
 

1 
 

Automated stratigraphic interpretation from drillhole lithological descriptions with uncertainty 1 

quantification: litho2strat 1.0 2 

Vitaliy Ogarko1,2 and Mark Jessell1,2 3 

1Centre for Exploration Targeting (School of Earth Sciences), The University of Western Australia, 4 

Crawley, 6009 WA, Australia 5 

2Mineral Exploration Cooperative Research Centre, The University of Western Australia, Crawley, 6 

6009 WA, Australia 7 

Correspondance: Vitaliy Ogarko (vitaliy.ogarko@uwa.edu.au) 8 

 9 

10 

mailto:vitaliy.ogarko@uwa.edu.au


 

2 
 

Abstract 11 

 12 

Australian commonwealth, state and territory geological surveys possess information on over 3 million 13 

drillhole logs. In addition to mineral exploration drilling, extensive drillhole datasets exist from oil and 14 

gas exploration and hydrogeological studies. Other countries no doubt have similar data holdings. 15 

Together these legacy drillhole datasets have the potential to significantly enhance constraints on 16 

regional 3D geological models and improve our understanding of subsurface architecture, but have 17 

limited use in their current form as many if not most drill logs lack stratigraphic information, containing 18 

only lithological descriptions.  19 

This study develops open-source codes and methodologies for stratigraphy recovery (determining the 20 

ordered sequence of stratigraphic units) from drillhole lithological data by introducing a search 21 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 22 

drillholes, combined with a solution correlation algorithm that compares the topological relationships 23 

of stratigraphic units across multiple drillholes to identify geologically consistent solutions and reduce 24 

uncertainty. The algorithms combine constraints from lithological descriptions with stratigraphic 25 

relationships automatically derived from regional maps. In addition, the method quantifies uncertainty 26 

by generating multiple plausible stratigraphic interpretations, providing critical insights for resource 27 

estimation, scenario analysis, and data acquisition strategies. 28 

The application of our method to a dataset of 52 drillholes from South Australia demonstrated its 29 

ability to make useful predictions of stratigraphic solutions and quantifying associated uncertainties. 30 

These results not only validate our approach but also highlight opportunities to refine current 31 

stratigraphic descriptions and provide a valuable new source for regional 3D geological modelling. 32 

 33 

 34 
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1. Introduction 35 

 36 

Drillhole data serve as a fundamental constraint for subsurface geological exploration and 3D 37 

geological modelling, offering direct insights into lithological and hence stratigraphic features 38 

(Wellmann & Caumon, 2018). However, the inherent sparsity of such data, coupled with challenges 39 

posed by legacy datasets maintained by industry and Geological Survey Organizations (GSOs), often 40 

hinders comprehensive geological understanding and modelling (Jessell et al., 2010; Pakyuz-Charrier 41 

et al., 2018).  GSOs' databases typically contain lithological information as unstructured text 42 

descriptions (e.g., 'sandy limestone with minor shale') but rarely include stratigraphic unit 43 

assignments. This creates a critical gap in the data needed for accurate and meaningful geological 44 

predictions (Hartmann & Moosdorf, 2012). 45 

Geological modelling plays a crucial role in understanding subsurface structures and processes, 46 

providing a foundation for various applications in earth sciences (Jessell et al., 2014). Such modelling 47 

commonly relies on datasets such as borehole data, geophysical data, and mapping data. Among these, 48 

borehole data provide the most accurate insights into subsurface geology and stratigraphy (Guo et al., 49 

2022). The models generated through geological modelling can serve dual purposes: they can be 50 

directly employed for geological interpretations, such as identifying fault systems, and mineral 51 

deposits (Alvarado-Neves et al., 2024; Vollgger et al., 2015), or they can be integrated as constraints in 52 

methodologies that use a prior 3D model, such as geophysical inversions (Giraud et al., 2017; Martin 53 

et al., 2024; Ogarko et al., 2021; Tarantola, 2005) and hydrogeological forward modelling (D’Affonseca 54 

et al., 2020).  55 

Modern drillhole measurement techniques primarily focus on chemical, mineralogical and lithological 56 

characterization, whereas the fundamental categorical unit of regional 3D geological models is defined 57 

by stratigraphy (Calcagno et al., 2008; Caumon et al., 2009; Mallet, 2002). This discrepancy 58 

underscores the need for innovative approaches to recover and integrate stratigraphic information 59 

from existing datasets. 60 

Recent advancements in automation have made significant progress in processing drillhole data, 61 

though most address different aspects of the problem than stratigraphic recovery. Data 62 

standardization tools like dh2loop (Joshi et al., 2021) extract and harmonize lithological descriptions 63 

from unstructured text using thesauri and fuzzy string matching, providing essential preprocessing for 64 

downstream analysis. Pattern recognition methods (Schetselaar & Lemieux, 2012) can identify 65 

lithostratigraphic markers and contacts within drill logs, helping to detect boundaries between units. 66 

Machine learning approaches for 3D geological modeling (Guo et al., 2024) can interpolate between 67 

drillholes to create subsurface models, but typically require pre-interpreted stratigraphic data as input. 68 

While these methods provide valuable components of the workflow, none directly address the 69 

fundamental challenge of transforming lithological descriptions into stratigraphic interpretations with 70 

quantified uncertainties. 71 

Existing automated interpretation methods primarily work with different data types than those 72 

available in legacy drillhole databases. Geophysics-based methods (Wu & Nyland, 1987; Fullagar et al., 73 

2004; Silversides et al., 2015) leverage distinctive signatures in gamma, resistivity, or other wireline 74 

logs to predict stratigraphic units, but require geophysical data that are absent from most legacy 75 

drillholes. Geochemical and spectral approaches (Hill & Uvarova, 2018) use XRF scanning or 76 

hyperspectral measurements to identify geological boundaries with high precision, but depend on 77 

expensive data acquisition unavailable in historical datasets. Hybrid machine learning methods, such 78 

as those applied in the Pilbara iron ore deposits (Wedge et al., 2019), combine lithology with assays 79 
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and geophysics but require extensive pre-interpreted drillhole datasets for training, limiting their 80 

application in greenfield exploration areas. These approaches do not address the fundamental 81 

challenge faced by geological surveys worldwide: millions of legacy drillholes contain only lithological 82 

descriptions but lack both stratigraphic interpretations and the geophysical logs required by current 83 

automated methods. 84 

To address these challenges, we formulate the problem of stratigraphic recovery from drillhole 85 

databases as follows. The input to our methodology consists of: (1) legacy drillhole databases 86 

containing lithological descriptions (e.g., "sandstone", "siltstone", "dolomite") at various depth 87 

intervals, typically without stratigraphic labels; (2) regional geological maps that define stratigraphic 88 

unit boundaries and their spatial relationships; and (3) topological constraints that specify which 89 

stratigraphic units can be in contact based on their known relative ages and depositional sequences. 90 

The output comprises: (1) multiple plausible stratigraphic solutions, where each solution provides unit 91 

assignments for all depth intervals in the drillholes; (2) their ranking by geological likelihood; and (3) 92 

quantified uncertainties for these interpretations. The objective is threefold: first, to systematically 93 

transform lithological descriptions into stratigraphic interpretations by testing all geologically plausible 94 

orderings of stratigraphic units that are consistent with the observed lithologies; second, to quantify 95 

the uncertainty inherent in these interpretations given that multiple stratigraphic units may share 96 

similar lithological characteristics; and third, to establish correlations between multiple drillholes to 97 

reduce uncertainty and improve the reliability of stratigraphic assignments across a region. This 98 

transformation is essential because regional 3D geological models are fundamentally organized by 99 

stratigraphy rather than lithology, yet the majority of legacy drillhole data lack stratigraphic labels. 100 

Figure 1 illustrates this challenge with a simplified example: a drillhole log with four lithological 101 

intervals (sandstone, siltstone, sandstone, dolomite) could correspond to multiple stratigraphic 102 

interpretations. The two sandstone intervals might represent the same formation repeated by faulting, 103 

or they could belong to different formations with similar but distinct lithological compositions. Without 104 

additional constraints, both interpretations are geologically plausible, highlighting the inherent 105 

ambiguity in stratigraphic assignment from lithological data alone. 106 

 107 
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Figure 1: Schematic illustration of the stratigraphic interpretation problem. A drillhole log containing 108 

only lithological descriptions (left) can yield multiple plausible stratigraphic solutions (right) because 109 

the same lithology may occur in different stratigraphic formations with varying compositions. 110 

This study develops open-source codes and methodologies for stratigraphy recovery from drillhole 111 

lithological data through a two-stage approach. First, we introduce a branch-and-prune search 112 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 113 

drillholes. Second, we apply a solution correlation algorithm that integrates information from multiple 114 

drillholes by comparing topological relationships of stratigraphic units, thereby enhancing the 115 

robustness and reliability of interpretations. The method quantifies uncertainty by generating multiple 116 

plausible stratigraphic interpretations, providing critical insights for resource estimation, scenario 117 

analysis, and data acquisition strategies. We apply our method to a dataset of 52 drillholes from South 118 

Australia to demonstrate its practical application and validate its performance against existing 119 

stratigraphic interpretations. 120 

2. Methodology 121 

2.1 Workflow 122 

 123 

 124 

Figure 2: The different stages of the analysis. 125 

The workflow shown in Fig. 2 consists of three key steps grouped into three main tasks: Data 126 

Cleaning (using the dh2loop code), Map Analytic Constraints (using map2model and custom codes 127 

developed for this project) and Drillhole Analytics (using the litho2strat code developed for this 128 

project). 129 

 130 

2.1.1 Data Cleaning 131 

Prior to analysing the drillhole data we went through a number of automated data cleaning and 132 

harmonisation steps. 133 

a) Harmonisation of drillhole lithology descriptions using the dh2loop code described in (Joshi et 134 

al., 2021) (code available here: https://github.com/Loop3D/dh2loop) This enables us to 135 

https://github.com/Loop3D/dh2loop
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produce a standardised lithological description for multiple drillholes in a region, regardless of 136 

their provenance. This includes the use of a synonym list (“granite” vs “granitoid”), and ignore 137 

list (e.g. “fault”) together with a list of cover lithology terms (e.g. “saprolite”) that enables us 138 

to simplify the list of terms and exclude irrelevant information.  139 

 140 

b) Harmonisation of lithological descriptions for formations described in the geological map of 141 

the target area. This ensures that the same terminology is used for borehole lithological 142 

descriptions and map lithologies. 143 

Together steps a and b ensure consistent lithological terminology across drillhole logs and 144 

geological map units, enabling subsequent stratigraphic unit matching (Section 2.2).. 145 

 146 

2.1.2 Map Analytic Constraints 147 

a) Calculation of the distance between each polygon in a map and the target borehole. A custom 148 

Python script was developed. This information can be used as a guide to the likelihood that a 149 

drillhole would intersect a given unit. 150 

 151 

b) We then used the map2model engine (M. Jessell et al., 2021) (code available here: 152 

https://github.com/Loop3D/map2model_cpp) to extract the topological relationships 153 

between the surface expression of stratigraphic different units. This would later be used to 154 

assess the likelihood that two units would be in contact in the drillhole. 155 

The map2model engine extracts topological relationships between stratigraphic units, 156 

including both normal depositional contacts and fault contacts, as both types of juxtaposition 157 

may be encountered in drillhole data. 158 

 159 

Unit connectivity information can also be obtained from the Australian Stratigraphic Units 160 

Database (ASUD) as well as from various published reports containing stratigraphic data 161 

(Geoscience Australia and Australian Stratigraphy Commission, 2017). The ASUD serves as a 162 

comprehensive repository of geological information, providing valuable insights into the 163 

relationships between different stratigraphic units across Australia. Additionally, numerous 164 

geological surveys and research studies offer stratigraphic data that can further enrich our 165 

understanding of unit connectivity. Leveraging this information, enhances stratigraphic 166 

models, improves the accuracy of correlations between drillholes, and facilitates a deeper 167 

understanding of the geological framework in specific regions. 168 

 169 

These two steps allow us to capture information on the spatial and topological relationships 170 

between the mapped units. 171 

 172 

2.1.3 Drillhole Analytics 173 

In this stage, we employ the litho2strat code to generate plausible stratigraphic solutions that fit 174 

the observed lithological data while satisfying all geological constraints (code available here: 175 

https://github.com/Loop3D/litho2strat; Ogarko et al., 2025). The algorithm uses a recursive 176 

branch and prune approach to efficiently explore the solution space, eliminating geologically 177 

implausible pathways early in the search process (see Section 2.2 for detailed algorithm 178 

description). This strategy not only ensures thorough exploration of viable stratigraphic orderings 179 

https://github.com/Loop3D/litho2strat
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but also optimizes computational efficiency by avoiding unnecessary enumeration of invalid 180 

solutions. 181 

From the complete ensemble of plausible solutions obtained for each drillhole, we calculate 182 

uncertainties that quantify the confidence in different stratigraphic interpretations. Solutions are 183 

scored based on the probability of unit contacts within the local solution ensemble, providing a 184 

ranking of stratigraphic hypotheses from most to least likely. 185 

To further reduce uncertainty and improve solution reliability, we implement a correlation 186 

algorithm that leverages information from multiple neighboring drillholes simultaneously (see 187 

Section 2.5 for correlation algorithm details). By comparing the topological relationships of 188 

stratigraphic units across drillholes, the correlation process identifies solutions that are 189 

geologically consistent across the broader area. Correlated solution scores integrate both local 190 

evidence from individual drillholes and regional consistency with neighboring holes, with 191 

solutions receiving the highest correlated scores selected as the most plausible stratigraphic 192 

interpretations. 193 

 194 

2.2 Stratigraphic solution generation 195 

 196 

The litho2strat algorithm operates through a hierarchical search strategy that systematically explores 197 

the space of possible stratigraphic orderings (solutions) while pruning geologically implausible 198 

solutions. The algorithm can be formally described as follows: 199 

Input: 200 

• L = {l₁, l₂, ..., lₙ} : sequence of lithologies observed at depths d₁ < d₂ < ... < dₙ 201 

• U = {u₁, u₂, ..., uₘ} : set of m candidate stratigraphic units, each defined by its constituent 202 

lithologies 203 

• C : set of geological constraints (distance, connectivity, complexity) 204 

• Γ : global unit connectivity graph derived from geological maps and stratigraphic databases 205 

Output: 206 

• S = {s₁, s₂, ..., sₖ} : set of k plausible stratigraphic solutions 207 

• P(sᵢ) : probability distribution over solutions 208 

• Gₕ : local connectivity graph for drillhole h, derived from all solutions for this drillhole 209 

Algorithm Steps: 210 

1. Unit Matching Phase: For each lithology lᵢ at depth dᵢ, identify the subset of compatible units: 211 

M(lᵢ) = {uⱼ ∈ U | lithology(uⱼ) matches lᵢ AND satisfies constraints C}                                            (1) 212 

2. Recursive Branch and Prune Exploration: The algorithm recursively builds the solution space from 213 

shallow to deep depth intervals. Starting from the surface, partial solutions are extended one depth 214 

level at a time by considering candidate units that match the observed lithology. The algorithm 215 

generates a new branch for candidate unit uⱼ only when all of the following conditions are satisfied: 216 
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• The unit uⱼ matches the observed lithology at the current depth 217 

• The extended solution satisfies all constraints in C (distance, occurrence, contact complexity) 218 

• For the last unit uₖ in the partial solution, the edge (uₖ, uⱼ) exists in the global connectivity 219 

graph Γ 220 

Partial solutions that violate any condition are immediately abandoned (pruned), preventing 221 

exploration of their extensions. When a partial solution reaches the deepest depth interval, it is 222 

validated and added to the solution set S. This recursive approach with constraint-based pruning 223 

eliminates large portions of the solution space without explicit enumeration. 224 

The algorithm systematically explores all geologically valid solutions through exhaustive search with 225 

constraint-based pruning. While the top-to-bottom traversal order does not affect the completeness 226 

of the final solution set S (the same valid stratigraphic interpretations would be found regardless of 227 

traversal direction), it does improve computational efficiency by enabling earlier application of 228 

surface geology constraints and more effective pruning of invalid solution branches. 229 

3. Local Connectivity Graph Construction: From the complete set of solutions S obtained for drillhole 230 

h, construct a local connectivity graph Gₕ where edge weights represent the frequency of unit 231 

contacts across all solutions: 232 

wₕ(uⱼ, uⱼ₊₁) = |{s ∈ S : (uⱼ, uⱼ₊₁) adjacent in s}| / |S|                                                 (2) 233 

This directed local graph captures the probability of unit contacts based on the ensemble of 234 

geologically plausible solutions for drillhole h, where edges represent stratigraphic ordering. Each 235 

edge weight represents the fraction of solutions in which the corresponding unit contact appears. 236 

Note that Gₕ is a subgraph of the global connectivity graph Γ, as all solutions for drillhole h must 237 

satisfy the global connectivity constraints. 238 

4. Solution Scoring: For each solution sᵢ ∈ S, calculate a normalized score based on the local 239 

connectivity graph Gₕ: 240 

score(sᵢ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ                                                    (3) 241 

where Nᵢ is the number of unit contacts in solution sᵢ (i.e., Nᵢ = |sᵢ| - 1), and the sum is over all 242 

consecutive unit pairs. The normalization by Nᵢ ensures that solutions with different numbers of 243 

stratigraphic contacts are directly comparable, preventing bias toward longer or more complex 244 

solutions. The score thus represents the average edge probability across all contacts in the solution. 245 

5. Probability Calculation: Normalize scores to obtain probability distribution: 246 

P(sᵢ) = score(sᵢ) / Σₖ score(sₖ)                                           (4) 247 

The efficiency of this approach derives from constraint-based pruning during the recursive 248 

exploration. By evaluating both solution constraints C and global connectivity Γ before extending 249 

each partial solution, the algorithm eliminates inconsistent paths immediately without exploring 250 

their complete extensions. The distinction between the global connectivity graph Γ (used for 251 

constraint validation during exploration) and the local connectivity graph Gₕ (derived from solutions 252 

and used for scoring) is crucial: Γ represents a priori geological knowledge from maps and databases, 253 

while Gₕ captures the a posteriori probability distribution of unit contacts specific to drillhole h given 254 

all constraints. 255 

 256 
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2.3 Solution constraints 257 

 258 

 259 

For the Branch and Prune algorithm described in Section 2.2, providing efficient constraints 260 

(collectively denoted as C) is crucial for generating geologically plausible stratigraphies and reducing 261 

the search space. Without these constraints, the algorithm would need to exhaustively enumerate all 262 

possible unit assignments, which is computationally prohibitive. We utilize two types of solution 263 

constraints: the first can be derived from geological maps (as discussed in the 'Map Analytic 264 

Constraints' section), while the second is selected by the user based on the expected structural 265 

complexity of the area (e.g., the presence of faults, folds, or other features that might cause 266 

stratigraphic repetition or disruption). 267 

The specific constraints in C include: 268 

1. Distance Constraint: This constraint limits the number of geological units considered based on 269 

their proximity to the drillhole. In this context this is defined as the distance between the drillhole 270 

collar and the nearest point on the polygon's boundary in 2D. For drillhole h and candidate unit uⱼ ∈ 271 

U: 272 

d(uⱼ, h) ≤ dmax,                                                     (5) 273 

where d(uⱼ, h) is the distance from the nearest outcrop of unit uⱼ to drillhole h, and dmax is the 274 

maximum search radius. This ensures relevance to the drillhole's location. 275 

2. Global Unit Connectivity Constraint: This constraint, enforced through the global connectivity 276 

graph Γ, restricts potential contacts between units. For any two consecutive units uⱼ and uⱼ₊₁ in a 277 

solution: 278 

(uⱼ, uⱼ₊₁) ∈ E(Γ),                                                     (6) 279 

where E(Γ) is the edge set of the global connectivity graph. This ensures that only units known to be 280 

stratigraphically adjacent (from map data, databases, or published reports) can be placed in contact, 281 

enhancing the geological plausibility of solutions. 282 

The edges in the global connectivity graph Γ can be configured as either single-directional or 283 

bidirectional depending on the structural complexity of the study area. In structurally simple areas 284 

with normal stratigraphic succession, single-directional edges (e.g., A→B) enforce the expected 285 

younging direction (older to younger upward). However, for areas with known structural complexities 286 

such as overturned sequences from folding or thrust faulting, bidirectional edges can be used to 287 

allow stratigraphic contacts in both normal and reversed orientations. For example, if units A and B 288 

can occur in both normal succession (A overlies B) and overturned succession (B overlies A) due to 289 

folding, the graph Γ would include a bidirectional edge between them, allowing transitions in both 290 

directions (A→B and B→A). This configuration allows the algorithm to exhaustively explore all 291 

structurally valid solutions including those with reversed polarity sequences. The choice of single-292 

directional versus bidirectional edges in Γ is thus a key input that controls whether the algorithm 293 

considers only normal superposition or also accommodates structural inversions. 294 

3. Top Unit Constraint: Information regarding the top unit utop can be extracted from geological 295 

maps at the surface location of the drillhole, providing a foundational boundary condition: 296 

s[0] = utop,                                                      (7) 297 
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where s[0] denotes the shallowest unit in solution s. Note that while the global unit connectivity 298 

constraint allows sequences to begin from any node in the connectivity graph, this constraint 299 

explicitly specifies the starting node. 300 

4. Occurrence Constraint: This constraint sets a maximum limit on how many times a unit can appear 301 

in a solution, accounting for geological complexity such as faulting or folding. For unit uⱼ in solution sᵢ: 302 

count(uⱼ, sᵢ) ≤ kmax,                                                     (8) 303 

where count(uⱼ, sᵢ) is the number of times unit uⱼ appears in sᵢ. Typically kmax = 1 for unfaulted 304 

sequences, or kmax = 2-3 for faulted terrains where stratigraphic repetition may occur. 305 

5. Contact Complexity Constraint: For a continuous sequence of identical lithology observations [lᵢ, 306 

lᵢ₊₁, ..., lᵢ₊ₘ] where all lithologies are the same, this constraint limits the number of distinct 307 

stratigraphic units that can be assigned: 308 

|{uⱼ : assigned to interval [i, i+m]}| ≤ cmax,                                                  (9) 309 

where cmax is the maximum number of unit contacts allowed within the continuous lithology 310 

sequence. This prevents over-interpretation where a thick monotonous lithology (e.g., a 100m 311 

sandstone sequence) is artificially divided into an excessive number of stratigraphic units. 312 

6. Stratigraphic Jump Constraint: To account for incomplete exposure of geological contacts at the 313 

surface, we relax the map-based connectivity constraint by allowing the algorithm to "jump" over 314 

intermediate units in the global connectivity graph Γ. For a path in Γ such as A→B→C, setting the 315 

maximum number of stratigraphic jumps parameter to jmax allows direct contacts between non-316 

adjacent units up to jmax steps apart in the graph. For example, with jmax=1, the algorithm can 317 

consider both A→B and A→C as valid contacts, even if A→C is not explicitly observed in the map 318 

data. This addresses the limitation that geological maps provide only a 2D surface expression of 3D 319 

geological relationships and may not capture all possible stratigraphic contacts that exist at depth. 320 

The constraint is defined as: 321 

dΓ(ui, uj) ≤ jmax + 1,                                                     (10) 322 

where dΓ(ui, uj) is the shortest path distance between units ui and uj in the connectivity graph Γ, and 323 

jmax is the maximum number of allowed jumps (typically jmax=0 for strict adherence to observed 324 

contacts, or jmax=1-2 for more permissive exploration). 325 

These constraints in C work together to enhance the efficiency and effectiveness of the Branch and 326 

Prune algorithm, ensuring that the resulting stratigraphies are both geologically plausible and 327 

computationally tractable. As demonstrated in Section 3, constraint-based pruning reduces the 328 

search space by >99% in practical applications. 329 

 330 

2.4 Computational complexity 331 

 332 

The computational complexity of the branch and prune algorithm depends on several key factors: 333 

the number of drillholes H, the length of the lithology sequence |L| (i.e., the number of depth 334 

intervals), the number of candidate stratigraphic units |U|, and critically, the average number of 335 

solutions N maintained during the recursive exploration. The algorithm processes each drillhole 336 
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independently, and for each drillhole, it iterates through all lithologies in L, evaluating potential unit 337 

assignments for each active solution. 338 

The theoretical time complexity can be expressed as: 339 

O(H × |L| × N × |U|),                                                     (11) 340 

where N denotes the average number of solutions maintained during recursive exploration. This is 341 

the most variable factor and depends strongly on the geological complexity and the constraints 342 

applied. 343 

In the unconstrained case, where no geological constraints are imposed, the number of solutions can 344 

grow exponentially with the number of lithology changes k in the drillhole log, potentially reaching N 345 

∝ |U|k. This leads to a worst-case complexity of O(H × |L| × |U|k+1), which quickly becomes 346 

computationally prohibitive for complex stratigraphic sequences. 347 

However, the application of geological constraints C - particularly the global unit connectivity 348 

constraint enforced through the topology graph Γ - dramatically reduces the solution space. These 349 

constraints prune geologically implausible branches early in the recursive exploration, preventing 350 

exponential growth of N. In practice, with appropriately chosen constraints, N grows moderately with 351 

the number of lithology changes (approximately linearly rather than exponentially), resulting in 352 

manageable computational requirements even for complex stratigraphic sequences. 353 

The effectiveness of constraint-based pruning in controlling computational cost is demonstrated 354 

empirically in Appendix B, where we compare the growth of average solution numbers as a function 355 

of lithology changes for cases with and without topology constraints. 356 

 357 

2.5 Solution correlation 358 

We utilize solution correlation analysis to identify compatible stratigraphic orderings between 359 

multiple drillholes, serving as a constraint on the plausibility of individual solutions. This correlation 360 

leverages the topological relationships of units represented through local connectivity graphs from 361 

each drillhole. 362 

A key challenge in correlating stratigraphy logs is that units at the same depth may not align across 363 

different drillholes due to variations in unit dip and thickness, tectonic deformation (including 364 

faulting), and stratigraphic gaps (such as unconformities). To address this, we focus on correlation 365 

based on topological relationships rather than depth-matching. The local connectivity graph Gₕ for 366 

each drillhole h is constructed from the complete set of solutions Sₕ obtained via the Branch and 367 

Prune algorithm (Section 2.2), where nodes represent geological units, edges represent stratigraphic 368 

ordering between units, and edge weights wₕ(uⱼ, uⱼ₊₁) (Eq. 2) represent the probability of unit 369 

contacts within that drillhole's solution ensemble. 370 

To facilitate correlation analysis, we generalize the scoring function from Section 2.2 to evaluate any 371 

solution sᵢ against any local connectivity graph. Define the generalized scoring function as: 372 

score(sᵢ, Gₕ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ,                                                   (12) 373 

where the sum is over all consecutive unit pairs (uⱼ, uⱼ₊₁) in solution sᵢ, Gₕ represents any local 374 

connectivity graph derived from drillhole solutions, wₕ(uⱼ, uⱼ₊₁) denotes the edge weight from graph 375 

Gₕ for that unit pair, and Nᵢ is the number of unit contacts in solution sᵢ. Note that Gₕ refers to local 376 

connectivity graphs from drillhole solutions, not the global connectivity graph Γ from map data 377 
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(Section 2.2). If an edge (uⱼ, uⱼ₊₁) from solution sᵢ does not exist in Gₕ, its weight is taken as zero. This 378 

generalized function allows us to assess how consistent a solution from one drillhole is with the 379 

geological relationships observed in other drillholes. 380 

Correlation Algorithm: 381 

Consider a set of H drillholes {h₁, h₂, ..., h_H} with their respective local connectivity graphs {G₁, G₂, 382 

..., G_H}. For each solution sᵢ from any drillhole, we compute a correlated score that represents the 383 

average consistency across all drillholes: 384 

scorecorr(sᵢ) = (1/H) Σₖ₌₁^H αₖ score(sᵢ, Gₖ),                                                  (13) 385 

where αₖ are weighting factors that can be based on geological distance (distance between collar and 386 

closest node of map polygon), drillhole quality, or other criteria. This equation computes an average 387 

score across all drillholes. The division by H ensures the correlated score remains on a comparable 388 

scale regardless of the number of drillholes. In this work, we use αₖ = 1 for all drillholes, giving equal 389 

weight to each drillhole. This summation approach is robust to outliers; if one drillhole yields a zero 390 

score, it does not eliminate the entire correlation. Alternative weighting schemes such as αₖ = 1/d(h₁, 391 

hₖ) could be employed to reduce the influence of more distant drillholes. 392 

The correlated scores are then normalized to obtain a revised probability distribution: 393 

Pcorr(sᵢ) = scorecorr(sᵢ) / Σₘ scorecorr(sₘ),                                                  (14) 394 

The correlated probability Pcorr(sᵢ) provides a revised ranking of solutions that accounts for both 395 

local evidence and regional consistency. Solutions with unit contacts that appear frequently across 396 

multiple drillholes receive higher correlated scores, while solutions unique to a single drillhole 397 

receive lower scores. This correlation effectively reduces uncertainty by leveraging spatial geological 398 

consistency. 399 

Summation vs. Multiplication: While the equation for scorecorr uses weighted summation, an 400 

alternative multiplicative approach could also be formulated. However, multiplicative forms are more 401 

sensitive to outliers: if any single drillhole yields a zero score, the entire correlated score becomes 402 

zero. Therefore, the summation approach is generally preferred for its robustness. 403 

Computational Efficiency: The algorithm achieves O(H² × Savg) complexity when correlating solutions 404 

across all H drillholes, where Savg represents the average number of solutions per drillhole. This 405 

efficiency is achieved by comparing solutions against pre-computed connectivity graphs Gₕ rather 406 

than performing pairwise solution comparisons. The alternative of solution-to-solution comparison 407 

would scale as O(H² × Savg
2) making it computationally prohibitive. 408 

By integrating and correlating drillhole data through this topological approach, we ensure that the 409 

stratigraphic framework accurately reflects the natural spatial variations and interconnections 410 

present in the subsurface. The correlation process quantitatively reduces uncertainty by identifying 411 

and favoring solutions that are geologically consistent across the broader area. This uncertainty 412 

reduction is achieved by concentrating probability mass on solutions supported by multiple drillholes 413 

while downweighting locally anomalous interpretations. The resulting correlated probabilities 414 

Pcorr(sᵢ) provide more reliable stratigraphic interpretations than single-drillhole probabilities P(sᵢ), 415 

enabling more informed decisions in geological exploration and 3D geological modeling. 416 

 417 
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2.6 Code design 418 

 419 

A Python package called litho2strat has been developed for stratigraphy recovery. It can be easily 420 

installed using the command “pip install”, and it has minimal external library dependencies: numpy, 421 

matplotlib, and NetworkX. The NetworkX library is utilized to create a directed graph data structure 422 

that represents the topological relationships of relative unit ages (Hagberg et al., 2008). It also 423 

supports exporting graphs to GML format (Himsolt, 1997) for advanced graph visualization with tools 424 

like yEd (https://www.yworks.com/products/yed). 425 

Interaction with the code is facilitated through a Parfile, a text file that contains all necessary 426 

parameters and paths to the input data files. The parameters in the Parfile are organized into several 427 

categories based on their functionality, including input file paths, solver settings, and data 428 

preprocessing options. An example of such a Parfile is provided in Appendix A. 429 

The code architecture efficiently organizes distinct modules, including data reader, the user interface 430 

(represented by the Parfile), the algorithms (such as the solver), and the visualization components 431 

(e.g., output figures and graphs), as shown in Fig. 3. This design enhances code readability, making it 432 

easier for developers to understand and navigate the codebase. Additionally, it facilitates further 433 

extensions by allowing new features to be integrated seamlessly. This structure also supports 434 

effective testing, enabling modifications to be verified systematically and reducing the risk of 435 

introducing errors.. 436 

 437 

Figure 3: The module dependencies of the litho2strat code. The graph is generated by the pydeps 438 

utility, while excluding external dependencies. 439 

3. Example Use 440 

 441 

For this example, we used a set of 52 drillholes from South Australia originally drilled by Teck 442 

Cominco Pty. Ltd. (Fig. 4). This area was chosen as there were a number of holes equally spaced with 443 

a relatively homogenous spatial distribution and the holes provided both lithological logs and 444 

existing interpretations of the down-hole stratigraphy. 445 
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 446 

 447 

Figure 4: Location of South Australia test area (drillholes shown as green diamonds), together with an 448 

example stratigraphic log, map from 1:2M Surface Geology Map of South Australia (The Department 449 

for Energy and Mining, the Government of South Australia, Geoscientific. Data, Sourced on 22 July 450 

2018, http://energymining.sa.gov.au/minerals/geoscience/geological_survey/data GDA94/Zone 53). 451 

Data Cleaning 452 

 453 

Examples of terms in the ignore list for this case study include the following, where each term is 454 

excluded from drillhole lithology log processing: 455 

1. Breccia (Undiff. Origin) 456 

2. Ironstone (Metasomatic) 457 

3. No Information 458 

4. Solution-Collapse Breccia 459 

5. Vein (Undifferentiated) 460 

 461 

Examples of the thesaurus of synonyms for this case study area include the following groups, where 462 

each group contains lithology names that are treated as equivalent: 463 

1. dolomite, dolomite rock, carbonate rock, limestone 464 

2. conglomerate, diamictite 465 

3. grit, sandstone, quartzite, siltstone 466 

4. gabbro, gabbronorite 467 

 468 

Map Analytics 469 
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Figure 5 shows stratigraphic units coloured as a function of the distance to one of the drillholes. A 470 

large search area was used for this example as the stratigraphy is fairly flat lying so there is no 471 

guarantee that a unit will reach the surface in the local neighbourhood.  472 

 473 

Figure 5. Distance of stratigraphic units from drillholes (darker colours signifies larger distance). 474 

Green diamonds show the location of the drillholes (Same source map as Fig. 4, GDA94/Zone 53). 475 

In the initial analysis we constructed the global connectivity graph Γ (Section 2.2), representing 476 

topological relationships between stratigraphic units. The initial graph was constructed automatically 477 

from the geological map (extending out 100 km from the test area) using the map2model software, 478 

then manually extended with additional topological relationships from the ASUD database and 479 

published reports. The graph was processed using the NetworkX Python library, exported to GML 480 

format, and visualized using yEd software (Fig. 6). The global connectivity graph consists primarily of 481 

single-direction edges, with two bidirectional edges (Whyalla Sandstone–Angepena Formation and 482 

Paleoproterozoic-Mesoproterozoic Rocks–Donington Suite) to account for spatial variability in their 483 

stratigraphic relationships. 484 

 485 
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 486 

Figure 6: Topological relationships between units in and around the test area. 487 

 488 

 489 

Drillhole Analytics 490 

The drillhole analysis calculated every possible stratigraphic ordering that was consistent with the 491 

observed lithological ordering down the drillhole and solution constraints (described in Sec. 2.3). By 492 

collating the results for all possible solution paths, we can produce estimates of the marginal 493 

probability that any depth interval will be a particular stratigraphic unit (Fig. 7). For depth interval i 494 

and stratigraphic unit u, the probability P_i(u) is computed as: 495 

P_i(u) = |{s ∈ S : s[i] = u}| / |S|,                                                   (15) 496 

where S is the set of all valid solutions and s[i] denotes the unit assigned to interval i in solution s. 497 

 498 
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 499 

Figure 7: Estimated probability of each stratigraphic unit occurring at a given depth for a single 500 

drillhole. 501 

In Fig. 8, we present the final (local) unit connectivity derived from the stratigraphic solutions 502 

generated. The width of the graph edges indicates the probability of unit contacts, with thicker edges 503 
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signifying higher probabilities. This visual representation allows for a clear comparison of 504 

connectivity before (Fig. 6) and after the stratigraphic analysis. 505 

 506 

Figure 8: Calculated local topology using all solutions. Graph edges (relationships) between two 507 

stratigraphic units are displayed as a probability of a that contact-relationship occurring. 508 

The final solution score for a single ordering is calculated by summing of the probabilities of the 509 

contact edge weights. This allows us to sort the orderings by probability, ignoring stratigraphic 510 

thickness for now (Fig. 9). 511 
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 512 

Figure 9: The 5 most probable stratigraphic orderings, with their solution probability on the x axis 513 

and order of depth on the y axis. 514 

 515 
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Finally, we can then include the depths to contacts between units in the drillhole based on the 516 

previous analyses (Fig. 10). 517 

 518 

Figure 10: The 12 most probable stratigraphic orderings showing true depth of contact (above) 519 

compared to the stratigraphy as logged for the same hole. 520 

 521 
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 522 

Figure 11: Comparison of ordering for one hole (left) vs ordering for that hole considering the 523 

outcomes of 45 other drillholes in the neighbourhood. 524 
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 525 

In the next stage of our analysis, we perform solution correlation across multiple drill holes to 526 

establish a plausible stratigraphic order and reduce uncertainty. Figure 11 illustrates the comparison 527 

of the most probable stratigraphies before and after correlation. Prior to correlation, the solution 528 

that aligns with the “true” stratigraphy (the correct solution) is ranked second, with a score of 529 

S=0.74, while the highest-ranked solution has a score of S=0.75. However, after applying the 530 

correlation, the correct solution rises to the top rank with a score of S=0.95, whereas the previously 531 

highest-ranked solution falls to second place with a score of S=0.67. This correlation analysis not only 532 

helped identify the correct solution but also significantly reduced its relative uncertainty, increasing 533 

the relative score between the top two solutions from 1% to 42%. 534 

The computational efficiency of the litho2strat algorithm was evaluated through performance testing 535 

on this dataset, with scalability analysis presented in Appendix B. 536 

 537 

4. Discussion and Future Work 538 

 539 

Whilst we were able to develop a workflow that successfully provided useful stratigraphic analyses 540 

for our test area, we recognise that for other areas the methodology was not always as successful. 541 

We have identified several aspects of the current stratigraphic descriptions that we think will 542 

significantly expand the useability of the workflow we present above. 543 

1) Lithological Uncertainty. Vague lithological descriptions are a major limitation. In many areas, 544 

the lithological descriptions of stratigraphic units are quite vague, and successive 545 

stratigraphic units in a group might have very similar lithological descriptions.. 546 

As an example, we look at the Hamersley Group, in Western Australia (Maldonado & Mercer, 547 

2018). If we examine the GSWA explanatory notes for three successive formations (Mt McRae 548 

Shale, Mt Sylvia Formation and the Wittenoom Formation) in the GSWA explanatory notes 549 

their lithologies are described as: 550 

• Mt McRae Shale - Mudstone, siltstone, chert, iron-formation, and dolomite. Thin 551 

bands of shard-bearing volcanic ash in upper parts. 552 

• Mt Sylvia Formation - Mudstone, siltstone, chert, iron-formation, and dolomite. 553 

• Wittenoom Formation - Thinly bedded dolomite and dolomitic shale, with minor 554 

black chert, shale, banded iron formation and sandstone. 555 

We can see that there is a significant overlap in lithologies, with an ordering of lithologies but 556 

without constraints on the percentage of each lithology in the three formations. This 557 

additional information, even as an estimate, would provide useful constraints on the likelihood 558 

that a specific lithology is associated with a given stratigraphic unit. 559 

 560 

2) Min-Max thickness estimates. In some areas, there is useful information on the minimum, 561 

maximum and average stratigraphic thickness of units. 562 

 563 

3) Stratigraphic ordering of lithologies. Additional information on commonly occurring orderings 564 

of lithologies within a given formation or member would also provide useful constraints.  565 
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 566 

 567 

Figure 12: Free-text descriptions of the West Angela Member in the GSWA Explanatory Notes. 568 

All three of these types of information are often included in the free-text portions of stratigraphic 569 

databases, such as the example shown for the West Angela Member in the GSWA Explanatory 570 

Notes in Fig. 12. In this example the free text provides more specific information on the thickness, 571 

the ordering of lithologies and the relative proportions of lithologies. With the advent of more 572 

sophisticated Machine Learning methodologies, the extraction of this ancillary data in a 573 

standardised form from reports and the stratigraphic databases themselves will open up new 574 

possibilities for constraining stratigraphy. Similarly, the codes developed in dh2loop for 575 

harmonising lithological terminologies will expand greatly in coming years. 576 

4) Inclusion of discontinuity information in the litho2strat workflow (most often logged faults) 577 

could help to define where breaks in stratigraphy are most likely to occur 578 

 579 

5) Inclusion of secondary descriptive information (for example grain size) could help to refine our 580 

younging estimators in areas of uncertain facing. 581 

 582 

6) There is no doubt that the advent of Large Language Models will have a profound effect on 583 

our ability to extract and categorize information from unstructured data sources, and 584 

algorithms based on these approaches will probably replace the data extraction and data 585 

harmonisation modules in future versions of this workflow. 586 

 587 

 588 

 589 
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5. Conclusions 590 

 591 

We developed codes and methodologies for stratigraphy recovery from drillhole databases, utilizing 592 

the branch and prune algorithm as a foundational framework. To ensure the generation of 593 

geologically plausible solutions, we implemented various types of constraints that account for the 594 

complexities of subsurface geology. 595 

To further reduce uncertainty in the obtained solutions, we introduced a correlation algorithm that 596 

leverages information from multiple drillholes simultaneously. This innovative approach allows for a 597 

more robust analysis by integrating data across different locations, enhancing the reliability of the 598 

stratigraphic interpretations. 599 

Our proposed method was applied to a dataset comprising 52 drillholes from South Australia. The 600 

results demonstrated that the algorithm successfully predicts the correct stratigraphic solution while 601 

providing associated uncertainty metrics, effectively validating its performance against measured 602 

stratigraphy data.  603 

Additionally, we identified several key aspects of the current stratigraphic descriptions that could 604 

significantly enhance the usability of the workflow we have presented. These enhancements aim to 605 

improve the accessibility and applicability of our methodology, paving the way for more effective 606 

geological assessments and decision-making processes in the field. 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 
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Appendix A - Control file for litho2strat code 636 

 637 

Example usage: python3 litho2strat.py -p ./parfiles/Parfile_SA.txt 638 

Example parfile: 639 

 640 

[FilePaths] 641 
topology_filename = data/SA_test_data/newpairs_20_06_2023.gml 642 
ignore_list_filename = data/SA_test_data/ignore_list.txt 643 
alternative_rock_names_filename = data/SA_test_data/alternative_rock_names.txt 644 
unit_colors_filename = data/SA_test_data/unit_colors.csv 645 
 646 
drillsample_filename = data/SA_test_data/litho_tables/litho_$collarID$.csv 647 
stratasample_filename = data/SA_test_data/strat_tables/strat_$collarID$.csv 648 
dist_table_filename = data/SA_test_data/dh_asud_strat2.csv 649 
 650 
[DataHeaders] 651 
drillsample_header = DEPTH_FROM_M, DEPTH_TO_M, MAJOR_LITHOLOGY, 652 
stratasample_header = DEPTH_FROM_M, DEPTH_TO_M, STRAT_UNIT_NAME, 653 
strata_data_header = strat, summary, distance, description 654 
 655 
[SolverParameters] 656 
add_topology_constraints = True 657 
max_num_strata_jumps = 0 658 
max_num_returns_per_unit = 0 659 
max_num_unit_contacts_inside_litho = 0 660 
single_top_unit = True 661 
 662 
[DataPreprocessing] 663 
number_nearest_units = 10 664 
min_drillhole_litho_score = 80 665 
group_drillhole_lithos = False 666 
cover_ratio_threshold = 0.65 667 
 668 
[CollarIDs] 669 
collarIDs = 205821,205822,264999,265000,265001 670 
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Appendix B: Performance and Scalability Analysis 671 

 672 

To complement the theoretical complexity analysis presented in Section 2.4, we conducted empirical 673 

tests to evaluate the performance and scalability of the litho2strat algorithm. We tested how the 674 

average number of solutions maintained during recursive exploration (N) scales with the number of 675 

lithology changes in drillhole logs, comparing two scenarios: (1) using the global topology graph Γ as 676 

a constraint, and (2) without topology constraints. 677 

Figure B.1 shows the relationship between the number of lithology changes and the average number 678 

of solutions maintained during recursive exploration when the topology graph constraint is applied. 679 

The results demonstrate near-linear scaling, confirming that the topology graph effectively prunes 680 

the solution space while preserving geological validity. 681 

 682 

 683 

Figure B.1: Average number of solutions maintained during recursive exploration versus number of 684 

lithology changes with topology graph constraint. 685 

Figure B.2 presents the same relationship for the unconstrained case, where the algorithm considers 686 

all theoretically possible stratigraphic interpretations. Here, the average number of solutions 687 

maintained during recursive exploration exhibits near-exponential growth with increasing lithology 688 

changes, illustrating the combinatorial explosion that occurs without geological constraints. 689 
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 690 

Figure B.2: Average number of solutions maintained during recursive exploration versus number of 691 

lithology changes without topology constraints. 692 

The computational performance measurements further highlight the practical importance of these 693 

constraints. Using a single CPU core (Intel i7-1185G7 @ 3.00GHz) to process all 52 drillholes from 694 

Section 3 and perform the correlation of solutions, the constrained approach required approximately 695 

1 second total processing time, while the unconstrained case required approximately 50 seconds for 696 

the same dataset. This 50-fold improvement in computational efficiency, combined with the near-697 

linear versus near-exponential scaling behavior of solutions maintained during recursive exploration, 698 

demonstrates that incorporating geological knowledge through the topology graph is essential for 699 

both computational tractability and practical applicability of the litho2strat algorithm to real-world 700 

geological datasets. 701 

 702 
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 704 
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