ability of UAV LiDAR method to map snow depth in forested boreal and sub-arctic 

sites across northern Finland. We discuss how snow-depth clusters and characteristics derived from machine learning 

could be used to improve SWE estimates in our study sites in substantially higher spatial and temporal resolution 
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compared to traditional operational snow course measurements. We also evaluate the output of the LiDAR-based 

snow clustering and model SWE estimates and compare them to the snow course measurements in each site. 145 

2 Data and methods 

2.1 Study areas 

Three Two study areas were chosen to present different environmental conditions of thefor Finnish Lapland and sub-

arctic and boreal zones, namely Pallas (Fig. 1a) and, Sodankylä (Fig. 1b). All Both sites have on-going snow course 

measurements operated by the Finnish Environment Institute (SYKE), at least one ultrasonic snow depth sensor 150 

together with weather station operated by the Finnish Meteorological institute (FMI). Data collected by SYKE and 

FMI  and all data is open access publicly available (Sect. 2.2.4).  

 

Pallas (67∘ 59’ N, 24∘ 14’ E) is the northernmost among of the study sites and is located the highest from the sea level. 

The land cover is mostly coniferous forests (63%), with mires and mixed forests (Table 1). Pallas mean total annual 155 

precipitation is 644 mm, and mean wintertime precipitation of 233 mm, mean annual temperature 0.5 °C and mean 

wintertime temperature -7.0 °C. It has an average higher of the highest average snow depths compared to the other 

sitesSodankylä. Sodankylä is located in the middle part of Lapland (67° 21' N, 26° 37' E), the land cover is mainly 

mire (63%), and the elevation range is low (Table 1). The Sodankylä site is in part of the FMI research station, which 

has daily weather observations since starting from 1908 (The Finnish meteorological institute, 2025). Sodankylä mean 160 

total annual precipitation is 553 mm, and mean wintertime 202 mm, mean annual temperature 0.9 °C and mean 

wintertime temperature -7.6 °C.  

 

Table 1. Meteorological and landscape characteristics for Pallas and Sodankylä. 

 Pallas Sodankylä Data source 

Elevation range (. m) 267-350 178-183 NLS  

Mean annual air temperature (°C) 2008-2024 0.5 0.9 FMI 

Mean annual total precipitation (mm) 

2008-2024 

644 553 FMI 

Average snow depth Nov-May (cm)  

2008-2024 

65 48 FMI 

Average winter wind direction Nov-Apr (°) 199 182 FMI 

Lidar extent (km²) 0.8 1.1  

Land cover (%): deciduous 0.1 0.1 SYKE Corine land cover 2018 

coniferous 62.7 27.0  

Mixed 14.9 3.7  

Mire 17.2 62.7  

canopy closure <30 % 3.5 4.1  

Data sources: FMI (2025), SYKE (2018), National Land Survey of Finland (NLS) (2020). 165 
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Figure 1. The Llocation and maps of study sites (a) Sodankylä  and (b) Pallas. Gray The gray area represents UAV-flight 

areas, and the black points mark the manual snow sampling locations and of the snow courses. Orthophoto were obtained 

from the National Land Survey of Finland. 170 

2.2 Field measurements 

In our field campaigns, one snow-off and four snow-on and one snow-off LiDAR surveys were conducted in both 

sites during the winter of 2023-2024. Snow-on campaigns were carried out at the beginning of January, the end of 

March, the end of April, and the beginning of May, whereas the snow-off campaigns were doneconducted on May 

30th for Sodankylä and June 7th for Pallas, just after snow melting and before the new vegetation growth season. The 175 

aim was to capture the snowpack in its different winter stages of winter: (i) new snowpack, ii) maximum snowpack, 

and iii) late, melting snowpack), to distinguish areas in each site with similar snow patterns and variability  (Fig. 2). 

During Wwinter 2023-2024, the snow depths were above the average in Pallas and Sodankylä. In At both sites, snow 

depth started to decreaseablation started in March 2024, interrupted by some major snowfall events but increased 

again later in April 2024 due to heavy snowfall events (Fig. S3S4, supplementary materials). 180 
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Figure 2. Snow depths from each site's FMI stations. Sodankylä (a), and Pallas (b). Dark dashed lines represent the UAV 

drone campaign dates from the winter of 2023-2024. The red line represents the long-term meanaverage snow depth for 

each date during (2005-2024) and blue lines represents the daily snow depths from of this study’se winter season 2023-2024. 185 

2.2.1 UAV LiDAR surveys 

UAV LiDAR mapping was performed at Sodankylä and Pallas using YellowScan Mapper+ (YellowScan, France), 

equipped with an Applanix APX-15 inertial measurement unit and mounted on a DJI Matrice 300 RTK (DJI, 

Shenzhen, China). The scanner operated with a 70.4° scanning angle and a 240 kHz pulse repetition frequency, with 

both sites scanned at a cruising speed of 7 m/s, an altitude of 80 m above ground level, and a 70% overlap between 190 

flight lines (Table S1. appendices).  Trajectory correction was made carried out in Applanix POSPac software using 

continuously operating reference station (CORS) observations from the National Land Survey of Finland CORS 

network as the reference data. For more details on the LiDAR system and flight parameters, see Supplementary 

materials (Table S1, appendices).   

 195 

We compared the accuracy of the digital terrain models (DTMs) between different data processing methods, using 

five GCPs (ground control points) as a reference. In Yellowscan CloudStation, we tested two gridding strategies for 

DTM generation—MinZ, which uses the minimum elevation value within each grid cell, and MeanZ, which averages 

the elevation of all ground points in for the each cell. We alsoWe compared the accuracy of the DTMs between 

different data processing methods, using 5 GCP (ground control point) as a reference. The 5 GCP plates were 200 

spreaddistributed evenly across the study areas during each campaign and geolocated with RTK GNSS devices, Emlid 

RS2+ (Hungary) or Trimble GNSS system R12i (USA), which report 7-8mm horizontal and 14-15mm vertical RTK 

accuracies. 

 We tested Cloudstation's MinZ and Meanz methods and compared the lasR (v4.1.2; Roussel et al., 2020) and lidR 

packages (v0.13.0; Roussel, 2024) in R for DTM calculation. Click or tap here to enter text. (Roussel, 2024) Best 205 

results were obtained when processing the point clouds with theThe models from the Cloudstation MinZ method, 

which was therefore used for the determination of DTMs from the ground classified pointspoint clouds best matched 

the accuracy of the 5 GCP plates and we chose the models produced by this method. However, it should be noted that 

the DTMs of May campaign in Sodankylä produced by Cloudstation have notably poorer accuracy compared to the 

DTMs produced by other methods. However, as the other campaign DTMs were the most accurate, we decided to use 210 

the same method for each site and campaign and accept the May inaccuracies. In addition, for each campaign, the data 

shows a DTM upscaling along the trajectory line borders, approx. 1-5 cm. The uplifts are presumably due to poorer 

georeferencing of points at the trajectory edges and presumably overlapping points from the two trajectories cause 

abnormal surfaces in DTMs. We tried to clean up the data from overlapping points, but the overall accuracy of the 

DTM was degraded, so we chose to accept the inaccuracies in the UAV flight trajectory edge regions.  215 

 

2.2.3 Manual snow measurements 

Manual snow depth and density measurements were conducted on the same day within six hours, after as the 

completion of the UAV LiDAR flights campaigns. Snow course measurements were carried out following the SYKE 

snow survey protocol (Kuusisto, 1984; Mustonen, 1965). and used as verification and validation data for modelled 220 

maps. Within 6 hours of each survey, snow course measurements were done carried out through the study areas 

following the SYKE snow survey protocol (Kuusisto, 1984; Mustonen, 1965). Snow depth was measured every 50 m 

and density every 200 m along the snow course transect in Pallas (Fig. 1a). In Sodankylä, where the snow course is 

longer (4 km),  the SWE was measured in at 8 eight different sites along the snow course. These measurement 

locataions were selected to  representing represent different terrain types present in the study site (Fig. 1b). Snow 225 

measurements points were geolocated using RTK GPS GNSS Emlid RS2+ (Hungary) and Trimble GNSS system 

R12i (USA). In Pallas, snow depth is was measured using fixed poles installed in the field, whereas in Sodankylä, 
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measurements were taken manually with a wooden snow probe at predefined GPS-marked locations. Obtained data 

was used as validation data for modelled maps. 

 230 

2.2.4 Automatic daily snow depth measurements  

At least one snow depth sensor (Campbell Scientific SR50) can be found from each of the study sites.  In Sodankylä , 

the study site is equipped with three daily snow depth ultrasonic sensors (Campbell Scientific SR50) providing daily 

snow depth recordings  across different environments to capture the variability in snow cover (Fig. 1b). The sensors 

are operated by FMI and the data is open access (https://litdb.fmi.fi/index.php). Sensors are in open peatland 235 

(N67°22.024', E26°39.070'), pine forest opening (N67°21.706', E26°38.031') and inside sparse pine forest 

(N67°21.699', E26°38.051'). Pallas has one daily snow depth ultrasonic sensor (Campbell Scientific SR50) providing 

daily snow depth data. This sensor is located in Kenttärova (Fig. 1a) and is also operated by FMI 

(https://en.ilmatieteenlaitos.fi/download-observations).  The sensor is located in the spruce forest in the upper part of 

the study area (N67°59.237', E24°14.579'). 240 

2.2.5 Associating manual snow course measurements with automatic snow depth sensors 

Manual snow depth measurements from snow courses were linearly interpolated to estimate snow depths between 

measurement dates. To improve the accuracy of these estimates, the interpolated values were adjusted using daily 

snow depth changes recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course measurement point, 

the interpolated snow depth was corrected by adding the daily change observed at the representative snow depth 245 

sensor. Unlike Pallas, where one reference sensor is available, Sodankylä has multiple ultrasonic snow depth sensors 

distributed across different environments, allowing more representative corrections. Each snow course measurement 

point is assigned to one of these environmental categories, ensuring that the most appropriate sensor was used for 

correction. If the corrected snow depth estimate resulted in a negative value, it was set to zero. 

2.3 Data analysis   250 

2.3.1 LiDAR data processing 

LiDAR data from each campaign were was pre-processed using CloudStation software. As part of this process, we 

performed strip alignment of the flight lines to generate an accurately georeferenced point cloud. To classify points 

belonging to the ground, we applied the following parameters: steepness (which reflects terrain variation) was set to 

0.2, the minimum object height (the vertical threshold above which an object is not considered part of the ground) was 255 

set to 0.03 m, and point cloud thickness was set to 0.15 m. Multiple combinations of parameters—such as minimum 

object height and slope tolerance — were tested and visually evaluated against field observations and GCPs. The final 

configuration effectively minimized misclassification and produced the most accurate and realistic DTMs for our 

boreal study area. Theis same parameter set was applied consistently across all campaigns, including both bare-ground 

and snow-covered conditions. Although snow accumulation can smooth terrain features and influence classification 260 

(e.g., reducing local slope), the selected settings yielded stable and reliable results across all conditions. 

Following classification, we generated two types of DTMs: MinZ and MeanZ, where the Z value represents the 

minimum and mean elevation, respectively, for each pixelDTMs with. Both DTMs were produced with a 10 cm spatial 

resolution. MinZ method based DTM showed better correspondence with the GCP plates (Sect. 2.2.1) and was used 

in the following analysis. The DTMs generated using this method for the May campaign in Sodankylä showed lower 265 

accuracy compared to those produced by other methods. Nevertheless, as the DTMs from the other campaigns and 

sites were the most accurate when processed with CloudStation, we chose to apply the same method consistently 

across all sites and campaigns, accepting the reduced accuracy for May. In addition, for each campaign, the point 

cloud data shows increments along the trajectory line borders of approximately 1-5 cm. The uplifts are presumably 
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due to poorer georeferencing of points at the trajectory edges and presumably overlapping points from the two 270 

trajectories can cause abnormal surfaces in DTMs. We tried to clean up the data from overlapping points, but the 

overall accuracy of the DTM was degraded, so we chose to accept the inaccuracies in the UAV flight trajectory edge 

regions. 

 

Further DTM processing was conducted using ArcGis Pro 3.2.0. The snow depth rasters were generated by calculating 275 

the difference between two the snow-on and the snow-off DTMs and : one collected during the winter season and the 

other from a bare ground survey at the end of May/beginning of June. To standardize spatial resolution, the snow 

depth rasters were then resampled to 1m resolution. Snow depth values falling outside a reasonable range (< -0.,5 m; 

> 2 m) were set to null zero to remove extreme outliers, while minor negative values close to zero were corrected to 

zero (-0.,5 m – 0 m). Missing values were filled by calculating the median value from surrounding cells, using the 280 

neighborhood median of the 5x5 neighboring cells grid. The data was clipped to the area of interest (AOI), focusing 

the analysis on the buffer zone of 150 m around the snow courses. The 4 DTMs were then stacked together to be used 

as an input for the model (Chapter 2.3.2). 

 

The error metrics were calculated using the 5 ground control pointsGCPs around distributed in the study areas and to 285 

comparing compare their accuracy to the derived DTMs following the suggestion of Rauhala et al. (2023). To estimate 

the uncertainty of generated DTMs, the difference between UASV DTMs and RTK measured GCP elevation (Δz) was 

calculated following Equation 1:  

𝛥𝑧𝑡 = 𝐷𝑆𝑀𝑠𝑡 − 𝑧𝐺𝐶𝑃𝑡,    (Eq 1) 

 290 

where t is the date of survey, DTMS is the snow surface elevation from the UAVS survey, and zGCP is the GCP elevation 

measured with RTK. 

 

When the snow depth rasters are derived from two DTMs, their precision was estimated following Equation 2: 

𝒖 =  √𝜎(Δ𝑧𝑡)² +  𝜎(Δ𝑧𝐺)²,    (Eq 2) 295 

where 𝜎(Δ𝑧𝑡  ) is the standard deviation for the difference between UAVS DTM and RTK measured GCP elevation 

Δ𝑧 for every winter campaign and 𝜎(Δ𝑧𝐺) is the standard deviation for the difference between UAVS DTM and RTK 

measured GCP elevation Δ𝑧 for the bare-ground campaign.  

To estimate the trueness of the calculated snow depth rasters, error propagation for the mean error of snow-on and 

bare-ground DTMs was calculated. It is calculated by finding the average of the differences between the UAVS DTMs 300 

and the GCP elevations, following Equation 3: 

𝒎 =  𝜇(Δ𝑧𝑡) − 𝜇(Δ𝑧𝐺),     (Eq 3) 

where 𝜇(Δ𝑧𝑡) is the mean error for the difference between each snow-on campaign DTMs and GCPs, and 𝜇(Δ𝑧𝐺) is 

the mean error for the difference between bare-ground campaign DTMs and GCPs. 

2.3.2 Clustering of snow lidar data sets 305 

2.3.2 Application of ClustSnow to LiDAR data sets 

We applied the ClustSnow workflow first presented in Geissler et al. 2023 to our dataset. All analyses were performed 

using R Statistical Software (v.4.3.0, R Core Team, 2023). We usedTo obtain clusters, ClustSnow applies the k-means 

(Hartigan & Wong, 1979) and random forest (Breiman, 2001) algorithms to a stack of snow depth (SD) rasters. 
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Consequently, obtained clusters only rely on multitemporal snow observations and do not contain information on the 310 

canopy or topography. As a first step, the k-Means algorithm groups a small subsample of cells based on their 

similarity in observed snow depths to a user-defined number of clusters. Secondly, these sub-sampled and clustered 

points are used to train a random forest model that, as a last step, is used to predict the probabilities (w) of all grid 

cells (ij) to belong to the individual clusters (c). Hereafter, we refer to the ClustSnow output as cluster probabilities 

(wij,c) and the map containing the cluster numbers for each cell with the highest predicted probability is referred to as 315 

cluster map. Cluster numbers are ordered based on the mean snow depth of the underlying snow depthSD raster stack 

to allow an easier interpretation and comparability. Therefore, the cluster number one is assigned to the cluster with 

the highest mean snow depth and increases with mean snow depth until the user-defined number of clusters is reached.  

2.3.3 Creating daily SD and SWE maps 

Cluster probabilities at the snow course measurement locations (ij=s) (ws,c), which are assigned by normalizing, so 320 

that they sum to one in each cluster according to Equation 4: 

 

𝑤𝑠,𝑐̂ =  
𝑤𝑠,𝑐

∑
𝑠

(𝑤𝑠,𝑐)
     (Eq. 4) 

 

The synthetic daily snow depths for each cluster 𝑆𝐷𝑐 (𝑡) are calculated by multiplying the normalized probabilities by 325 

the snow depth values of the corresponding snow course measurements and summing them for each cluster according 

to Equation 5: 

 

𝑆𝐷𝑐 (𝑡) = 𝑤𝑠,𝑐̂ ⋅ 𝑆𝐷𝑠(𝑡)   (Eq. 5) 

 330 

The synthetic snow depth  maps 𝑆𝐷 𝑖𝑗(𝑡) are generated by combining synthetic daily snow depth data (𝑆𝐷𝑐 (𝑡)) with 

cluster probabilities wij,c  and multiplying it with the time series data of that cluster (𝑆𝐷𝑐 (𝑡)) according to Equation 6: 

 

𝑆𝐷 𝑖𝑗(𝑡)  =
∑
𝑐

 (𝑤𝑖𝑗,𝑐  ⋅ 𝑆𝐷𝑐(𝑡))   (Eq. 6) 

 335 

The synthetic daily snow depth data for clusters was converted into SWE using semi-empiric Δsnow model (Winkler 

et al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or 

scaling modules, and each module is activated depending on the change of snow depth between time steps. The model 

has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023)  suggested that two of them are significantly 

related to the site-specific climate variables. These two key parameters are maximum density of a snow layer (ρmax) 340 

and new snow density (ρ0). Only Sodankylä has snow measurements allowing the determination of ρ0. In other sites 

the model was run with the values of ρ0 and ρmax provided by Fontrodona-Bach et al. (2023). The rest of the 7 

parameters were kept as default on Winkler et al. (2021).  

The daily SWE maps 𝑆𝑊𝐸𝑖𝑗(𝑡) are calculated using the synthetic snow depth data 𝑆𝐷𝑐 (𝑡)  as an input for the model 

and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using 345 

Equation 7: 

 

𝑆𝑊𝐸𝑖𝑗(𝑡) =
∑
𝑐

 (𝑊𝑖𝑗,𝑐  ×  𝑆𝑊𝐸𝑐(𝑡))  (Eq. 7) 

2.3.34 Model calibration and sensitivity 

ClustSnow requires a set of parameters to be defined by the user. Most of these parameters showed no sensitivity in 350 

the calibration performed in Geissler et al. (2024). The only and most sensitive parameter of ClustSnow is the number 
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of the clusters (n_class) parameter. Different indices were tested to guide this decision using the NbClust R package 

(v3.0.1; Charrad et al., 2014). For Sodankylä and Pallas these indices suggested an optimal number between one and 

eight. Besides these indices, we performed a full sensitivity analysis of the ClustSnow workflow following Geissler 

et al. 2024. Therefore, all model parameters are varied within reasonable ranges and the model wasisAs Geissler et al. 355 

(2023) provided a comprehensive sensitivity analysis for the datasets in their tudy area and noted that after a certain 

value, there is little to no change in the accyracy of the model parametrization, we ran the model with the same 

parametrization as the original paper, changing only the number of clusters. However, the model was still calibrated 

according to Geissler et al. (2024) to ensure that this was also the case for our model input. ClustSnow calibration is 

performed using default model parameters, changing only one parameter within a specific range and step size. Each 360 

set of model parameters is run 1000 times with randomly chosen parameter combinations. The snow products of all 

model runs are evaluated against manual measurements to obtain to obtain the mmean and variance of the different 

goodness-of-fit metrics (RMSE, MAE, R). and Tthese results of the sensitivity analysis performed are represented in 

the supplementary material (Fig. S1., see appendices). The final model parameters calibrated were selected by 

minimizing the root mean square error and taking into account computational costs.  365 

 

Based on these results, and the low sensitivities of all parameters, parameter values suggested by Geissler et al. 202 3 

were used, with the exception for the number of cluster (n_class). For comparability and because of the relatively low 

topographical variation in our sites, we selected n_class to be three in this study for both sites. This number is lower 

compared to the four clusters obtained in Geissler et al. 2023 and Geissler et al. 2024, but allows an easier comparison 370 

with topographic or vegetation. Yet, to allow a better discussion of the effect of this key parameter on the results, we 

rerun our analysis with n_class set to the optimum of six, obtained in the sensitivity analysis performed here for 

comparisons (See Section 3.3.2). 

2.3.3 Associating the snow depth clusters with snow depth measurement sensors 

The Δsnow model (Winkler et al., 2021) needs daily snow depth reference measurements to be able to upscale the 375 

snow depths for the entire study area.  As only a single daily snow depth sensor is available in both Pallas, we used 

interpolated snow depths from snow course data as reference values for the model.  The snow depth measurements are 

conducted once a month in Sodankylä and Pallas snow courses (Fig. 1a, 1b), and during each of the drone campaigns 

(Fig. 2). 

 380 

Snow depth measurements from snow courses were linearly interpolated to estimate snow depths between manual 

observations. To improve the accuracy of these estimates, the interpolated values were adjusted using daily snow 

depth changed recorded by the in-situ snow depth sensors (Fig. 1a, 1b). At each snow course location, the interpolated 

snow depth was corrected by adding the daily change observed at the representative. Unlike Pallas, where one 

reference sensor is available, Sodankylä has multiple ultrasonic snow depth sensors distributed across different 385 

environments, allowing more representative corrections. To account for spatial variability in snow accumulation and 

melt, three reference sensors were selected: one in a mire, one in a forest, and one in a forest opening (Sect. 2.2.4).  

Each snow course measurement point is assigned to one of these environmental categories, ensuring that the most 

appropriate sensor was used for correction. If the corrected snow depth estimate resulted in a negative value, it was 

set to zero. 390 

 

2 

.3.4  Creating daily SD and SWE maps 

The synthetic snow depth (SD) maps 𝑆𝐷 𝑖𝑗(𝑡) are generated by combining synthetic daily snow depth data (𝑆𝐷𝑐 (𝑡)) 

with cluster probabilities wij,c  and multiplying it with the time series data of that cluster (𝑆𝐷𝑐 (𝑡)) according to Equation 395 

6: 

 

𝑆𝐷 𝑖𝑗(𝑡)  =
∑
𝑐

 (𝑤𝑖𝑗,𝑐  × 𝑆𝐷𝑐(𝑡))   (Eq. 6) 
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The synthetic daily snow depth data for clusters was converted into SWE using semi-empiric Δsnow model (Winkler 400 

et al., 2021). The model consists of four modules, namely new snow and overburden, dry compaction, drenching or 

scaling modules, and each module is activated depending on the change of snow depth between time steps. The model 

has 7 parameters to be calibrated, where Fontrodona-Bach et al. (2023)  suggested that two of them areto significantly 

related to the site-specific climate variables. These two key parameters are maximum density of a snow layer (ρmax) 

and new snow density (ρ0). Only Sodankylä has snow measurements allowing the determination of ρ0. In other sites 405 

the model was run with the values of ρ0 and ρmax provided by Fontrodona-Bach et al. (2023). The rest of the 7 

parameters were kept as default on Winkler et al. (2021). More information on supportive information. 

The daily SWE maps 𝑆𝑊𝐸𝑖𝑗(𝑡) are calculated using the synthetic snow depth data 𝑆𝐷𝑐 (𝑡)  as an input for the model 

and then using the same protocol as for HS maps to upscale the daily SWE estimates for the entire study area using 

Equation 7: 410 

 

𝑆𝑊𝐸𝑖𝑗(𝑡) =
∑
𝑐

 (𝑊𝑖𝑗,𝑐  ×  𝑆𝑊𝐸𝑐(𝑡))  (Eq. 7) 

3 Results 

3.1 The aAccuracy of UAV based lidar LiDAR for mapping snow depth in boreal and sub-arctic zones  

At all study sites, the snow depth measured from snow courses increaseds until March, after which it starts to decrease 415 

due to spring melting (Table 2). Snow depth variation increased during the melting season, but in the April and May 

campaigns, the variability stabilized as snow had already melted in most areas. Variation of snow depths increases 

towards the melting season and in the April campaign and the last campaign in May shows stabilization in variability 

as the snow has already melted from most parts. 

The uncertainty of the derived DTMs were studied by comparing GCP points to the UAV DTMs (Sect. 2.2.1). The 420 

difference between UAV LiDAR snow depth maps and RTK measured GCP (Eq. 1) resulted in varying accuracies 

between sites and campaigns and their RMSEs can be seen in Table 3. Weather conditions as well as the accuracy of 

RTK signals might cause differences not directly related to the UAV LiDAR. 

 

Table 2. Manual Mean snow depth and SWE values and their standard deviations from manual snow course measurements 425 

in different campaigns and sites on in winter 2023-2024. 

 

The uncertainty of the derived DTMs were studied by comparing GCP points to the UAS DTMs (Sect. 2.2.1). The 

difference between UAV LiDAR snow depth maps and RTK measured GCP (Eq. 1) resulted in varying accurac iesy 

between sites and campaigns and their RMSEsS can be seen in Table 3. Weather conditions as well as the accuracy 430 

of RTK signal might cause differences not directly related to the UAV LiDAR. 

 

Table 3. The RMSE of the differences between GCP plates and LiDAR UAV snow depthsDTMs and the precicionprecision 

and trueness of snow depth maps derived from snow depth mapsDTMs in different campaigns and sites (Eq.1; Eq.2; Eq.3). 

Metrics Campaign Sodankylä (cm) Pallas (cm) 

Site Campaign Mean snow depth (cm) Standard deviation n Mean SWE (mm) Standard deviation n 

Pallas January  73.8 4.2 45 125.9 26.9 12 

Pallas Macrh  98.2 6.3 45 234.5 22.2 11 

Pallas April  95.2 11.6 45 239.7 31.6 12 

Pallas May  46.1 12.3 38 148.9 38.1 11 

Sodankylä January  54.0 5.8 81 90.6 11.8 10 

Sodankylä March  62.1 9.4 81 141.5 25.8 10 

Sodankylä April  46.5 19.3 68 137.9 53.7 6 

Sodankylä May  22.8 6.4 20 94.2 28.7 4 
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RMSE (Eq. 1) 

January 3.1 6.8 

March 6.5 1.2 

April 5.3 3.8 

May 22.8 7.1 

June 2.4 5.1 

All 11.2 5.3 

Precision (Eq. 2) 

January 6.6 8.8 

March 4.5 4.7 

April 3.9 6.1 

May 20.8 6.3 

Mean 8.8 6.5 

Trueness (Eq. 3) 

January 2.7 3.3 

March 5.1 3.2 

April 0.9 3.3 

May 13.2 6.7 

Mean 5.3 4.1 

 435 

Table 3 also summarizes also the precisions of snow depth maps from standard deviations for each site calculated by 

Equation. (2). The precision of the snow depth maps in Sodankylä is was stable during the winter campaigns, 

performing the best in April (4.5 cm), but has had an uncertainty of 20.8 cm in May. In Pallas the precision ranges 

ranged from 4.7 cm in March to 8.8 cm in January. The error propagation for mean error, meaning the trueness of 

snow depth maps calculated by Equation. (3) are also concluded in Table 3. In Sodankylä, the trueness wasis the best 440 

in April (0.9 cm), decreasing in May up to 13.2 cm, mostly caused by the computation of DTM with flooding of the 

mire areas. Pallas also has had the highest trueness in the beginning of the winter with relatively stable accuracies 

through the winter, ranging from 3.2 cm-3.3 cm in January-April and decreasing in May to 6.7 cm. During the main 

melting season, localised open water and flooding areas especially in open peatland, cause laser beams to absorb and 

reflect differently in comparison to snow or ground surfaces, which can lead to uncertainties especially when using the 445 

minimal elevation derived products. This can therefore affect the quality of May DTMs making them poorer in 

comparison to other months. 

3.2 The Cluster characteristics of the snow depth clusters show similarities among between sites 

The characteristics of different snow depth clusters derived using ClustSnow and their associated snow conditions at 

each site were analyzed by grouping snow course measurements and environmental data according to their respective 450 

cluster classifications.  

3.2.1Cluster characteristics at Sodankylä snow depth and SWE clusters 

Cluster 1 covers 21% of the total Sodankylä area, typically located in forests or pine mires (Fig. 3). It has an average 

canopy height of 4.6 m and is located typically less than a meter away from forests (Table 4). This cluster has the 

highest average modelled snow depth and SWE through the winter. According to the modelClustSnow-derived snow 455 

products, peak snow depth peaks occurs at 14.3.2024 with at 75 cm and peak SWE at 23.4.2024 with at 164 mm 

(Table 4). The snow depth starts decreasing ablation started after the peak but snow depth increased again at the end 

of April due to heavy snowfall events, decreasing rapidly afterwards. From snow course measurements, the points 

classified to this cluster show their snow depth peak in on 26.3.2024 with an average of 72.5 cm snow depth (Fig. 

S1S2, supplementary material). None of the 7 SWE measurement points of the snow course were classified to this 460 

cluster (Fig. 3). 
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Figure 3. Sodankylä site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 

zones in relation to their canopy height and land cover. 465 

Table 4. Cluster characteristics in relation to the entire study area of both sites 

Site Sodankylä Pallas 

Cluster 1 2 3 1 2 3 

Frequency % 21 45 34 32 42 26 

Mineral soil (forests) % 29 25 6 78 58 55 

Grove mire (korpi) % 3 2 1 2 4 2 

Pine mire (räme) % 49 19 5 17 18 9 

Open mire (avosuo) % 20 54 87 3 20 33 

CHM (m) mean 4.6 4.7 1.8 4.3 6.2 7.5 

Distance to forest (m) mean 1 3 14 1 2 7.5 

Max modelled snow depth (cm) 75 70 59 111 106 103 

Max modelled SWE (mm) 164 147 114 267 247 234 

 

Cluster 2 is the most common, covering 45% of the total area, and is primarily located in the transition zone between 

forest and open areas, including forest gaps, mire edges, and forest-mire boundaries (Fig. 3). This cluster has a mean 

canopy height of 4.7 m and is on average 3 meters away from cells classified as forests (Table 4). The modelled peak 470 

snow depth occureds on 14.3.2024 (70 cm) and SWE at on 23.4.2024 with at 147 mm (Table 4). Snow course 

measurements that are classified as cluster 2 have their snow depth peaking in on 15.3.2024 with an average of 67 cm, 

and SWE in on 24.4.2024, with an average of 166 mm (Fig. S1S2, supplementary material). 

 



15 

 

Cluster 3 predominantly occurs in open areas with a low canopy height, with 87% of the area classified as open mire. 475 

This cluster consistently exhibits the lowest snow depths and SWE values compared to the others (Fig. S1S2, 

supplementary material). The highest modelled snow depth and SWE values for cluster 3 are at the same time as for 

other clusters, snow depth peaking onat 14.3.2024 (59 cm) and 23.4.2024 (114 mm). The snow course snow depths 

and SWE from cluster 3 both peaked on 15.3.2024 with an average snow depth of 57 cm and SWE of 138 mm. 

3.2.2 Pallas snow depth and SWE clusters 480 

In Pallas, the three clusters derived from snow depth maps also show similar characteristics to those in Sodankylä 

(Table 4). The most more common cluster 2 covers 42% of the study area, where with cluster 1 coverings 32% and 

cluster 3, as is the smallest, covering 26% of the area. The snow depth in the Pallas snow course began to decrease as 

early as late February across all clusters (Fig. S2S3, supplementary material). Theis decline was less pronounced in 

points classified as cluster 1 compared to the other two clusters. However, the timing of peak SWE, marking the onset 485 

of snowmelt, was later in the spring compared with snow depth and varied among the clusters.  

 

Cluster 1 is predominantly located in the forested areas, which accounts for 78% of the cluster, while the open areas 

cover only 3% (Table 4). The mean canopy height is approximately 4.3m and the distance to the forest cells is less 

than 1m, which is less than in other groups, suggesting smaller and denser forest types. Until January, the modelled 490 

snow depths for cluster 1 followed similar snow depths with to the other clusters, but after February they surpassed 

those of other clusters and remain the highest until the end of the season (Fig. S2, supplementary material). Changes 

in the snow depths between February and March are were small, with occasional fluctuations. The modelled snow 

depth of cluster 1 peakeds onat 28.3.2024 (111 cm) and the SWE peaks in on 10.5.2024 with SWE of 267 mm. Snow 

measurements from the snow course show that points classified to this cluster have had their peaks in snow depth in 495 

on 22.2.2024 and 25.4.2024 with both having an average snow depth of 102 cm and SWE in on 25.4.2024 with 265 

mm.  

 

Cluster 2, identified as a transition zone, is typically located near forest edges, forest openings and small-scale open 

mire areas (Fig. 4). Forested areas cover 58% of the cluster, while open mire areas contribute 20%. The mean canopy 500 

height is approximately 6m with a 2.2m distance to from the forest edges (Table 4). The snow depth patterns for this 

cluster align with those of other clusters until late February, after which the snow depths in cluster 2 started to decrease. 

The modelled snow depth peakeds in mid-March at on 18.3.2024 with 106 cm, but also on 17.2.2024 with 105 cm. 

The modelled SWE peaks peaked later, on 28.4.204 with at 247 mm and in on 10.5.2024 with a SWE of 248 mm. The 

results are similar to the manual snow course measurements, where points classified to this cluster have had their SD 505 

snow depth peak in on 22.2.2024 (101 cm). However, snow course SWE peakeds twice, having an average of 227 

mm in on 27.3.2024 and 233 mm in on 25.4.2024. 

 

Cluster 3 covers 26% of the Pallas area and is marked by a mixture of forest (55%) and open mire (33%) environments 

(Fig. 4). It has the greatest distance to from forest cells and the tallest mean canopy height of 7.5 m (Table 4). This 510 

cluster is typically found in open mires or high canopy forests. Modelled snow depths in cluster 3 are were initially 

the highest at the start of the season but exhibited a lower rate of increase compared to the other clusters after January 

and remained the lowest throughout the rest of the season (Fig. S2S3, supplementary material). The peak modelled 

snow depth, 103 cm, occurreds in late February, 17.2.2024, after which the snow depth steadily declineds. The 

modelled SWE peak is was at the same time as for cluster 2, at on 28.4.2024 (237 mm). Snow course snow depth 515 

measurements are were the highest at on 22.2.2024 with an average of 96 cm. SWE measurements from the snow 

course within this cluster are limited, with only five measurements taken during the melting period in late April and 

early May. During this period, SWE values are were initially low but peaked at 186 mm at on 7.5.2024 (Fig. S2S3, 

supplementary material).  
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 520 

Figure 4. Pallas site cluster and vegetation characteristics. Bounding boxes A, B and C are examples of different cluster 

zones in relation to their vegetation. 

3.2.4 UAV accuracy in comparison to clusters 

To evaluate the accuracy of LiDAR-UAV snow depth by cluster in relation to the representativeness of reference 

snow depth sensors, To evaluate the accuracy of LiDAR UAV snow depths by cluster, snow course SD measurements 525 

taken during the snow course were assigned to their representative cluster. When comparing the UAV-based LiDAR 

UAV SD maps and manual snow course SD measurements, the LiDAR maps consistently underestimate the snow 

course measurements in both Pallas and Sodankylä (Fig. 5a, 5b). In Sodankylä, all snow course measurement 

campaigns show similar correspondence to the LiDAR snow depth maps and variations among clusters are similar, 

showing consistent agreement with snow course measurements (Fig. 5a).  In Pallas the snow course measurements 530 

classified as cluster 1 correspond the best to the LiDAR snow depth maps, while the largest discrepancies are observed 

in cluster 3, typically located in wet mire areas (Fig. 5b).  The accuracy of UAV LiDAR maps decreases towards the 

melting season, where, especially in Pallas, the SD estimates are on average up to -30 cm of the snow course 

measurements. 

 535 
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Figure 5. Differences in 𝜟𝒛𝒕(cm) between the UAV-based LiDAR UAV snow depths and snow course measurements by each 

campaign and representative cluster in (a) Sodankylä and (b) Pallas. 

Snow course measurements and the UAV-based UAV LiDAR snow depth maps for each campaign were compared 

with the reference snow depth sensor measurements of the study area (Fig. 1; Fig. 2) to define the overall 540 

representativeness of the measurements and clusters. In Sodankylä, all the aforementioned datasets follow similar 

patterns;: Cclusters have had similar mean snow depths as the sensors and are were within the ranges of snow course 

measurements (Fig. 6a), except in May, when the snow course snow depths do did not match UAV LiDAR nor the 

sensor snow depths. The highest snow depths are were in forested cluster, and the reference sensor located in the forest 

opening. In Pallas, the UAV LiDAR snow depth maps underestimate the snow height in relation to both snow course 545 

measurements and reference snow measurement (Fig. 6b). Cluster 1 has the highest correspondence to the snow course 

and reference sensor compared to the areas classified as other clusters.   
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Figure 6. Reference sensor snow depths compared to UAV LiDAR snow depths by cluster in Sodankylä (a) and Pallas (b) 550 

in each campaign. Dashed lines are the mean values of snow depths at each cluster. 

3.3 Model validation  

3.3.1 Comparison of modelling results to snow course data 

The model creates daily snow depth and SWE estimates for the two study sites. These estimates were compared to the 

snow course measurements and UAV LiDAR snow depth maps to estimate their accuracy (Table 5). The snow depth 555 

predictions of modelled maps have an overall accuracy of 8.0 cm in Sodankylä and 5.8 cm in Pallas compared to the 

manual snow course measurements (Table 5). The SWE values differ from snow course measurements in Pallas, with 

RMSE of 35.6 mm and 33.1 mm in Sodankylä during all measurements on in winter 2023-2024. The predicted SWE 

values of the Sodankylä snow course follow the observed snow course SWE values (Fig. 7a). The model tends to 

slightly underestimate the SWE, particularly during the late season, but the median values of measurements fall within 560 

the model’s predictive range. Model performance is the highest in February, with RMSE of 12 mm (n=7). In contrast, 

the performance declines towards the end of the season with RMSE of 73 mm in May (n=4), as can be seen in table 

7.1. 

 

In Pallas, the modelled SWE values are typically within the range of manual SWE measurement values (Fig. 7b). The 565 

model has an overall accuracy of 32 mm (Table 5), with its best performance observed early in the season, with RMSE 

of 6 mm in November (n=12) and 8 mm in December (n=12), as shown in Ttable 5. The highest error, 59 mm (n=12), 

occurs during the onset of the rapid snowmelt in early May. Despite this, the modelled SWE values successfully 

capture the peak seasonal peak in April and May, consistent with the snow course measurements.  
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570 

 

Figure 7. The mModelled SWE values in comparison to the measured SWE values of the snow course in Sodankylä (a) and 

Pallas (b) in 2023-2024. 

Table 5. RMSE for Sodankylä and Pallas modelled SWE RMSE  

Sodankylä Pallas 
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Date RMSE SD (cm) RMSE SWE (mm) Date RMSE SD (cm) RMSE SWE (mm) 

15.11.2023 6.3 (n=62) 15 (n=7) 2.11.2023 4.5 (n =46) 18 (n=12) 

15.12.2023 5.9 (n=62) 13 (n=7) 16.11.2023 4.1 (n=46) 6 (n=12) 

11.1.2024 4.6 (n=62) 16 (n=7) 1.12.2023 3.9 (n=46) 8 (n=12) 

16.2.2024 5.0 (n=62) 12 (n=7) 14.12.2023 3.5 (n=46) 39 (n=12) 

15.3.2024 6.4 (n=62) 30 (n=7) 9.1.2024 4.1 (n=45) 25 (n=12) 

26.3.2024 6.7 (n=62) 32 (n=7) 22.2.2024 4.7 (n=45) 26 (n=12) 

17.4.2024 9.2 (n=60) 37 (n=6) 5.3.2024 5.2 (n=46) 26 (n=12) 

24.4.2024 13.8 (n=62) 50 (n=6) 21.3.2024 5.5 (n=46) 24 (n=12) 

15.5.2024 9.7 (n=62) 73 (n=4) 27.3.2024 4.8 (n=46) 34 (n=11) 

Mean 8.0 (n=555) 33.1 (n=58) 18.4.2024 6.3 (n=45) 53 (n=12) 

   25.4.2024 6.4 (n=45) 26 (n=12) 

   4.5.2024 6.7 (n=46) 59 (n=12) 

   7.5.2024 6.3 (n=46) 67 (n=12) 

   15.5.2024 8.1 (n=38) 25 (n=11) 

   21.5.2024 9.3 (n=46) 29 (n=3) 

   Mean 5.8 (n=677) 35.6 (n=169) 
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Figure 8. Modelled SWE of the previous winters, (a) 2023-2024, (b) 2022-2023 and (c) 2021-2022, at Pallas in comparison 

to the snow course SWE measurements. 

ClustSnow-derived clusters therefore served as a valid extrapolation basis The clustering and snow model (Section 

2.3) provide daily maps of snow depth and SWE for each site. for snow depth and SWE measurements throughout the 580 

entire snow season 2023-24. Previous application of ClustSnow suggest, that these clusters are not only suited to 

extrapolate measurements of the same season in whilch the cluster’s underlying snow depth maps were acquired, but 

are instead transferable to other snow seasons (Geissler et al. 2024).The defined clusters can be used for other years 

as well, if there is adequate snow depth data, and the spatial patterns of snow distribution are expected to be similar 

regardless of annual changes in snow depth and weather. Clusters defined by this study’e s snow distribution patterns 585 

dataset of 2023-2024 were therefore used to see how well the model established based on clustering in winter 2023-

2024 can reproduce previous years’ snow course measurements. SWE measurements from previous years are available 
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for Pallas starting from 2021, although the number of measurements varies across years. The results show that SWE 

values from the winter 2022-2023 snow course are aligned with the model estimates, also capturing the peak SWE in 

late April (Fig. 8b). The winter of 2021–2022 exhibits the greatest variability in snowline SWE measurements, with 590 

the model overestimating SWE for most of that winter. In other winters, the model typically underestimates SWE 

relative to snow course measurements. Additionally, the variance in SWE values across clusters is largest during the 

winter of 2021–2022, reflecting greater variability in snow depth along the snow course. However, the average of the 

SWE from the snow course on in winter 2021-2022 aligns with cluster 3, and model ClustSnow successfully captures 

the SWE peak in at the beginning of May 2022. The model generally captures the snow course median SWE values 595 

from the manual measurements, and the peak SWE values and its their timing in previous winters.  

3.3.2. Spatial accuracy of the model is influenced by spring floods and snow wind distribution 

Figure 9 visualizes the modeled snow depths for the March campaign in Sodankylä, highlighting the influence of 

clustering on snow depth predictions. The modeled snow depths align with the observed snow course measurements , 

but the model struggles to accurately represent extreme high or low values of snow depths captured by the UAV 600 

LiDAR. The figure also demonstrates the effect of adding more clusters to the model . For example, 6 clusters would 

provide more detailed snow depth estimates, but would still miss the actual variability of the snow depths. The UAV 

LiDAR shows the spatial variability in snow depth between snow course measurement points, which are not captured 

during the snow course measurement survey. To be able to evaluate the model performance spatially, comparisons 

between modelled snow depth maps and UAV LiDAR maps were conducted for each of the campaigns. First, the 605 

difference between the UAV LiDAR SD map and the model SD output was derived (Fig. 10 & 11);.  tThe differences 

were then squared, averaged and the square root of the mean was calculated to obtain overall RMSE for the campaign 

and model.  
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Figure 9. The transect from Sodankylä modelled snow depths, UAV-based UAV LiDAR snow depths and snow course 

measurements and their representative clusters on 26.3.2024. The yellow line shows the model output of the model with the 

number of clusters set to three, as used in this study. For comparisons, Tthe red line represents the model output with the 615 

numbers of 6 clusters set to six .– allowing more detailed snow depth estimates. 
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Figure 10. Sodankylä model performance from different UAV LiDAR UAV campaigns. The values define the absolute 

difference between LiDAR based snow depth maps and the modelled snow depth maps. 

In Sodankylä, the analysis resulted in RMSEs varying from 6.2 cm to 11.0cm (January: 11.0 cm; March 8.2 cm; April; 620 

8.8cm; May 6.2cm). The accuracy of the modeled snow depth maps is influenced more by the timing of the campaign 

than by the specific location (Fig. 10). For instance, in an open mire area located in the southeastern section of the 

snow course, the model's performance varies significantly, with difference ranging from 10–15 cm in March, 

decreasing to less than 5 cm in May (Fig. 10, dashed box). Similarly, in the spruce dominated forest situated in the 

southwestern part of the area, the highest accuracy is observed in April (difference < 5 cm), whereas in January, the 625 

model predictions exhibit a larger discrepancy, with errors ranging from 10–15 cm. 

 

In Pallas, the model has higher inaccuracies compared to Sodankylä, with RMSEs varying from 18.7 cm to 24.7 cm 

(January: 22.4 cm; March 24.7 cm; April 22.7 cm; and May 18.7 cm). The model therefore performs its best at the 

beginning and at the end of the season. Spatially the model performs the best particularly at the southern end of the 630 

snow course, characterized by homogeneous pine and mixed forest (Fig. 11). In contrast, the model has the highest 

errors in the broad Lompolonjänkä mire area in the northeast, where the snow is on top of a flooding mire area, and 

on the northern slopes of the bordering drumlins, where wind-driven snow accumulation is common. In these areas, 

the model estimates over 30 cm difference to the UAV LiDAR map.  
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 635 
Figure 11 Pallas model performance from different UAV LiDAR UAV campaigns. The values define the absolute difference 

between UAV LiDAR snow depth maps and the model output. 

4 Discussion 

4.1. Snow and ice conditions impacted on UAV LiDAR accuracy 

UAV LiDAR mapping showed high accuracy in all study sites and conditions, with the average RMSE of UAV 640 

LiDAR DTMs being 11.2 cm and 5.3 cm for Sodankylä and Pallas, respectively. These results align with previous 

studies, which have reported RMSE values from snow depth maps ranging from 9 to 17 cm  (Dharmadasa et al., 2022; 

Geissler et al., 2023; Harder et al., 2020; Jacobs et al., 2021). However, our larger uncertainty and lesser accuracy was 

noted in especially in the late melting period with flooding conditions, which that might be impacted by laser beams 

reflection from water bodies.   645 

 

The trueness of the snow depth maps derived from DTM maps variesy between 0.9-13 cm and and typically are lies 

in between 4 cm and -6 cm in for all sites.  and RMSEs of individual DTMs vary between 1 and 7 cm (excluding an 

outlier in Sodankylä, May 22.1 cm). The precisions here are based on the 5 GCP measurements as suggested by 

Dharmadasa et al. (2022). Pallas has the most stable conditions and Sodankylä has the actual lowest bias in April (0.9 650 

cm). The accuracy of the GCP location measurement itself can affect the accuracy estimates. For example, one 

measurement in Sodankylä (May) has shows a large significant difference to DTM, which decreases the overall 

accuracy of the site. The point was not excluded from the calculations, as the error can may also be due to the DTM 

calculation errors from flooding areas. The accuracy of UAV LiDAR snow depth mapping is dependent on several 

factors, that which can be divided into boresight errors, navigational errors, terrain- and vegetation-based errors, and 655 

post-processing-errors (Deems et al., 2013; Pilarska et al., 2016). For example, fallen tree trunks, very dense 

undergrowth or flooded marshes can pose challenges to point cloud classification and affect the output DTM quality 

(Deems et al., 2013; Evans & Hudak, 2007). Similarly, vegetation and terrain affect the accuracy of manual snow 

depth measurements. 
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The best accuracy of snow depth maps (0.9 cm) of all sites and campaigns was calculated from April data from 

campaign in Sodankylä. Two previous days prior to before the flight campaign, on 24.4.2024, approximately 10 cm 

of new snow had fallen in the area, which helpeds to smooth the snow surface and to cover  previously melted or 665 

frozen areas under the snow, which could otherwise positively affecting the laser's LiDAR signal reflection or the and 

hence the accuracy of the terrain model. On In contrastry, the trueness of snow depth maps in all sites is the lowest in 

May (Table 3). Our findings highlighted increased measurement inaccuracies during that period, aspossibly because 

most of the snow had already melted and the large areas were covered with slush and smooth water surfaces. This 

posed challenges for the DTM algorithm lowest Z-value obtained in cell, meaning that the height of the reflected laser 670 

beams in the water mass also affects the DTM elevations. The trueness values, on the other hand, are based on GCP 

plates placed in the area, which were located on top of the remaining snow. When the snow is surrounded by water, 

the model may be inaccurate and produce lower accuracy DTMs than when the surface is completely covered by either 

snow or thawed ground., which affects the laser beam reflection. The phenomenon can be seen in especially in 

Sodankylä, which has the largest, typically flooding, mire areas among sites. Up Tto our knowledge, there is no 675 

systematical review on wet snow affecting laser beams. However, water generally has a low reflectivity in the infrared 

wavelength range compared to solid surfaces, and the return signal detected by the sensor is influenced by factors such 

as incidence angle and surface roughness , (Fernandez-Diaz et al., 2014; Paul et al., 2020). These factors likely 

contributed to reduced accuracies y of the surface detection in areas with localised open water during the melting 

season.  The phenomenon can be seen especially in Sodankylä, which has the largest, typically flooding, mire areas 680 

among sites. The Rresults are were similar with for Rauhala et al. (2023), where the poorest accuracy of SfM method 

based DTMs were collected during the late melting period in flooding areas. This is due to the manual snow course 

measurements, where these flooding points are marked as having zero snow depth and  DTMs LiDAR-derived snow 

depth maps still showing snow in these areas. Some Vvegetation types, such as dense coniferous forests, are known 

to decrease the accuracy of different UAV methods of snow depth mapping (i.e Dharmadasa et al., 2022; Rauhala et 685 

al., 2023), as coniferous canopy reduce or even prevents ground returns. If we expect the cluster 1 to present forested 

regions and cluster 3 to present open areas with low vegetation and compare the snow depth map accuracies to snow 

course measurements, we cannot distinguish similar phenomena in Sodankylä or Pallas (Fig. 5).  On both sites, the 

best correspondence between snow course measurements and UAV LiDAR maps are in cluster 2, in forest openings. 

In contrast, especially in Pallas, the biggest disparities occurreding in cluster 3. This can may be due to snow course 690 

measurement poles lifting from the ground especially in wet areas where ground freezing and thawing move the pole 

over timeduring the years.  

 

Broxton & van Leeuwen (2020) recommended the SfM method for snow depth monitoring under certain conditions, 

such as in gently sloping terrains and areas without dense forest cover. The UAV LiDAR method was selected over 695 

the SfM method for this study due to existing dense forest canopy and frequent light conditions that would not allow 

reliable SfM data acquistion challenges identified, especially during the low lighting conditions and dense forest 

canopy cover (Rauhala et al., 2023; Revuelto et al., 2021). With advancements in SfM camera technology, the SfM 

method could complement LiDAR monitoring, particularly in relatively flat regions like Sodankylä and Pallas. 

Nevertheless, challenges remain for both methods in large mire areas. While the SfM struggles with surface 700 

homogeneity, LiDAR faces accuracy issues in detecting bare ground under flooded, uneven and wet surfaces. 

Additionally, manual snow depth measurements are also less accurate due to ice and water layers on the ground. 

4.2 Site characteristics explaining the different snow depth clusters  

Vegetation and topographySite characteristics impacted notably to snow depth clustering in our boreal and sub-arctic 

sites. EspeciallySpecifically, we noted that canopy cover, open peatlands and transition zones with wind shelter had a 705 

clear and similar influence on clustering obtained clusters at in both sites. Additionally, we noted that the clusters have 
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similar snow dynamics in both sites. The number of clusters has a major impact on the success performance of the 

classificationclustering and ClustSnow , and how determined clusters relate to the site's vegetation and topography 

characteristics.and the ability to identify specific features of each cluster depends on the quality of the clustering 

process. 710 

 

Thise study employed applied ClustSnow with the number of clusters set to three, different categories for clustering, 

as initial tests demonstrated their suitability for representing different snow patterns in study areas  and three clusters 

enable us to relate the snow depth patterns to vegetational patterns. . Ean equal number of clusters also provides a 

basis for site comparability between the two study sites. Our analysis resultedresulted in snow depth classification into 715 

for forests with different trunk heights (cluster 1);, transition zones between forests and open areas, including forest 

edges and gaps (cluster 2);, and open areas (cluster 3), mainly peatlands. The results are consistent with those of 

Mazzotti et al. (2023) who noted that snow accumulation patterns can be classified into three groups, based on the 

relationship between canopy structure and ablation rate. However, as also noted by Geissler et al. (2024), increasing 

the number of clusters could, in some cases, improve the accuracy of the end products and increasing the number of 720 

clusters would allow more detailed description of the snow patterns, as can also be seen in Figure 9. The sensitivity 

analysis performed for this study's sites confirm this assumtion. We found that the highest accruacies of the 

ClustSnow-derived snow products, evaluated against manual measurements, can be expected with the number of 

clusters set to six. Especially when the study area has high elevational differences or has various topographical apects, 

more clusters would better correspond to the depth patterns. The most uncertainties relaed to the model parametrization 725 

of both models, the ClustSnow and Δsnow model, are due to the number of clusters (Fig 1., see appendices).  

 

In forested areas, distinguishing between clusters 1 and 2 remains challenging due to their similar site characteristics 

(Tables 5 & 6). Forested areas present challenges for clustering because of varying snow height and dynamics 

influenced by canopy cover and trunk size (L.-J. Meriö et al., 2023). Forest gaps in the coniferous forests are known 730 

to create clear and distinct variations in snow depth within the forests, and also SWE varies up to three times more in 

unevenly distributed forests compared to evenly distributed forests (Woods et al., 2006). For this reason, forested areas 

contained both clusters 1 and 2 in both sites. The cCluster 1 receives the most snow and has the highest SWE values, 

especially during the late winter (Fig. 7a; 7b).  Lundquist et al. (2013) concluded that this is the typical situation in 

cold climates, where snow lasts longer in forests than in forest openings. In both of our sites, snowmelt starts the latest 735 

and snow cover lasts the longest in cluster 1. The forested areas in Sodankylä and Pallas are spruce dominated, where 

the canopy shades the ground from the sun radiation, reduces wind effects and traps snow, though also limits but also 

limits snowfall reaching the ground. In this cluster, we expect the snow accumulation to follow canopy structure 

throughout the season and the ablation to be too weak slow or constant to change it, as defined by Mazzotti et al. 

(2023). 740 

 

Cluster 2 is the most common cluster on both sites (Tables 5 & 6), likely since it can be foundedfound in both forested 

and open environments. While the snow depth trends across cluster 1 and cluster 2 are similar, cluster 2 experiences 

an earlier start of snowmelt in spring compared to forested cluster 1 (Fig. 7a; 7b). This indicates more short-wave 

solar radiation exposure compared to cluster 1, where SWE peaks at the end of April before the melting begins. Cluster 745 

2 characteristics correspond to previous studies, by Koutantou et al. (2022) and Meriö et al. (2023), where canopy 

structure influences snow accumulation, but in ablation subsequently disrupts these patterns, resulting in earlier timing 

of snow loss. This phenomenon can also be seen in the modeling outputs from the previous two winters in Pallas (Fig. 

8), especially in winter 2022-23, when snowmelt in cluster 2 started simultaneously with cluster 3. These 

characteristics are seen in both sites and support the location of the cluster 2 to be as being in transition zones between 750 

open and forested areas.  

 

Open areas are subject to wind redistribution and prolonged solar exposure resulting in lower and smoother snow 

depth patterns, that corresponding to with the results of cluster 3. In cluster 3, snow depth starts decreasing notably 

earlier than other clusters, in February 2024, suggesting faster melting due to both higher solar radiation and flooding. 755 
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In the flooding mire areas, melting waters from below also accelerate snowmelt. Both snow depth and SWE values 

are lower in this cluster in comparison to the other clusters, corresponding to thewith results from L.-J. Meriö et al. 

(2023). An interesting aspect of the classification is the differentiation between the mires Lompolonjänkä (box A; Fig. 

4) and Välisuo (box B; Fig. 4). Välisuo mire, classified to cluster 2, is more sheltered, surrounded by forests and is 

located at a higher altitude than the Lompolonjänkä mire, which is classified as cluster 3. Välisuo is drier and partly 760 

artificially drained, while Lompolonjänkä is larger drained by a small natural stream, typically flooding in spring 

(Marttila et al., 2021). 

 

The clustering results support the results of other studies on snow distribution in boreal and sub-arctic sites. They also 

support the ability of the ClustSnow ability to model various environments and sites, both in Alps and the Arctic 765 

boreal zone. Moreover, the results suggest that ClustSnow is generally transferable to large sites as well as to the arctic 

boreal climate. In a recent study from the Pallas site by L.-J. Meriö et al. (2023), the variations in snow depth were 

partially explained by canopy interception, longwave radiation emitted by trees, and wind-driven redistribution, which 

contributed to snow deposition along forest edges in both forested and peatland environments. The snow depth was 

higher within dense canopy, with the greatest accumulation observed in coniferous forest areas, followed by mixed 770 

forests, transitional forest/shrubland, and open peatlands. In both Sodankylä and Pallas the dominant winter wind 

direction is from the south, which leads to snow accumulation in forest canopy and their leeward side, where typically 

the highest snow depths are measured, corresponding to the results from Dharmadasa et al. (2023). In Pallas this 

results in snow accumulating particularly behind the drumlins north of the mire Lompolonjänkä mire (Fig. 4 Box A). 

This is also reflected in the accuracy of the model in these areas - the three clusters may not be sufficient to account 775 

for the particularly high snow depths of the northern sheltered slopes (Fig. 11).  In comparison, snow dynamics in 

Sodankylä are influenced by vegetation rather than by topographical variations, as the area itself is flat with elevation 

differences of less than two meters.  Forest structure is the main driver of snow accumulation, but short-wave radiation 

can disrupt these patterns, especially on south-facing slopes where there is expected to be more early-season ablation 

(Mazzotti et al., 2023). Weather further affects accumulation and ablation processes, leading to interannual variations 780 

in snow distribution, explaining why the relationship between snow distribution and canopy structure varies by 

location and year. 

 

K-means clustering is widely used in many applications for partition datasets but is known to have problems associated 

with centroid initialization, handling outliers and dealing with various data types (Ahmed et al., 2020; Morissette & 785 

Chartier, 2013). While more clusters might be able to capture finer details, such as directional classes (Mazzotti et al., 

2019), the current classification to three groupsthree clusters obtained in this study corresponds to land-cover non-

directional categories. These results align with previous findings that emphasize the importance of canopy structure 

in addition to topography and weather conditions on snow dynamics (Dharmadasa et al., 2023; Mazzotti et al., 2023). 

For instance, Geissler et al (2023) classified their Alpine study area into four classesclusters, further subdividing the 790 

open class cluster into shaded and exposed subclassesclusters. Although using more than three clusters could 

potentially improve the finer scale spatial accuracy, as can be seen in Fig 9 and  the number of clusters is always a 

question of the data used and left to the user to decide, as noted also in the study of by Geissler et al. (2023). Based 

on our observations ,observations, together with the results of the study by Geissler et al. (2024), we conclude that the 

number of clusters is dependent on the landscape characteristics of the site and the purpose of the model output. If the 795 

interest is to investigate the differences between snow dynamics in different environments, we recommend increasing 

the cluster number to also include also shaded, exposed and potentially different forest types to capture local variability 

(Currier & Lundquist, 2018; Fujihara et al., 2017; Mazzotti et al., 2020, 2023; Trujillo et al., 2007). Our sensitivity 

analysis also showed improvements in the snow products with more clusters.However, especially in topographically 

homogeneous regions such as Sodankylä, less classes might be enough to represent the overall snow distribution with 800 

reasonable accuracy. The accuracy of the model output together with the homogeneous landscape supports the use of 

three clusters. In areas with a larger variety of terrain types, such as diverse slopes and orientations, more categories, 

(4 to 65), could be justified. 
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4.3 Lidar-based snow clustering and modeling produces SWE estimates comparable to snow surveys 

The clustering derived from UAV LiDAR snow depth maps, combined with the Δsnow model, produced snow depth 805 

and SWE estimates with RMSEs of 8 cm and 33.1 mm in Sodankylä, and 5.8 cm and 35.6 mm in Pallas. The model 

can reproduce the onset of snowmelt and peak SWE and, after one season of drone surveys, needs only daily snow 

depth measurements as input. The localization of model parameters, especially ρmax and ρ0, and the amount of daily 

snow depth reference data for the identified clusters, improved the results.  

 810 

The results are consistent with a similar study by Geissler et al. (2023), where the model errors were 8 cm for snow 

depth and 35 mm for SWE in comparison to the manual snow measurements. Winkler et al. (2021), the creators of the 

presented Δsnow model, produced a SWE RMSE value for their entire validation data set of about 30 .8 mm, which is 

consistent with other similar models and the results obtained in this study. Multilayered thermodynamic one-

dimensional models for SWE estimation, such as SNOWPACK, CROCUS and SNTHERM, obtained more accurate 815 

results in the Langlois et al. (2009) study with an RMSE of 12.5-14.5 mm, but these models also require atmospheric 

variables that are not ubiquitously available. Studies with CROCUS also have produced SWE estimates RMSE values 

in the same order as this study (Vionnet et al., 2012) with an accuracy of 39.7 mm. Mortimer et al. (2020) studied the 

long-term gridded SWE products and compared their results to snow course measurements. None of the 9 tested 

products was were significantly better than others, rather a multiproduct combination provided the most accurate 820 

results. The lowest RMSE over in Finland was 33 mm, produced by ERA5. Thus, depending on the region and winter 

climatic conditions, there may be variability in the modelling results and our UAV results are in typical measurement 

estimate ranges. 

 

The RMSE of the modelled snow depths in comparison to manual snow course measurements ((Table 5) in Sodankylä 825 

are higher than in Pallas, likely due to several factors. The RMSEs were calculated in comparison to manual snow 

course measurements. In large mire areas, such as those found in Sodankylä, the formation of ice layers at the bottom 

of the snowpack may compromise the accuracy of snow course measurements (Stuefer et al., 2020). Additionally, the 

accuracy of snow depth maps in Sodankylä was reduced when parts of the areas were flooded in May (Table 3). Also, 

normalizing snow depths when generating daily estimates for clusters ensures internal consistency but reduces local 830 

variability, leading to an underestimation of extreme values. Even though the RMSE of the modeled snow depths 

relative to snow course measurements in Pallas is lower than in Sodankylä, the RMSEs calculated for the entire study 

area are higher in Pallas. Specifically, RMSE values range from 18.7 to 24.7 cm in Pallas, compared to 6.2 to 11.0 cm 

in Sodankylä. One contributing factor to the higher RMSE in Pallas is the accuracy of the snow course measurements 

(Fig. 5). The errors arise from the use of interpolated snow course data as model input. These interpolations 835 

overestimate actual snow depths in Pallas (Fig. 6), introducing a systematic bias. This overestimation of snow course 

measurements also partially explains the higher RMSE of the Pallas SWE model compared to Sodankylä, even though 

the modeled snow depth estimates for snow course were more accurate (Table 5). In contrast, UAV LiDAR-derived 

snow depths for the entire Sodankylä region closely align with snow course measurements (Fig. 6), indicating better 

agreement between manual measurements and broader regional snow depth estimates in this area. 840 

 

Our The ClustSnow model can detect SWE peaks in some of the clusters (Fig. S1S2; S2S3, supplementary material). 

In Sodankylä, the SWE peak for cluster 2 aligns with the snow course measurements recorded at the dates between 

22.4 and 24.4.2024. The model estimates SWE for cluster 3 to range between 107 and 114 mm from 14.3 to 23.4.2024 

and the snow course data of for the cluster 3 indicates that SWE reaches its peak in mid-March before gradually 845 

decreasing until the end of April, demonstrating good agreement with the model estimates. However, while the timing 

of the peak is well captured, a slight discrepancy remains in its magnitude. Due to the limited number of snow course 

measurements classified within cluster 1, detecting meaningful correlations for this cluster was not possible.  In Pallas, 

the model estimates SWE peaks for cluster 1 and 2 on 10.5.2024, while for cluster 33, the peak is predicted to occur 

earlier, on 28.4.2024. However, a slight temporal lag is observed as snow course measurements indicate that for 850 

clusters 1 and 2 the SWE peaks on 25.4.2024. For cluster 3, the discrepancy is more pronounced, with observed SWE 
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peaking already at the end of March. The results show regional differences in SWE accumulation and melt dynamics, 

with the model capturing general trends but showing slight timing offsets, particularly in Pallas.   

 

The model was validated at the Pallas site to assess its performance under different winter conditions from 2021 to 855 

2023 from which no data was used in developing the model (Fig. 8). The results indicate that the model successfully 

captures both the peak SWE and its timing, despite variations in winter conditions between different years. During the 

2021–2022 winter, the variance in both snow course SWE and modeled SWE is notably higher compared to the other 

winters. This increased variability is partly due to the fluctuating snow depths in that season due caused byto both 

mid-winter melt events and heavy snowfall events.   860 

 

Several studies are predicting increase in mixed and liquid precipitation in winter months in Finland and, particularly 

in northern parts, increased solid precipitation and earlier springs (Luomaranta et al., 2019; Ruosteenoja et al., 2020). 

Rain-on-snow (RoS) events are expected to increase in the future for the northern Norway region during spring and 

summer (Mooney & Li, 2021; Pall et al., 2019), potentially leading to an increase of such events also in northern 865 

Finland too. Such events increase the liquid water content of the snowpack, leading to rapid saturation and accelerated 

snowmelt, reducing snow depth faster than natural snowmelt processes (Yang et al., 2023). Even though Geissler et 

al. (2023) noticed the Δsnow model model’s limited the capacity of to mapping the SWE change quick changes during 

RoS events, the SWE estimations of this model add value to operational snow course measurements by enabling 

continuous monitoring of changes between monthly observations. This capability is especially valuable for capturing 870 

rapid changes during events such as snow depth variations caused by melting  or, snowfall, or RoS, where these 

dynamics can be scaled across the entire study area rather than relying on data from a single reference sensor. By 

integrating daily estimates from local snow depth sensors with snow course data and clusters, our approach enhances 

event coverage in modeling. The model’s ability to capture peak snow depth and melt-out dates in real time, provided 

that reference snow depth sensors transmit data online, offers essential data for hydrological observation networks and 875 

improves the spatiotemporal resolution of snow course measurements.  

4.4 Practical aspects and suggestions for future studies  

Combining observation-based clustering with intensive field data can improve the spatiotemporal coverage of the 

snow course measurements and give important insights into the site-specific snow cover dynamics. Our results output 

is encouraging for other sites to test the approach. 880 

Snow monitoring data is essentialessential for flood prediction, infrastructure management, forecasting hydropower 

production and for recreational use such as skiing. The forecasts derived from these data support river regulation and 

broader water management practices. In addition, daily observations are utilized by various stakeholders, including 

local businesses. These datasets also play a critical role in evaluating the impacts of climate change and informing the 

development and implementation of adaptation strategies. Integrating UAV-based snow depth surveys into established 885 

snow course areas—conducted over at least one winter season, and preferably across multiple years—can significantly 

enhance the spatial representation of snow depth estimates. By applying clustering techniques to these survey data 

within a region and validating the results against point-based snow course measurements, it is possible to upscale 

localized measurements and improve the spatial and temporal resolution of hydrological monitoring. This combination 

of observation-based clustering and high-resolution UAV data offers a promising approach for enhancing the 890 

monitoring of snow cover dynamics at both site-specific and regional scales. The outcomes of this study suggest that 

the applied ClustSnow workflow methodology is transferable and could be effectively applied in other regions to 

support improved snow monitoring and water resource management. 

 This study applied intensive UAV LiDAR campaigns to capture fine detailed information on snowpack variability 

also in forested areas, which are known to cause errorsreduce spatial coverage of in UAV-based SfM methodology 895 

(Broxton & van Leeuwen, 2020), especially in and poor lighting conditions and dense forest canopy cover (Rauhala 

et al., 2023; Revuelto et al., 2021). Regardless of the sensor used, the impact of winter conditions on the battery life 

of the drone should be considered.  The batteries of the DJI Matrcie 300 RTK had to be replaced up to five times 
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during the flight campaign, especially in cold weather. Occasionally RTK coverage can also become a limiting factor 

in remote areas, for example in Pallas in January, due to the temporary unavailability of the VRS signal. However, 900 

especially in sparsely vegetated areas, the UAV SfM method could offer a more cost-efficient method for producing 

3D data of on snow dynamics and support the output of more expensive UAV LiDAR. UAV data acquisition with 

using LiDAR or SfM can also further support the spatiotemporal resolution of remote sensing products, as their usage 

in local scale snow research is still limited due to spatial and temporal coverage issues (Muhuri et al., 2021; Stillinger 

et al., 2023; Tsang et al., 2022b). As noted by Geissler et al. (2023), this method combinesing observations and 905 

machine learning and can improve spatial representation of hyper-resolution models (Mazzotti et al., 2021) or advance 

refining sub-grid variability in larger-scale models (Currier & Lundquist, 2018). 

 

Mazzotti et al. (2023) indicated that the snow distribution patterns found at a specific location may not be consistent 

from year to year, especially in changing weather conditions. The snow distribution patterns are site-specific, based 910 

on  due to vegetational and topographical differences, and some clusters might have different responses to different 

weather conditions. Especially wWinters with abnormal snowfall cause differences in snow extents and snow depth 

variability (Pflug & Lundquist, 2020). In our study areas, the winter of 2023–2024 was exceptional in terms of snow 

conditions. There were melt periods in the middle of winter, and spring seemed to arrive twice: first with a thaw in 

early April, and then snow melted completely in May. On average, there was also more snow than during a typical 915 

winter (Fig. 2), especially in early winter. The model was developed based on these specific snow conditions, which 

means that winters with different characteristics may not align with the model’s calculated clusters. This may partly 

explain, for example, the differences in SWE values for the winter of 2021–2022 (Fig. 8b). This winter also showed 

the greatest variation in measured SWE values, indicating larger homogeneity in snow conditions during that winter. 

A follow-up year with different weather conditions could enhance and verify the representativeness of the clusters and 920 

provide insights into interannual variability, as local snow distribution patterns show recurrent similarities (Sturm & 

Wagner, 2010).   

 

Improvements in the input data quality can enhance the accuracy of the model, but the model also seems robust.,  Ffor 

example, for improvements could be made to tackle Pallas site snow course measurement errors (Table 5). We would 925 

recommend a more comprehensive network of snow depth sensors that could improve daily snow depth forecasts 

based on snow course measurements, particularly in Pallas, where only limited data from the Kenttärova snow depth 

sensor is available. At least one reference sensor in each land cover type, corresponding to a cluster, would improve 

the estimates. As fresh snow density and maximum snow density are among the most important parameters of the 

model (Fontrodona-Bach et al., 2023), the model parameters should be localized for each site, rather than relying on 930 

estimates based on literature. Additionally, as the greatest inaccuracies in snow course measurements at Pallas were 

observed in mire areas, it is important to acknowledge that these regions are prone to larger greater errors in both 

manual and UAV-based snow depth data collection. Beyond the influence of snow-forest interactions, our results also 

emphasize the need to study snow accumulation and melt processes in extensive peatland areas, which are particularly 

prevalent in the Arctic boreal zone. 935 

5. Conclusions 

This work combines emerging methods in close-range remote sensing and machine learning for high spatial and 

temporal resolution estimates of snow depth and and snow water equivalentSWE. The work is an important new 

application of such methodology in the vast, yet relatively underexplored, boreal and sub-arctic snow regimes.  The 

study used conducted an iexntensive field campaigns at two well-established snow and hydrology research sites, 940 

Sodankylä and Pallas in Finnish Lapland. The different sites represent different conditions , both in terms of 

topography and there were also significant differences in weather conditions between the different campaigns. The 

snow depth maps from different areas and in different winter conditions are the first from these study areas at a 

centimeter scale of accuracy and allow an evaluation of the method in relation to other snow depth and SWE products.  
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 945 

The used clustering approachThe ClustSnow workflow applied in this study  together with the Δsnow model has the 

potential for expanding the expansion of the current operational snow monitoring network to different sites. The 

resulting SWE and snow depth maps are possible to be produced in areas with snow depth sensors in different terrain 

types, or a regularly measured snow course with at least one snow depth sensor  measuring daily. While the accuracy 

of the snow course measurements must be considered, the existing snow courses provide a good basis for similar 950 

approaches for local scale SWE and snow depth mapping in other boreal sites too.  Even Tthough clusters formed here 

are based on only one winter and are site specific, we showed how they translate well to different winters with different 

snow amounts at the sites. Founded on the well-established consistency of local-scale snow distribution between years, 

the new technology applied in this research enables cost-effective solutions for SWE monitoring after one winter of 

UAV LiDAR surveys. Our work extends the previous applications of similar methods successfully to boreal taiga 955 

snow, where forests greatly complicates any snow monitoring, remote sensing and or modeling.  

 

With climate change leading to increasing temperatures, increasingly variable weatherchanges in precipitation regimes 

and and more frequent rain-on-snow events, this methodology provides valuable tools for estimating rapid changes in 

snow depth and SWE at both local and catchment scales. Such spatially and temporally refined estimates of the 960 

snowpack condition are needed for catchment scale snow model validation and calibration, as well as to improve 

resource planning and prediction. 
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