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Abstract 11 

 12 

Australian commonwealth, state and territory geological surveys possess information on over 3 million 13 

drillhole logs. In addition to mineral exploration drilling, extensive drillhole datasets exist from oil and 14 

gas exploration and hydrogeological studies.There are many more wells drilled in the search for oil and 15 

shallower holes related to hydrogeology. Other countries no doubt have similar data holdings. 16 

Together these legacy drillhole datasets have the potential to significantly improve our subsurface data 17 

coverage but have limited use as constraints on regional 3D geological models as many if not most drill 18 

logs lack stratigraphic information, containing only lithological descriptions. Together these legacy 19 

drillhole datasets have the potential to significantly improve our subsurface data coverage but have 20 

limited use as constraints on regional 3D geological models as many if not most drill logs lack 21 

stratigraphic information. 22 

This study develops open-source codes and methodologies for stratigraphy recovery (determining the 23 

ordered sequence of stratigraphic units) from drillhole lithological data by introducing a search 24 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 25 

drillholes, combined with a solution correlation algorithm that compares the topological relationships 26 

of stratigraphic units across multiple drillholes to identify geologically consistent solutions and reduce 27 

uncertainty. The algorithms combine constraints from lithological descriptions with stratigraphic 28 

relationships automatically derived from regional maps. In addition, the method quantifies uncertainty 29 

by generating multiple plausible stratigraphic interpretations, providing critical insights for resource 30 

estimation, scenario analysis, and data acquisition strategies. 31 

This study develops open-source codes and methodologies for stratigraphy recovery from drillhole 32 

databases by introducing a correlation algorithm that integrates data from multiple drillholes. The 33 

algorithms combine constraints from lithological descriptions, with stratigraphic relationships 34 

automatically derived from regional maps. In addition, by integrating uncertainty quantification and 35 

presenting multiple geological hypotheses, the resulting stratigraphical description provide critical 36 

insights for resource estimation, scenario analysis, and data acquisition strategies.  37 

The application of our method to a dataset of 52 drillholes from South Australia demonstrated its 38 

ability to make useful predictions of stratigraphic solutions and quantifying associated uncertainties. 39 

These results not only validate our approach but also highlight opportunities to refine current 40 

stratigraphic descriptions and provide a valuable new source for regional 3D geological modelling. 41 

 42 
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1. Introduction 44 

 45 

Drillhole data serves as a fundamental constraint for subsurface geological exploration and 3D 46 

geological modelling, offering direct insights into lithological and hence stratigraphic features 47 

(Wellmann & Caumon, 2018). However, the inherent sparsity of such data, coupled with challenges 48 

posed by legacy datasets maintained by industry and Geological Survey Organizations (GSOs), often 49 

hinders comprehensive geological understanding and modelling (Jessell et al., 2010; Pakyuz-Charrier 50 

et al., 2018). GSOs' databases typically contain complexly coded lithological information but limited 51 

stratigraphic data,  GSOs' databases typically contain lithological information as unstructured text 52 

descriptions (e.g., 'sandy limestone with minor shale') but rarely include stratigraphic unit 53 

assignments. This creating creates a critical gap in the data needed for accurate and meaningful 54 

geological predictions (Hartmann & Moosdorf, 2012). 55 

Geological modelling plays a crucial role in understanding subsurface structures and processes, 56 

providing a foundation for various applications in earth sciences (M. Jessell et al., 2014). Such 57 

modelling commonly relies on datasets such as borehole data, geophysical data, and mapping data. 58 

From Among these, borehole data provide the most accurate insights into subsurface geology and 59 

stratigraphy (Guo et al., 2022). The models generated through geological modelling can serve dual 60 

purposes: they can be directly employed for geological interpretations, such as identifying fault 61 

systems, and mineral deposits (Alvarado-Neves et al., 2024; Vollgger et al., 2015), or they can be 62 

integrated as constraints in methodologies that use a prior 3D model, such as geophysical inversions 63 

(Giraud et al., 2017; Martin et al., 2024; Ogarko et al., 2021; Tarantola, 2005) and hydrogeological 64 

forward modelling (D’Affonseca et al., 2020). By incorporating geological models into geophysical 65 

inversion, it is possible to refine the interpretation of subsurface properties and achieve greater 66 

accuracy in representing complex geological environments. 67 

Modern drillhole measurement techniques primarily focus on chemical, mineralogical and lithological 68 

characterization, whereas the fundamental categorical unit of regional 3D geological models is defined 69 

by its stratigraphy (Calcagno et al., 2008; Caumon et al., 2009; Mallet, 2002). This discrepancy 70 

underscores the need for innovative approaches to recover and integrate stratigraphic information 71 

from existing datasets. Recent advancements in automation, particularly through machine learning 72 

and natural language processing, have demonstrated significant potential in addressing these 73 

challenges by standardizing and extracting lithological and stratigraphic data at scale (Guo et al., 2024; 74 

Joshi et al., 2021; Schetselaar & Lemieux, 2012). 75 

Modern drillhole measurement techniques primarily focus on chemical, mineralogical and lithological 76 

characterization, whereas the fundamental categorical unit of regional 3D geological models is defined 77 

by stratigraphy (Calcagno et al., 2008; Caumon et al., 2009; Mallet, 2002). This discrepancy 78 

underscores the need for innovative approaches to recover and integrate stratigraphic information 79 

from existing datasets. 80 

Recent advancements in automation have made significant progress in processing drillhole data, 81 

though most address different aspects of the problem than stratigraphic recovery. Data 82 

standardization tools like dh2loop (Joshi et al., 2021) extract and harmonize lithological descriptions 83 

from unstructured text using thesauri and fuzzy string matching, providing essential preprocessing for 84 

downstream analysis. Pattern recognition methods (Schetselaar & Lemieux, 2012) can identify 85 

lithostratigraphic markers and contacts within drill logs, helping to detect boundaries between units. 86 

Machine learning approaches for 3D geological modeling (Guo et al., 2024) can interpolate between 87 

drillholes to create subsurface models, but typically require pre-interpreted stratigraphic data as input. 88 
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While these methods provide valuable components of the workflow, none directly address the 89 

fundamental challenge of transforming lithological descriptions into stratigraphic interpretations with 90 

quantified uncertainties. 91 

Existing automated interpretation methods primarily work with different data types than those 92 

available in legacy drillhole databases. Geophysics-based methods (Wu & Nyland, 1987; Fullagar et al., 93 

2004; Silversides et al., 2015) leverage distinctive signatures in gamma, resistivity, or other wireline 94 

logs to predict stratigraphic units, but require geophysical data that are absent from most legacy 95 

drillholes. Geochemical and spectral approaches (Hill & Uvarova, 2018) use XRF scanning or 96 

hyperspectral measurements to identify geological boundaries with high precision, but depend on 97 

expensive data acquisition unavailable in historical datasets. Hybrid machine learning methods, such 98 

as those applied in the Pilbara iron ore deposits (Wedge et al., 2019), combine lithology with assays 99 

and geophysics but require extensive pre-interpreted drillhole datasets for training, limiting their 100 

application in greenfield exploration areas. These approaches do not address the fundamental 101 

challenge faced by geological surveys worldwide: millions of legacy drillholes contain only lithological 102 

descriptions but lack both stratigraphic interpretations and the geophysical logs required by current 103 

automated methods. 104 

To address these challenges, we formulate the problem of stratigraphic recovery from drillhole 105 

databases as follows. The input to our methodology consists of: (1) legacy drillhole databases 106 

containing lithological descriptions (e.g., "sandstone", "siltstone", "dolomite") at various depth 107 

intervals, typically without stratigraphic labels; (2) regional geological maps that define stratigraphic 108 

unit boundaries and their spatial relationships; and (3) topological constraints that specify which 109 

stratigraphic units can be in contact based on their known relative ages and depositional sequences. 110 

The output comprises: (1) multiple plausible stratigraphic solutions, where each solution provides unit 111 

assignments for all depth intervals in the drillholes; (2) their ranking by geological likelihood; and (3) 112 

quantified uncertainties for these interpretations. The objective is threefold: first, to systematically 113 

transform lithological descriptions into stratigraphic interpretations by testing all geologically plausible 114 

orderings of stratigraphic units that are consistent with the observed lithologies; second, to quantify 115 

the uncertainty inherent in these interpretations given that multiple stratigraphic units may share 116 

similar lithological characteristics; and third, to establish correlations between multiple drillholes to 117 

reduce uncertainty and improve the reliability of stratigraphic assignments across a region. This 118 

transformation is essential because regional 3D geological models are fundamentally organized by 119 

stratigraphy rather than lithology, yet the majority of legacy drillhole data lack stratigraphic labels. 120 

Figure 1 illustrates this challenge with a simplified example: a drillhole log with four lithological 121 

intervals (sandstone, siltstone, sandstone, dolomite) could correspond to multiple stratigraphic 122 

interpretations. The two sandstone intervals might represent the same formation repeated by faulting, 123 

or they could belong to different formations with similar but distinct lithological compositions. Without 124 

additional constraints, both interpretations are geologically plausible, highlighting the inherent 125 

ambiguity in stratigraphic assignment from lithological data alone. 126 
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 127 

Figure 1: Schematic illustration of the stratigraphic interpretation problem. A drillhole log containing 128 

only lithological descriptions (left) can yield multiple plausible stratigraphic solutions (right) because 129 

the same lithology may occur in different stratigraphic formations with varying compositions. 130 

This study develops open-source codes and methodologies for stratigraphy recovery from drillhole 131 

databases by introducing a correlation algorithm that integrates data from multiple drillholes, we 132 

enhanced the robustness and reliability of stratigraphic interpretations. By integrating uncertainty 133 

quantification and presenting multiple geological hypotheses, the resulting stratigraphical description 134 

provide critical insights for resource estimation, scenario analysis, and data acquisition strategies. The 135 

application of our method to a dataset of 52 drillholes from South Australia demonstrated its ability to 136 

make useful predictions of stratigraphic solutions and quantifying associated uncertainties. These 137 

results not only validate our approach but also highlight opportunities to refine current stratigraphic 138 

descriptions, improving workflow accessibility and paving the way for more effective geological 139 

assessments and decision-making processes. 140 

This study develops open-source codes and methodologies for stratigraphy recovery from drillhole 141 

lithological data through a two-stage approach. First, we introduce a branch-and-prune search 142 

algorithm that systematically explores all geologically plausible stratigraphic orderings for individual 143 

drillholes. Second, we apply a solution correlation algorithm that integrates information from multiple 144 

drillholes by comparing topological relationships of stratigraphic units, thereby enhancing the 145 

robustness and reliability of interpretations. The method quantifies uncertainty by generating multiple 146 

plausible stratigraphic interpretations, providing critical insights for resource estimation, scenario 147 

analysis, and data acquisition strategies. We apply our method to a dataset of 52 drillholes from South 148 

Australia to demonstrate its practical application and validate its performance against existing 149 

stratigraphic interpretations. 150 
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2. Methodology 151 

2.1 2.1 Workflow 152 

 153 

 154 

Figure 21: The different stages of the analysis. 155 

The workflow shown in Fig. 21 consists of three5 key steps grouped into three main tasks: Data 156 

Cleaning (using the dh2loop code), Map Analytic Constraints (using map2modelloop and custom 157 

codes developed for this project) and Drillhole Analytics (using the litho2strat code developed for 158 

this project). 159 

 160 

2.1.1 Data Cleaning 161 

Prior to analysing the drillhole data we went through a number of automated data cleaning and 162 

harmonisation steps. 163 

a) Harmonisation of drillhole lithology descriptions using the dh2loop code described in (Joshi et 164 

al., 2021) (code available here: https://github.com/Loop3D/dh2loop) This enables us to 165 
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produce a standardised lithological description for multiple drillholes in a region, regardless of 166 

their provenance. This includes the use of a synonym list (“granite” vs “granitoid”), and ignore 167 

list (e.g. “fault”) together with a list of cover lithology terms (e.g. “saprolite”) that enables us 168 

to simplify the list of terms and exclude irrelevant information.  169 

 170 

b) Harmonisation of lithological descriptions for formations described in the geological map of 171 

the target area. This ensures that the same terminology is used for borehole lithological 172 

descriptions and map lithologies. 173 

Together steps a and& b provide a list of possible units at each depth down a drill hole. 174 

 175 

2.1.2 Map Analytic Constraints 176 

a) Calculation of the distance between each polygon in a map and the target borehole. A custom 177 

Python script was developed. This information can be used as a guide to the likelihood that a 178 

drillhole would intersect a given unit. 179 

 180 

b) We then used the map2modelloop engine (M. Jessell et al., 2021) (code available here: 181 

https://github.com/Loop3D/map2model_cpphttps://github.com/Loop3D/map2loop ) to 182 

extract the topological relationships between the surface expression of stratigraphic different 183 

units. This would later be used to assess the likelihood that two units would be in contact in 184 

the drillhole. 185 

 186 

The map2model engine extracts topological relationships between stratigraphic units, 187 

including both normal depositional contacts and fault contacts, as both types of juxtaposition 188 

may be encountered in drillhole data. 189 

 190 

Unit connectivity information can also be obtained from the Australian Stratigraphic Units 191 

Database (ASUD) as well as from various published reports containing stratigraphic data. The 192 

ASUD serves as a comprehensive repository of geological information, providing valuable 193 

insights into the relationships between different stratigraphic units across Australia. 194 

Additionally, numerous geological surveys and research studies offer stratigraphic data that 195 

can further enrich our understanding of unit connectivity. By lLeveraging this information, we 196 

can enhances our stratigraphic models, improves the accuracy of correlations between 197 

drillholes, and facilitates a deeper understanding of the geological framework in specific 198 

regions. 199 

 200 

These two steps allow us to capture information on the spatial and topological relationships 201 

between the mapped units. 202 

 203 

2.1.3 Drillhole Analytics 204 

a) In this stage of the analysis, we developed a new code called litho2strat (code available here: 205 

https://github.com/Loop3D/litho2strat; Ogarko et al., 2025). The information about code 206 

design is detailed in Section 2.4. The code uses a combinatorial optimisation solver as 207 

follows: 208 
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- We employed a Branch and Bound algorithm, which is a powerful method for solving 209 

optimization problems (Land & Doig, 1960). This approach systematically enumerates all 210 

potential candidate solutions by exploring the state space. 211 

- New branches could be added while traversing the drillhole log from top to bottom, using a 212 

list of possible units at each depth down a drill hole and a unit topological relationship. 213 

- We applied bounds by adding solution constraints. The branch is discarded if it does not 214 

satisfy the constraints. The types of constrains we apply are discussed in Section 2.2. 215 

- In the end, we could obtain a plausible set of solutions fitting the data and satisfying the 216 

constraints. This strategy not only ensures a thorough exploration of the solution space but 217 

also optimizes efficiency by eliminating unnecessary computations, ultimately leading to a 218 

more effective and streamlined search process. 219 

- Finally, we calculated the uncertainties directly from the whole set of solutions. 220 

In this stage, we employ the litho2strat code to establish correlations between drillholes, which 221 

helps to reduce uncertainty in the calculated set of plausible stratigraphic solutions. The 222 

correlated solution scores are assigned based on overall uncertainty, with solutions receiving the 223 

highest scores selected as the most plausible options. For further details on the correlation 224 

algorithm utilized, please refer to Section 2.3. 225 

In this stage, we employ the litho2strat code to generate plausible stratigraphic solutions that fit 226 

the observed lithological data while satisfying all geological constraints (code available here: 227 

https://github.com/Loop3D/litho2strat; Ogarko et al., 2025). The algorithm uses a recursive 228 

branch and prune approach to efficiently explore the solution space, eliminating geologically 229 

implausible pathways early in the search process (see Section 2.2 for detailed algorithm 230 

description). This strategy not only ensures thorough exploration of viable stratigraphic orderings 231 

but also optimizes computational efficiency by avoiding unnecessary enumeration of invalid 232 

solutions. 233 

From the complete ensemble of plausible solutions obtained for each drillhole, we calculate 234 

uncertainties that quantify the confidence in different stratigraphic interpretations. Solutions are 235 

scored based on the probability of unit contacts within the local solution ensemble, providing a 236 

ranking of stratigraphic hypotheses from most to least likely. 237 

To further reduce uncertainty and improve solution reliability, we implement a correlation 238 

algorithm that leverages information from multiple neighboring drillholes simultaneously (see 239 

Section 2.5 for correlation algorithm details). By comparing the topological relationships of 240 

stratigraphic units across drillholes, the correlation process identifies solutions that are 241 

geologically consistent across the broader area. Correlated solution scores integrate both local 242 

evidence from individual drillholes and regional consistency with neighboring holes, with 243 

solutions receiving the highest correlated scores selected as the most plausible stratigraphic 244 

interpretations. 245 

 246 

2.2 Stratigraphic solution generation 247 

 248 
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The litho2strat algorithm operates through a hierarchical search strategy that systematically explores 249 

the space of possible stratigraphic orderings (solutions) while pruning geologically implausible 250 

solutions. The algorithm can be formally described as follows: 251 

Input: 252 

• L = {l₁, l₂, ..., lₙ} : sequence of lithologies observed at depths d₁ < d₂ < ... < dₙ 253 

• U = {u₁, u₂, ..., uₘ} : set of m candidate stratigraphic units, each defined by its constituent 254 

lithologies 255 

• C : set of geological constraints (distance, connectivity, complexity) 256 

• Γ : global unit connectivity graph derived from geological maps and stratigraphic databases 257 

Output: 258 

• S = {s₁, s₂, ..., sₖ} : set of k plausible stratigraphic solutions 259 

• P(sᵢ) : probability distribution over solutions 260 

• Gₕ : local connectivity graph for drillhole h, derived from all solutions for this drillhole 261 

Algorithm Steps: 262 

1. Unit Matching Phase: For each lithology lᵢ at depth dᵢ, identify the subset of compatible units: 263 

M(lᵢ) = {uⱼ ∈ U | lithology(uⱼ) matches lᵢ AND satisfies constraints C} 264 

2. Recursive Branch and Prune Exploration: The algorithm recursively builds the solution space from 265 

shallow to deep depth intervals. Starting from the surface, partial solutions are extended one depth 266 

level at a time by considering candidate units that match the observed lithology. The algorithm 267 

generates a new branch for candidate unit uⱼ only when all of the following conditions are satisfied: 268 

• The unit uⱼ matches the observed lithology at the current depth 269 

• The extended solution satisfies all constraints in C (distance, occurrence, contact complexity) 270 

• For the last unit uₖ in the partial solution, the edge (uₖ, uⱼ) exists in the global connectivity 271 

graph Γ 272 

Partial solutions that violate any condition are immediately abandoned (pruned), preventing 273 

exploration of their extensions. When a partial solution reaches the deepest depth interval, it is 274 

validated and added to the solution set S. This recursive approach with constraint-based pruning 275 

eliminates large portions of the solution space without explicit enumeration. 276 

The algorithm systematically explores all geologically valid solutions through exhaustive search with 277 

constraint-based pruning. While the top-to-bottom traversal order does not affect the completeness 278 

of the final solution set S (the same valid stratigraphic interpretations would be found regardless of 279 

traversal direction), it does improve computational efficiency by enabling earlier application of 280 

surface geology constraints and more effective pruning of invalid solution branches. 281 

3. Local Connectivity Graph Construction: From the complete set of solutions S obtained for drillhole 282 

h, construct a local connectivity graph Gₕ where edge weights represent the frequency of unit 283 

contacts across all solutions: 284 

wₕ(uⱼ, uⱼ₊₁) = |{s ∈ S : (uⱼ, uⱼ₊₁) adjacent in s}| / |S| 285 
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This directed local graph captures the probability of unit contacts based on the ensemble of 286 

geologically plausible solutions for drillhole h, where edges represent stratigraphic ordering. Each 287 

edge weight represents the fraction of solutions in which the corresponding unit contact appears. 288 

Note that Gₕ is a subgraph of the global connectivity graph Γ, as all solutions for drillhole h must 289 

satisfy the global connectivity constraints. 290 

4. Solution Scoring: For each solution sᵢ ∈ S, calculate a normalized score based on the local 291 

connectivity graph Gₕ: 292 

score(sᵢ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ 293 

where Nᵢ is the number of unit contacts in solution sᵢ (i.e., Nᵢ = |sᵢ| - 1), and the sum is over all 294 

consecutive unit pairs. The normalization by Nᵢ ensures that solutions with different numbers of 295 

stratigraphic contacts are directly comparable, preventing bias toward longer or more complex 296 

solutions. The score thus represents the average edge probability across all contacts in the solution. 297 

5. Probability Calculation: Normalize scores to obtain probability distribution: 298 

P(sᵢ) = score(sᵢ) / Σₖ score(sₖ) 299 

The efficiency of this approach derives from constraint-based pruning during the recursive 300 

exploration. By evaluating both solution constraints C and global connectivity Γ before extending 301 

each partial solution, the algorithm eliminates inconsistent paths immediately without exploring 302 

their complete extensions. The distinction between the global connectivity graph Γ (used for 303 

constraint validation during exploration) and the local connectivity graph Gₕ (derived from solutions 304 

and used for scoring) is crucial: Γ represents a priori geological knowledge from maps and databases, 305 

while Gₕ captures the a posteriori probability distribution of unit contacts specific to drillhole h given 306 

all constraints. 307 

 308 

2.3 2.2 Solution constraints 309 

 310 

For the Branch and Bound (BnB) algorithm, providing efficient constraints (bounds) is crucial for 311 

generating geologically plausible stratigraphies and reducing the search space. Without these 312 

bounds, the BnB algorithm reverts to exhaustive search, which is less efficient. We utilize two types 313 

of solution constraints: the first can be derived from geological maps (as discussed in the ‘Map 314 

Analytic Constraints’ section), while the second is selected by the user based on the expected 315 

geological complexity of the area (e.g., the presence of known faults). 316 

The specific constraints employed include: 317 

1. Distance from the Drillhole to the Unit: This constraint limits the number of geological units 318 

considered in the calculations, ensuring relevance to the drillhole's location. 319 

2. Global Unit Connectivity: This constraint restricts the potential contacts between units, 320 

enhancing the accuracy of the stratigraphic model. 321 

3. Top Unit Constraint: Information regarding the top unit can be extracted from geological 322 

maps, providing a foundational boundary for the stratigraphy. 323 
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4. Solution Complexity (Occurrence): This constraint sets a maximum limit on how many times 324 

a unit can appear in the final stratigraphy. For example, in the presence of a fault, the same 325 

geological unit may appear twice within the same log. 326 

5. Solution Complexity (Contacts): This constraint defines the maximum number of unit 327 

contacts allowed within a continuous sequence of drillhole lithologies. For instance, in a 328 

continuous sequence of “sandstone” lithologies, different sandstones may belong to 329 

separate geological units. 330 

These constraints work together to enhance the efficiency and effectiveness of the BnB 331 

algorithm, ensuring that the resulting stratigraphies are both plausible and reflective of the 332 

geological context. 333 

For the Branch and Prune algorithm described in Section 2.2, providing efficient constraints 334 

(collectively denoted as C) is crucial for generating geologically plausible stratigraphies and reducing 335 

the search space. Without these constraints, the algorithm would need to exhaustively enumerate all 336 

possible unit assignments, which is computationally prohibitive. We utilize two types of solution 337 

constraints: the first can be derived from geological maps (as discussed in the 'Map Analytic 338 

Constraints' section), while the second is selected by the user based on the expected structural 339 

complexity of the area (e.g., the presence of faults, folds, or other features that might cause 340 

stratigraphic repetition or disruption). 341 

The specific constraints in C include: 342 

1. Distance Constraint: This constraint limits the number of geological units considered based on 343 

their proximity to the drillhole. In this context this is defined as the distance between the drillhole 344 

collar and the nearest point on the polygon's boundary in 2D. For drillhole h and candidate unit uⱼ ∈ 345 

U: 346 

d(uⱼ, h) ≤ dmax, 347 

where d(uⱼ, h) is the distance from the nearest outcrop of unit uⱼ to drillhole h, and dmax is the 348 

maximum search radius. This ensures relevance to the drillhole's location. 349 

2. Global Unit Connectivity Constraint: This constraint, enforced through the global connectivity 350 

graph Γ, restricts potential contacts between units. For any two consecutive units uⱼ and uⱼ₊₁ in a 351 

solution: 352 

(uⱼ, uⱼ₊₁) ∈ E(Γ), 353 

where E(Γ) is the edge set of the global connectivity graph. This ensures that only units known to be 354 

stratigraphically adjacent (from map data, databases, or published reports) can be placed in contact, 355 

enhancing the geological plausibility of solutions. 356 

The edges in the global connectivity graph Γ can be configured as either single-directional or 357 

bidirectional depending on the structural complexity of the study area. In structurally simple areas 358 

with normal stratigraphic succession, single-directional edges (e.g., A→B) enforce the expected 359 

younging direction (older to younger upward). However, for areas with known structural complexities 360 

such as overturned sequences from folding or thrust faulting, bidirectional edges can be used to 361 

allow stratigraphic contacts in both normal and reversed orientations. For example, if units A and B 362 

can occur in both normal succession (A overlies B) and overturned succession (B overlies A) due to 363 

folding, the graph Γ would include a bidirectional edge between them, allowing transitions in both 364 

directions (A→B and B→A). This configuration allows the algorithm to exhaustively explore all 365 
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structurally valid solutions including those with reversed polarity sequences. The choice of single-366 

directional versus bidirectional edges in Γ is thus a key input that controls whether the algorithm 367 

considers only normal superposition or also accommodates structural inversions. 368 

3. Top Unit Constraint: Information regarding the top unit utop can be extracted from geological 369 

maps at the surface location of the drillhole, providing a foundational boundary condition: 370 

s[0] = utop, 371 

where s[0] denotes the shallowest unit in solution s. Note that while the global unit connectivity 372 

constraint allows sequences to begin from any node in the connectivity graph, this constraint 373 

explicitly specifies the starting node. 374 

4. Occurrence Constraint: This constraint sets a maximum limit on how many times a unit can appear 375 

in a solution, accounting for geological complexity such as faulting or folding. For unit uⱼ in solution sᵢ: 376 

count(uⱼ, sᵢ) ≤ kmax, 377 

where count(uⱼ, sᵢ) is the number of times unit uⱼ appears in sᵢ. Typically kmax = 1 for unfaulted 378 

sequences, or kmax = 2-3 for faulted terrains where stratigraphic repetition may occur. 379 

5. Contact Complexity Constraint: For a continuous sequence of identical lithology observations [lᵢ, 380 

lᵢ₊₁, ..., lᵢ₊ₘ] where all lithologies are the same, this constraint limits the number of distinct 381 

stratigraphic units that can be assigned: 382 

|{uⱼ : assigned to interval [i, i+m]}| ≤ cmax, 383 

where cmax is the maximum number of unit contacts allowed within the continuous lithology 384 

sequence. This prevents over-interpretation where a thick monotonous lithology (e.g., a 100m 385 

sandstone sequence) is artificially divided into an excessive number of stratigraphic units. 386 

6. Stratigraphic Jump Constraint: To account for incomplete exposure of geological contacts at the 387 

surface, we allow the algorithm to "jump" over intermediate units in the global connectivity graph Γ. 388 

For a path in Γ such as A→B→C, setting the maximum number of stratigraphic jumps parameter to 389 

jmax allows direct contacts between non-adjacent units up to jmax steps apart in the graph. For 390 

example, with jmax=1, the algorithm can consider both A→B and A→C as valid contacts, even if A→C 391 

is not explicitly observed in the map data. This addresses the limitation that geological maps provide 392 

only a 2D surface expression of 3D geological relationships and may not capture all possible 393 

stratigraphic contacts that exist at depth. The constraint is defined as: 394 

dΓ(ui, uj) ≤ jmax + 1 395 

where dΓ(ui, uj) is the shortest path distance between units ui and uj in the connectivity graph Γ, and 396 

jmax is the maximum number of allowed jumps (typically jmax=0 for strict adherence to observed 397 

contacts, or jmax=1-2 for more permissive exploration). 398 

These constraints in C work together to enhance the efficiency and effectiveness of the Branch and 399 

Prune algorithm, ensuring that the resulting stratigraphies are both geologically plausible and 400 

computationally tractable. As demonstrated in Section 3, constraint-based pruning reduces the 401 

search space by >99% in practical applications, enabling computation of all valid solutions in seconds. 402 

 403 
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2.4 Computational complexity 404 

 405 

The computational complexity of the branch and prune algorithm depends on several key factors: 406 

the number of drillholes H, the length of the lithology sequence |L| (i.e., the number of depth 407 

intervals), the number of candidate stratigraphic units |U|, and critically, the average number of 408 

solutions N maintained during the recursive exploration. The algorithm processes each drillhole 409 

independently, and for each drillhole, it iterates through all lithologies in L, evaluating potential unit 410 

assignments for each active solution. 411 

The theoretical time complexity can be expressed as: 412 

O(H × |L| × N × |U|) 413 

where N denotes the average number of solutions maintained during recursive exploration. This is 414 

the most variable factor and depends strongly on the geological complexity and the constraints 415 

applied. 416 

In the unconstrained case, where no geological constraints are imposed, the number of solutions can 417 

grow exponentially with the number of lithology changes k in the drillhole log, potentially reaching N 418 

∝ |U|^k. This leads to a worst-case complexity of O(H × |L| × |U|^(k+1)), which quickly becomes 419 

computationally prohibitive for complex stratigraphic sequences. 420 

However, the application of geological constraints C - particularly the global unit connectivity 421 

constraint enforced through the topology graph Γ - dramatically reduces the solution space. These 422 

constraints prune geologically implausible branches early in the recursive exploration, preventing 423 

exponential growth of N. In practice, with appropriately chosen constraints, N grows moderately with 424 

the number of lithology changes (approximately linearly rather than exponentially), resulting in 425 

manageable computational requirements even for complex stratigraphic sequences. 426 

The effectiveness of constraint-based pruning in controlling computational cost is demonstrated 427 

empirically in Section 3, where we compare the growth of average solution numbers as a function of 428 

lithology changes for cases with and without topology constraints. 429 

 430 

2.5 2.3 Solution correlation 431 

 432 

 433 

We utilize solution correlation analysis to establish relationships between multiple drillholes, serving 434 

as a constraint on the plausibility of stratigraphic ordering. This correlation can be applied either to 435 

stratigraphy logs or to the topological relationships of units, represented through connectivity 436 

graphs. 437 

A key challenge in correlating stratigraphy logs is that units at the same depth may not align across 438 

different drillholes, mainly due to variations in unit dip and thickness. To address this, we focus on 439 

correlation based on topological relationships. Connectivity graphs are constructed for each drillhole 440 

using a plausible set of stratigraphic solutions derived from the Branch and Bound (BnB) solver. 441 

In these graphs, the edges are weighted by the probability of unit contacts, calculated as the number 442 

of solutions that include a specific unit contact divided by the total number of solutions for that 443 
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drillhole. This approach enhances the accuracy of the correlations, providing a more reliable 444 

framework for establishing stratigraphic relationships.  445 

We propose the correlation algorithm as follows: 446 

I. Calculate Solution Scores: For each solution 𝑖, compute the solution score 𝑆(𝑖, 𝐺𝑠𝑒𝑙𝑓) using 447 

the connectivity graph from the current drillhole 𝐺𝑠𝑒𝑙𝑓. This score is defined as the sum of 448 

the edge weights for all solution contacts, indicating the likelihood of the solution within the 449 

current drillhole. 450 

II. Calculate External Solution Scores: For each external drillhole 𝑗, calculate the solution scores 451 

𝑆(𝑖, 𝐺𝑒𝑥𝑡
𝑗
) using their respective connectivity graphs. This score reflects the likelihood of the 452 

solution for each external drillhole. 453 

III. Build Final Correlated Solution Score: Construct the final correlated solution score 𝐶(𝑖) 454 

using the following formula: 455 

𝐶(𝑖) =
𝑆(𝑖, 𝐺𝑠𝑒𝑙𝑓) + ∑ 𝑆(𝑖, 𝐺𝑒𝑥𝑡

𝑗
)𝑁−1

𝑗=1

𝑁
 456 

This final score represents the overall likelihood of the solution across all drillholes, 457 

effectively correlating the current solution with all solutions from the external drillholes 458 

based on the topological relationships of the geological units. 459 

The final correlated solution score provides a means to assign correlated scores to various solutions, 460 

effectively altering their ranking within the overall assessment. This adjustment not only enhances 461 

the clarity of which solutions are more viable but also helps to reduce uncertainty associated with 462 

those solutions. By refining the evaluation process in this manner, we can achieve a more precise 463 

understanding of the relationships between different geological units. By integrating and correlating 464 

drillhole data effectively, we ensure that the stratigraphic framework accurately reflects the natural 465 

variations and interconnections present in the subsurface. This consistency is essential for making 466 

informed decisions in geological exploration ultimately leading to more reliable outcomes in our 467 

geological interpretations. 468 

In the proposed correlation algorithm, we can select between summation and multiplication for 469 

calculating the correlated score in step iii. Summation is less sensitive to outliers; for instance, if one 470 

drillhole in the set has a zero score, using multiplication would result in a total score of zero. 471 

Additionally, we can apply weighting to different drillholes, such as by using geological distance, to 472 

reduce the influence of more distant drillholes on the overall score. 473 

Moreover, it’s important to note that the algorithm exhibits linear scalability with respect to the 474 

number of drillholes. This efficiency is achieved by utilizing solution connectivity graphs rather than 475 

evaluating each pair of solutions individually, which can be computationally expensive. 476 

We utilize solution correlation analysis to identify compatible stratigraphic orderings between 477 

multiple drillholes, serving as a constraint on the plausibility of individual solutions. This correlation 478 

leverages the topological relationships of units represented through local connectivity graphs from 479 

each drillhole. 480 

A key challenge in correlating stratigraphy logs is that units at the same depth may not align across 481 

different drillholes due to variations in unit dip and thickness, tectonic deformation, and stratigraphic 482 

gaps (such as unconformities or erosional surfaces). To address this, we focus on correlation based 483 

on topological relationships rather than depth-matching. The local connectivity graph Gₕ for each 484 
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drillhole h is constructed from the complete set of solutions Sₕ obtained via the Branch and Prune 485 

algorithm (Section 2.2), where nodes represent geological units, edges represent stratigraphic 486 

ordering between units, and edge weights wₕ(uⱼ, uⱼ₊₁) represent the probability of unit contacts 487 

within that drillhole's solution ensemble. 488 

To facilitate correlation analysis, we generalize the scoring function from Section 2.2 to evaluate any 489 

solution sᵢ against any local connectivity graph. Define the generalized scoring function as: 490 

score(sᵢ, Gₕ) = Σⱼ wₕ(uⱼ, uⱼ₊₁) / Nᵢ, 491 

where the sum is over all consecutive unit pairs (uⱼ, uⱼ₊₁) in solution sᵢ, Gₕ represents any local 492 

connectivity graph derived from drillhole solutions, wₕ(uⱼ, uⱼ₊₁) denotes the edge weight from graph 493 

Gₕ for that unit pair, and Nᵢ is the number of unit contacts in solution sᵢ. Note that Gₕ refers to local 494 

connectivity graphs from drillhole solutions, not the global connectivity graph Γ from map data 495 

(Section 2.2). If an edge (uⱼ, uⱼ₊₁) from solution sᵢ does not exist in Gₕ, its weight is taken as zero. This 496 

generalized function allows us to assess how consistent a solution from one drillhole is with the 497 

geological relationships observed in other drillholes. 498 

Correlation Algorithm: 499 

Consider a set of H drillholes {h₁, h₂, ..., h_H} with their respective local connectivity graphs {G₁, G₂, 500 

..., G_H}. For each solution sᵢ from any drillhole, we compute a correlated score that represents the 501 

average consistency across all drillholes: 502 

scorecorr(sᵢ) = (1/H) Σₖ₌₁^H αₖ score(sᵢ, Gₖ), 503 

where αₖ are weighting factors that can be based on geological distance (distance between collar and 504 

closest node of map polygon), drillhole quality, or other criteria. This equation computes an average 505 

score across all drillholes. The division by H ensures the correlated score remains on a comparable 506 

scale regardless of the number of drillholes. In this work, we use αₖ = 1 for all drillholes, giving equal 507 

weight to each drillhole. This summation approach is robust to outliers; if one drillhole yields a zero 508 

score, it does not eliminate the entire correlation. Alternative weighting schemes such as αₖ = 1/d(h₁, 509 

hₖ) could be employed to reduce the influence of more distant drillholes. 510 

The correlated scores are then normalized to obtain a revised probability distribution: 511 

Pcorr(sᵢ) = scorecorr(sᵢ) / Σₘ scorecorr(sₘ), 512 

The correlated probability Pcorr(sᵢ) provides a revised ranking of solutions that accounts for both 513 

local evidence and regional consistency. Solutions with unit contacts that appear frequently across 514 

multiple drillholes receive higher correlated scores, while solutions unique to a single drillhole 515 

receive lower scores. This correlation effectively reduces uncertainty by leveraging spatial geological 516 

consistency. 517 

Summation vs. Multiplication: While the equation for scorecorr uses weighted summation, an 518 

alternative multiplicative approach could also be formulated. However, multiplicative forms are more 519 

sensitive to outliers: if any single drillhole yields a zero score, the entire correlated score becomes 520 

zero. Therefore, the summation approach is generally preferred for its robustness. 521 

Computational Efficiency: The algorithm achieves O(H²|S|) complexity when correlating solutions 522 

across all n drillholes. This efficiency is achieved by comparing solutions against pre-computed 523 

connectivity graphs Gₕ rather than individual solutions. The alternative of solution-to-solution 524 

comparison would scale as O(H²|S|²) and be computationally prohibitive. 525 
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By integrating and correlating drillhole data through this topological approach, we ensure that the 526 

stratigraphic framework accurately reflects the natural spatial variations and interconnections 527 

present in the subsurface. The correlation process quantitatively reduces uncertainty by identifying 528 

and favoring solutions that are geologically consistent across the broader area. This uncertainty 529 

reduction is achieved by concentrating probability mass on solutions supported by multiple drillholes 530 

while downweighting locally anomalous interpretations. The resulting correlated probabilities 531 

Pcorr(sᵢ) provide more reliable stratigraphic interpretations than single-drillhole probabilities P(sᵢ), 532 

enabling more informed decisions in geological exploration and 3D geological modeling. 533 

 534 

2.6 2.4 Code design 535 

 536 

A Python package called litho2strat has been developed for stratigraphy recovery. It can be easily 537 

installed using the command “pip install”, and it has minimal external library dependencies: numpy, 538 

matplotlib, and NetworkX. The NetworkX library is utilized to create a directed graph data structure 539 

that represents the topological relationships of relative unit ages (Hagberg et al., 2008). It also 540 

supports exporting graphs to GML format (Himsolt, 1997) for advanced graph visualization with tools 541 

like yEd (https://www.yworks.com/products/yed). 542 

Interaction with the code is facilitated through a Parfile, a text file that contains all necessary 543 

parameters and paths to the input data files. The parameters in the Parfile are organized into several 544 

categories based on their functionality, including input file paths, solver settings, and data 545 

preprocessing options. An example of such a Parfile is provided in Appendix A. 546 

The code architecture efficiently organizes distinct modules, including data reader, the user interface 547 

(represented by the Parfile), the algorithms (such as the solver), and the visualization components 548 

(e.g., output figures and graphs), as shown in Fig. 32. This design enhances code readability, making 549 

it easier for developers to understand and navigate the codebase. Additionally, it facilitates further 550 

extensions by allowing new features to be integrated seamlessly. This structure also supports 551 

effective testing, enabling modifications to be verified systematically and reducing the risk of 552 

introducing errors.The structure also supports effective testing, ensuring that modifications can be 553 

verified without introducing errors. 554 

 555 
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Figure 32: The module dependencies of the litho2strat code. The graph is generated by the pydeps 556 

utility, while excluding external dependencies. 557 

3. Example Use 558 

 559 

For this example, we used a set of 52 drillholes from South Australia originally drilled by Teck 560 

Cominco Pty. Ltd. (Fig. 43). This area was chosen as there were a number of holes equally spaced 561 

with a relatively homogenous spatial distribution and the holes provided both lithological logs and 562 

existing interpretations of the down-hole stratigraphy. 563 

564 

 565 

 566 

Figure 43: Location of South Australia test area (drillholes shown as green diamonds), together with 567 

an example stratigraphic log, map from 1:2M Surface Geology Map of South Australia (The 568 
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Department for Energy and Mining, the Government of South Australia, Geoscientific. Data, Sourced 569 

on 22 July 2018, http://energymining.sa.gov.au/minerals/geoscience/geological_survey/data 570 

GDA94/Zone 53).. 571 

Data Cleaning 572 

Examples of terms in the ignore list for this case study include: 573 

 574 

Examples of terms in the ignore list for this case study include the following, where each term is 575 

excluded from drillhole lithology log processing: 576 

1. Breccia (Undiff. Origin) 577 

2. Ironstone (Metasomatic) 578 

3. No Information 579 

4. Solution-Collapse Breccia 580 

 Vein (Undifferentiated) 581 

5. Examples of the thesaurus of synonyms for this case study area include: 582 

 583 

Examples of the thesaurus of synonyms for this case study area include the following groups, where 584 

each group contains lithology names that are treated as equivalent: 585 

1. dolomite, dolomite rock, carbonate rock, limestone 586 

2. conglomerate, diamictite 587 

3. grit, sandstone, quartzite, siltstone 588 

4. gabbro, gabbronorite 589 

 590 

Map Analytics 591 

The Ffigure 5 below shows stratigraphic units coloured as a function of the distance to one of the 592 

drillholes (Fig. 4). A large search area was used for this example as the stratigraphy is fairly flat lying 593 

so there is no guarantee that a unit will reach the surface in the local neighbourhood.  594 
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 595 

Figure 54. Distant Distance of stratigraphic units fromto drillholes (darker colours signifies larger 596 

distance). Green diamonds show the location of the drillholes (Same source map as Fig. 43, 597 

GDA94/Zone 53). 598 

In the initial analysis we plotted a network graph of all know topological relationships between 599 

stratigraphic units based on the geology map (extending out 100 km from the test area), the ASUD 600 

database, and additional information from published reports (Fig. 5). 601 

In the initial analysis we constructed the global connectivity graph Γ (Section 2.2), representing 602 

topological relationships between stratigraphic units. The initial graph was constructed automatically 603 

from the geology map (extending out 100 km from the test area) using the map2model software, then 604 

manually extended with additional topological relationships from the ASUD database and published 605 

reports. The graph was processed using the NetworkX Python library, exported to GML format, and 606 

visualized using yEd software (Fig. 6). The global connectivity graph consists primarily of single-607 

direction edges, with two bidirectional edges (Whyalla Sandstone–Angepena Formation and 608 

Paleoproterozoic-Mesoproterozoic Rocks–Donington Suite) to account for spatial variability in their 609 

stratigraphic relationships. 610 

 611 
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 612 

Figure 65: Topological relationships between units in and around the test area. 613 

 614 

 615 

Drillhole Analytics 616 

The drillholes analysis calculated every possible stratigraphic ordering that was consistent with the 617 

observed lithological ordering down the drillhole and solution constraints (described in Sec. 2.3). By 618 

collating the results for all possible solution paths, we can produce estimates of the marginal 619 

probability that any depth interval will be a particular stratigraphic unit (Fig. 76). For depth interval i 620 

and stratigraphic unit u, the probability P_i(u) is computed as: 621 

P_i(u) = |{s ∈ S : s[i] = u}| / |S|, 622 

where S is the set of all valid solutions and s[i] denotes the unit assigned to interval i in solution s. 623 

 624 
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 625 

Figure 76: Estimated probability of each stratigraphic unit occurring at a given depth for a single 626 

drillhole. 627 

In Fig. 87, we present the final (local) unit connectivity derived from the stratigraphicy solutions 628 

generated. The width of the graph edges indicates the probability of unit contacts, with thicker edges 629 
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signifying higher probabilities. This visual representation allows for a clear comparison of 630 

connectivity before (Fig. 6) and after the stratigraphic analysis. 631 

 632 

Figure 87: Calculated local topology using all solutions. Graph edges (relationships) between two 633 

stratigraphic units are displayed as a probability of a that contact-relationship occurring. 634 

The final solution score for a single ordering is calculated by summing of the probabilities of the 635 

contact edge weights. This allows us to sort the orderings by probability, ignoring stratigraphic 636 

thickness for now (Fig. 98). 637 
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 638 

Figure 98: The 5 most probable stratigraphic orderings, with their solution probability on the x axis 639 

and order of depth on the y axis. 640 

 641 
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Finally, we can then include the depths to contacts between units in the drillhole based on the 642 

previous analyses (Fig. 109). 643 

 644 

Figure 109: The 12 most probable stratigraphic orderings showing true depth of contact (above) 645 

compared to the stratigraphy as logged for the same hole. 646 

 647 
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 648 

Figure 110: Comparison of ordering for one hole (left) vs ordering for that hole considering the 649 

outcomes of 45 other drillholes in the neighbourhood. 650 
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 651 

In the next stage of our analysis, we perform solution correlation across multiple drill holes to 652 

establish a plausible stratigraphic order and reduce uncertainty. Figure 110 illustrates the comparison 653 

of the most probable stratigraphies before and after correlation. Prior to correlation, the solution 654 

that aligns with the “true” stratigraphy (the correct solution) is ranked second, with a score of 655 

S=0.74, while the highest-ranked solution has a score of S=0.75. However, after applying the 656 

correlation, the correct solution rises to the top rank with a score of S=0.95, whereas the previously 657 

highest-ranked solution falls to second place with a score of S=0.67. This correlation analysis not only 658 

helped identify the correct solution but also significantly reduced its relative uncertainty, increasing 659 

the relative score between the top two solutions from 1% to 42%. 660 

The computational efficiency of the litho2strat algorithm was evaluated through performance testing 661 

on this dataset, with scalability analysis presented in Appendix B. 662 

 663 

4. Discussion and Future Work 664 

 665 

Whilst we were able to develop a workflow that successfully provided useful stratigraphic analyses 666 

for our test area, we recognise that for other areas the methodology was not always as successful. 667 

We have identified several aspects of the current stratigraphic descriptions that we think will 668 

significantly expand the useability of the workflow we present above. 669 

1) Lithological Uncertainty. The principal reason for this was that the lithological descriptions of 670 

stratigraphies in many areas is quite vague. Successive stratigraphic units in a group might 671 

have very similar lithological descriptions. 672 

As an example, we look at the Hamersley Group, in Western Australia (Maldonado & Mercer, 673 

2018). If we examine the GSWA explanatory notes for three successive formations (Mt McRae 674 

Shale, Mt Sylvia Formation and the Wittenoom Formation) in the GSWA explanatory notes 675 

their lithologies are described as: 676 

• Mt McRae Shale - Mudstone, siltstone, chert, iron-formation, and dolomite. Thin 677 

bands of shard-bearing volcanic ash in upper parts. 678 

• Mt Sylvia Formation - Mudstone, siltstone, chert, iron-formation, and dolomite. 679 

 Wittenoom Formation - Thinly bedded dolomite and dolomitic shale, with minor 680 

black chert, shale, banded iron formation and sandstone. 681 

•  682 

We can see that there is a significant overlap in lithologies, with an ordering of lithologies but 683 

without constraints on the percentage of each lithology in the three formations. This 684 

additional information, even as an estimate, would provide useful constraints on the likelihood 685 

that a specific lithology is associated with a given stratigraphic unit. 686 

 687 

2) Min-Max thickness estimates. In some areas, there is useful information on the minimum, 688 

maximum and average stratigraphic thickness of units. 689 

 690 
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3) Stratigraphic ordering of lithologies. Additional information on commonly occurring orderings 691 

of lithologies within a given formation or member would also provide useful constraints.  692 

 693 

 694 

Figure 121: Free-text descriptions of the West Angela Member in the GSWA Explanatory Notes. 695 

All three of these types of information are often included in the free-text portions of stratigraphic 696 

databases, such as the example shown for the West Angela Member in the GSWA Explanatory 697 

Notes in Fig. 121. In this example the free -text provides more specific information on the 698 

thickness, the ordering of lithologies and the relative proportions of lithologies. With the advent 699 

of more sophisticated Machine Learning methodologies, the extraction of this ancillary data in a 700 

standardised form from reports and the stratigraphic databases themselves will open up new 701 

possibilities for constraining stratigraphy. Similarly, the codes developed in dh2loop for 702 

harmonising lithological terminologies will expand greatly in coming years. 703 

4) Inclusion of discontinuity information in the litho2strat workflow (most often logged faults) 704 

could help to define where breaks in stratigraphy are most likely to occur 705 

 706 

5) Inclusion of secondary descriptive information (for example grain size) could help to refine our 707 

younging estimators in areas of uncertain facing. 708 

 709 

6) There is no doubt that the advent of Large Language Models will have a profound effect on 710 

our ability to extract and categorize information from unstructured data sources, and 711 

algorithms based on these approaches will probably replace the data extraction and data 712 

harmonisation modules in future versions of this workflow. 713 

 714 

 715 
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 716 

5. Conclusions 717 

 718 

We developed codes and methodologies for stratigraphy recovery from drillhole databases, utilizing 719 

the branch and bound prune algorithm as a foundational framework. To ensure the generation of 720 

geologically plausible solutions, we implemented various types of constraints that account for the 721 

complexities of subsurface geology. 722 

To further reduce uncertainty in the obtained solutions, we introduced a correlation algorithm that 723 

leverages information from multiple drillholes simultaneously. This innovative approach allows for a 724 

more robust analysis by integrating data across different locations, enhancing the reliability of the 725 

stratigraphic interpretations. 726 

Our proposed method was applied to a dataset comprising 52 drillholes from South Australia. The 727 

results demonstrated that the algorithm successfully predicts the correct stratigraphic solution while 728 

providing associated uncertainty metrics, effectively validating its performance against measured 729 

stratigraphy data.  730 

Additionally, we identified several key aspects of the current stratigraphic descriptions that could 731 

significantly enhance the usability of the workflow we have presented. These enhancements aim to 732 

improve the accessibility and applicability of our methodology, paving the way for more effective 733 

geological assessments and decision-making processes in the field. 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 
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Appendix A - Control file for litho2strat code 763 

 764 

Example usage: python3 litho2strat.py -p ./parfiles/Parfile_SA.txt 765 

 766 

Example parfile: 767 

 768 

 769 

 770 

 771 

 772 

 773 
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[FilePaths] 775 
topology_filename = data/SA_test_data/newpairs_20_06_2023.gml 776 
ignore_list_filename = data/SA_test_data/ignore_list.txt 777 
alternative_rock_names_filename = data/SA_test_data/alternative_rock_names.txt 778 
unit_colors_filename = data/SA_test_data/unit_colors.csv 779 
 780 
drillsample_filename = data/SA_test_data/litho_tables/litho_$collarID$.csv 781 
stratasample_filename = data/SA_test_data/strat_tables/strat_$collarID$.csv 782 
dist_table_filename = data/SA_test_data/dh_asud_strat2.csv 783 
 784 
[DataHeaders] 785 
drillsample_header = DEPTH_FROM_M, DEPTH_TO_M, MAJOR_LITHOLOGY, 786 
stratasample_header = DEPTH_FROM_M, DEPTH_TO_M, STRAT_UNIT_NAME, 787 
strata_data_header = strat, summary, distance, description 788 
 789 
[SolverParameters] 790 
add_topology_constraints = True 791 
max_num_strata_jumps = 0 792 
max_num_returns_per_unit = 0 793 
max_num_unit_contacts_inside_litho = 0 794 
single_top_unit = True 795 
 796 
[DataPreprocessing] 797 
number_nearest_units = 10 798 
min_drillhole_litho_score = 80 799 
group_drillhole_lithos = False 800 
cover_ratio_threshold = 0.65 801 
 802 
[CollarIDs] 803 
collarIDs = 205821,205822,264999,265000,265001 804 
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Appendix B: Performance and Scalability Analysis 805 

 806 

To complement the theoretical complexity analysis presented in Section 2.4, we conducted empirical 807 

tests to evaluate the performance and scalability of the litho2strat algorithm. We tested how the 808 

average number of solutions maintained during recursive exploration (N) scales with the number of 809 

lithology changes in drillhole logs, comparing two scenarios: (1) using the global topology graph Γ as 810 

a constraint, and (2) without topology constraints. 811 

Figure B.1 shows the relationship between the number of lithology changes and the average number 812 

of solutions maintained during recursive exploration when the topology graph constraint is applied. 813 

The results demonstrate near-linear scaling, confirming that the topology graph effectively prunes 814 

the solution space while preserving geological validity. 815 

 816 

 817 

Figure B.1: Average number of solutions maintained during recursive exploration versus number of 818 

lithology changes with topology graph constraint. 819 

Figure B.2 presents the same relationship for the unconstrained case, where the algorithm considers 820 

all theoretically possible stratigraphic interpretations. Here, the average number of solutions 821 

maintained during recursive exploration exhibits near-exponential growth with increasing lithology 822 

changes, illustrating the combinatorial explosion that occurs without geological constraints. 823 
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 824 

Figure B.2: Average number of solutions maintained during recursive exploration versus number of 825 

lithology changes without topology constraints. 826 

The computational performance measurements further highlight the practical importance of these 827 

constraints. Using a single CPU core (Intel i7-1185G7 @ 3.00GHz) to process all 52 drillholes from 828 

Section 3 and perform the correlation of solutions, the constrained approach required approximately 829 

1 second total processing time, while the unconstrained case required approximately 50 seconds for 830 

the same dataset. This 50-fold improvement in computational efficiency, combined with the near-831 

linear versus near-exponential scaling behavior of solutions maintained during recursive exploration, 832 

demonstrates that incorporating geological knowledge through the topology graph is essential for 833 

both computational tractability and practical applicability of the litho2strat algorithm to real-world 834 

geological datasets. 835 
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