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Abstract 11 

 12 

Australian commonwealth, state and territory geological surveys possess information on over 3 million 13 

drillhole logs. In addition to mineral exploration drilling, extensive drillhole datasets exist from oil and 14 

gas exploration and hydrogeological studies. Other countries no doubt have similar data holdings. 15 

Together these legacy drillhole datasets have the potential to significantly improve our subsurface data 16 

coverage but have limited use as constraints on regional 3D geological models as many if not most drill 17 

logs lack stratigraphic information, containing only lithological descriptions.  18 

This study develops open-source codes and methodologies for stratigraphy recovery (determining the 19 

ordered sequence of stratigraphic units) from drillhole lithological data by introducing a search 20 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 21 

drillholes, combined with a solution correlation algorithm that compares the topological relationships 22 

of stratigraphic units across multiple drillholes to identify geologically consistent solutions and reduce 23 

uncertainty. The algorithms combine constraints from lithological descriptions with stratigraphic 24 

relationships automatically derived from regional maps. In addition, the method quantifies uncertainty 25 

by generating multiple plausible stratigraphic interpretations, providing critical insights for resource 26 

estimation, scenario analysis, and data acquisition strategies. 27 

The application of our method to a dataset of 52 drillholes from South Australia demonstrated its 28 

ability to make useful predictions of stratigraphic solutions and quantifying associated uncertainties. 29 

These results not only validate our approach but also highlight opportunities to refine current 30 

stratigraphic descriptions and provide a valuable new source for regional 3D geological modelling. 31 

 32 

 33 
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1. Introduction 34 

 35 

Drillhole data serves as a fundamental constraint for subsurface geological exploration and 3D 36 

geological modelling, offering direct insights into lithological and hence stratigraphic features 37 

(Wellmann & Caumon, 2018). However, the inherent sparsity of such data, coupled with challenges 38 

posed by legacy datasets maintained by industry and Geological Survey Organizations (GSOs), often 39 

hinders comprehensive geological understanding and modelling (Jessell et al., 2010; Pakyuz-Charrier 40 

et al., 2018).  GSOs' databases typically contain lithological information as unstructured text 41 

descriptions (e.g., 'sandy limestone with minor shale') but rarely include stratigraphic unit 42 

assignments. This creates a critical gap in the data needed for accurate and meaningful geological 43 

predictions (Hartmann & Moosdorf, 2012). 44 

Geological modelling plays a crucial role in understanding subsurface structures and processes, 45 

providing a foundation for various applications in earth sciences (Jessell et al., 2014). Such modelling 46 

commonly relies on datasets such as borehole data, geophysical data, and mapping data. Among these, 47 

borehole data provide the most accurate insights into subsurface geology and stratigraphy (Guo et al., 48 

2022). The models generated through geological modelling can serve dual purposes: they can be 49 

directly employed for geological interpretations, such as identifying fault systems, and mineral 50 

deposits (Alvarado-Neves et al., 2024; Vollgger et al., 2015), or they can be integrated as constraints in 51 

methodologies that use a prior 3D model, such as geophysical inversions (Giraud et al., 2017; Martin 52 

et al., 2024; Ogarko et al., 2021; Tarantola, 2005) and hydrogeological forward modelling (D’Affonseca 53 

et al., 2020).  54 

Modern drillhole measurement techniques primarily focus on chemical, mineralogical and lithological 55 

characterization, whereas the fundamental categorical unit of regional 3D geological models is defined 56 

by stratigraphy (Calcagno et al., 2008; Caumon et al., 2009; Mallet, 2002). This discrepancy 57 

underscores the need for innovative approaches to recover and integrate stratigraphic information 58 

from existing datasets. 59 

Recent advancements in automation have made significant progress in processing drillhole data, 60 

though most address different aspects of the problem than stratigraphic recovery. Data 61 

standardization tools like dh2loop (Joshi et al., 2021) extract and harmonize lithological descriptions 62 

from unstructured text using thesauri and fuzzy string matching, providing essential preprocessing for 63 

downstream analysis. Pattern recognition methods (Schetselaar & Lemieux, 2012) can identify 64 

lithostratigraphic markers and contacts within drill logs, helping to detect boundaries between units. 65 

Machine learning approaches for 3D geological modeling (Guo et al., 2024) can interpolate between 66 

drillholes to create subsurface models, but typically require pre-interpreted stratigraphic data as input. 67 

While these methods provide valuable components of the workflow, none directly address the 68 

fundamental challenge of transforming lithological descriptions into stratigraphic interpretations with 69 

quantified uncertainties. 70 

Existing automated interpretation methods primarily work with different data types than those 71 

available in legacy drillhole databases. Geophysics-based methods (Wu & Nyland, 1987; Fullagar et al., 72 

2004; Silversides et al., 2015) leverage distinctive signatures in gamma, resistivity, or other wireline 73 

logs to predict stratigraphic units, but require geophysical data that are absent from most legacy 74 

drillholes. Geochemical and spectral approaches (Hill & Uvarova, 2018) use XRF scanning or 75 

hyperspectral measurements to identify geological boundaries with high precision, but depend on 76 

expensive data acquisition unavailable in historical datasets. Hybrid machine learning methods, such 77 

as those applied in the Pilbara iron ore deposits (Wedge et al., 2019), combine lithology with assays 78 
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and geophysics but require extensive pre-interpreted drillhole datasets for training, limiting their 79 

application in greenfield exploration areas. These approaches do not address the fundamental 80 

challenge faced by geological surveys worldwide: millions of legacy drillholes contain only lithological 81 

descriptions but lack both stratigraphic interpretations and the geophysical logs required by current 82 

automated methods. 83 

To address these challenges, we formulate the problem of stratigraphic recovery from drillhole 84 

databases as follows. The input to our methodology consists of: (1) legacy drillhole databases 85 

containing lithological descriptions (e.g., "sandstone", "siltstone", "dolomite") at various depth 86 

intervals, typically without stratigraphic labels; (2) regional geological maps that define stratigraphic 87 

unit boundaries and their spatial relationships; and (3) topological constraints that specify which 88 

stratigraphic units can be in contact based on their known relative ages and depositional sequences. 89 

The output comprises: (1) multiple plausible stratigraphic solutions, where each solution provides unit 90 

assignments for all depth intervals in the drillholes; (2) their ranking by geological likelihood; and (3) 91 

quantified uncertainties for these interpretations. The objective is threefold: first, to systematically 92 

transform lithological descriptions into stratigraphic interpretations by testing all geologically plausible 93 

orderings of stratigraphic units that are consistent with the observed lithologies; second, to quantify 94 

the uncertainty inherent in these interpretations given that multiple stratigraphic units may share 95 

similar lithological characteristics; and third, to establish correlations between multiple drillholes to 96 

reduce uncertainty and improve the reliability of stratigraphic assignments across a region. This 97 

transformation is essential because regional 3D geological models are fundamentally organized by 98 

stratigraphy rather than lithology, yet the majority of legacy drillhole data lack stratigraphic labels. 99 

Figure 1 illustrates this challenge with a simplified example: a drillhole log with four lithological 100 

intervals (sandstone, siltstone, sandstone, dolomite) could correspond to multiple stratigraphic 101 

interpretations. The two sandstone intervals might represent the same formation repeated by faulting, 102 

or they could belong to different formations with similar but distinct lithological compositions. Without 103 

additional constraints, both interpretations are geologically plausible, highlighting the inherent 104 

ambiguity in stratigraphic assignment from lithological data alone. 105 

 106 
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Figure 1: Schematic illustration of the stratigraphic interpretation problem. A drillhole log containing 107 

only lithological descriptions (left) can yield multiple plausible stratigraphic solutions (right) because 108 

the same lithology may occur in different stratigraphic formations with varying compositions. 109 

This study develops open-source codes and methodologies for stratigraphy recovery from drillhole 110 

lithological data through a two-stage approach. First, we introduce a branch-and-prune search 111 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 112 

drillholes. Second, we apply a solution correlation algorithm that integrates information from multiple 113 

drillholes by comparing topological relationships of stratigraphic units, thereby enhancing the 114 

robustness and reliability of interpretations. The method quantifies uncertainty by generating multiple 115 

plausible stratigraphic interpretations, providing critical insights for resource estimation, scenario 116 

analysis, and data acquisition strategies. We apply our method to a dataset of 52 drillholes from South 117 

Australia to demonstrate its practical application and validate its performance against existing 118 

stratigraphic interpretations. 119 

2. Methodology 120 

2.1 Workflow 121 

 122 

 123 

Figure 2: The different stages of the analysis. 124 

The workflow shown in Fig. 2 consists of three key steps grouped into three main tasks: Data 125 

Cleaning (using the dh2loop code), Map Analytic Constraints (using map2model and custom codes 126 

developed for this project) and Drillhole Analytics (using the litho2strat code developed for this 127 

project). 128 

 129 

2.1.1 Data Cleaning 130 

Prior to analysing the drillhole data we went through a number of automated data cleaning and 131 

harmonisation steps. 132 

a) Harmonisation of drillhole lithology descriptions using the dh2loop code described in (Joshi et 133 

al., 2021) (code available here: https://github.com/Loop3D/dh2loop) This enables us to 134 

https://github.com/Loop3D/dh2loop
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produce a standardised lithological description for multiple drillholes in a region, regardless of 135 

their provenance. This includes the use of a synonym list (“granite” vs “granitoid”), and ignore 136 

list (e.g. “fault”) together with a list of cover lithology terms (e.g. “saprolite”) that enables us 137 

to simplify the list of terms and exclude irrelevant information.  138 

 139 

b) Harmonisation of lithological descriptions for formations described in the geological map of 140 

the target area. This ensures that the same terminology is used for borehole lithological 141 

descriptions and map lithologies. 142 

Together steps a and b provide a list of possible units at each depth down a drill hole. 143 

 144 

2.1.2 Map Analytic Constraints 145 

a) Calculation of the distance between each polygon in a map and the target borehole. A custom 146 

Python script was developed. This information can be used as a guide to the likelihood that a 147 

drillhole would intersect a given unit. 148 

 149 

b) We then used the map2model engine (M. Jessell et al., 2021) (code available here: 150 

https://github.com/Loop3D/map2model_cpp) to extract the topological relationships 151 

between the surface expression of stratigraphic different units. This would later be used to 152 

assess the likelihood that two units would be in contact in the drillhole. 153 

The map2model engine extracts topological relationships between stratigraphic units, 154 

including both normal depositional contacts and fault contacts, as both types of juxtaposition 155 

may be encountered in drillhole data. 156 

 157 

Unit connectivity information can also be obtained from the Australian Stratigraphic Units 158 

Database (ASUD) as well as from various published reports containing stratigraphic data. The 159 

ASUD serves as a comprehensive repository of geological information, providing valuable 160 

insights into the relationships between different stratigraphic units across Australia. 161 

Additionally, numerous geological surveys and research studies offer stratigraphic data that 162 

can further enrich our understanding of unit connectivity. Leveraging this information, 163 

enhances stratigraphic models, improves the accuracy of correlations between drillholes, and 164 

facilitates a deeper understanding of the geological framework in specific regions. 165 

 166 

These two steps allow us to capture information on the spatial and topological relationships 167 

between the mapped units. 168 

 169 

2.1.3 Drillhole Analytics 170 

In this stage, we employ the litho2strat code to generate plausible stratigraphic solutions that fit 171 

the observed lithological data while satisfying all geological constraints (code available here: 172 

https://github.com/Loop3D/litho2strat; Ogarko et al., 2025). The algorithm uses a recursive 173 

branch and prune approach to efficiently explore the solution space, eliminating geologically 174 

implausible pathways early in the search process (see Section 2.2 for detailed algorithm 175 

description). This strategy not only ensures thorough exploration of viable stratigraphic orderings 176 

but also optimizes computational efficiency by avoiding unnecessary enumeration of invalid 177 

solutions. 178 

https://github.com/Loop3D/litho2strat
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From the complete ensemble of plausible solutions obtained for each drillhole, we calculate 179 

uncertainties that quantify the confidence in different stratigraphic interpretations. Solutions are 180 

scored based on the probability of unit contacts within the local solution ensemble, providing a 181 

ranking of stratigraphic hypotheses from most to least likely. 182 

To further reduce uncertainty and improve solution reliability, we implement a correlation 183 

algorithm that leverages information from multiple neighboring drillholes simultaneously (see 184 

Section 2.5 for correlation algorithm details). By comparing the topological relationships of 185 

stratigraphic units across drillholes, the correlation process identifies solutions that are 186 

geologically consistent across the broader area. Correlated solution scores integrate both local 187 

evidence from individual drillholes and regional consistency with neighboring holes, with 188 

solutions receiving the highest correlated scores selected as the most plausible stratigraphic 189 

interpretations. 190 

 191 

2.2 Stratigraphic solution generation 192 

 193 

The litho2strat algorithm operates through a hierarchical search strategy that systematically explores 194 

the space of possible stratigraphic orderings (solutions) while pruning geologically implausible 195 

solutions. The algorithm can be formally described as follows: 196 

Input: 197 

• L = {l₁, l₂, ..., lₙ} : sequence of lithologies observed at depths d₁ < d₂ < ... < dₙ 198 

• U = {u₁, u₂, ..., uₘ} : set of m candidate stratigraphic units, each defined by its constituent 199 

lithologies 200 

• C : set of geological constraints (distance, connectivity, complexity) 201 

• Γ : global unit connectivity graph derived from geological maps and stratigraphic databases 202 

Output: 203 

• S = {s₁, s₂, ..., sₖ} : set of k plausible stratigraphic solutions 204 

• P(sᵢ) : probability distribution over solutions 205 

• Gₕ : local connectivity graph for drillhole h, derived from all solutions for this drillhole 206 

Algorithm Steps: 207 

1. Unit Matching Phase: For each lithology lᵢ at depth dᵢ, identify the subset of compatible units: 208 

M(lᵢ) = {uⱼ ∈ U | lithology(uⱼ) matches lᵢ AND satisfies constraints C} 209 

2. Recursive Branch and Prune Exploration: The algorithm recursively builds the solution space from 210 

shallow to deep depth intervals. Starting from the surface, partial solutions are extended one depth 211 

level at a time by considering candidate units that match the observed lithology. The algorithm 212 

generates a new branch for candidate unit uⱼ only when all of the following conditions are satisfied: 213 

• The unit uⱼ matches the observed lithology at the current depth 214 

• The extended solution satisfies all constraints in C (distance, occurrence, contact complexity) 215 
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• For the last unit uₖ in the partial solution, the edge (uₖ, uⱼ) exists in the global connectivity 216 

graph Γ 217 

Partial solutions that violate any condition are immediately abandoned (pruned), preventing 218 

exploration of their extensions. When a partial solution reaches the deepest depth interval, it is 219 

validated and added to the solution set S. This recursive approach with constraint-based pruning 220 

eliminates large portions of the solution space without explicit enumeration. 221 

The algorithm systematically explores all geologically valid solutions through exhaustive search with 222 

constraint-based pruning. While the top-to-bottom traversal order does not affect the completeness 223 

of the final solution set S (the same valid stratigraphic interpretations would be found regardless of 224 

traversal direction), it does improve computational efficiency by enabling earlier application of 225 

surface geology constraints and more effective pruning of invalid solution branches. 226 

3. Local Connectivity Graph Construction: From the complete set of solutions S obtained for drillhole 227 

h, construct a local connectivity graph Gₕ where edge weights represent the frequency of unit 228 

contacts across all solutions: 229 

wₕ(uⱼ, uⱼ₊₁) = |{s ∈ S : (uⱼ, uⱼ₊₁) adjacent in s}| / |S| 230 

This directed local graph captures the probability of unit contacts based on the ensemble of 231 

geologically plausible solutions for drillhole h, where edges represent stratigraphic ordering. Each 232 

edge weight represents the fraction of solutions in which the corresponding unit contact appears. 233 

Note that Gₕ is a subgraph of the global connectivity graph Γ, as all solutions for drillhole h must 234 

satisfy the global connectivity constraints. 235 

4. Solution Scoring: For each solution sᵢ ∈ S, calculate a normalized score based on the local 236 

connectivity graph Gₕ: 237 

score(sᵢ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ 238 

where Nᵢ is the number of unit contacts in solution sᵢ (i.e., Nᵢ = |sᵢ| - 1), and the sum is over all 239 

consecutive unit pairs. The normalization by Nᵢ ensures that solutions with different numbers of 240 

stratigraphic contacts are directly comparable, preventing bias toward longer or more complex 241 

solutions. The score thus represents the average edge probability across all contacts in the solution. 242 

5. Probability Calculation: Normalize scores to obtain probability distribution: 243 

P(sᵢ) = score(sᵢ) / Σₖ score(sₖ) 244 

The efficiency of this approach derives from constraint-based pruning during the recursive 245 

exploration. By evaluating both solution constraints C and global connectivity Γ before extending 246 

each partial solution, the algorithm eliminates inconsistent paths immediately without exploring 247 

their complete extensions. The distinction between the global connectivity graph Γ (used for 248 

constraint validation during exploration) and the local connectivity graph Gₕ (derived from solutions 249 

and used for scoring) is crucial: Γ represents a priori geological knowledge from maps and databases, 250 

while Gₕ captures the a posteriori probability distribution of unit contacts specific to drillhole h given 251 

all constraints. 252 

 253 

2.3 Solution constraints 254 

 255 
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 256 

For the Branch and Prune algorithm described in Section 2.2, providing efficient constraints 257 

(collectively denoted as C) is crucial for generating geologically plausible stratigraphies and reducing 258 

the search space. Without these constraints, the algorithm would need to exhaustively enumerate all 259 

possible unit assignments, which is computationally prohibitive. We utilize two types of solution 260 

constraints: the first can be derived from geological maps (as discussed in the 'Map Analytic 261 

Constraints' section), while the second is selected by the user based on the expected structural 262 

complexity of the area (e.g., the presence of faults, folds, or other features that might cause 263 

stratigraphic repetition or disruption). 264 

The specific constraints in C include: 265 

1. Distance Constraint: This constraint limits the number of geological units considered based on 266 

their proximity to the drillhole. In this context this is defined as the distance between the drillhole 267 

collar and the nearest point on the polygon's boundary in 2D. For drillhole h and candidate unit uⱼ ∈ 268 

U: 269 

d(uⱼ, h) ≤ dmax, 270 

where d(uⱼ, h) is the distance from the nearest outcrop of unit uⱼ to drillhole h, and dmax is the 271 

maximum search radius. This ensures relevance to the drillhole's location. 272 

2. Global Unit Connectivity Constraint: This constraint, enforced through the global connectivity 273 

graph Γ, restricts potential contacts between units. For any two consecutive units uⱼ and uⱼ₊₁ in a 274 

solution: 275 

(uⱼ, uⱼ₊₁) ∈ E(Γ), 276 

where E(Γ) is the edge set of the global connectivity graph. This ensures that only units known to be 277 

stratigraphically adjacent (from map data, databases, or published reports) can be placed in contact, 278 

enhancing the geological plausibility of solutions. 279 

The edges in the global connectivity graph Γ can be configured as either single-directional or 280 

bidirectional depending on the structural complexity of the study area. In structurally simple areas 281 

with normal stratigraphic succession, single-directional edges (e.g., A→B) enforce the expected 282 

younging direction (older to younger upward). However, for areas with known structural complexities 283 

such as overturned sequences from folding or thrust faulting, bidirectional edges can be used to 284 

allow stratigraphic contacts in both normal and reversed orientations. For example, if units A and B 285 

can occur in both normal succession (A overlies B) and overturned succession (B overlies A) due to 286 

folding, the graph Γ would include a bidirectional edge between them, allowing transitions in both 287 

directions (A→B and B→A). This configuration allows the algorithm to exhaustively explore all 288 

structurally valid solutions including those with reversed polarity sequences. The choice of single-289 

directional versus bidirectional edges in Γ is thus a key input that controls whether the algorithm 290 

considers only normal superposition or also accommodates structural inversions. 291 

3. Top Unit Constraint: Information regarding the top unit utop can be extracted from geological 292 

maps at the surface location of the drillhole, providing a foundational boundary condition: 293 

s[0] = utop, 294 
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where s[0] denotes the shallowest unit in solution s. Note that while the global unit connectivity 295 

constraint allows sequences to begin from any node in the connectivity graph, this constraint 296 

explicitly specifies the starting node. 297 

4. Occurrence Constraint: This constraint sets a maximum limit on how many times a unit can appear 298 

in a solution, accounting for geological complexity such as faulting or folding. For unit uⱼ in solution sᵢ: 299 

count(uⱼ, sᵢ) ≤ kmax, 300 

where count(uⱼ, sᵢ) is the number of times unit uⱼ appears in sᵢ. Typically kmax = 1 for unfaulted 301 

sequences, or kmax = 2-3 for faulted terrains where stratigraphic repetition may occur. 302 

5. Contact Complexity Constraint: For a continuous sequence of identical lithology observations [lᵢ, 303 

lᵢ₊₁, ..., lᵢ₊ₘ] where all lithologies are the same, this constraint limits the number of distinct 304 

stratigraphic units that can be assigned: 305 

|{uⱼ : assigned to interval [i, i+m]}| ≤ cmax, 306 

where cmax is the maximum number of unit contacts allowed within the continuous lithology 307 

sequence. This prevents over-interpretation where a thick monotonous lithology (e.g., a 100m 308 

sandstone sequence) is artificially divided into an excessive number of stratigraphic units. 309 

6. Stratigraphic Jump Constraint: To account for incomplete exposure of geological contacts at the 310 

surface, we allow the algorithm to "jump" over intermediate units in the global connectivity graph Γ. 311 

For a path in Γ such as A→B→C, setting the maximum number of stratigraphic jumps parameter to 312 

jmax allows direct contacts between non-adjacent units up to jmax steps apart in the graph. For 313 

example, with jmax=1, the algorithm can consider both A→B and A→C as valid contacts, even if A→C 314 

is not explicitly observed in the map data. This addresses the limitation that geological maps provide 315 

only a 2D surface expression of 3D geological relationships and may not capture all possible 316 

stratigraphic contacts that exist at depth. The constraint is defined as: 317 

dΓ(ui, uj) ≤ jmax + 1 318 

where dΓ(ui, uj) is the shortest path distance between units ui and uj in the connectivity graph Γ, and 319 

jmax is the maximum number of allowed jumps (typically jmax=0 for strict adherence to observed 320 

contacts, or jmax=1-2 for more permissive exploration). 321 

These constraints in C work together to enhance the efficiency and effectiveness of the Branch and 322 

Prune algorithm, ensuring that the resulting stratigraphies are both geologically plausible and 323 

computationally tractable. As demonstrated in Section 3, constraint-based pruning reduces the 324 

search space by >99% in practical applications, enabling computation of all valid solutions in seconds. 325 

 326 

2.4 Computational complexity 327 

 328 

The computational complexity of the branch and prune algorithm depends on several key factors: 329 

the number of drillholes H, the length of the lithology sequence |L| (i.e., the number of depth 330 

intervals), the number of candidate stratigraphic units |U|, and critically, the average number of 331 

solutions N maintained during the recursive exploration. The algorithm processes each drillhole 332 

independently, and for each drillhole, it iterates through all lithologies in L, evaluating potential unit 333 

assignments for each active solution. 334 
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The theoretical time complexity can be expressed as: 335 

O(H × |L| × N × |U|) 336 

where N denotes the average number of solutions maintained during recursive exploration. This is 337 

the most variable factor and depends strongly on the geological complexity and the constraints 338 

applied. 339 

In the unconstrained case, where no geological constraints are imposed, the number of solutions can 340 

grow exponentially with the number of lithology changes k in the drillhole log, potentially reaching N 341 

∝ |U|^k. This leads to a worst-case complexity of O(H × |L| × |U|^(k+1)), which quickly becomes 342 

computationally prohibitive for complex stratigraphic sequences. 343 

However, the application of geological constraints C - particularly the global unit connectivity 344 

constraint enforced through the topology graph Γ - dramatically reduces the solution space. These 345 

constraints prune geologically implausible branches early in the recursive exploration, preventing 346 

exponential growth of N. In practice, with appropriately chosen constraints, N grows moderately with 347 

the number of lithology changes (approximately linearly rather than exponentially), resulting in 348 

manageable computational requirements even for complex stratigraphic sequences. 349 

The effectiveness of constraint-based pruning in controlling computational cost is demonstrated 350 

empirically in Section 3, where we compare the growth of average solution numbers as a function of 351 

lithology changes for cases with and without topology constraints. 352 

 353 

2.5 Solution correlation 354 

We utilize solution correlation analysis to identify compatible stratigraphic orderings between 355 

multiple drillholes, serving as a constraint on the plausibility of individual solutions. This correlation 356 

leverages the topological relationships of units represented through local connectivity graphs from 357 

each drillhole. 358 

A key challenge in correlating stratigraphy logs is that units at the same depth may not align across 359 

different drillholes due to variations in unit dip and thickness, tectonic deformation, and stratigraphic 360 

gaps (such as unconformities or erosional surfaces). To address this, we focus on correlation based 361 

on topological relationships rather than depth-matching. The local connectivity graph Gₕ for each 362 

drillhole h is constructed from the complete set of solutions Sₕ obtained via the Branch and Prune 363 

algorithm (Section 2.2), where nodes represent geological units, edges represent stratigraphic 364 

ordering between units, and edge weights wₕ(uⱼ, uⱼ₊₁) represent the probability of unit contacts 365 

within that drillhole's solution ensemble. 366 

To facilitate correlation analysis, we generalize the scoring function from Section 2.2 to evaluate any 367 

solution sᵢ against any local connectivity graph. Define the generalized scoring function as: 368 

score(sᵢ, Gₕ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ, 369 

where the sum is over all consecutive unit pairs (uⱼ, uⱼ₊₁) in solution sᵢ, Gₕ represents any local 370 

connectivity graph derived from drillhole solutions, wₕ(uⱼ, uⱼ₊₁) denotes the edge weight from graph 371 

Gₕ for that unit pair, and Nᵢ is the number of unit contacts in solution sᵢ. Note that Gₕ refers to local 372 

connectivity graphs from drillhole solutions, not the global connectivity graph Γ from map data 373 

(Section 2.2). If an edge (uⱼ, uⱼ₊₁) from solution sᵢ does not exist in Gₕ, its weight is taken as zero. This 374 
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generalized function allows us to assess how consistent a solution from one drillhole is with the 375 

geological relationships observed in other drillholes. 376 

Correlation Algorithm: 377 

Consider a set of H drillholes {h₁, h₂, ..., h_H} with their respective local connectivity graphs {G₁, G₂, 378 

..., G_H}. For each solution sᵢ from any drillhole, we compute a correlated score that represents the 379 

average consistency across all drillholes: 380 

scorecorr(sᵢ) = (1/H) Σₖ₌₁^H αₖ score(sᵢ, Gₖ), 381 

where αₖ are weighting factors that can be based on geological distance (distance between collar and 382 

closest node of map polygon), drillhole quality, or other criteria. This equation computes an average 383 

score across all drillholes. The division by H ensures the correlated score remains on a comparable 384 

scale regardless of the number of drillholes. In this work, we use αₖ = 1 for all drillholes, giving equal 385 

weight to each drillhole. This summation approach is robust to outliers; if one drillhole yields a zero 386 

score, it does not eliminate the entire correlation. Alternative weighting schemes such as αₖ = 1/d(h₁, 387 

hₖ) could be employed to reduce the influence of more distant drillholes. 388 

The correlated scores are then normalized to obtain a revised probability distribution: 389 

Pcorr(sᵢ) = scorecorr(sᵢ) / Σₘ scorecorr(sₘ), 390 

The correlated probability Pcorr(sᵢ) provides a revised ranking of solutions that accounts for both 391 

local evidence and regional consistency. Solutions with unit contacts that appear frequently across 392 

multiple drillholes receive higher correlated scores, while solutions unique to a single drillhole 393 

receive lower scores. This correlation effectively reduces uncertainty by leveraging spatial geological 394 

consistency. 395 

Summation vs. Multiplication: While the equation for scorecorr uses weighted summation, an 396 

alternative multiplicative approach could also be formulated. However, multiplicative forms are more 397 

sensitive to outliers: if any single drillhole yields a zero score, the entire correlated score becomes 398 

zero. Therefore, the summation approach is generally preferred for its robustness. 399 

Computational Efficiency: The algorithm achieves O(H²|S|) complexity when correlating solutions 400 

across all n drillholes. This efficiency is achieved by comparing solutions against pre-computed 401 

connectivity graphs Gₕ rather than individual solutions. The alternative of solution-to-solution 402 

comparison would scale as O(H²|S|²) and be computationally prohibitive. 403 

By integrating and correlating drillhole data through this topological approach, we ensure that the 404 

stratigraphic framework accurately reflects the natural spatial variations and interconnections 405 

present in the subsurface. The correlation process quantitatively reduces uncertainty by identifying 406 

and favoring solutions that are geologically consistent across the broader area. This uncertainty 407 

reduction is achieved by concentrating probability mass on solutions supported by multiple drillholes 408 

while downweighting locally anomalous interpretations. The resulting correlated probabilities 409 

Pcorr(sᵢ) provide more reliable stratigraphic interpretations than single-drillhole probabilities P(sᵢ), 410 

enabling more informed decisions in geological exploration and 3D geological modeling. 411 

 412 

2.6 Code design 413 

 414 
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A Python package called litho2strat has been developed for stratigraphy recovery. It can be easily 415 

installed using the command “pip install”, and it has minimal external library dependencies: numpy, 416 

matplotlib, and NetworkX. The NetworkX library is utilized to create a directed graph data structure 417 

that represents the topological relationships of relative unit ages (Hagberg et al., 2008). It also 418 

supports exporting graphs to GML format (Himsolt, 1997) for advanced graph visualization with tools 419 

like yEd (https://www.yworks.com/products/yed). 420 

Interaction with the code is facilitated through a Parfile, a text file that contains all necessary 421 

parameters and paths to the input data files. The parameters in the Parfile are organized into several 422 

categories based on their functionality, including input file paths, solver settings, and data 423 

preprocessing options. An example of such a Parfile is provided in Appendix A. 424 

The code architecture efficiently organizes distinct modules, including data reader, the user interface 425 

(represented by the Parfile), the algorithms (such as the solver), and the visualization components 426 

(e.g., output figures and graphs), as shown in Fig. 3. This design enhances code readability, making it 427 

easier for developers to understand and navigate the codebase. Additionally, it facilitates further 428 

extensions by allowing new features to be integrated seamlessly. This structure also supports 429 

effective testing, enabling modifications to be verified systematically and reducing the risk of 430 

introducing errors.. 431 

 432 

Figure 3: The module dependencies of the litho2strat code. The graph is generated by the pydeps 433 

utility, while excluding external dependencies. 434 

3. Example Use 435 

 436 

For this example, we used a set of 52 drillholes from South Australia originally drilled by Teck 437 

Cominco Pty. Ltd. (Fig. 4). This area was chosen as there were a number of holes equally spaced with 438 

a relatively homogenous spatial distribution and the holes provided both lithological logs and 439 

existing interpretations of the down-hole stratigraphy. 440 
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 441 

 442 

Figure 4: Location of South Australia test area (drillholes shown as green diamonds), together with an 443 

example stratigraphic log, map from 1:2M Surface Geology Map of South Australia (The Department 444 

for Energy and Mining, the Government of South Australia, Geoscientific. Data, Sourced on 22 July 445 

2018, http://energymining.sa.gov.au/minerals/geoscience/geological_survey/data GDA94/Zone 53). 446 

Data Cleaning 447 

 448 

Examples of terms in the ignore list for this case study include the following, where each term is 449 

excluded from drillhole lithology log processing: 450 

1. Breccia (Undiff. Origin) 451 

2. Ironstone (Metasomatic) 452 

3. No Information 453 

4. Solution-Collapse Breccia 454 

5. Vein (Undifferentiated) 455 

 456 

Examples of the thesaurus of synonyms for this case study area include the following groups, where 457 

each group contains lithology names that are treated as equivalent: 458 

1. dolomite, dolomite rock, carbonate rock, limestone 459 

2. conglomerate, diamictite 460 

3. grit, sandstone, quartzite, siltstone 461 

4. gabbro, gabbronorite 462 

 463 

Map Analytics 464 
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Figure 5 shows stratigraphic units coloured as a function of the distance to one of the drillholes. A 465 

large search area was used for this example as the stratigraphy is fairly flat lying so there is no 466 

guarantee that a unit will reach the surface in the local neighbourhood.  467 

 468 

Figure 5. Distance of stratigraphic units from drillholes (darker colours signifies larger distance). 469 

Green diamonds show the location of the drillholes (Same source map as Fig. 4, GDA94/Zone 53). 470 

In the initial analysis we constructed the global connectivity graph Γ (Section 2.2), representing 471 

topological relationships between stratigraphic units. The initial graph was constructed automatically 472 

from the geology map (extending out 100 km from the test area) using the map2model software, then 473 

manually extended with additional topological relationships from the ASUD database and published 474 

reports. The graph was processed using the NetworkX Python library, exported to GML format, and 475 

visualized using yEd software (Fig. 6). The global connectivity graph consists primarily of single-476 

direction edges, with two bidirectional edges (Whyalla Sandstone–Angepena Formation and 477 

Paleoproterozoic-Mesoproterozoic Rocks–Donington Suite) to account for spatial variability in their 478 

stratigraphic relationships. 479 

 480 



 

16 
 

 481 

Figure 6: Topological relationships between units in and around the test area. 482 

 483 

 484 

Drillhole Analytics 485 

The drillhole analysis calculated every possible stratigraphic ordering that was consistent with the 486 

observed lithological ordering down the drillhole and solution constraints (described in Sec. 2.3). By 487 

collating the results for all possible solution paths, we can produce estimates of the marginal 488 

probability that any depth interval will be a particular stratigraphic unit (Fig. 7). For depth interval i 489 

and stratigraphic unit u, the probability P_i(u) is computed as: 490 

P_i(u) = |{s ∈ S : s[i] = u}| / |S|, 491 

where S is the set of all valid solutions and s[i] denotes the unit assigned to interval i in solution s. 492 

 493 
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 494 

Figure 7: Estimated probability of each stratigraphic unit occurring at a given depth for a single 495 

drillhole. 496 

In Fig. 8, we present the final (local) unit connectivity derived from the stratigraphic solutions 497 

generated. The width of the graph edges indicates the probability of unit contacts, with thicker edges 498 
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signifying higher probabilities. This visual representation allows for a clear comparison of 499 

connectivity before (Fig. 6) and after the stratigraphic analysis. 500 

 501 

Figure 8: Calculated local topology using all solutions. Graph edges (relationships) between two 502 

stratigraphic units are displayed as a probability of a that contact-relationship occurring. 503 

The final solution score for a single ordering is calculated by summing of the probabilities of the 504 

contact edge weights. This allows us to sort the orderings by probability, ignoring stratigraphic 505 

thickness for now (Fig. 9). 506 
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 507 

Figure 9: The 5 most probable stratigraphic orderings, with their solution probability on the x axis 508 

and order of depth on the y axis. 509 

 510 
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Finally, we can then include the depths to contacts between units in the drillhole based on the 511 

previous analyses (Fig. 10). 512 

 513 

Figure 10: The 12 most probable stratigraphic orderings showing true depth of contact (above) 514 

compared to the stratigraphy as logged for the same hole. 515 

 516 
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 517 

Figure 11: Comparison of ordering for one hole (left) vs ordering for that hole considering the 518 

outcomes of 45 other drillholes in the neighbourhood. 519 
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 520 

In the next stage of our analysis, we perform solution correlation across multiple drill holes to 521 

establish a plausible stratigraphic order and reduce uncertainty. Figure 11 illustrates the comparison 522 

of the most probable stratigraphies before and after correlation. Prior to correlation, the solution 523 

that aligns with the “true” stratigraphy (the correct solution) is ranked second, with a score of 524 

S=0.74, while the highest-ranked solution has a score of S=0.75. However, after applying the 525 

correlation, the correct solution rises to the top rank with a score of S=0.95, whereas the previously 526 

highest-ranked solution falls to second place with a score of S=0.67. This correlation analysis not only 527 

helped identify the correct solution but also significantly reduced its relative uncertainty, increasing 528 

the relative score between the top two solutions from 1% to 42%. 529 

The computational efficiency of the litho2strat algorithm was evaluated through performance testing 530 

on this dataset, with scalability analysis presented in Appendix B. 531 

 532 

4. Discussion and Future Work 533 

 534 

Whilst we were able to develop a workflow that successfully provided useful stratigraphic analyses 535 

for our test area, we recognise that for other areas the methodology was not always as successful. 536 

We have identified several aspects of the current stratigraphic descriptions that we think will 537 

significantly expand the useability of the workflow we present above. 538 

1) Lithological Uncertainty. The principal reason for this was that the lithological descriptions of 539 

stratigraphies in many areas is quite vague. Successive stratigraphic units in a group might 540 

have very similar lithological descriptions. 541 

As an example, we look at the Hamersley Group, in Western Australia (Maldonado & Mercer, 542 

2018). If we examine the GSWA explanatory notes for three successive formations (Mt McRae 543 

Shale, Mt Sylvia Formation and the Wittenoom Formation) in the GSWA explanatory notes 544 

their lithologies are described as: 545 

• Mt McRae Shale - Mudstone, siltstone, chert, iron-formation, and dolomite. Thin 546 

bands of shard-bearing volcanic ash in upper parts. 547 

• Mt Sylvia Formation - Mudstone, siltstone, chert, iron-formation, and dolomite. 548 

• Wittenoom Formation - Thinly bedded dolomite and dolomitic shale, with minor 549 

black chert, shale, banded iron formation and sandstone. 550 

We can see that there is a significant overlap in lithologies, with an ordering of lithologies but 551 

without constraints on the percentage of each lithology in the three formations. This 552 

additional information, even as an estimate, would provide useful constraints on the likelihood 553 

that a specific lithology is associated with a given stratigraphic unit. 554 

 555 

2) Min-Max thickness estimates. In some areas, there is useful information on the minimum, 556 

maximum and average stratigraphic thickness of units. 557 

 558 

3) Stratigraphic ordering of lithologies. Additional information on commonly occurring orderings 559 

of lithologies within a given formation or member would also provide useful constraints.  560 
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 561 

 562 

Figure 12: Free-text descriptions of the West Angela Member in the GSWA Explanatory Notes. 563 

All three of these types of information are often included in the free-text portions of stratigraphic 564 

databases, such as the example shown for the West Angela Member in the GSWA Explanatory 565 

Notes in Fig. 12. In this example the free text provides more specific information on the thickness, 566 

the ordering of lithologies and the relative proportions of lithologies. With the advent of more 567 

sophisticated Machine Learning methodologies, the extraction of this ancillary data in a 568 

standardised form from reports and the stratigraphic databases themselves will open up new 569 

possibilities for constraining stratigraphy. Similarly, the codes developed in dh2loop for 570 

harmonising lithological terminologies will expand greatly in coming years. 571 

4) Inclusion of discontinuity information in the litho2strat workflow (most often logged faults) 572 

could help to define where breaks in stratigraphy are most likely to occur 573 

 574 

5) Inclusion of secondary descriptive information (for example grain size) could help to refine our 575 

younging estimators in areas of uncertain facing. 576 

 577 

6) There is no doubt that the advent of Large Language Models will have a profound effect on 578 

our ability to extract and categorize information from unstructured data sources, and 579 

algorithms based on these approaches will probably replace the data extraction and data 580 

harmonisation modules in future versions of this workflow. 581 

 582 

 583 

 584 
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5. Conclusions 585 

 586 

We developed codes and methodologies for stratigraphy recovery from drillhole databases, utilizing 587 

the branch and prune algorithm as a foundational framework. To ensure the generation of 588 

geologically plausible solutions, we implemented various types of constraints that account for the 589 

complexities of subsurface geology. 590 

To further reduce uncertainty in the obtained solutions, we introduced a correlation algorithm that 591 

leverages information from multiple drillholes simultaneously. This innovative approach allows for a 592 

more robust analysis by integrating data across different locations, enhancing the reliability of the 593 

stratigraphic interpretations. 594 

Our proposed method was applied to a dataset comprising 52 drillholes from South Australia. The 595 

results demonstrated that the algorithm successfully predicts the correct stratigraphic solution while 596 

providing associated uncertainty metrics, effectively validating its performance against measured 597 

stratigraphy data.  598 

Additionally, we identified several key aspects of the current stratigraphic descriptions that could 599 

significantly enhance the usability of the workflow we have presented. These enhancements aim to 600 

improve the accessibility and applicability of our methodology, paving the way for more effective 601 

geological assessments and decision-making processes in the field. 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 
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Appendix A - Control file for litho2strat code 631 

 632 

Example usage: python3 litho2strat.py -p ./parfiles/Parfile_SA.txt 633 

Example parfile: 634 

 635 

[FilePaths] 636 
topology_filename = data/SA_test_data/newpairs_20_06_2023.gml 637 
ignore_list_filename = data/SA_test_data/ignore_list.txt 638 
alternative_rock_names_filename = data/SA_test_data/alternative_rock_names.txt 639 
unit_colors_filename = data/SA_test_data/unit_colors.csv 640 
 641 
drillsample_filename = data/SA_test_data/litho_tables/litho_$collarID$.csv 642 
stratasample_filename = data/SA_test_data/strat_tables/strat_$collarID$.csv 643 
dist_table_filename = data/SA_test_data/dh_asud_strat2.csv 644 
 645 
[DataHeaders] 646 
drillsample_header = DEPTH_FROM_M, DEPTH_TO_M, MAJOR_LITHOLOGY, 647 
stratasample_header = DEPTH_FROM_M, DEPTH_TO_M, STRAT_UNIT_NAME, 648 
strata_data_header = strat, summary, distance, description 649 
 650 
[SolverParameters] 651 
add_topology_constraints = True 652 
max_num_strata_jumps = 0 653 
max_num_returns_per_unit = 0 654 
max_num_unit_contacts_inside_litho = 0 655 
single_top_unit = True 656 
 657 
[DataPreprocessing] 658 
number_nearest_units = 10 659 
min_drillhole_litho_score = 80 660 
group_drillhole_lithos = False 661 
cover_ratio_threshold = 0.65 662 
 663 
[CollarIDs] 664 
collarIDs = 205821,205822,264999,265000,265001 665 
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Appendix B: Performance and Scalability Analysis 666 

 667 

To complement the theoretical complexity analysis presented in Section 2.4, we conducted empirical 668 

tests to evaluate the performance and scalability of the litho2strat algorithm. We tested how the 669 

average number of solutions maintained during recursive exploration (N) scales with the number of 670 

lithology changes in drillhole logs, comparing two scenarios: (1) using the global topology graph Γ as 671 

a constraint, and (2) without topology constraints. 672 

Figure B.1 shows the relationship between the number of lithology changes and the average number 673 

of solutions maintained during recursive exploration when the topology graph constraint is applied. 674 

The results demonstrate near-linear scaling, confirming that the topology graph effectively prunes 675 

the solution space while preserving geological validity. 676 

 677 

 678 

Figure B.1: Average number of solutions maintained during recursive exploration versus number of 679 

lithology changes with topology graph constraint. 680 

Figure B.2 presents the same relationship for the unconstrained case, where the algorithm considers 681 

all theoretically possible stratigraphic interpretations. Here, the average number of solutions 682 

maintained during recursive exploration exhibits near-exponential growth with increasing lithology 683 

changes, illustrating the combinatorial explosion that occurs without geological constraints. 684 
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 685 

Figure B.2: Average number of solutions maintained during recursive exploration versus number of 686 

lithology changes without topology constraints. 687 

The computational performance measurements further highlight the practical importance of these 688 

constraints. Using a single CPU core (Intel i7-1185G7 @ 3.00GHz) to process all 52 drillholes from 689 

Section 3 and perform the correlation of solutions, the constrained approach required approximately 690 

1 second total processing time, while the unconstrained case required approximately 50 seconds for 691 

the same dataset. This 50-fold improvement in computational efficiency, combined with the near-692 

linear versus near-exponential scaling behavior of solutions maintained during recursive exploration, 693 

demonstrates that incorporating geological knowledge through the topology graph is essential for 694 

both computational tractability and practical applicability of the litho2strat algorithm to real-world 695 

geological datasets. 696 

 697 

 698 

 699 

 700 

 701 
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