

Mechanisms and scenarios of the unprecedent flooding event in South Brazil 2024

Leonardo Laipelt¹, Fernando Mainardi Fan¹, Rodrigo Cauduro Dias de Paiva¹, Matheus Sampaio¹, Walter Collischonn¹ and Anderson Ruhoff¹

5

¹Institute of Hydraulic Research (IPH), Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Correspondence to: Leonardo Laipelt (leonardo.laipelt@ufrgs.br)

Abstract. In May 2024, an extraordinary precipitation event ~~in southern Brazil~~ triggered record floods in ~~southern~~ Brazil, ~~specially particularly over impacting~~ complex ~~river-estuary-lagoon systems~~ system that includes rivers as Jacuí and Taquari, draining into Guafba and Patos Lagoon, and resulting in. It resulted in unprecedented impacts on ~~the~~ local population and infrastructure. ~~Considering~~ As climate change projections indicate an increase in such events for the region~~past~~ observations and projections indicating an increase in flood events in the region due to climate change, understanding these flooding processes ~~in the region~~ is essential for better preparing cities for future events like the May 2024 flood. In this context, hydrodynamic modelling ~~serves is as~~ an important tool for reproducing and analysing this past extreme event. ~~This paper~~ presents the first detailed hydrodynamic assessment of this unprecedented flood, the worst registered natural disaster in Brazilian history. We also performed the first validation of a detailed hydrodynamic model using new observations from the SWOT satellite. The study investigates the main mechanisms that governed the disaster and assesses scenarios for hydraulic flood control interventions currently under public debate, with a. This study aims to assess the detailed hydrodynamic mechanisms and processes that occurred during this historical flood event and scenarios of direct interventions for flood control that came into the public debate after the event. The focus is on the most populated areas ~~at of~~ the Metropolitan region of Porto Alegre (RMPA) capital city. We calibrate and validate a two-dimensional hydrodynamic model to precisely replicate the May 2024 flood. The results demonstrated that the model accurately ~~represents represented~~ the event, with average NSE, RMSE and BIAS of 0.82, 0.71 meters and -0.47 meters, respectively, across the ~~main rivers in the basin~~ basin's main rivers. Furthermore, the ~~flood extent simulations~~ simulated flood extent represented showed an 83% agreement of the affected area, as compared to ~~with~~ high-resolution satellite images. Our analysis of the ~~governing~~ mechanisms that influenced the event showed that the Taquari River was ~~the main~~ mainly responsible for the peak in the RMPA, while the Jacuí River contributed ~~the~~ most to the ~~duration of the flood~~ flood's duration. Additionally, the synchronization of the flood peaks from both rivers could have increased water levels by 0.82 meters. Evaluated hydraulic interventions ~~for flood mitigation~~ demonstrated that the effectiveness of the proposed measures varied by location, with ~~usually lowa generally limited~~ influence ~~in the~~ on RMPA water levels (lower than 0.38 m). By accurately assessing the May 2024 flood, this study enhances the understanding of a complex river-estuary-lagoon system, quantifies the impacts of adverse scenarios, and reveals the limitations of potential hydraulic

structure interventions. Finally, modelling this unprecedented event offers valuable insights for future research and global flood management policies. Major lessons related to the behaviour of river-lagoon hydrodynamic systems and to the relevance of structural measures for such cases are discussed, which are of broader interest for future research and decision making around the globe.

35

1. Introduction

The May 2024 flood that occurred in southern Brazil is considered the worst natural disaster in Brazilian history given its magnitude, spatial coverage and impacts (Collischonn et al., 2025). The flood affected hundreds of thousands of people, displacing entire neighbourhoods, causing numerous fatalities, and inflicting widespread damage to urban infrastructure and agricultural lands, while also leading to numerous fatalities. Floods become a major concern and one of the most relevant disasters in terms of impacts, with the potential to disrupt societies on a unprecedented scale. The rising frequency and severity of flood events are closely linked to ongoing climate change, as global temperatures increase due to global warming, affecting the hydrological cycle and leading to more intense and frequent rainfall events. However, the relationship between climate change and flood is complex, with impacts varying regionally and influenced by multiple factors.

40

45

50

55

60

Floods in southern Brazil, situated in the sub-tropical and temperate portions of South America, have increased significantly in recent decades, a trend that has been supported by both historical data and climate projections (Ávila et al., 2016; Bartiko et al., 2019; Brêda et al., 2023; Chagas et al., 2022). Nationally, flood generation in Brazil is driven by a variety of mechanisms. These include intense convective storms causing urban flash floods (Cavalcante et al., 2020; Lima and Barbosa, 2019; Marengo et al., 2023), persistent rainfall associated with South Atlantic Convergence Zone (SACZ) leading to large-scale riverine floods, and the influence of major teleconnections like the El Niño-Southern Oscillation (ENSO). Specifically, in the southern region, the primary drivers are often intense frontal systems that bring widespread and prolonged precipitation (Ávila et al., 2016; Damião Mendes and Cavalcanti, 2014). Moreover, climate change is intensifying this scenario by increasing hydroclimate and hydrological volatility and altering flood-generating mechanisms (Hammond et al., 2025; Stevenson et al., 2022; Swain et al., 2025). This, in turn, increases the frequency and severity of floods, particularly through compound events (Heinrich et al., 2023; Hendry et al., 2019; Leonard et al., 2014).

The Floods in southern Brazil, situated at the sub-tropical and temperate portions of South America, have increased significantly in recent decades, which has been supported by both historical data and climate projections. These studies suggested an increase in heavy rainfall events and maximum discharge in the region due to climate change, but also attributing to changes of the El Niño-Southern Oscillation (ENSO) and in the South American Convergence Zone (SACZ). In instance, Chagas et al. (2022) analysed streamflow data across South America and showed that flooding in Southern Brazil is on the rise and indicating

65 a possible link with ENSO variations. Breda et al. (2023) demonstrated that different climate models, based on CMIP5 scenarios, predict a continued increase in flood frequency due to heightened extreme precipitation events in the region. The same southern regions of Brazil experienced catastrophic flooding in May 2024, triggered by extreme rainfall that surpassed previous water level record.

70 The major impacted areas in southern Brazil during the May 2024 floods are in southern Brazil primarily impacted the state situated in the of Rio Grande do Sul State (RS), including including the its capital, city Porto Alegre. Rainfall Observed rainfall data indicated that precipitation has exceeded 500 millimetersmillimetres within a two-day period, with while some locations accumulateding up to 900 millimetersmillimetres in over 35 days (Collischonn et al., 2024). Therefore As consequence, flood has achievedreached breaking recordrecord-breaking levels in manynumerous cities inwithin the Patos Lagoon basin, which covered_covers half of Rio Grande do Sulthe state.

75 Several impacts #on the population and cities_urban infrastructure were observed-concentrated in the Metropolitan Region of Porto Alegre (RMPA), where nearly 40% of the state's population (over 4 million people) resideshome to over 4 million people (nearly 40% of the state's population). According to official government surveys, approximately 300,000 people in RMPA were directly affected by the flood in the RMPAthe flooding, with the situation worsenedThe situation was significantly exacerbated by the failure of local flood protection systems. Given these devastating impacts, there is a critical need to employ advanced assessments tools, such as hydrodynamic modelingmodelling, to better understand and manage such extreme events.

80 A complete comprehensive hydrological description the disaster is given by Collischonn et al. .

The Patos Lagoon basin, where the mainmost severely impacted by the May 2024 disaster occurred, is a unique single natural system in the world. Its complex-The watershed is constituted by a combination of fastcombines fast-flowing mountainous rivers and one largewith a large, slow floodplain rivers. These tributaries converge intodownstream, all flowing to a relatively short, wide body and wide river named Guaíba River (which is also called a lake due to its physical characteristics). The 85 Guaíba, in turn, flows intoand downstream the Guaíba inflows to the Patos Lagoon itself, which is an extensive water body known and as the greatest world's largest choked lagoon in the world (Kjerfve, 1986).

After the disaster, many questions were raised regarding the function of the natural system: the relevance of the upstream rivers, the slopes generated by water inflows and even if extra whether extra outlets in thefrom the lagoon to the sea would not have_might have avoided the flooding inat upstream areas (Hunt et al., 2024; Silva et al., 2024a). From our understanding, the 90 tool to answer some of those questions is a hydrodynamic model capable of properly representing the system. that must This model must be properly validated using not only gauge observations but also state-of-the-art remote sensing data.

Hydrodynamic modelling has been widely used for flood assessment, including models such as HEC-RAS (USACE, 2016), LISFLOOD-FP (Bates and De Roo, 2000) and Delft3D (Lesser et al., 2004). These are physically-based models to represent water flow across natural systems, providing accurately accurate flood predicting flood propagation and extent (Ming et al., 95 2020; Paiva et al., 2013; Timbadiya et al., 2015). Their Additionally, they have the ability to reproduce floods inwith high-resolution details, enabling the reconstruction ofmakes them ideal for reconstructing past events and simulation record-breaking events and the simulation of various scenarios (Bates et al., 2003; Fewtrell et al., 2011; Marks and Bates, 2000). For

Formatted: Font color: Auto

instance, these models are particularly useful for studying complex interactions in medium-to-large basins (O'Loughlin et al., 2020; Paiva et al., 2013), where precipitation is expected to become more concentrated. In these coupled systems, the

Formatted: Font color: Auto

100 synchrony between the peak flows of major tributaries and the estuary–lagoon water level is a primary determinant of flood severity, directly informing the timing and feasibility of structural and operational measures (Guse et al., 2020). While previous studies have often focused on individual rivers or local interventions (Dutta et al., 2007; Patel et al., 2017; Timbadiya et al., 2015; Zarzuelo et al., 2015), few have examined synchrony and mitigation within an integrated, river–estuary–lagoon framework at regional scale. Moreover, simulating flood mitigation scenarios is essential for evaluating interventions, defining 105 optimal locations for new structures, assessing the efficiency of existing ones (Abdella and Mekuanent, 2021; Ghanbarpour et al., 2013; Zhang et al., 2021), and identifying areas of high risk (Cai et al., 2019; Li et al., 2019; Masood and Takeuchi, 2012).

Formatted: Font color: Auto

110 Among different applications, Neal et al. (2011) assessed the 2007 United Kingdom floods using the LISFLOOD-FP two-dimensional model to simulate water levels in urban areas, validating flood extent with satellite imagery. Marengo et al. (2023) utilized the HEC-RAS 2D model to examine flood inundation extent resulting from an extreme precipitation event in Recife, Northeast Brazil. In southern Brazil, there are few studies using hydrodynamic models to evaluate historical water levels in the Patos Lagoon basin (Alves et al., 2022; Fernandes et al., 2001, 2002; Möller et al., 1996). Alves et al. (2022) evaluated the ability of large-scale models to generate flood maps, comparing results with satellite imagery and flood extent from 2D hydrodynamic flood simulations. Fernandes et al. (2001) calibrated and validated the TELEMAC-2D model to simulate water levels over the Patos Lagoon, finding good agreement with observational data.

Formatted: Font color: Auto

Formatted: Font color: Auto

115 This study develops the first detailed hydrodynamic assessment of the unprecedented flood that occurred in 2024 in south Brazil, which represents the worst disaster in Brazilian history. In addition to this novelty, it is the first study to utilize SWOT satellite altimetry data for model evaluation. Our primary goals are to investigate the main mechanisms governing this flood disaster and to assess hydraulic intervention scenarios for flood control in the region, which are currently under public debate.

Formatted: Font color: Auto

120 To achieve this, we address urgent and unresolved questions raised by the May-2024 flood regarding; (a) the relative influence of tributary inflows on RMPA water levels and inundation, (b) the consequences of potential peak synchrony between the main rivers, and (c) whether additional lagoon–ocean outlets or channel operations would have mitigated upstream flooding.

Formatted: Font color: Auto

Prior studies did not jointly address these system-scale dynamics due to limited integrated datasets and validation across the river–estuary–lagoon continuum. Leveraging detailed bathymetry, ADCP transects, continuous gauges, satellite flood extent, and SWOT altimetry (Biancamaria et al., 2016; Fu et al., 2024), we develop and validate a 2D hydrodynamic model to quantify 125 mechanisms and test counterfactual scenarios. This design yields decision-relevant evidence for stakeholders and government agencies seeking to enhance protection in the most affected areas, and ultimately allows comprehension of how this unique natural system works under extreme conditions. The insights from this study are therefore highly relevant for other complex, large-scale hydrodynamic coastal and deltaic regions.

Formatted: English (United States)

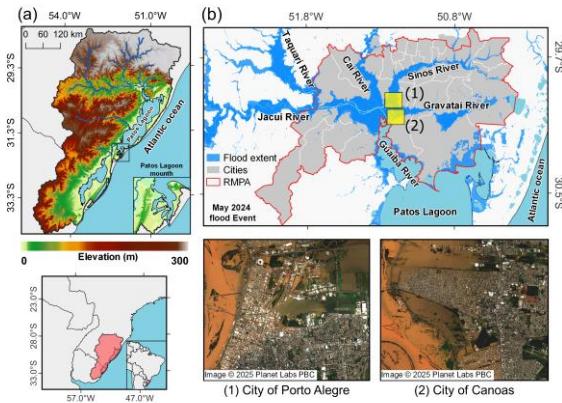
Formatted: Font color: Auto

Formatted: Font color: Auto

130 This study aims to enhance our understanding of flooding mechanisms in South Brazil, using the May 2024 flood as a reference, with focus on the RMPA region. Beyond being the first detailed hydrodynamic assessment of this

135 ~~unprecedented event at this singular environment, the present research is of broad interest due to other several reasons: a benchmark is set in terms of flood modelling validation using a two-dimensional hydrodynamic model and multiple data sources for RMPA; for the first time on authors knowledge altimetry information from SWOT mission is used to validate the modelling of such an extreme event; the contribution of each river was evaluated, as well as an assessment of a river peak synchronization scenario that could have worsened the event; the relevance of structural solutions for extreme floodings for environments controlled by both upstream and downstream characteristics is discussed; lessons and examples that can be used by decision makers from other locations with similar issues around the globe are discussed.~~

2. Study Area


← Formatted: Space After: 0 pt

Study Area

140 The Patos Lagoon basin encompasses 182,000 km² (Figure 1a), with its headwaters situated in Rio Grande do Sul's north-central region, characterized by deep canyon valleys transitioning into vast lowlands. The primary upstream tributaries, ~~the~~ Taquari, Jacuí, Caiá, Sinos and Gravataí ~~River~~^{rivers}, converge at the Jacuí Delta, forming a substantial estuary that leads ~~to~~ to the Guaíba River (Figure 1b).

145 The Guaíba River, an important freshwater system in ~~Rio Grande do Sul~~^{RS}, plays a key role in providing drinking water, supporting navigation, and facilitating irrigation for the area. Located adjacent to Porto Alegre, the state capital, it has an averaged~~d~~ depth of 2 meters, with certain spots reaching over 30 meters near its outlet to the Patos Lagoon. Spanning approximately 10 km in width and 50 km in length, the river covers roughly 480 km².

150 Water from the Guaíba River flows into the Patos Lagoon, which stretches across a considerable area (250 km in length and 40 km in width), with an average depth of 5 meters, before connecting to the coastal ocean. Consequently, tidal fluctuations influence the downstream water levels in the Patos Lagoon basin. Furthermore, wind forces significantly impact both the Patos Lagoon and the Guaíba River, with prevailing winds oriented in a NE-SW direction across the state. The wind changes the water~~l~~ level in both systems, with SW (NE) wind restricting (facilitating) Guaíba flow into the Patos Lagoon, increasing (decreasing) Guaíba water levels up to 50 cm (Collischonn et al., 2025; Laipelt et al., 2025).

155

Figure 1: The Patos Lagoon basin, located in southern Brazil, features a mouth that connects to the Atlantic Ocean (a). The basin is fed by several primary tributaries, including the Taquari, Jacui, Gravatai, Sinos, and Cai (b). These rivers experienced unprecedented flooding during the event in May 2024, affecting densely populated areas such as the state's capital, Porto Alegre, and cities in the Metropolitan Region of Porto Alegre (RMPA).

160

3. Material and methods

3.1. Simulation domain, boundary conditions and inputs

The simulation employed a two-dimensional (2D) hydrodynamic model based on the shallow water equations, accounting for inertia, gravity, friction, pressure, turbulent viscosity, wind and Coriolis effects. The model domain covers 23,000 km² (Figure 165 b), corresponding to a 650 km reach from the upstream Jacuí to the Patos Lagoon's ocean outlet. This extent was defined based on available streamflow observations from the flood event. To ensure accuracy at the downstream boundary, the domain also includes a 45 km portion of the ocean, which is necessary to properly represent tidal effects influencing the lagoon.

Formatted: Font: Bold

Upstream boundary conditions were defined using streamflow time series for the main rivers of the Patos Lagoon basin, acquired from the Brazilian Water and Sanitation Agency (ANA) network (<https://www.snh.gov.br/hidrotelemetria/>, accessed in July, 2024) (Figure 2a: **Supplementary Table 1**). The downstream boundary condition used tidal level time series from the Brazilian coast monitoring system (SIMCosta) network (<https://simcosta.furg.br/home>, accessed in August, 2024), located at the Patos Lagoon mouth. This ensures that the representation of the water levels over the basin are realistically subjected to the backwater effects of the tides under variable marine conditions. We did not incorporate auxiliary data for the minor tributaries, as their contributions were considered negligible compared to the primary river flows.

Formatted: Font: Not Bold

175 The simulation period ranged from April 28, 2024, to June 1, 2024, including a 10-day initial period for model warm-up. We implemented a variable-resolution mesh, using a 100-meter grid for primary rivers and floodplains, and a 500-meter grid for upland areas to optimize computational efficiency.

180 Surface topography was represented using the ANADEM Digital Terrain Model (DTM) product from ANA. ANADEM is a freely available DTM for South America derived from the COPERNICUS GLO-30 DEM (AIRBUS, 2020), removing vegetation bias using machine learning and satellite altimetry data (Laipelt et al., 2024).

To improve the hydraulic representation, the ANADEM DTM was modified to incorporate bathymetry from multiple sources. For the Jacuí, Gravataí, Sinos and Caí rivers, we used an interpolated bathymetry based on cross sections from publicly available data, as developed and validated by François (2021). For the Taquari River, where data was insufficient, the DTM was adjusted by lowering the channel elevation by approximately 4 meters between the upstream boundary condition and its 185 confluence with the Jacuí River. Bathymetry for the Guaíba River and Patos Lagoon was derived from digitized nautical charts provided by the Board Hydrography and Navigation of the Brazilian Navy. Finally, ocean bathymetry from the General Bathymetric Chart of the Oceans (GEBCO) version 2024 (GEBCO, 2024) was integrated into the DTM to improve the representation of tidal dynamics in the Patos Lagoon estuary.

190 Wind data from the National Meteorological Institute of Brazil (INMET) (<https://bdmep.inmet.gov.br/>, accessed in August, 2025). The effect of the wind was computed using a drag formulation (Hsu, 2003), which modifies the aerodynamic roughness length by assuming a logarithmic velocity profile.

195 Initial values of Manning's roughness coefficient were derived from the literature and refined through manual calibration for the study period. Previous studies have modelled Patos Lagoon basin using Manning coefficients between 0.015 to 0.04 (António et al., 2020; Hillman et al., 2007; Marques et al., 2009; Martins and Fernandes, 2004), while values for the Guaíba River have ranged from 0.025 to 0.040 (Marques et al., 2009; Possa et al., 2022; Seiler et al., 2020). In the absence of specific data, the calibration of Manning's coefficient for the main channel was based on general hydrodynamic applications (Chow, 1959). For the floodplain, Manning's roughness coefficient values were calibrated by testing a range from 0.05 to 0.15, following the HEC-RAS manual guidelines (USACE, 2016).

200 A set of Manning's values evaluated for the 2D hydrodynamic model is presented in **Supplementary Table 2**, with statistical performance demonstrated in **Supplementary Figure 1**. Group 1 was selected for the simulations due to its higher accuracy, with calibrated values varying from 0.025 to 0.035, for the main channels, and 0.08 to 0.15 for floodplains.

Formatted: Normal, No bullets or numbering

Formatted: Font: Bold

Formatted: Normal, No bullets or numbering

Formatted: Font: Bold

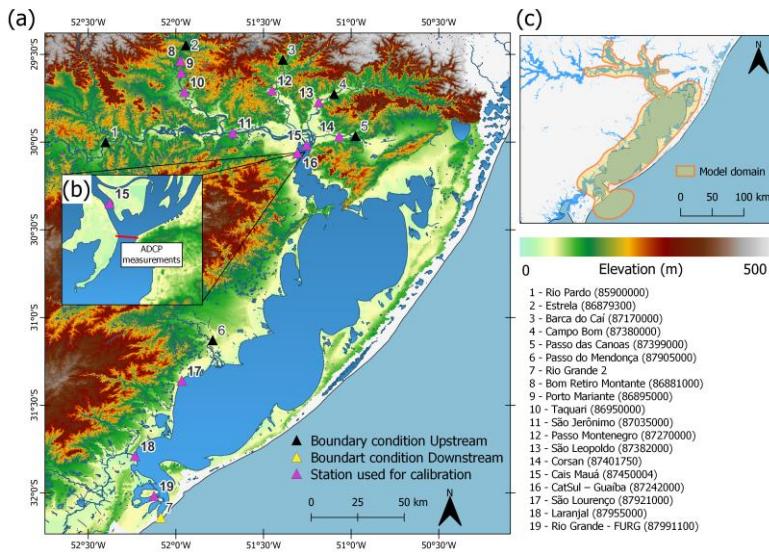


Figure 2: The locations and corresponding names of the gauge stations used for upstream conditions (black markers), downstream conditions (yellow markers), and calibration/validation (pink markers) are shown in (a). The ADCP measurement's location is identified by the red line in (b). The delineated geometry area (yellow) used for the two-dimensional simulation is shown in (c).

Formatted: List Paragraph, Indent: Left: 0.63 cm, Space Before: 0 pt, No bullets or numbering

Formatted: Heading 1, Space Before: 12 pt

For the two-dimensional simulation of the flood, we used the ANADEM Digital Terrain Model (DTM) product provided by the Brazilian Water and Sanitation Agency (ANA). ANADEM is a freely available DTM for South America that was obtained from the COPERNICUS GLO-30 DEM provided by the European Spatial Agency (ESA).

3.2. Observational datasets and validation metrics

To evaluate the accuracy of the two-dimensional hydrodynamic model model accuracy, we performed a validation validated of water levels, streamflow, and flood extent. We utilized water level validation utilized time series from independent gauge stations from ANA (situated across the study area, as outlined in Figure 2a; (more details in Supplementary Table 3), which were excluding stations used for not used for model boundary conditions. We incorporated

Formatted: Normal, No bullets or numbering

The hydrodynamic model's performance was also evaluated using observations from the Surface Water and Ocean Topography (SWOT) mission observations (Biancamaria et al., 2016; Durand et al., 2010; Fu et al., 2024), as previous studies have shown

Formatted: Font color: Black

220 that SWOT has been previously shown to adequately represent this data adequately represented the flood event (Laipeit et al., 2025). (Laipeit et al., 2025). SWOT, a -is a-CNES/NASA collaborationcollaborative effort between the Centre National d'Études Spatiales (CNES) and the National Aeronautics and Space Administration (NASA), is a radar interferometry sensor and provides instantaneous observations of water surface elevation (WSE)ing high-resolution data for oceans and inland water bodies (rivers, lakes, reservoirs and wetlands). Equipped with a Ka-band interferometer sensor, SWOT provides instantaneous
225 observations of water surface elevation (WSE) and water slope for rivers wider than 100 meters, -with a revisit frequency of 21 days.

230 The accuracy of the flood extent generated simulated flood extent accuracy -by the two dimensional model-was verified usingagainst a high-resolution (5 m), clear-sky image captured on May 6, 2024, near the peak flow over the RMPA. This image was captured by the Planet RapidEye constellationimage captured near the flood peak on May 6, 2024 (Planet Team, 2024).
235 The observed flood extent was then determined by which provides imagery with spatial resolution of 5 meters per pixel and includes four multispectral bands (blue, green, red, and infrared). To determine the flood extent from the Planet image, we calculatedcalculating the Normalized Difference Water Index (NDWI) using Equation 1:

$$NDWI = \frac{(\alpha_{green} - \alpha_{infrared})}{(\alpha_{green} + \alpha_{infrared})} \quad (1)$$

Formatted: Indent: Left: 0.63 cm, No bullets or numbering

235 To ensure compatibility, we resampled both the satellite flood extent and the model simulation output to a common 30-meter grid. We then calculated the relative extent ratio (Equation 2) between the simulated flood extent and observed by the satellite data.

$$H = 100\% \frac{P_{sim} \cap P_{obs}}{P_{obs}} \quad (2)$$

Formatted: Normal, No bullets or numbering

240 where P_{sim} is the number of flood pixels obtained from the simulation and P_{obs} the number of flood pixels identified with satellite imagery.

245 The accuracy of the simulated streamflow accuracy was evaluated by comparing it toagainst six6 field measurements conducted using obtained using an Acoustic Doppler Current Profile (ADCP) instrument between May 5, 2024, and May 31, 2024 (Andrade et al., 2024; Silva et al., 2024b). The measurements were collected from two areas close to the collected near the Cais Mauá station site (Figure 2c; and the results are displayed in TableSupplementary Table 4), and more details can be found in (Andrade et al., 2024).

Formatted: Font: Bold

Formatted: Font: Not Bold

250 Measurements on daysMay 5 and 6 were made obtained at the cross section of “Ponta da cadeia”, while subsequent measurements (May on days-9 to 31) were made 8 km downstream, at the cross section of theat the “Ponta do Dionísio” cross-section, 8 km downstream. The Measurements at the “Ponta da cadeia” measurements are likepossibly underestimatesions of the total river streamflowflow, since on days 5 and 6 water was flowing over theas significant overbank flow was bypassing this cross-section on those dates.

Model performance for water level was quantified using the Root Mean Square Error (RMSE), the Nash-Sutcliffe Efficiency coefficient (NSE) and the Mean Average Error (BIAS), as showed in [Equations 3, 4 and 5](#), respectively. To compare with the observations, the water level time series of the model were extracted from the simulation at the locations corresponding to the gauge stations.

Formatted: Font:

Formatted: Normal, No bullets or numbering

255 floodplains west of the main river, and over the islands of the Jacuí Delta region, by passing the “Ponta da cadeia” cross section.

Formatted: Font: Not Bold

Formatted: Indent: Left: 0.63 cm, No bullets or numbering

Formatted: Font: Not Bold

[Table 1: Gauge station used for calibration of the model as well as its location. Source:](#)

Date	Streamflow (m ³ /s)	Cross section
5 May 2024	30,180	Ponta da cadeia
6 May 2024	29,852	Ponta da cadeia
9 May 2024	23,000	Ponta do Dionísio
15 May 2024	22,069	Ponta do Dionísio
22 May 2024	8,355	Ponta do Dionísio
31 May 2024	7,989	Ponta do Dionísio

260 The following metrics were used for the water level model’s performance: Root Mean Square Error (RMSE), the Nash-Sutcliffe Efficiency coefficient (NSE) and the Mean Average Error (BIAS), as showed in [Equations 2, 3 and 4](#), respectively. To compare with the observations, the water level time series of the model were extracted from the simulation at the locations corresponding to the gauge stations.

Formatted: Normal, No bullets or numbering

$$RMSE = \frac{1}{2} \sqrt{\sum_{i=1}^n (O_i - P_i)^2} \quad (23)$$

Formatted: Indent: Left: 0.63 cm, No bullets or numbering

$$NSE = 1 - \frac{\sum_{i=1}^n (O_i - P_i)^2}{\sum_{i=1}^n (O_i - \bar{O})^2} \quad (34)$$

—(34)

$$BIAS = \frac{1}{n} \sum_{i=1}^n (O_i - P_i) \quad (45)$$

—(45)

where O_i is the observed and P_i the predicted values and n the number of samples.

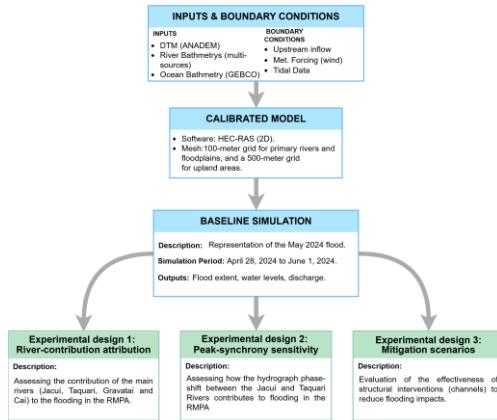
Formatted: Normal, No bullets or numbering

270 The flood extent produced by the two-dimensional model was validated by comparing the percentual pixels agreement to the water mask satellite observation based on [Equation 5](#). To ensure compatibility, we adjusted the satellite flood extent’s spatial resolution to 30 meters, aligning it with the simulation-generated flood extent.

$$H = 100\% \frac{P_{sim} \cap P_{obs}}{P_{obs}} \quad (5)$$

Formatted: Indent: Left: 0.63 cm, No bullets or numbering

275 where P_{sim} is the number of flood pixels obtained from the simulation and P_{obs} the number of flood pixels identified with satellite imagery.


Formatted: Normal, No bullets or numbering

3.3. Experiment design overview

Figure 3 summarizes the study's methodological workflow. We simulated the May 2024 flood using the HEC-RAS software (version 6.4.1) (USACE, 2016), which was driven by publicly available data (topography, bathymetry, upstream inflow and weather).

280

First, a calibrated baseline model was established to accurately represent the event. Using this baseline, we then designed several experiments to better understand the basin's hydrodynamic processes during an extreme flood event. These experimental designs are detailed below.

285

Figure 3. The workflow for this study proceeded by defining the input and boundary conditions for the May 2024 flood, followed by calibrating and validating a baseline model, which was then utilized to analyse multiple scenarios.

3.3.1. Baseline simulations

The baseline simulation represents the calibrated model of the May 2024 flood event, incorporating all observed data, including river inflows, tides, wind, and bathymetries described in Section 3.1.

290

3.3.2. River-contribution attribution

We used attribution scenarios to evaluate how individual tributaries influence flooding in the RMPA region. Specifically, we simulated four scenarios based on the baseline model, each excluding the streamflow from one main river (Jacuí, Taquari, Sinos, or Caiá) to quantify its specific impact on water levels. This approach was selected because flood wave propagation is a

Formatted: Normal, Space Before: 0 pt, No bullets or numbering

Formatted: Font: Bold

Formatted: Normal, Space Before: 0 pt, No bullets or numbering

Formatted: Font: Bold

Formatted: Normal, Centered, Space Before: 0 pt, No bullets or numbering

Formatted: Normal, Space Before: 0 pt, No bullets or numbering

Formatted: Normal, Space Before: 0 pt, No bullets or numbering

295 non-linear process in the system, with its velocity governed by the system's channel geometry, roughness, and by the influence of the floodplains.

3.3.3. Peak-synchrony sensitivity

This analysis evaluated the combined flood impact of the Jacuí and Taquari rivers on the RMPA, considering the context of previous events. In May 2024, two cold fronts of varying spatial extent and intensity passed over the region between April 27 and May 2. As a consequence, the synchrony between the peak flows of major tributaries and the estuary-lagoon water level 300 is a primary determinant of flood severity, directly informing the timing and feasibility of structural and operational measures. Given their distinct flow propagation times, we simulated a theoretical worst-case scenario by shifting the Jacuí River hydrograph (at Rio Pardo) forward by approximately 4 days to force their flood peaks arrive simultaneously. This synchronization allowed us to evaluate the potential consequences for the region's flood protection systems.

Formatted: Normal, Space Before: 0 pt, No bullets or numbering

3.3.4. Mitigation scenarios

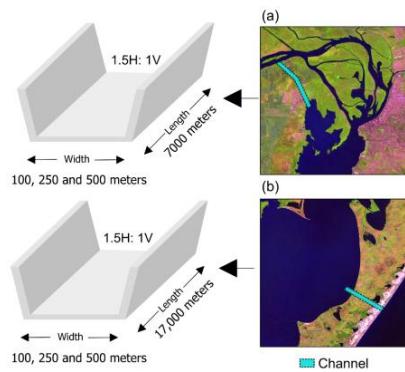
Formatted: Heading 1, Space Before: 12 pt

Formatted: Normal, No bullets or numbering

305 We tested proposed mitigation interventions currently under public and environmental agencies debate. Specifically, these proposals, which have not yet been formally evaluated, suggest the construction of new channels to reduce regional water levels in RMPA (DRRS, 2024; Hunt et al., 2024). Although these projects are still in the conceptual stage, we used the 2D hydrodynamic model to test their potential effects. This exercise aims to better comprehend the dominant forces controlling the system's dynamics.

310 For each proposed intervention, we evaluated three channel widths: 100-meter, 250-meter, and 500-meter. The channels were assigned a Manning's roughness of 0.02 and were integrated into the DTM. Additionally, a refined 50-meter mesh was used in these intervention areas.

The following scenarios for flood control were tested:


315 Channel connecting Jacuí to Guaíba: This experiment (Figure 4a) investigated the construction of a 7000-meter-long open channel connecting the Jacuí and Guaíba rivers. Its depth was adjusted based on the upstream and downstream river bathymetric data.

Formatted: Font: Bold

Formatted: Font: Bold

Channel connecting Patos Lagoon to the Ocean: This experiment (Figure 4b) investigated the efficiency of a hypothetical 17,000-meter-long and 10-meter-deep open channel connecting the northeastern part of the lagoon to the Atlantic Ocean. The downstream boundary for this channel used a tidal time series from the nearby SIMCosta network (tide gauge: Tramandaí; 320 lon: -50.128; lat: -30.005) unaffected by the flood. Because this gauge lacks a precise altimetric reference, we estimated a correction factor by comparing its data to the referenced Rio Grande gauge (at the main lagoon outlet) during a non-flood period (May 2023–March 2024). To evaluate alternatives for mitigating flooding in the RMPA, we utilized the validated 2D model of the May flood event and designed two distinct hydraulic interventions in the studied region to test their efficacy. The location and evaluation of two channel openings were based on suggestions from studies as flood mitigation measures for 325 future events in the RMPA, despite the absence of further efficacy evaluations.

Formatted: Font: Bold

Figure 4: Evaluation of two hydraulic structures scenarios for flood control in RMPA: (a) an open channel connecting Jacuí and Guaiá rivers, and (b) a channel connecting Patos Lagoon to the Atlantic Ocean.

330 **4. Results**

4.1. Model Validation

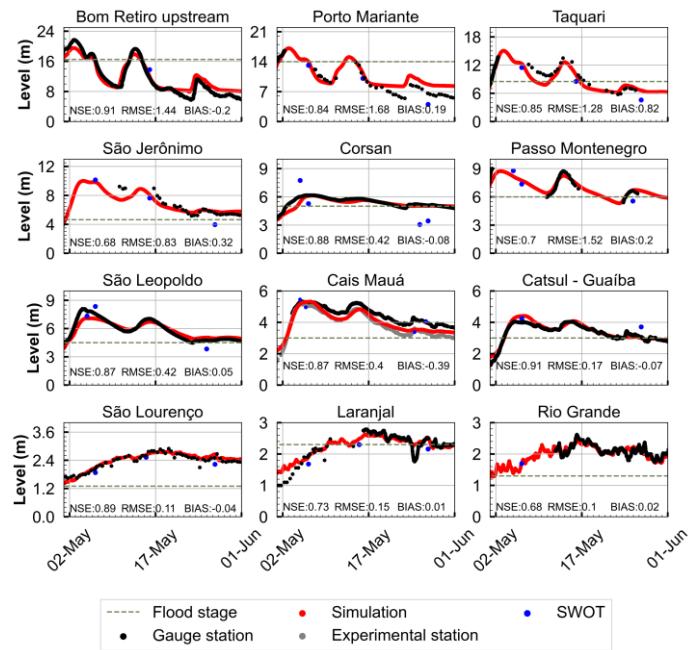
4.1.1. Water level

Figure 5 shows a comparison between simulated water levels from the two-dimensional hydrodynamic model and measurements from gauge stations and SWOT. The simulation accurately captured the flow peak at most stations, showing an

335 average BIAS of -0.47 meters in the water level peak. The BIAS ranged from -2.17 meters in the Bom Retiro station to 0.36 meters in the Taquari station. Conversely, the simulation failed to capture low flow at the Taquari River stations, exhibiting difference of -3.5 meters and -3.4 meters for Bom Retiro and Porto Mariate stations, respectively. This suggests an inconsistency in the representation of the river's man channel in the DTM.

340 Performance metrics revealed an average NSE of 0.82, with a range of 0.68 to 0.92. The RMSE averaged 0.71 meters, with values ranging from 0.10 to 1.68 meters. Differences between simulated and observed water levels exhibited relatively low BIAS, ranging from -0.2 to 0.82 meters, with an overall average below 0.07 meters. An exception was noted at the Cais Mauá gauge station, where official records diverged from the simulation after May 15. This discrepancy is explained as a measurement error resulting from the emergency relocation of the station due to flood damage (Collischonn et al., 2024). To ensure accurate flood representation at the location, the simulation was also compared with data from a nearby experimental station (<https://www.tidesatglobal.com/>, accessed in September 2024). This comparison yielded a consistent agreement with the overall results (NSE = 0.85; RMSE = 0.32 meters; BIAS = -0.12 meters). Nevertheless, the metrics obtained demonstrated

Formatted: Centered


Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

the essential requirements for a hydrodynamic model capable of providing locally relevant estimates (Fleischmann et al., 2019).

350 Additionally, the study compared simulated water levels with SWOT observations during the flood event. Both representations aligned well with water level observations from stations. The comparison between the simulation and SWOT observations revealed an average BIAS of 0.13 meters. SWOT data effectively captured water level variations along the main rivers of the Patos Lagoon basin, providing valuable validation for hydrodynamic simulations. Figure 6 displays a profile line obtained by SWOT on May 6th, (near the peak in the RMPA), compared with the simulation for the same overpass (~11h a.m.) between the Jacuí River and Guaíba rivers. Both results exhibited similar water slopes, with SWOT observed a slope of 7.05 cm/km, 355 while the 2D simulation indicated a slope of 6.45 cm/km. These findings underscore the severity of the flood event, as the water slope increased by almost 10 times compared to low-flow conditions.

Formatted: Centered

360 **Figure 5:** Water level simulations (red) compared to observations at twelve gauge stations observations (black) located in the study area, alongside water surface elevation (WSE) data from the SWOT mission (blue). The grey line in the Cais Mauá plot corresponding to the experimental site data, and the dashed line indicates the flood stage at each station.

32.

4.1. Digital terrain model and bathymetry

365 For the two-dimensional simulation of the flood, we used the ANADEM Digital Terrain Model (DTM) product provided by the Brazilian Water and Sanitation Agency (ANA). ANADEM is a freely available DTM for South America that was obtained from the COPERNICUS GLO-30 DEM provided by the European Spatial Agency (ESA) by removing vegetation bias.

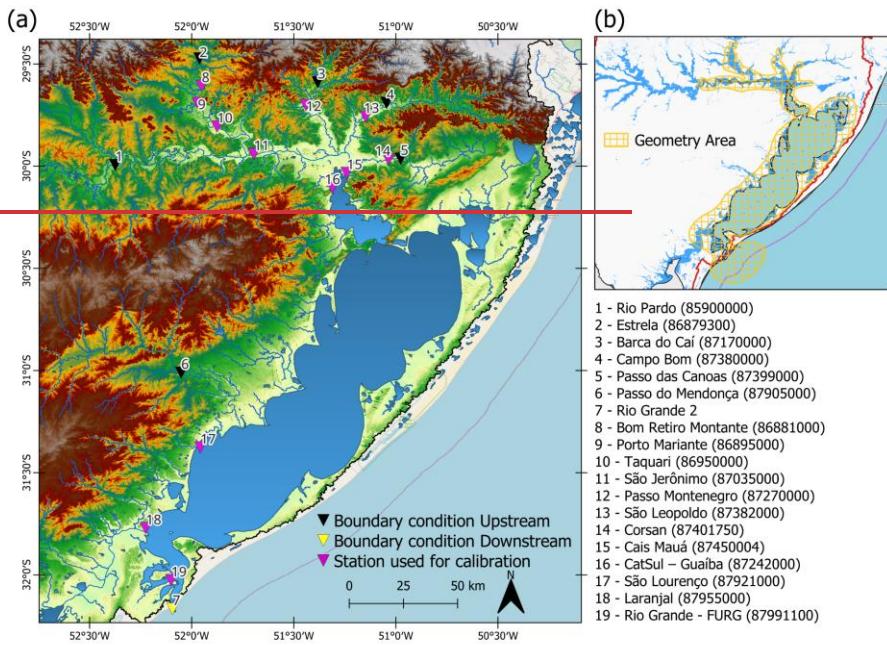
370 To enhance the representation of the water bodies in the hydrodynamic simulation, modifications were implemented in the ANADEM product. For the Jacuí, Gravatáí, Sinos and Cai Rivers, an interpolated bathymetry based on cross sections from different publicly available data was used, developed and validated by . Due to insufficient data for the Taquari River, we reduced the water elevation in the MDT by approximately 4 meters between the upstream boundary condition and the confluence with the Jacuí River, based on manually calibration. The bathymetry for the Guaíba River and Patos Lagoon was derived from digitalized nautical charts provided by the Board Hydrography and Navigation of the Brazilian Navy. Lastly, we incorporated the ocean bathymetry from the General Bathymetric Chart of the Oceans (GEBCO) version 2024 into the MDT to improve the representation of tidal dynamics in the Patos Lagoon estuary.

375 4.2. HEC-RAS model

380 We utilized HEC-RAS software (version 6.4.1), developed by the U.S. Army Corps of Engineers, to simulate the May 2024 flood in the RMPA. The domain area coverage an area of 23,000 km² corresponding to a 650 km reach between upstream Jacuí and the Patos Lagoon outlet to the ocean. It was defined based on streamflow observations available during the flood event. Additionally, we included a 45 km portion of the ocean to represent the tidal effect in the simulation.

385 The simulation employed a two-dimensional hydrodynamic representation based on the shallow water equations. This model accounts for inertia and forces related to gravity, friction, pressure, turbulent viscosity, wind and Coriolis effects.

390 The simulation period ranged from April 28, 2024, to June 1, 2024, including a 10 day initial period for model spin up. We implemented a variable mesh resolution (Figure 2b), applying a 100-meter grid for primary rivers and floodplains, and a 500-meter grid for upland areas to enhance computational efficiency.


395 As upstream boundary condition, we used discharge time series from the main rivers of the the Patos Lagoon Basin. Data were acquired from the Brazilian Water and Sanitation Agency (ANA) network (<https://www.snhr.gov.br/hidrotelemetria/>, accessed in July, 2024) (Figure 2a). Detailed information is provided in Supplementary Table 1. For the downstream boundary condition, we utilized tidal level time series from the Brazilian coast monitoring system (SIMCosta) network (<https://simecosta.furg.br/home>, accessed in August, 2024), located at the Pato Lagoon mouth, which connects to the Atlantic Ocean.

For meteorological inputs, we incorporated wind data from the National meteorological Institute of Brazil (INMET) (<https://bdmep.inmet.gov.br/>, accessed in August, 2024) to represent its impact on the Patos Lagoon and Guaíba River.

Formatted: Font: Not Bold
Formatted: Normal, Space Before: 0 pt, No bullets or numbering
Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm
Formatted: Heading 1, Space Before: 12 pt

Formatted: Space Before: 12 pt, No bullets or numbering
Formatted: Heading 1, Space Before: 12 pt

Winds forces in the simulation were computed based on Eulerian method and using drag formulation, which assumes a logarithmic wind velocity profile, modifying the aerodynamic roughness length in the simulation.

Formatted: Heading 1, Left, Space Before: 12 pt

400 **Figure 2:** The locations and corresponding names of the gauge stations used for upstream conditions (black markers), downstream conditions (yellow markers), and calibration/validation (pink markers) are shown in (a). The delineated geometry area (yellow) used for the two-dimensional simulation is shown in (b).

Formatted: Heading 1, Space Before: 12 pt

405 Initial values of Manning's roughness coefficient were derived from the literature, followed by manual calibration for the study period to ensure optimal accuracy. Supplementary Table 2 presents the Manning's roughness values utilized in this study, varying between 0.025 to 0.035 for the main channel and 0.08 to 0.3 for the floodplains. Prior studies have modelled Patos Lagoon basin using Manning coefficients between 0.015 to 0.04, while values for the Guaíba River have ranged from 0.025 to 0.040. In the absence of specific data, the calibration of Manning's coefficient for the main

channel was based on general hydrodynamic applications. For the floodplain, Manning's roughness coefficient values were calibrated by testing a range from 0.05 to 0.15, following the HEC-RAS manual guidelines.

410 **4.3. Water level, streamflow and flood extent validation**

← Formatted: Space Before: 12 pt, No bullets or numbering

To evaluate the accuracy of the two-dimensional hydrodynamic model, we performed a validation of water levels, streamflow, and flood extent. We utilized water level time series from independent gauge stations situated across the study area, as outlined in Figure 2a (more details in Supplementary Table 3), excluding stations used for boundary conditions.

← Formatted: Heading 1, Space Before: 12 pt

415 The hydrodynamic model's performance was also evaluated using Surface Water and Ocean Topography (SWOT) observations, as previous studies have shown that SWOT data adequately represented the flood event (Lajpelt et al., 2025). SWOT is a collaborative effort between the Centre National d'Etudes Spatiales (CNES) and the National Aeronautics and Space Administration (NASA), providing high-resolution data for oceans and inland water bodies (rivers, lakes, reservoirs and wetlands). Equipped with a Ka-band interferometer sensor, SWOT provides 420 instantaneous observations of water surface elevation (WSE) and water slope for rivers wider than 100 meters, with a revisit frequency of 21 days.

425 The accuracy of the flood extent generated by the two-dimensional model was verified using a high-resolution, clear-sky image captured on May 6, 2024, near the peak flow over the RMPA. This image was captured by the Planet RapidEye constellation which provides imagery with spatial resolution of 5 meters per pixel and includes four multispectral bands (blue, green, red, and infrared). To determine the flood extent from the Planet image, we calculated the Normalized Difference Water Index (NDWI) using Equation 1:

$$NDWI = \frac{(\alpha_{green} - \alpha_{infrared})}{(\alpha_{green} + \alpha_{infrared})} \quad (1)$$

where α_{green} is the green band and $\alpha_{infrared}$ is the infrared band.

430 The accuracy of the simulated streamflow was evaluated by comparing it to 6 field measurements conducted using an Acoustic Doppler Current Profile (ADCP) instrument between May 5, 2024, and May 31, 2024. The measurements were collected from two areas close to the Cais-Mauá station site, and the results are displayed in Table 1, and more details can be found in .

Measurements on days 5 and 6 were made at the cross section of "Ponta da cadeia", while measurements on days 9 to 31 were made 8 km downstream, at the cross section of the "Ponta do Dionisio". Measurements at the "Ponta da cadeia"

435 are possibly underestimations of the total river streamflow, since on days 5 and 6 water was flowing over the floodplains west of the main river, and over the islands of the Jacuí Delta region, by passing the “Ponta da eadeia” cross section.

Table 1: Gauge station used for calibration of the model as well as its location. Source: and Andrade et al. (2024).

Date	Streamflow (m ³ /s)	Cross-section	← Formatted: Heading 1, Left, Space Before: 12 pt
5 May 2024	30,180	Ponta da eadeia	← Formatted: Heading 1, Left, Space Before: 12 pt
6 May 2024	29,852	Ponta da eadeia	← Formatted: Heading 1, Left, Space Before: 12 pt
9 May 2024	23,000	Ponta do Dionísio	← Formatted: Heading 1, Left, Space Before: 12 pt
15 May 2024	22,069	Ponta do Dionísio	← Formatted: Heading 1, Left, Space Before: 12 pt
22 May 2024	8,355	Ponta do Dionísio	← Formatted: Heading 1, Left, Space Before: 12 pt
31 May 2024	7,989	Ponta do Dionísio	← Formatted: Heading 1, Left, Space Before: 12 pt

440 1.4. Performance metrics

The following metrics were used for the water level model's performance: Root Mean Square Error (RMSE), the Nash-Sutcliffe Efficiency coefficient (NSE) and the Mean Average Error (BIAS), as showed in Equations 2, 3 and 4,

respectively. To compare with the observations, the water level time series of the model were extracted from the simulation at the locations corresponding to the gauge stations.

445
$$RMSE = \frac{1}{2} \sqrt{\sum_{i=1}^n (O_i - P_i)^2} \quad (2)$$

$$NSE = 1 - \frac{\sum_{i=1}^n (O_i - P_i)^2}{\sum_{i=1}^n (O_i - \bar{O}_i)^2} \quad (3)$$

$$BIAS = \frac{1}{n} \sum_{i=1}^n (O_i - P_i) \quad (4)$$

where O_i is the observed and P_i the predicted values and n the number of samples.

The flood extent produced by the two-dimensional model was validated by comparing the percentual pixels agreement to the water mask satellite observation based on Equation 5. To ensure compatibility, we adjusted the satellite flood extent's spatial resolution to 30 meters, aligning it with the simulation-generated flood extent.

450
$$H = 100\% \frac{P_{sim} \cap P_{obs}}{P_{obs}} \quad (5)$$

where P_{sim} is the number of flood pixels obtained from the simulation and P_{obs} the number of flood pixels identified with satellite imagery.

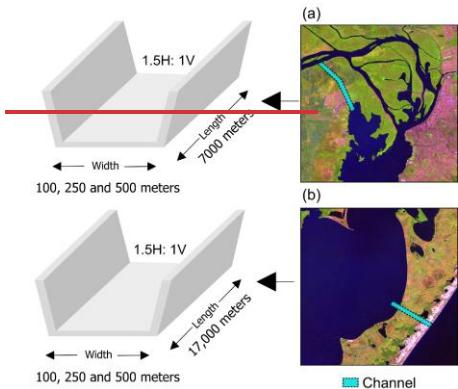
455 **4.5. — Simulation experiments**

← **Formatted:** Space Before: 12 pt, No bullets or numbering

The first main result is the model validation itself, which calculate values were compared to level gauges, streamflow measurements, flood extensions and SWOT altimetry data. These results are followed by studies of the hydraulic mechanisms of the flood, which included the relevance of each river that drains to the Guaíba River water levels and the assessment of the synchronization of the water level peaks that reach the Guaíba River.

← **Formatted:** Heading 1, Space Before: 12 pt

460 Finally, a set of hydraulic interventions experiments was organized. For each experiment, three scenarios were evaluated, varying the channel width from a feasible engineering solution for flood control (100-meter width) to a more challenging solution (500-meter width), with a median alternative (250-meter width). The channels were assigned a Manning's roughness coefficient of 0.02 and integrated into the MDT using HEC-RAS tools. Additionally, for these simulations, a refined mesh with a 50-meter cell size was used to model the intervention areas.


465 The following scenarios for flood control were tested:

Channel connecting Jacuí to Guaíba: This experiment investigated the construction of an open channel connecting the Jacuí and Guaíba River, as shown in Figure 3a. We tested multiple width scenarios (100, 250 and 500 meters), with 7000 meters in length, and its depth adjusted according to upstream and downstream bathymetric data for both rivers.

← **Formatted:** Heading 1, Indent: First line: 0 cm, Space Before: 12 pt

470 **Channel connecting Patos Lagoon to the Ocean:** The second experiment involved designing a hypothetical open channel connecting the Patos Lagoon to the Atlantic Ocean in the northeastern part of the lagoon (Figure 3b). The length of the channel was defined as 17,000 meters, with 10 meters in depth. In this evaluation, we used a tidal water level time series from SIMCosta network (tide gauge: Tramandai; lon: -50.128; lat: -30.005) as the boundary condition at the channel's exit, which was obtained near the proposed channel location and unaffected by the influence of the flood. Due to the absence of an altimetric reference, a correction factor was estimated based on the difference between the Tramandai series and the tide gauge data from Rio Grande in the Patos Lagoon outlet, which has an altimetric

reference. To estimate the correction factor, a different time interval was chosen to avoid the influence of the flood in the Rio Grande time series (between May 2023 and March 2024).

Formatted: Heading 1, Left, Space Before: 12 pt

Figure 3: Three scenarios with different hydraulic structures were evaluated to mitigate flood in the RMPA. (a) An open-channel connecting Jacuí and Guaíba River; (b) A channel connecting Patos Lagoon with the ocean.

Formatted: Heading 1, Space Before: 12 pt

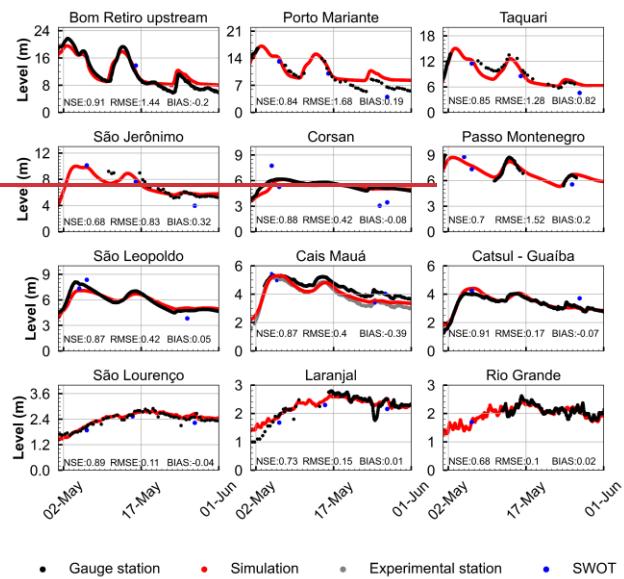
2. Results and Discussion

Formatted: No bullets or numbering

2.1. Model Validation

Water-level

Figure 4 shows a comparison between simulated water levels from the two-dimensional hydrodynamic model and measurements from gauge stations and SWOT. The simulation was able to capture the flow peak in most of the stations, showing an average BIAS of -0.47 meters between the water level peak in the stations, ranging from -2.17 meters in the Bom Retiro station to 0.36 meters in the Taquari station. On the other hand, low flow in the Taquari River stations were not captured by the simulation, with difference of -3.5 meters and -3.4 meters for Bom Retiro and Porto Mariante stations, respectively, suggesting an inconsistency with the representation of the river man channel in the MDT.

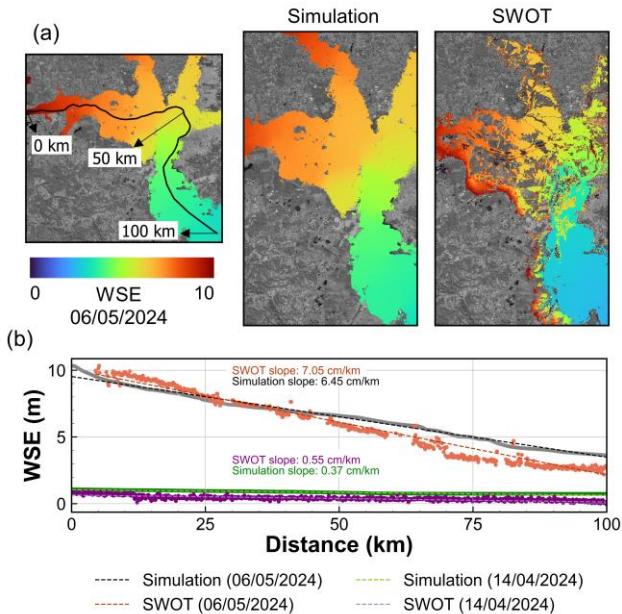

Formatted: Heading 1, Space Before: 12 pt

Performance metrics revealed an average NSE of 0.82, with a range of 0.68 to 0.92. The RMSE averaged 0.71 meters, with values ranging from 0.10 to 1.68 meters. Differences between simulated and observed water levels exhibited relatively low BIAS, ranging from -0.2 to 0.82 meters, with an overall average below 0.07 meters. An exception was noted at the Cais Mauá gauge station, where official records diverged from the simulation after May 15. This discrepancy is explained as a measurement error resulting from the emergency relocation of the station due to flood damage (Collischon et al., 2024). To ensure accurate flood representation at the location, the simulation was also compared with data from a nearby experimental station (<https://www.tidesatglobal.com/>, accessed in September 2024), yielding a consistent agreement with the results (NSE=0.85; RMSE=0.32 meters; BIAS=0.12 meters). Nevertheless, the

500 metrics obtained demonstrated the essential requirements for a hydrodynamic model capable of providing locally relevant estimates.

505 Additionally, the study compared simulated water levels with SWOT observations during the flood event. Both representations aligned well with water level observations from stations. The comparison between the simulation and SWOT observations revealed an average BIAS of 0.13 meters. SWOT data effectively captured water level variations along the main rivers of the Patos Lagoon basin, providing valuable validation for hydrodynamic simulations. Figure 5 displays a profile line obtained by SWOT on May 6, (near the peak in the RMPA) compared with the simulation for the same overpass (~11h a.m.) between Jacuí River and Guaíba River. Both results exhibited similar water slopes, with SWOT observing a slope of 7.05 cm/km, while the 2D simulation indicated a slope of 6.45 cm/km. These findings

underscore the severity of the flood event, as the water slope increased by almost 10 times compared to low-flow conditions.

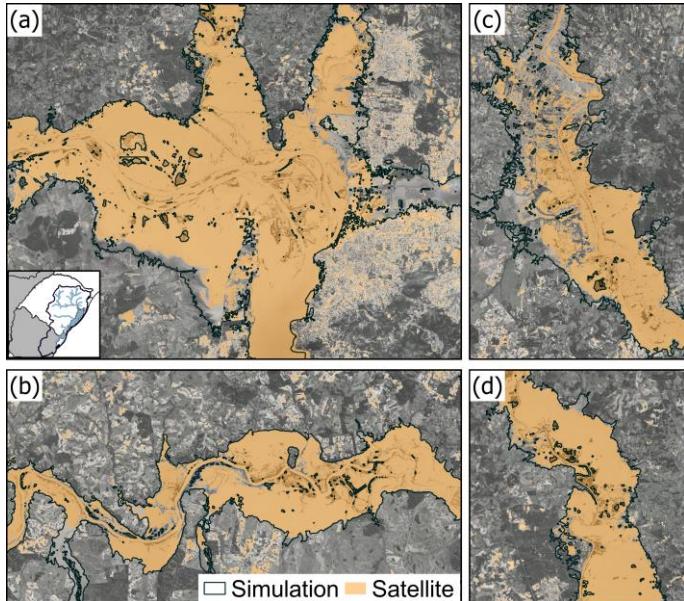


Formatted: Heading 1, Left, Space Before: 12 pt

510

Figure 4: Water-level simulations (red) compared to observations at nine-gauge stations observations (black) located in the study area. Water surface elevation (WSE) from the SWOT mission (blue). The grey line in the Cais Mauá plot corresponding to experimental.

Formatted: Heading 1, Space Before: 12 pt



515 **Figure 56:** Water surface elevation (WSE Water surface elevation) slope from the 2D simulation (a) compared with SWOT data observation from 6-May 6th, for a The profile line between Jacuí and Guaíba River (b) b. Both results showed steep water slope changes (SWOT = 7.05 cm/km and Simulation = 6.45 cm/km) compared to low waters stable conditions (SWOT = 0.55 cm/km and Simulation = 0.37 cm/km).

2.1.2.4.1.2. Flood extent

520 The comparison between the flood extent captured by high-resolution optical satellite imagery and that generated by the 2D simulation is presented in **Figure 67**. While our validation was constrained to the flood extent within the simulation boundaries, excluding peripheral areas affected beyond, the model exhibited strong agreement with the flood extent observed in the May 6 satellite images. The simulation achieved an, achieving 83% agreement with the satellite data according to Equation 5. Nevertheless, this validation approach has certain limitations due to variations in peak flow across the basin. For 525 instance, while the satellite image timing aligns closely with the peak water levels in the RMPA, but it was captured approximately 5 days after the upstream peak (e.g., Taquari River).

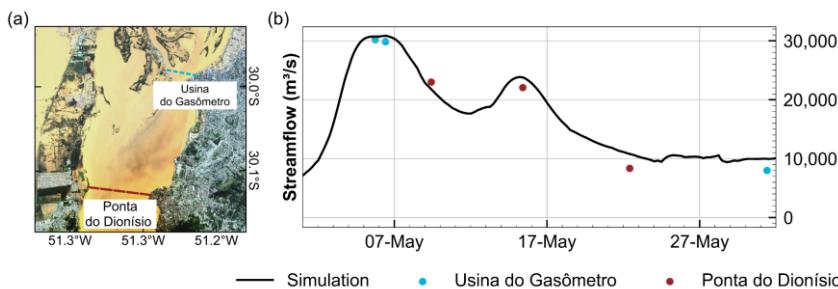
Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Figure 67: Validation of the flood extent using optical satellite images captured by the PlanetScope constellation on May 6, which was near the peak water levels in the RMPA. The simulated flood extent (indicated by the blue-black line) revealed a closely matched the satellite observations, including in the areas of the RMPA (a), Jacuí River (b) and Taquari River (c) and the Cai River (d).

530 revealed a closely matched the satellite observations, including in the areas of the RMPA (a), Jacuí River (b) and Taquari River (c) and the Cai River (d).

2.1.3.4.1.3. Streamflow

Simulated streamflow was compared to field measurements collected during the flood event, as shown in Figure 78.


Measurements were collected from two nearby locations “Ponta do Dionísio” and “Ponta da cadeia” (Figure 7a8a). Due to

535 their proximity of both sections (around approximately 6 km), and the similarity of their measurements, we only compared the simulation results with obtained at the “Ponta do Dionísio” measurements location, as they were very similar. The results indicated that both the magnitude and temporal progression of the simulated streamflow are similar to observations (Figure 7b8b). The observed peak streamflow was 30,180 m³/s on May 5 at 6:00 PM, while the simulation estimated 30,724 m³/s for the same time. The model's overall bias error was 1088 m³/s, corresponding to a percentage error of 5.4%.

540 This error is below the, which is under the expected uncertainty for a measurements under this such extreme conditions

← **Formatted:** Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

(McMillan et al., 2018). For individual sections, the average errors were 1062 m³/s and 1115 m³/s for “Ponta da cadeia” and “Ponta do Dionísio”, respectively.

545 **Figure 78:** Streamflow observations were collected during the 2024 flood in the Guaíba River with Acoustic Doppler Current Profiler (ADCP). Subplot (a) shows the measurements sections instrument in the Ponta do Dionísio (red dash line) and “Ponta da cadeia” (blue dash line) sections (a). Subplot (b) compare these observations were compared with the streamflow simulation data from the two-dimensional model, showing demonstrating good agreement (b).

2.2.4.2. Hydraulic mechanisms of the flood

550 Based on the validated model, we simulated different scenarios in the RMPA to better understand the hydraulic mechanisms that influenced the event. The contribution of the main rivers to the flooding in the RMPA was analysed by eliminating each river’s contribution to assess its impact on flooding levels. Additionally, a possible extreme scenario was simulated, in which the peak flood of the main rivers (Jacuí and Taquari) was synchronized.

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

2.2.4.2.1. River flood contribution

555 The analysis revealed that the Jacuí and Taquari rivers are the primary contributors to RMPA flooding, whereas while the remaining rivers that flow into the Guaíba River (Caí, Gravataí, and Sinos) have a minimal effect on RMPA water levels in general.

Formatted: Space Before: 0 pt, Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Our findings indicated that if the Taquari River’s flood contribution were eliminated (Figure 89, yellow line), the maximum water level would drop from 5.30 to 4.25 meters, highlighting the Jacuí River’s critical role of the Jacuí River in RMPA flooding. This scenario would also result in a delay of the peak water level by approximately 4 days compared to the May flood event.

Conversely, removing the Jacuí River’s contribution (Figure 89, blue line) would make the Taquari River the primary contribution. The Taquari River’s flow characteristics would cause the RMPA peak to occur earlier by about one day.

cause an earlier peak in the RMPA by about 1 day. Under these conditions, the peak water level would be lower, dropping from 5.30 meters to 4.75 meters. Furthermore, the flood behaviour would exhibit two peaks, like the similar to the actual event (Figure 89, black line), which is not observed unlike the scenario where when the Taquari River's contribution was removed.

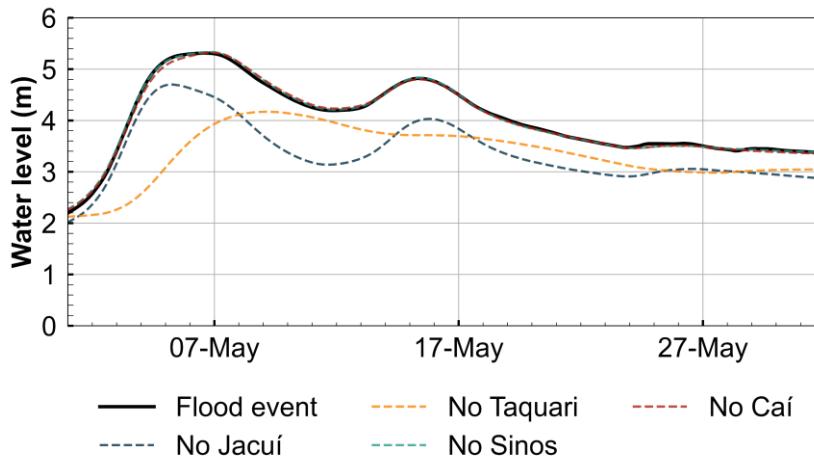


Figure 89: To evaluate the impact of individual each river contributions on RMPA flooding, we eliminated the contributions of individual rivers based on scenarios where each river's input was removed from the simulation (Taquari, Jacuí, Sinos, Gravataí, and Caí). This analysis revealed that the Jacuí and Taquari Rivers are identified as the primary contributors to flooding in the RMPA flood contributions. Excluding the Taquari River's input during the May flood would lower the peak flood level to 4.25 meters, while removing the Jacuí River's contribution would result in a lower the peak flood level of to 4.75 meters. In both scenarios, the peak flood level would still exceed the flood threshold for RMPA cities.

2.2.3.4.2.2. River flood synchronization

We accessed the contribution of Jacuí and Taquari Rivers for the flood in the RMPA. Considering that both rivers have distinct flow propagation regimes, we simulated a scenario in which both Jacuí and Taquari flood peaks would arrive at RMPA at the same time. After several tests, we anticipated the boundary condition hydrograph of the Jacuí River at Rio Pardo by approximately 4 days to represent maximum synchronization.

Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Figure 9-10 presents the simulation results for the synchronized peak flood scenario of the Taquari and Jacuí rivers. This scenario, indicates which indicate an increase in the peak water level peak in the RMPA by 0.82 meters, whereas while the flood extent in this scenario would have increased by 8% over the study area. In this hypothetical scenario, maximum water levels could have been reached nearly 6 meters. This maximum level is which is equivalent to the estimated to be the actual design maximum flood level of the protection system for the city of Porto Alegre, the state's capital.

585

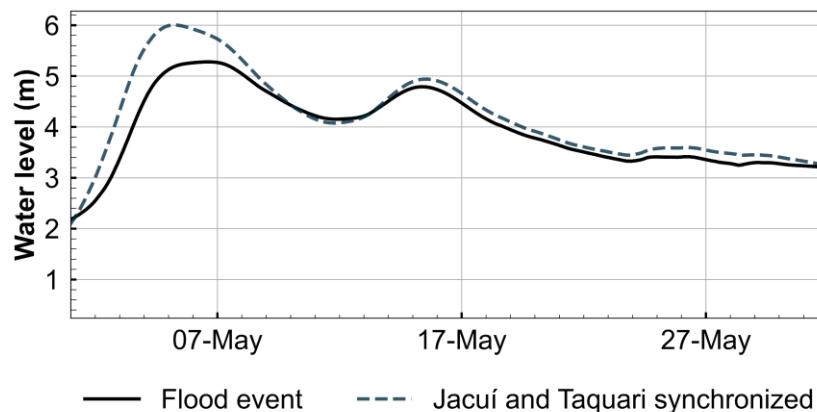


Figure 910. Comparative of the flood event water level simulation (black line) and synchronizing synchronized water level peak of the Jacuí and Taquari Rivers (grey dashed line) arriving in Porto Alegre (grey dashed line). In the RMPA, the maximum water level peak in the RMPA increased to 6 meters, suggesting a worsened scenario that could potentially surpass flood control systems.

590

4.3. Hydraulic interventions for flood control

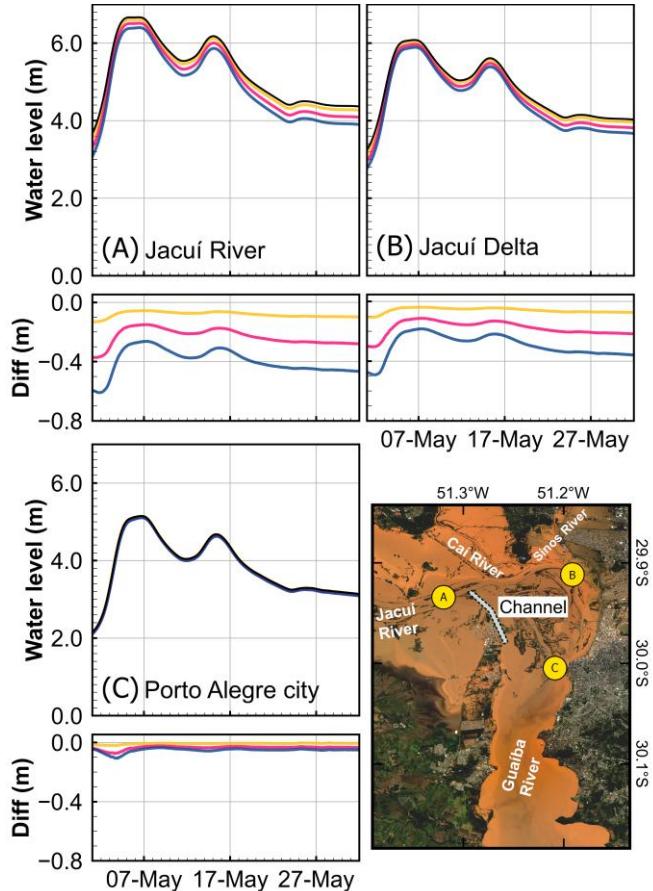
2.2.

595

2.2.5.4.3.1. Jacuí-Guaíba channel

Results from the this experiment modelling the impact of a new channel connecting the Jacuí and Guaíba River rivers were analysed at specific locations within the study area are presented in Figure 11. At Point A (Figure 40a11a), located upstream from of the channel structure, the maximum water level decreased by 0.10 meters for the 100-meter width scenario and 0.27 meters for the 500-meter width scenario. At Point B, located in the northeastern part portion of the Jacuí Delta (Figure 40b11b), the channel's effectiveness was less pronounced, resulting in water level reductions of 0.05 meters (100-meter width),

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm


Formatted: Normal, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Formatted: Space Before: 0 pt, Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Formatted: Font: Bold

0.12 meters (250-meter width), and 0.19 meters (500-meter width) across the evaluated scenarios. At~~Finally, at~~ the Cais Mauá station (Point C), the flow peak in representing the Porto Alegre showed minimal change~~reach~~ (Figure 10e11c), the peak flow showed negligible variation,~~–~~ with the maximum water level decreasing by less than 0.10 meters in all scenarios~~–~~ tested scenarios.

605 Thus~~Overall~~, the proposed structural intervention to reduce~~lower~~ water levels over the Guaíba River and the Jacuí Delta seems ineffective. The simulated reductions~~Water level reduction~~ promoted by this intervention are small compared to the water level variation during the flood and compared to the model's uncertainty range~~–~~. Even ~~–~~with the widest channel configuration~~design~~—which ~~would~~ require the most significant engineering~~–~~ intervention and financial~~–~~ investment—would~~the~~ result in~~s~~ show that water level reductions would be small~~only~~ minor reduction in water levels.

610

Figure 4011. Evaluated scenario for mitigating flooding in the RMPA involved a channel connecting the Jacuí and Guaíba [Rivers](#). Points A, B, and C illustrate the channel's effectiveness in reducing water levels around the Jacuí Delta.

2.2.6.4.3.2. Patos Lagoon channel

According to [the](#) model results (Figure 4112), the [connection-construction of a new channel between connecting](#) the Patos

615 Lagoon [and-to](#) the Atlantic Ocean [by a new channel](#) could lower [the](#) average water levels [in the](#) [within the](#) lagoon, while

Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

having minimal impact on the maximum flow peak upstream in the Guaíba River. The water levels at the Point C (Cais Mauá station location), the maximum water level showed negligible change indicated that the maximum flow peak remained unchanged, with reductions a decreasing of less than 0.10 meters of the maximum water level in across all the simulated scenarios. On the other hand Conversely, the results indicate a reduction in it was noted a decrease of the flood duration by of

620 approximately two days compared to the May flood event (Figure 44a12a).

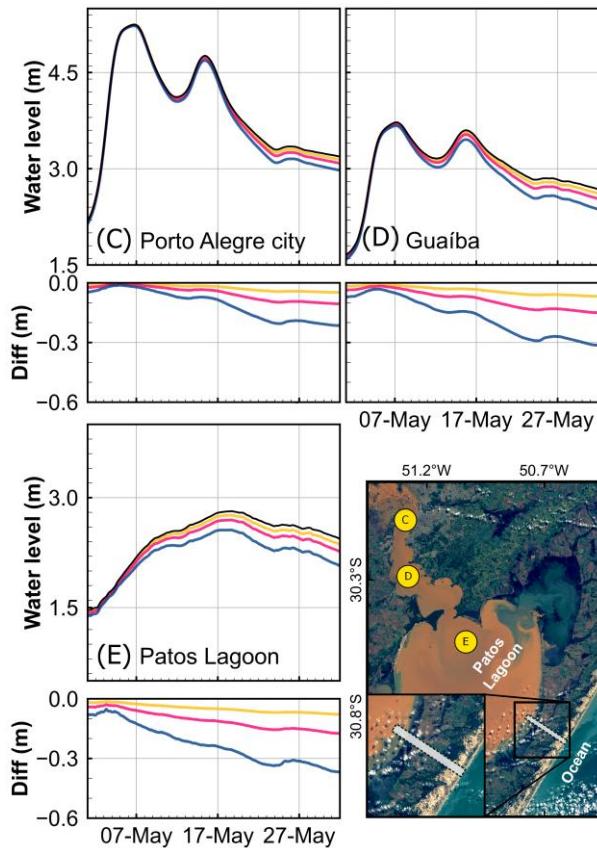
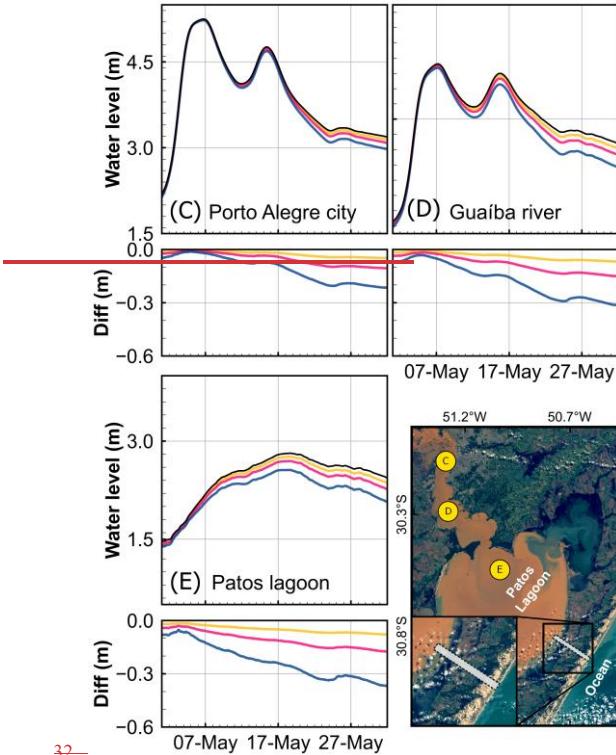



Figure 12. Second evaluated flood mitigation scenario for scenario for mitigating flooding in the RMPA considered the construction of a channel connecting the Patos Lagoon and the Atlantic Ocean in the its northeastern part of the lagoonportion.

625 Points C, D and E illustrated the influence of the channel in reducing flooding in the region.

Similar results were observed at Point D (Figure 44b12b) and Point E (Figure 44e12c), where the proposed hydraulic intervention ~~was proved not effective ineffective~~ in reducing the water level peak, although it did ~~reduce contribute to the average water level and flood duration~~ ~~a slight decrease in average water levels and flood duration~~. At Point D, located in the 630 ~~middle central-southern part reach~~ of the Guaíba River, the reduction in the maximum peak was minimal (~~same as comparable to that observed at for~~ Point E). However, the ~~water levels showed simulations indicated~~ maximum decreases of 0.07 meters for the 100-meter scenario, 0.15 meters for the 250-meter scenario, and 0.33 meters for the 500-meter scenario. At Point E, within the lagoon, The the maximum reductions ranged from decrease in water levels observed at Point E ranged from -0.08 meters (100-meter scenario) to 0.39 meters (500-meter scenario) in the lagoon.

635 Considering Given that none of the three scenarios demonstrated evaluated scenarios produced significant changes in water levels across the evaluated regions study area, the proposed structural measure appears ineffective for mitigating future flood events in the RMPA, we conclude that the proposed structural measure is ineffective in preventing further flood events in the RMPA.

Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

640

32.

5. Figure 11. Second evaluated scenario for mitigating flooding in the RMPA considered a channel connecting the Patos Lagoon and the Atlantic Ocean in the northeast part of the lagoon. Points C, D and E illustrated the influence of the channel in reducing flood in the region. Discussion

645

5.1. Model performance compared previous studies

In this study, we calibrated and validated a two-dimensional hydrodynamic model using HEC-RAS software to simulate the extreme May 2024 flood event within the Patos Lagoon basin in southern Brazil. The model showed an overall robust performance, achieving an average RMSE of 0.71 meters, a NSE of 0.82 and a flood area reproduction rate of 83% on the validation dataset.

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

650 Regarding accuracy, the model exhibited an error of approximately -9% compared to the maximum water peak observed in the Guaiá River, and -23% over long-term water levels. This level of accuracy is relatively consistent with current studies employing 2D hydrodynamic models in moderate to large basins. Furthermore, the difference between minimum flood level and historic flood peaks in the basin is significantly higher than the average bias found. For instance, the historic floods of May 2024 (5.2 meters) and May 1941 (4.75 meters) are substantially higher than the minimum flood level of 3 meters (at Cais
655 Mauá gauge station).

Our performance metrics are competitive with both regional and international studies utilizing similar modelling frameworks (Bhargav et al., 2025; Gomes Calixto et al., 2020; Shustikova et al., 2019). For instance, Shustikova et al (2019) reported an RMSE of 0.84 meters and a 77% flood-extent accuracy using a 100-meter subgrid mesh in HEC-RAS 2D to simulate a flood event in Italy. Similarly, Gomes et al (2021) employed HEC-RAS 2D in a northeastern Brazil and reported an 82% reproduction of the observed flood extent, which is comparable to the overall accuracy achieved in our study. Bhargav et al (2025) applied HEC-RAS to simulate floods in the lower portion of the Narmada Basin (<10,000 km²) in India, achieving an average NSE of 0.75 and an RMSE of 0.17 meters. Although their RMSE average is lower, it is important to note that our model represents an extreme flood event across a much larger system (~180,000 km²) influenced by multiple rivers inflows, highlighting the inherent challenges of hydrodynamic modelling in large basins and complex systems. Even given these 660 conditions, we achieved RMSE values comparable to those for some of the rivers (see Figure 5).

Regarding studies focused on mitigation scenarios, the baseline accuracy of the proposed model is also consistent with those typically used for planning and policy evaluation (Gomes Calixto et al., 2020; Timbadiya et al., 2015). For instance, Timbadiya (2022) calibrated a 2D hydrodynamic model to evaluate the impact of proposed structures on flooding in the Narmada River, and obtained an RMSE of 0.84 meters and an NSE of 0.79. In the same context, Gomes Calixto et al. (2020) obtained an 665 average NSE of 0.87 performance using a 2D model to assess flood-mitigation strategies in São Paulo.

was able to found effectively flood control system for th

Formatted: Font: Bold

2.4.5.2. Uncertainties regarding the two-dimensional model

In this study we calibrated and validated a two-dimensional hydrodynamic model using HEC-RAS software to simulate the May 2024 flood in southern Brazil, Patos Lagoon basin. There are some limitations regarding the model design for evaluating

675 flooding in the study region. First, the results are depended on the DTM model data and bathymetry accuracy, which may reproduce flow propagation uncertainties due to DTM errors or limitations in its spatial resolution (30 meters). We used the ANADEM model, which demonstrates some accuracy improvements compared to other publicly available DEMs such as SRTM, COPDEM and FABDEM (Laipelt et al., 2024) for South America, with simulation results showing good agreement with observation data. Second, the upstream boundary conditions used in the model's design do not cover all the tributaries 680 rivers of the study region due to lack of in-situ observations, which may lead to local underestimations. We expect that the

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

complete set up of independent sources validations adopted, including measured streamflow's, level gauges, satellite flooded areas and water slopes serves as quality control for models' system good representation and uncertainties understanding.

On the other hand, it is important to note that there are also uncertainties regarding the observation data used for validation. A report by Paiva et al. (2025) indicated uncertainties in the extrapolation of the rating curve, particularly in locations such as 685 Rio Pardo on the Jacuí River and at points along the Taquari River, which are localities that contributed significantly to the flood formation. These uncertainties in the stage-discharge relationship for extreme flows may explain some of the localized differences observed between the simulated and observed water levels.

Formatted: Font color: Black

Formatted: Font color: Black

Among the flood mitigation scenarios, we additionally evaluated the sensitivity of the simulation for different parameters and 690 proposed structures. Manning's roughness coefficient for the water bodies may influence the potential of the channels to mitigate flooding in the study region. Our sensitivity analysis showed that varying Manning's roughness coefficient in the Guába River between 0.025 to 0.045 would influence water flow peak in the Cais Mauá station (Point C) in -0.91 meters and 0.32 meters, respectively.

Furthermore, we utilized SWOT altimetry observations to verify the model's water level accuracy and to confirm water slope 695 during the event, yielding results that aligned well with simulations. The application of SWOT mission data proved to be a valuable resource for acquiring information in areas with limited monitoring, enhancing our comprehension of flood dynamics and serving as supplementary data for validating hydrodynamic models.

2.5.5.3. Recommendations for flooding management strategies in the region

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Measures to mitigate flooding impacts are urgent need for locations that are experiencing an increase in in extreme flood events 700 due to climate change (Alfieri et al., 2016; Wang et al., 2022; Wasko et al., 2021), as is the case of southern Brazil. We assessed different flooding scenarios based on the unprecedented flood that devasted the RMPA in May 2024, focusing on its potential impact on densely populated areas.

The evaluation of river contributions and synchronized scenarios highlights the potential of hydrodynamic models for flood 705 management, which has been demonstrated in many other studies(de Arruda Gomes et al., 2021; Bhargav et al., 2025; Gomes Calixto et al., 2020; Guse et al., 2020; Wulandari et al., 2025). Wulandari et al (2025) used HEC-RAS 2D to reproduce an extreme flood event in Indonesia and identified their Tallo River's main individual role int the event. Similarly, Guse et al (2020) analysed large German and Austrian river systems and evaluated the consequences of synchronized tributary rivers with the main river to floods.

Our results indicate that forecasting systems should prioritize accurate predictions of these Jacuí and Taquari rivers, including 710 their timing relative to one another, as small changes in peak alignment can produce large impacts on the RMPA, in addition to the impact on cities alongside both rivers

Moreover, ~~Other~~ results ~~regarding~~ of the hydraulic interventions showed that even the most effective configuration could only reduce peak flows by nearly 13% in the capital Porto Alegre, which is insufficient to prevent flooding in the affected areas. These findings suggest that the hydraulic interventions tested in this study would be of limited benefit in reducing the flooding due to the extreme rainfall in May 2024.

In this context, studies indicates that structural measures such as dike walls, levees may not be the most effective strategies for flood mitigation in the context of climate change (Alfieri et al., 2016; Burrell et al., 2007; Serra-Llobet et al., 2022), and in some scenarios could potentially increase flood hazard (Blöschl, 2022; Ommer et al., 2024). The implementation of protective structures also encourages development and investment in high-risk areas, potentially leading to more severe consequences

715 when its failure, phenomenon known as the “levee effect” (Di Baldassarre et al., 2018). For instance, Porto Alegre’s flood protection system, developed in the 1970s following historic floods in 1941 and 1967, the false sense of security encouraged increased urban development near these systems, which were the areas most affected during the May 2024 flood. The city Canoas, the second most populated city in the RMPA, experienced similar issues, with urbanization near its dike systems resulting in failures and a high number of houses being impacted by flooding (Collischonn et al., 2025).

720 725 To reduce the consequences of extreme flood events in the Patos Lagoon basin more non-structural interventions seems relevant. These included adopting zoning policies to limit development in flood-prone areas (Poussin et al., 2012; De Risi et al., 2015; Serra-Llobet et al., 2022). For example, spatial zoning measures in the Netherlands were found to have a risk reduction capacity of 25 to 45% (Poussin et al., 2012). Other important non-structural approaches include early warning systems, flood forecasting, and efforts to increase public awareness and improve behaviour responses to floods (Alfieri et al.,

730 735 740 Additionally, collaborative framework with public participation can also lead to more cost-efficient solutions to increase flood risk assessments across communities (Henriksen et al., 2018). The advantages of non-structural measures included lower costs, greater sustainability, and easier of implementation (Dawson et al., 2011; Kundzewicz, 2002). Therefore, cities can mitigate flood risks by reducing population exposure to extreme floods without relying solely on structural solutions (Hall et al., 2006; Majidi et al., 2019), due to their complexity and high maintained costs, and often only minimize impacts, and are challenging to adapt to climate change scenarios (Burrell et al., 2007; Serra-Llobet et al., 2022).

6. Conclusion

2. Conclusion

740 Our study evaluated different flood scenarios in southern Brazil’s RMPA region, based on historical ~~flood~~-May 2024 flood. The analysis ~~was based using~~~~was conducted using~~ 2D hydrodynamic modelling, which was validated using water level, flood extent and streamflow data, demonstrating accurate representation of the May 2024 event.

Our findings ~~address the following scientific questions~~ are summarized as follow:

Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

Formatted: Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0 cm + Indent at: 0.63 cm

745 (i) The Taquari River was responsible for most of the flow peaks in the RMPA, while the Jacuí River contributed to the flood's duration. Others (Caí, Sinos and Gravataí) flowing into the Guaíba River did not significantly impact overall water levels in the RMPA, although contributed to localized flooding.

750 (ii) Synchronized flow peaks of the Jacuí and Taquari Rivers in the Guaíba River would have increased water levels by 0.82 meters, exacerbating the flood scenario in the RMPA. At the Cais Mauá station, water levels would have exceeded 6 meters, surpassing the threshold for the flood protection system developed for the city of Porto Alegre. This scenario, constructed using May 2024 flood conditions but advancing the Jacuí River's flow peak by approximately 4 days, presents a significant risk to the state capital and remains plausible under heavy rainfall conditions common in the region.

755 (iii) The proposed hydraulic structures of additional channels alternatives would not have been sufficient to prevent RMPA flooding entirely. Our results also indicated that the degree of flood mitigation structures would not have been uniform across the RMPA. This spatial disparity in performance suggests that the limited overall impact may be linked to a combination of factors, including the specific design of the interventions, local hydrogeomorphic features, and the unprecedented magnitude of the flood event itselfsuggested that the reduction in flooding would depend on location, despite having minimum effectiveness for the cities surrounding the severely affected RMPA.

760 We want to highlight the delimitations of these experiments, which only consider hydraulic impacts within the Patos Lagoon basin. Implementing interventions in the natural hydrodynamic system must account for factors such as engineering availability, implementation costs, and maintenance expenses. Additionally, these hydrodynamic alterations could negatively impact the environment, potentially causing erosion, navigation issues, reduced agriculture productivity and salinization, particularly in the case of an open channel connecting the Patos Lagoon to the ocean.

765 The analyses reported in this study can aid decision-makers in improving flood management strategies for RMPA region, emphasizing the vital role of hydrodynamic models in predicting and evaluating hydraulic interventions, as well as identifying opportunities for non-structural measures. Future research should benefit of high-resolution (1 to 5 meters) data based on Light Detection and Ranging (LiDAR) sensors to assess the impact of urbanization on regional flooding and identify risk zones in the context of increased flooding due to climate change.

770 Finally, this research advances a methodological framework predicated on multi-source data integration for the robust performance assessment of hydrodynamic simulations. By incorporating multiple, independent observational datasets, we significantly enhanced the model's predictive accuracy and its fidelity in reproducing this flood eventFinally, from a broader worldwide perspective, We expect that the presented methods will serve as a reference for studies in other locations, as well as for analyses of the efficiency of structural measures for flood control. we expected that the presented methods would serve as a framework benchmark for other locations studies regarding climate change and floods adaptation, and that our results can serve as example for structural and non-structural measures selection and evaluation.

Data availability

The water level data used in this study are provided by the Brazilian Water Agency and Sanitation (ANA) (https://www.snhirh.gov.br/hidrotelemetria/, accessed in July, 2024). The tidal data is available at the SIMCosta platform (https://simcosta.furg.br/home, accessed in August, 2024). The meteorological data are available at (https://bdmep.inmet.gov.br/, accessed in August, 2024) by the National Meteorological Institute of Brazil (INMET). SWOT data can be accessed through the NASA Earth Data repository (https://search.earthdata.nasa.gov/search, accessed in June, 2024). The digital terrain model (DTM) is publicly available on Google Earth Engine platform.

785

Author contributions

LL, FMF and RCDP contributed to the study's conception and design. LL and FMF wrote the manuscript draft. LL performed model simulations analysed the data. RCDP, MS, WC, ~~EET~~ and AR reviewed and edited the manuscript.

790

Competing interests

The author declares that there is no conflict of interest.

Acknowledgement

795 The authors would like to gratefully acknowledge the support of the Google Earth Engine team. We thank the Brazilian National Water and Sanitation Agency (ANA) and the Geological Service of Brazil (SGB) for their efforts in providing high-quality in-situ observations during the 2024 floods. We also thanks CNES and NASA for making SWOT mission data publicly available. We also thank the reviewers for their valuable contribution for the final version of the manuscript.

800 Financial support

This research has been supported by the Brazilian National Council for Scientific and Technological Development (CNPq).

References

805 Abdella, K. and Mekuanent, F.: Application of hydrodynamic models for designing structural measures for river flood mitigation: the case of Kulfo River in southern Ethiopia, *Model Earth Syst Environ.*, 7, 2779–2791, <https://doi.org/10.1007/s40808-020-01057-5>, 2021.

Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, *Environ Sci Policy*, 21, 35–49, <https://doi.org/10.1016/j.envsci.2012.01.008>, 2012.

810 Alfieri, L., Feyen, L., and Di Baldassarre, G.: Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies, *Clim Change*, 136, 507–521, <https://doi.org/10.1007/s10584-016-1641-1>, 2016.

Alves, M. E. P., Fan, F. M., Paiva, R. C. D. de, Siqueira, V. A., Fleischmann, A. S., Brêda, J. P., Laipelt, L., and Araújo, A. A.: Assessing the capacity of large-scale hydrologic-hydrodynamic models for mapping flood hazard in southern Brazil, *RBRH*, 27, 2022.

815 Andrade, M. M., Piazera, M., Luz, R. da, Nunes, J. C. R., Scottá, F., and Silva, T.: Flow measurements with ADCP on the Guaíba River, during the highest water level recorded in history - May 2024 (floods in the State of Rio Grande do Sul, Brazil), *RBRH*, 29, 2024.

António, M. H. P., Fernandes, E. H., and Muelbert, J. H.: Impact of Jetty Configuration Changes on the Hydrodynamics of the Subtropical Patos Lagoon Estuary, Brazil, *Water (Basel)*, 12, <https://doi.org/10.3390/w12113197>, 2020.

820 de Arruda Gomes, M. M., de Melo Verçosa, L. F., and Cirilo, J. A.: Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation, *Natural Hazards*, 108, 3121–3157, <https://doi.org/10.1007/s11069-021-04817-3>, 2021.

Ávila, A., Justino, F., Wilson, A., Bromwich, D., and Amorim, M.: Recent precipitation trends, flash floods and landslides in southern Brazil, *Environmental Research Letters*, 11, 114029, <https://doi.org/10.1088/1748-9326/11/11/114029>, 2016.

825 Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Llasat, C., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Scolobig, A., Viglione, A., and Ward, P. J.: Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection, *Hydrol Earth Syst Sci*, 22, 5629–5637, <https://doi.org/10.5194/hess-22-5629-2018>, 2018.

Bartiko, D., Oliveira, D. Y., Bonumá, N. B., and Chaffe, P. L. B.: Spatial and seasonal patterns of flood change across Brazil, *Hydrological Sciences Journal*, 64, 1071–1079, <https://doi.org/10.1080/02626667.2019.1619081>, 2019.

830 Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, *J Hydrol (Amst)*, 236, 54–77, [https://doi.org/https://doi.org/10.1016/S0022-1694\(00\)00278-X](https://doi.org/https://doi.org/10.1016/S0022-1694(00)00278-X), 2000.

Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, *Hydrol Process*, 17, 537–557, <https://doi.org/https://doi.org/10.1002/hyp.1113>, 2003.

835 Bhargav, A. M., Suresh, R., Tiwari, M. K., Trambadia, N. K., Chandra, R., and Nirala, S. K.: Development of a 2D hydrodynamic model for flood assessment for the lower Narmada basin, Gujarat (India), *Journal of Water and Climate Change*, 16, 1567–1585, <https://doi.org/10.2166/wcc.2025.706>, 2025.

Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission and Its Capabilities for Land Hydrology, *Surv Geophys*, 37, 307–337, <https://doi.org/10.1007/s10712-015-9346-y>, 2016.

840 Blöschl, G.: Three hypotheses on changing river flood hazards, *Hydrol Earth Syst Sci*, 26, 5015–5033, <https://doi.org/10.5194/hess-26-5015-2022>, 2022.

Brêda, J. P. L. F., Cauduro Dias de Paiva, R., Siqueira, V. A., and Collischonn, W.: Assessing climate change impact on flood discharge in South America and the influence of its main drivers, *J Hydrol (Amst)*, 619, 129284, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129284>, 2023.

845 Burrell, B. C., Davar, K., and Hughes, R.: *A Review of Flood Management Considering the Impacts of Climate Change*, *Water Int.*, 32, 342–359, <https://doi.org/10.1080/02508060708692215>, 2007.

Cai, T., Li, X., Ding, X., Wang, J., and Zhan, J.: *Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique*, *International Journal of Disaster Risk Reduction*, 35, 101077, <https://doi.org/https://doi.org/10.1016/j.ijdrr.2019.101077>, 2019.

850 Cavalcante, M. R. G., da Cunha Luz Barcellos, P., and Cataldi, M.: *Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model*, *Natural Hazards*, 102, 1117–1134, <https://doi.org/10.1007/s11069-020-03948-3>, 2020.

Chagas, V. B. P., Chaffé, P. L. B., and Blöschl, G.: *Climate and land management accelerate the Brazilian water cycle*, *Nat Commun.*, 13, 5136, <https://doi.org/10.1038/s41467-022-32580-x>, 2022.

855 Chow, V. Te: *Open-channel Hydraulics*, McGraw-Hill, 1959.

Collischonn, W., Ruhoff, A., Filho Cabeleira, R., Paiva, R., Fan, F., and Possa, T.: *Chuva da cheia de 2024 foi mais volumosa e intensa que a da cheia de 1941 na bacia hidrográfica do Guaíba*, Porto Alegre, 1–8 pp., 2024.

Collischonn, W., Fan, F. M., Possantti, I., Dornelles, F., Paiva, R., Sampaio, M., Michel, G., Magalhães Filho, F. J. C., Moraes, S. R., Marcuzzo, F. F. N., Michel, R. D. L. M., Beskow, T. L. C., Beskow, S., Fernandes, E., Laipelt, L., Ruhoff, A., Kobiyana, M., Collares, L. G., Buffon, F., Duarte, E., Lima, S., Meirelles, F. S. C., and Allasia, D.: *The exceptional hydrological disaster of April-May 2024 in southern Brazil*, *Revista Brasileira de Recursos Hídricos*, 1, <https://doi.org/10.1590/2318-0331.302520240119>, 2025.

860 Damião Mendes, M. C. and Cavalcanti, I. F. A.: *The relationship between the Antarctic oscillation and blocking events over the South Pacific and Atlantic Oceans*, *International Journal of Climatology*, 34, 529–544, <https://doi.org/https://doi.org/10.1002/joc.3729>, 2014.

Dawson, R. J., Ball, T., Werrity, J., Werrity, A., Hall, J. W., and Roche, N.: *Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change*, *Global Environmental Change*, 21, 628–646, <https://doi.org/https://doi.org/10.1016/j.gloenvcha.2011.01.013>, 2011.

DRRS: Programa do Governo Holandês de Redução de Risco de Desastres e Suportes a Surtos (DRRS). Final Report., 2024.

870 Durand, M., Fu, L.-L., Lettenmaier, D. P., Alsdorf, D. E., Rodriguez, E., and Esteban-Fernandez, D.: *The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies*, *Proceedings of the IEEE*, 98, 766–779, <https://doi.org/10.1109/JPROC.2010.2043031>, 2010.

Dutta, D., Alam, J., Umeda, K., Hayashi, M., and Hironaka, S.: *A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin*, *Hydrological Processes*, 21, 1223–1237, <https://doi.org/https://doi.org/10.1002/hyp.6682>, 2007.

875 Fernandes, E., Dyer, K. R., and Niencheski, L. F.: *TELEMAC-2D calibration and validation to the hydrodynamics of the Patos Lagoon (Brazil)*, *J Coast Res*, 34, 470–488, 2001.

880 [Fernandes, E. H. L., Dyer, K. R., Moller, O. O., and Niencheski, L. F. H.: The Patos Lagoon hydrodynamics during an El Niño event \(1998\), *Cont Shelf Res.* 22, 1699–1713, \[https://doi.org/https://doi.org/10.1016/S0278-4343\\(02\\)00033-X\]\(https://doi.org/https://doi.org/10.1016/S0278-4343\(02\)00033-X\), 2002.](https://doi.org/https://doi.org/10.1016/S0278-4343(02)00033-X)

881 [Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., and Bates, P. D.: Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data, *Physics and Chemistry of the Earth, Parts A/B/C*, 36, 281–291, <https://doi.org/https://doi.org/10.1016/j.pce.2010.12.011>, 2011.](https://doi.org/https://doi.org/10.1016/j.pce.2010.12.011)

882 [Fleischmann, A., Paiva, R., and Collischonn, W.: Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison, *J Hydrol* X, 3, 100027, <https://doi.org/https://doi.org/10.1016/j.hydroa.2019.100027>, 2019.](https://doi.org/https://doi.org/10.1016/j.hydroa.2019.100027)

883 [François, F. S.: Modelagem hidrodinâmica de áreas suscetíveis a inundação no município de nova Santa Rita \(RS\), Trabalho de Conclusão de curso, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2021.](https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.125001)

884 [Fu, L.-L., Pavelsky, T., Cretaux, J.-F., Morrow, R., Farrar, J. T., Vaze, P., Sengenes, P., Vinogradova-Shiffer, N., Sylvestre-Baron, A., Picot, N., and Dibarbour, G.: The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water, *Geophys Res Lett.* 51, e2023GL107652, <https://doi.org/https://doi.org/10.1029/2023GL107652>, 2024.](https://doi.org/https://doi.org/10.1029/2023GL107652)

885 [GEBCO: GEBCO 2024 Grid, <https://doi.org/doi:10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f>, 2024.](https://doi.org/https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f)

886 [Ghanbarpour, M. R., Salimi, S., and Hipel, K. W.: A comparative evaluation of flood mitigation alternatives using GIS-based river hydraulics modelling and multicriteria decision analysis, *J Flood Risk Manag.* 6, 319–331, <https://doi.org/https://doi.org/10.1111/jfr3.12017>, 2013.](https://doi.org/https://doi.org/10.1111/jfr3.12017)

887 [Gomes Calixto, K., Wendland, E. C., and Melo, D. de C. D.: Hydrologic performance assessment of regulated and alternative strategies for flood mitigation: a case study in São Paulo, Brazil, *Urban Water J.* 17, 481–489, <https://doi.org/https://doi.org/10.1080/1573062X.2020.1773509>, 2020.](https://doi.org/https://doi.org/10.1080/1573062X.2020.1773509)

888 [Guse, B., Merz, B., Wietzke, L., Ullrich, S., Viglione, A., and Vorogushyn, S.: The role of flood wave superposition in the severity of large floods, *Hydrol Earth Syst Sci.* 24, 1633–1648, <https://doi.org/https://doi.org/10.5194/hess-24-1633-2020>, 2020.](https://doi.org/https://doi.org/10.5194/hess-24-1633-2020)

889 [Hall, J. W., Sayers, P. B., Walkden, M. J. A., and Panzeri, M.: Impacts of climate change on coastal flood risk in England and Wales: 2030–2100, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.* 364, 1027–1049, <https://doi.org/https://doi.org/10.1098/rsta.2006.1752>, 2006.](https://doi.org/https://doi.org/10.1098/rsta.2006.1752)

890 [Hammond, J. C., Anderson, B., Simeone, C., Brunner, M., Munoz-Castro, E., Archfield, S., Magee, E., and Armitage, R.: Hydrological whiplash: Highlighting the need for better understanding and quantification of sub-seasonal hydrological extreme transitions, *Hydrol Process.* 39, <https://doi.org/https://doi.org/10.1002/hyp.70113>, 2025.](https://doi.org/https://doi.org/10.1002/hyp.70113)

891 [Heinrich, P., Hagemann, S., Weisse, R., Schrum, C., Daewel, U., and Gaslikova, L.: Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe, *Natural Hazards and Earth System Sciences.* 23, 1967–1985, <https://doi.org/https://doi.org/10.5194/nhess-23-1967-2023>, 2023.](https://doi.org/https://doi.org/10.5194/nhess-23-1967-2023)

892 [Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Lauzel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, *Hydrol Earth Syst Sci.* 23, 3117–3139, <https://doi.org/https://doi.org/10.5194/hess-23-3117-2019>, 2019.](https://doi.org/https://doi.org/10.5194/hess-23-3117-2019)

Henriksen, H. J., Roberts, M. J., van der Keur, P., Harjanne, A., Egilson, D., and Alfonso, L.: Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management, *International Journal of Disaster Risk Reduction*, 31, 1295–1306, [https://doi.org/https://doi.org/10.1016/j.ijdr.2018.01.038](https://doi.org/10.1016/j.ijdr.2018.01.038), 2018.

915 Hillman, G., Rodriguez, A., Pagot, M., Tyrrell, D., Corral, M., Oroná, C., and Möller, O.: 2D Numerical Simulation of Mangueira Bay Hydrodynamics, *J Coast Res*, 2010, 108–115, <https://doi.org/10.2112/1551-5036-47.sp1.108>, 2007.

Hsu, S. A.: Coastal Meteorology, in: *Encyclopedia of Physical Science and Technology*, Elsevier, 155–173, <https://doi.org/10.1016/B0-12-227410-5/00114-9>, 2003.

920 Hunt, J. D., Silva, C. V., Fonseca, E., de Freitas, M. A. V., Brandão, R., and Wada, Y.: Role of pumped hydro storage plants for flood control, *J Energy Storage*, 104, 114496, [https://doi.org/https://doi.org/10.1016/j.est.2024.114496](https://doi.org/10.1016/j.est.2024.114496), 2024.

Kjerfve, B.: COMPARATIVE OCEANOGRAPHY OF COASTAL LAGOONS, in: *Estuarine Variability*, edited by: Wolfe, D. A., Elsevier, 63–81, <https://doi.org/10.1016/B978-0-12-761890-6.50009-5>, 1986.

Kundzewicz, Z. W.: Non-structural Flood Protection and Sustainability, *Water Int*, 27, 3–13, <https://doi.org/10.1080/02508060208686972>, 2002.

925 Laipelt, L., de Andrade, B., Collischonn, W., de Amorim Teixeira, A., Paiva, R. C. D. de, and Ruhoff, A.: ANADEM: A Digital Terrain Model for South America, *Remote Sens (Basel)*, 16, <https://doi.org/10.3390/rs16132321>, 2024.

Laipelt, L., de Paiva, R. C. D., Fan, F. M., Collischonn, W., Papa, F., and Ruhoff, A.: SWOT Reveals How the 2024 Disastrous Flood in South Brazil Was Intensified by Increased Water Slope and Wind Forcing, *Geophys Res Lett*, 52, e2024GL111287, <https://doi.org/https://doi.org/10.1029/2024GL111287>, 2025.

930 Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, *WIREs Climate Change*, 5, 113–128, <https://doi.org/https://doi.org/10.1002/wcc.252>, 2014.

Lesser, G. R., Roelvink, J. A. v., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, *Coastal engineering*, 51, 883–915, 2004.

935 Li, W., Lin, K., Zhao, T., Lan, T., Chen, X., Du, H., and Chen, H.: Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models, *J Hydrol (Amst)*, 572, 108–120, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.03.002>, 2019.

Lima, R. C. de A. and Barbosa, A. V. B.: Natural disasters, economic growth and spatial spillovers: Evidence from a flash flood in Brazil, *Papers in Regional Science*, 98, 905–925, <https://doi.org/https://doi.org/10.1111/pirs.12380>, 2019.

940 Majidi, A. N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., and Kluck, J.: Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement, *Sustainability*, 11, <https://doi.org/10.3390/su11226361>, 2019.

Marengo, J. A., Alcantara, E., Cunha, A. P., Seluchi, M., Nobre, C. A., Dolif, G., Goncalves, D., Assis Dias, M., Cuartas, L. A., Bender, F., Ramos, A. M., Mantovani, J. R., Alvalá, R. C., and Moraes, O. L.: Flash floods and landslides in the city of

945 Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness, *Weather Clim Extrem.* 39, 100545, <https://doi.org/https://doi.org/10.1016/j.wace.2022.100545>, 2023.

Marks, K. and Bates, P.: Integration of high-resolution topographic data with floodplain flow models, *Hydrol Process.* 14, 2109–2122, [https://doi.org/https://doi.org/10.1002/1099-1085\(20000815/30\)14:11/12<2109::AID-HYP58>3.0.CO;2-1](https://doi.org/https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1), 2000.

950 Marques, W. C., Fernandes, E. H., Monteiro, I. O., and Möller, O. O.: Numerical modeling of the Patos Lagoon coastal plume, *Brazil, Cont Shelf Res.* 29, 556–571, <https://doi.org/https://doi.org/10.1016/j.csr.2008.09.022>, 2009.

Martins, F. and Fernandes, E.: HYDRODYNAMIC MODEL INTERCOMPARISON FOR THE PATOS LAGOON (BRAZIL), 2004.

Masood, M. and Takeuchi, K.: Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model, *Natural Hazards.* 61, 757–770, <https://doi.org/10.1007/s11069-011-0060-x>, 2012.

955 McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its implications, *WIREs Water.* 5, e1319, <https://doi.org/https://doi.org/10.1002/wat2.1319>, 2018.

Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real-Time Flood Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical Weather Predictions, *Water Resour Res.* 56, e2019WR025583, <https://doi.org/https://doi.org/10.1029/2019WR025583>, 2020.

960 Möller, O. O., Lorenzzetti, J. A., Stech, JoséL., and Mata, M. M.: The Patos Lagoon summertime circulation and dynamics, *Cont Shelf Res.* 16, 335–351, [https://doi.org/10.1016/0278-4343\(95\)00014-R](https://doi.org/10.1016/0278-4343(95)00014-R), 1996.

Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., and Mason, D.: Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK, *J Flood Risk Manag.* 4, 88–95, <https://doi.org/https://doi.org/10.1111/j.1753-318X.2011.01093.x>, 2011.

965 O'Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley, E., and Bates, P. D.: A LISFLOOD-FP hydraulic model of the middle reach of the Congo, *J Hydrol (Amst).* 580, 124203, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124203>, 2020.

Ommer, J., Neumann, J., Kalas, M., Blackburn, S., and Cloke, H. L.: Surprise floods: the role of our imagination in preparing for disasters, *Natural Hazards and Earth System Sciences.* 24, 2633–2646, <https://doi.org/10.5194/nhess-24-2633-2024>, 2024.

970 Paiva, R. C. D., Collischonn, W., and Buarque, D. C.: Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon, *Hydrol Process.* 27, 333–346, <https://doi.org/https://doi.org/10.1002/hyp.8425>, 2013.

Paiva, R. C. dias de, Mainardi Fan, F., Collischonn, W., Sampaio, M., Cristina de Oliveira, R., Lima, S., Camargo, P., and Massochin Medeiros, P.: Caracterização e modelagem das cheias de 2023 e 2024 no Rio Grande do Sul em escala regional, Relatório Técnico., 2025.

Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., and Han, D.: Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5, *Natural Hazards.* 89, 93–130, <https://doi.org/10.1007/s11069-017-2956-6>, 2017.

975 Perera, D., Agnihotri, J., Seidou, O., and Djalante, R.: Identifying societal challenges in flood early warning systems, *International Journal of Disaster Risk Reduction.* 51, 101794, <https://doi.org/https://doi.org/10.1016/j.ijdrr.2020.101794>, 2020.

980 [Planet Team: Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA , https://api.planet.com/](https://api.planet.com/), 2024.

Possa, T. M., Collischonn, W., Jardim, P. F., and Fan, F. M.: Hydrological-hydrodynamic simulation and analysis of the possible influence of the wind in the extraordinary flood of 1941 in Porto Alegre, RBRH, 27, e29, <https://doi.org/10.1590/2318-0331.272220220028>, 2022.

985 Poussin, J. K., Bubeck, P., Aerts, J. C. J. H., and Ward, P. J.: Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse, Natural Hazards and Earth System Sciences, 12, 3455–3471, <https://doi.org/10.5194/nhess-12-3455-2012>, 2012.

De Risi, R., Jalayer, F., and De Paola, F.: Meso-scale hazard zoning of potentially flood prone areas, J Hydrol (Amst), 527, 316–325, [https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.04.070](https://doi.org/10.1016/j.jhydrol.2015.04.070), 2015.

990 Seiler, L. M. N., Fernandes, E. H. L., and Siegle, E.: Effect of wind and river discharge on water quality indicators of a coastal lagoon, Reg Stud Mar Sci, 40, 101513, <https://doi.org/https://doi.org/10.1016/j.rsma.2020.101513>, 2020.

Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M., Lund, J., Opperman, J. J., Yarnell, S. M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T. E., Eisenstein, W., and Schmitt, R.: Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany, Front Environ Sci, 9, <https://doi.org/10.3389/fenvs.2021.778568>, 2022.

995 Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., and Castellarin, A.: Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrological Sciences Journal, 64, 1769–1782, <https://doi.org/10.1080/02626667.2019.1671982>, 2019.

Silva, R. A. G., Reis, R. C. S., Ramos, D. M., Belém, A. L., Puhl, E., and Manica, R.: Análise de Abertura de Novo Canal de Maré na Lagoa dos Patos para Atenuação de Cheias no Rio Guaíba, RS, in: II FLUHIDROS - Simpósio Nacional de Mecânica dos Fluidos e Hidráulica e XVI ENES - Encontro Nacional de Engenharia de Sedimentos, 2024a.

1000 Silva, T. S., Toldo Jr, E. E., Nunes, J. C. R., Castro, N., Funke, N., Nievinski, F., Manica, R., Puhl, E., Fick, C., Scottá, F., Silva, M. L. R., and Ávila, I. M.: Nota Técnica - Vazões no Rio Guaíba durante os picos da enchente de maio de 2024, 1–2 pp., 2024b.

1005 Stevenson, S., Coats, S., Touma, D., Cole, J., Lehner, F., Fasullo, J., and Otto-Bliesner, B.: Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes, Proceedings of the National Academy of Sciences, 119, e2108124119, <https://doi.org/10.1073/pnas.2108124119>, 2022.

Swain, D. L., Prein, A. F., Abatzoglou, J. T., Albano, C. M., Brunner, M., Diffenbaugh, N. S., Singh, D., Skinner, C. B., and Touma, D.: Hydroclimate volatility on a warming Earth, Nat Rev Earth Environ, 6, 35–50, <https://doi.org/10.1038/s43017-024-00624-z>, 2025.

1010 Timbadiya, P. V., Patel, P. L., and Porey, P. D.: A 1D–2D Coupled Hydrodynamic Model for River Flood Prediction in a Coastal Urban Floodplain, J Hydrol Eng, 20, 05014017, [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001029](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001029), 2015.

USACE: HEC-RAS river analysis system hydraulic reference manual. Version 5.0, 2016.

1015 Wang, T., Lu, Y., Liu, T., Zhang, Y., Yan, X., and Liu, Y.: The determinants affecting the intention of urban residents to prepare for flood risk in China, *Natural Hazards and Earth System Sciences*, 22, 2185–2199, <https://doi.org/10.5194/nhess-22-2185-2022>, 2022.

Wasko, C., Nathan, R., Stein, L., and O'Shea, D.: Evidence of shorter more extreme rainfalls and increased flood variability under climate change, *J Hydrol (Amst)*, 603, 126994, <https://doi.org/10.1016/j.jhydrol.2021.126994>, 2021.

Wulandari, S., Pratama, F., Andika, N., Wongso, P., Wijayasari, W., and Rohmat, F. I. W.: Identifying dominant river contributions to urban flooding: a scenario-based study of Makassar City, *Front Built Environ*, Volume 11-2025, 2025.

1020 Zarzuelo, C., Díez-Minguito, M., Ortega-Sánchez, M., López-Ruiz, A., and Losada, M. Á.: Hydrodynamics response to planned human interventions in a highly altered embayment: The example of the Bay of Cádiz (Spain), *Estuar Coast Shelf Sci.*, 167, 75–85, [https://doi.org/https://doi.org/10.1016/j.ecss.2015.07.010](https://doi.org/10.1016/j.ecss.2015.07.010), 2015.

Zhang, H., Wu, W., Hu, C., Hu, C., Li, M., Hao, X., and Liu, S.: A distributed hydrodynamic model for urban storm flood risk assessment, *J Hydrol (Amst)*, 600, 126513, [https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126513](https://doi.org/10.1016/j.jhydrol.2021.126513), 2021.

1025 Abdella, K. and Mekuanent, F.: Application of hydrodynamic models for designing structural measures for river flood mitigation: the case of Kulfo River in southern Ethiopia, *Model Earth Syst Environ*, 7, 2779–2791, <https://doi.org/10.1007/s40808-020-01057-5>, 2021.

AIRBUS: Copernicus DEM: Copernicus digital elevation model product handbook, Report AO/1-9422/18/IL-G, 2020.

1030 Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, *Environ Sci Policy*, 21, 35–49, [https://doi.org/https://doi.org/10.1016/j.envsci.2012.01.008](https://doi.org/10.1016/j.envsci.2012.01.008), 2012.

Alfieri, L., Feyen, L., and Di Baldassarre, G.: Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies, *Clim Change*, 136, 507–521, <https://doi.org/10.1007/s10584-016-1641-1>, 2016.

1035 Alves, M. E. P., Fan, F. M., Paiva, R. C. D. de, Siqueira, V. A., Fleischmann, A. S., Bréda, J. P., Laipeit, L., and Araújo, A.: Assessing the capacity of large-scale hydrologic-hydrodynamic models for mapping flood hazard in southern Brazil, *RBRH*, 27, 2022.

Andrade, M. M., Piazera, M., Luz, R. da, Nunes, J. C. R., Scottá, F., and Silva, T.: Flow measurements with ADCP on the Guaíba River, during the highest water level recorded in history—May 2024 (floods in the State of Rio Grande do Sul, Brazil), *RBRH*, 29, 2024.

1040 António, M. H. P., Fernandes, E. H., and Muelbert, J. H.: Impact of Jetty Configuration Changes on the Hydrodynamics of the Subtropical Patos Lagoon Estuary, Brazil, *Water (Basel)*, 12, <https://doi.org/10.3390/w12113197>, 2020.

de Arruda Gomes, M. M., de Melo Verçosa, L. F., and Cirilo, J. A.: Hydrologic models coupled with 2D hydrodynamic model for high resolution urban flood simulation, *Natural Hazards*, 108, 3121–3157, <https://doi.org/10.1007/s11069-021-04817-3>, 2021.

1045 Ávila, A., Justino, F., Wilson, A., Bromwich, D., and Amorim, M.: Recent precipitation trends, flash floods and landslides in southern Brazil, *Environmental Research Letters*, 11, 114029, <https://doi.org/10.1088/1748-9326/11/11/114029>, 2016.

Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnberg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Llasat, C., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Seolobig, A., Viglione, A., and Ward, P. J.: *Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection*, *Hydrol Earth Syst Sci*, 22, 5629–5637, <https://doi.org/10.5194/hess-22-5629-2018>, 2018.

1050 Bartlik, D., Oliveira, D. Y., Bonumá, N. B., and Chaffé, P. L. B.: *Spatial and seasonal patterns of flood change across Brazil*, *Hydrological Sciences Journal*, 64, 1071–1079, <https://doi.org/10.1080/02626667.2019.1619081>, 2019.

Bates, P. D. and De Roo, A. P. J.: *A simple raster-based model for flood inundation simulation*, *J Hydrol (Amst)*, 236, 54–77, [https://doi.org/https://doi.org/10.1016/S0022-1694\(00\)00278-X](https://doi.org/https://doi.org/10.1016/S0022-1694(00)00278-X), 2000.

1055 Bates, P. D., Marks, K. J., and Horritt, M. S.: *Optimal use of high-resolution topographic data in flood inundation models*, *Hydrol Process*, 17, 537–557, <https://doi.org/https://doi.org/10.1002/hyp.1113>, 2003.

Bhargav, A. M., Suresh, R., Tiwari, M. K., Trambadia, N. K., Chandra, R., and Nirala, S. K.: *Development of a 2D hydrodynamic model for flood assessment for the lower Narmada basin, Gujarat (India)*, *Journal of Water and Climate Change*, 16, 1567–1585, <https://doi.org/10.2166/wcc.2025.706>, 2025.

1060 Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: *The SWOT Mission and Its Capabilities for Land Hydrology*, *Surv Geophys*, 37, 307–337, <https://doi.org/10.1007/s10712-015-9346-y>, 2016.

Blöschl, G.: *Three hypotheses on changing river flood hazards*, *Hydrol Earth Syst Sci*, 26, 5015–5033, <https://doi.org/10.5194/hess-26-5015-2022>, 2022.

1065 Brêda, J. P. L. F., Cauduro Dias de Paiva, R., Siqueira, V. A., and Collischonn, W.: *Assessing climate change impact on flood discharge in South America and the influence of its main drivers*, *J Hydrol (Amst)*, 619, 129284, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129284>, 2023.

Burrell, B. C., Davar, K., and Hughes, R.: *A Review of Flood Management Considering the Impacts of Climate Change*, *Water Int*, 32, 342–359, <https://doi.org/10.1080/02508060708692215>, 2007.

1070 Cai, T., Li, X., Ding, X., Wang, J., and Zhan, J.: *Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique*, *International Journal of Disaster Risk Reduction*, 35, 101077, <https://doi.org/https://doi.org/10.1016/j.ijdrr.2019.101077>, 2019.

Cavalcante, M. R. G., da Cunha Luz Barcellos, P., and Cataldi, M.: *Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I – calibration watershed through hydrological SMAP model*, *Natural Hazards*, 102, 1117–1134, <https://doi.org/10.1007/s11069-020-03948-3>, 2020.

1075 Chagas, V. B. P., Chaffé, P. L. B., and Blöschl, G.: *Climate and land management accelerate the Brazilian water cycle*, *Nat Commun*, 13, 5136, <https://doi.org/10.1038/s41467-022-32580-x>, 2022.

Chow, V. T.: *Open channel Hydraulics*, McGraw Hill, 1959.

Collischonn, W., Ruhoff, A., Filho Cabeleira, R., Paiva, R., Fan, F., and Possa, T.: *Chuva da cheia de 2024 foi mais volumosa e intensa que a da cheia de 1941 na bacia hidrográfica do Guaíba, Porto Alegre*, 1–8 pp., 2024.

1080 Collischonn, W., Fan, F. M., Possantti, I., Dornelles, F., Paiva, R., Sampaio, M., Michel, G., Magalhães Filho, F. J. C., Moraes, S. R., Marcuzzo, F. F. N., Michel, R. D. L. M., Beskow, T. L. C., Beskow, S., Fernandes, E., Laipelt, L., Ruhoff, A., Kobiyana, M., Collares, L. G., Buffon, F., Duarte, E., Lima, S., Meirelles, F. S. C., and Allasia, D.: The exceptional hydrological disaster of April–May 2024 in southern Brazil, *Revista Brasileira de Recursos Hídricos*, 1, <https://doi.org/10.1590/2318-0331.302520240119>, 2025.

1085 Damião Mendes, M. C. and Cavalcanti, I. F. A.: The relationship between the Antarctic oscillation and blocking events over the South Pacific and Atlantic Oceans, *International Journal of Climatology*, 34, 529–544, <https://doi.org/https://doi.org/10.1002/joc.3729>, 2014.

Dawson, R. J., Ball, T., Werritty, J., Werritty, A., Hall, J. W., and Roche, N.: Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change, *Global Environmental Change*, 21, 628–646, <https://doi.org/https://doi.org/10.1016/j.gloenvcha.2011.01.013>, 2011.

1090 DRRS: Programa do Governo Holandês de Redução de Risco de Desastres e Suportes a Surtos (DRRS). Final Report., 2024.

Durand, M., Fu, L. L., Lettenmaier, D. P., Alsdorf, D. E., Rodriguez, E., and Esteban Fernandez, D.: The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies, *Proceedings of the IEEE*, 98, 766–779, <https://doi.org/10.1109/JPROC.2010.2043031>, 2010.

1095 Dutta, D., Alam, J., Umeda, K., Hayashi, M., and Hironaka, S.: A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin, *Hydro Process*, 21, 1223–1237, <https://doi.org/https://doi.org/10.1002/hyp.6682>, 2007.

Fernandes, E., Dyer, K. R., and Niencheski, L. F.: TELEMAC 2D calibration and validation to the hydrodynamics of the Patos Lagoon (Brazil), *J Coast Res*, 34, 470–488, 2001.

1100 Fernandes, E. H. L., Dyer, K. R., Moller, O. O., and Niencheski, L. F. H.: The Patos Lagoon hydrodynamics during an El Niño event (1998), *Cont Shelf Res*, 22, 1699–1713, [https://doi.org/https://doi.org/10.1016/S0278-4343\(02\)00033-X](https://doi.org/https://doi.org/10.1016/S0278-4343(02)00033-X), 2002.

Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., and Bates, P. D.: Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data, *Physics and Chemistry of the Earth, Parts A/B/C*, 36, 281–291, <https://doi.org/https://doi.org/10.1016/j.pec.2010.12.011>, 2011.

1105 Fleischmann, A., Paiva, R., and Collischonn, W.: Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison, *J Hydrol*, 53, 100027, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.100027>, 2019.

François, F. S.: Modelagem hidrodinâmica de áreas suscetíveis a inundação no município de nova Santa Rita (RS), Trabalho de Conclusão de curso, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2021.

Fu, L. L., Pavelsky, T., Cretaux, J. F., Morrow, R., Farrar, J. T., Vaze, P., Sengenes, P., Vinogradova-Shiffer, N., Sylvestre-Baron, A., Pieot, N., and Dibarboure, G.: The Surface Water and Ocean Topography Mission: A Breakthrough in Radar Remote Sensing of the Ocean and Land Surface Water, *Geophys Res Lett*, 51, e2023GL107652, <https://doi.org/https://doi.org/10.1029/2023GL107652>, 2024.

1110 GEBCO: GEBCO 2024 Grid, <https://doi.org/doi:10.5285/1e44ce99-0a0d-5f4f-e063-7086abe0ea0f>, 2024.

1115 Ghanbarpour, M. R., Salimi, S., and Hipel, K. W.: A comparative evaluation of flood mitigation alternatives using GIS-based river hydraulics modelling and multicriteria decision analysis, *J. Flood Risk Manag.*, 6, 319–331, <https://doi.org/https://doi.org/10.1111/jfr3.12017>, 2013.

1160 Gomes Calixto, K., Wendland, E. C., and Melo, D. de C. D.: Hydrologic performance assessment of regulated and alternative strategies for flood mitigation: a case study in São Paulo, Brazil, *Urban Water J.*, 17, 481–489, <https://doi.org/10.1080/1573062X.2020.1773509>, 2020.

1170 Goodess, C. M.: How is the frequency, location and severity of extreme events likely to change up to 2060?, *Environ Sci Policy*, 27, S4–S14, <https://doi.org/https://doi.org/10.1016/j.envsci.2012.04.001>, 2013.

1180 Guse, B., Merz, B., Wietzke, L., Ullrich, S., Viglione, A., and Vorogushyn, S.: The role of flood wave superposition in the severity of large floods, *Hydrol Earth Syst Sci*, 24, 1633–1648, <https://doi.org/10.5194/hess-24-1633-2020>, 2020.

1190 Hall, J. W., Sayers, P. B., Walkden, M. J. A., and Panzeri, M.: Impacts of climate change on coastal flood risk in England and Wales: 2030–2100, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 364, 1027–1049, <https://doi.org/10.1098/rsta.2006.1752>, 2006.

1200 Hammond, J. C., Anderson, B., Simeone, C., Brunner, M., Munoz Castro, E., Archfield, S., Magee, E., and Armitage, R.: Hydrological whiplash: Highlighting the need for better understanding and quantification of sub-seasonal hydrological extreme transitions, *Hydrol Process*, 39, <https://doi.org/10.1002/hyp.70113>, 2025.

1210 Heinrich, P., Hagemann, S., Weisse, R., Schrum, C., Daewel, U., and Gaslikova, L.: Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe, *Natural Hazards and Earth System Sciences*, 23, 1967–1985, <https://doi.org/10.5194/nhess-23-1967-2023>, 2023.

1220 Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Lauzel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, *Hydrol Earth Syst Sci*, 23, 3117–3139, <https://doi.org/10.5194/hess-23-3117-2019>, 2019.

1230 Henriksen, H. J., Roberts, M. J., van der Keur, P., Harjanne, A., Egilson, D., and Alfonso, L.: Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management, *International Journal of Disaster Risk Reduction*, 31, 1295–1306, <https://doi.org/https://doi.org/10.1016/j.ijdrr.2018.01.038>, 2018.

1240 Hillman, G., Rodriguez, A., Pagot, M., Tyrrell, D., Corral, M., Oroná, C., and Möller, O.: 2D Numerical Simulation of Mangueira Bay Hydrodynamics, *J. Coast Res.*, 2010, 108–115, <https://doi.org/10.2112/1551-5036-47.sp1.108>, 2007.

1250 Hsu, S. A.: Coastal Meteorology, in: *Encyclopedia of Physical Science and Technology*, Elsevier, 155–173, <https://doi.org/10.1016/B0-12-227410-5/00114-9>, 2003.

1260 Hunt, J. D., Silva, C. V., Fonseca, E., de Freitas, M. A. V., Brandão, R., and Wada, Y.: Role of pumped hydro storage plants for flood control, *J. Energy Storage*, 104, 114496, <https://doi.org/https://doi.org/10.1016/j.est.2024.114496>, 2024.

1270 IPCC: *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, <https://doi.org/10.1017/9781009157896>, 2021.

Kjerfve, B.: COMPARATIVE OCEANOGRAPHY OF COASTAL LAGOONS, in: *Estuarine Variability*, edited by: Wolfe, D. A., Elsevier, 63–81, <https://doi.org/10.1016/B978-0-12-761890-6.50009-5>, 1986.

1150 Kundzewicz, Z. W.: Non-structural Flood Protection and Sustainability, *Water Int.*, 27, 3–13, <https://doi.org/10.1080/02508060208686972>, 2002.

Laipelt, L., de Andrade, B., Collischonn, W., de Amorim Teixeira, A., Paiva, R. C. D. de, and Ruhoff, A.: ANADEM: A Digital Terrain Model for South America, *Remote Sens. (Basel)*, 16, <https://doi.org/10.3390/rs16132321>, 2024.

1155 Laipelt, L., de Paiva, R. C. D., Fan, F. M., Collischonn, W., Papa, F., and Ruhoff, A.: SWOT Reveals How the 2024 Disastrous Flood in South Brazil Was Intensified by Increased Water Slope and Wind Forcing, *Geophys. Res. Lett.*, 52, e2024GL111287, <https://doi.org/https://doi.org/10.1029/2024GL111287>, 2025.

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, *WIREs Climate Change*, 5, 113–128, <https://doi.org/https://doi.org/10.1002/wcc.252>, 2014.

1160 Lesser, G. R., Reelvink, J. A. v., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, *Coastal engineering*, 51, 883–915, 2004.

Li, W., Lin, K., Zhao, T., Lan, T., Chen, X., Du, H., and Chen, H.: Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models, *J. Hydrol. (Amst.)*, 572, 108–120, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.03.002>, 2019.

1165 Lima, R. C. de A. and Barbosa, A. V. B.: Natural disasters, economic growth and spatial spillovers: Evidence from a flash flood in Brazil, *Papers in Regional Science*, 98, 905–925, <https://doi.org/https://doi.org/10.1111/pirs.12380>, 2019.

Majidi, A. N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., and Kluck, J.: Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement, *Sustainability*, 11, <https://doi.org/10.3390/su11226361>, 2019.

1170 Marengo, J. A., Alcantara, E., Cunha, A. P., Seluchi, M., Nobre, C. A., Delif, G., Goncalves, D., Assis Dias, M., Cuartas, L. A., Bender, F., Ramos, A. M., Mantovani, J. R., Alvalá, R. C., and Moraes, O. L.: Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness, *Weather Clim. Extrem.*, 39, 100545, <https://doi.org/https://doi.org/10.1016/j.wace.2022.100545>, 2023.

Marks, K. and Bates, P.: Integration of high-resolution topographic data with floodplain flow models, *Hydrology Process.*, 14, 2109–2122, [https://doi.org/https://doi.org/10.1002/1099-1085\(20000815/30\)14:11/12<2109::AID-HYP58>3.0.CO;2-1](https://doi.org/https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1), 2000.

1175 Marques, W. C., Fernandes, E. H., Monteiro, I. O., and Möller, O. O.: Numerical modeling of the Patos Lagoon coastal plume, Brazil, *Cont Shelf Res.*, 29, 556–571, <https://doi.org/https://doi.org/10.1016/j.csr.2008.09.022>, 2009.

Martins, F. and Fernandes, E.: HYDRODYNAMIC MODEL INTERCOMPARISON FOR THE PATOS LAGOON (BRAZIL), 2004.

1180 Masood, M. and Takeuchi, K.: Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model, *Natural Hazards*, 61, 757–770, <https://doi.org/10.1007/s11069-011-0060-x>, 2012.

McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its implications, *WIREs Water*, 5, e1319, [https://doi.org/https://doi.org/10.1002/wat2.1319](https://doi.org/10.1002/wat2.1319), 2018.

Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real Time Flood Forecasting Based on a High Performance 2-D Hydrodynamic Model and Numerical Weather Predictions, *Water Resour. Res.*, 56, e2019WR025583, [https://doi.org/https://doi.org/10.1029/2019WR025583](https://doi.org/10.1029/2019WR025583), 2020.

Möller, O. O., Lorenzzetti, J. A., Stech, José L., and Mata, M. M.: The Patos Lagoon summertime circulation and dynamics, *Cont Shelf Res*, 16, 335–351, [https://doi.org/10.1016/0278-4343\(95\)00014-R](https://doi.org/10.1016/0278-4343(95)00014-R), 1996.

Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., and Mason, D.: Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK, *J. Flood Risk Manag.*, 4, 88–95, <https://doi.org/https://doi.org/10.1111/j.1753-318X.2011.01093.x>, 2011.

O'Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley, E., and Bates, P. D.: A LISFLOOD-FP hydraulic model of the middle reach of the Congo, *J. Hydrol. (Amst.)*, 580, 124203, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.124203>, 2020.

Ommer, J., Neumann, J., Kalas, M., Blackburn, S., and Cloke, H. L.: Surprise floods: the role of our imagination in preparing for disasters, *Natural Hazards and Earth System Sciences*, 24, 2633–2646, <https://doi.org/10.5194/nhess-24-2633-2024>, 2024.

Paiva, R. C. D., Collischonn, W., and Buarque, D. C.: Validation of a full hydrodynamic model for large scale hydrologic modelling in the Amazon, *Hydrol. Process.*, 27, 333–346, <https://doi.org/https://doi.org/10.1002/hyp.8425>, 2013.

Paiva, R. C. dias de, Mainardi Fan, F., Collischonn, W., Sampaio, M., Cristina de Oliveira, R., Lima, S., Camargo, P., and Massochin Medeiros, P.: Caracterização e modelagem das cheias de 2023 e 2024 no Rio Grande do Sul em escala regional. Relatório Técnico., 2025.

Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., and Han, D.: Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5, *Natural Hazards*, 89, 93–130, <https://doi.org/10.1007/s11069-017-2956-6>, 2017.

Perera, D., Agnihotri, J., Seidou, O., and Djalante, R.: Identifying societal challenges in flood early warning systems, *International Journal of Disaster Risk Reduction*, 51, 101794, <https://doi.org/https://doi.org/10.1016/j.ijdrr.2020.101794>, 2020.

Planet Team: Planet Application Program Interface: In Space for Life on Earth, San Francisco, CA, <https://api.planet.com/>, 2024.

Possa, T. M., Collischonn, W., Jardim, P. F., and Fan, F. M.: Hydrological hydrodynamic simulation and analysis of the possible influence of the wind in the extraordinary flood of 1941 in Porto Alegre, *RBRH*, 27, e29, <https://doi.org/10.1590/2318-0331.272220220028>, 2022.

Poussin, J. K., Bubeck, P., Aerts, J. C. J. H., and Ward, P. J.: Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse, *Natural Hazards and Earth System Sciences*, 12, 3455–3471, <https://doi.org/10.5194/nhess-12-3455-2012>, 2012.

De Risi, R., Jalayer, F., and De Paola, F.: Meso-scale hazard zoning of potentially flood prone areas, *J. Hydrol. (Amst.)*, 527, 316–325, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.04.070>, 2015.

Seiler, L. M. N., Fernandes, E. H. L., and Siegle, E.: Effect of wind and river discharge on water quality indicators of a coastal lagoon, *Reg Stud Mar Sci*, 40, 101513, <https://doi.org/10.1016/j.rsma.2020.101513>, 2020.

Serra Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M., Lund, J., Opperman, J. J., Yarnell, S. M., Pawley, A., Shader, E., Cain, J., Zingraff Hamed, A., Grantham, T. E., Eisenstein, W., and Schmitt, R.: Restoring Rivers and 1220 Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany, *Front Environ Sci*, 9, <https://doi.org/10.3389/fenvs.2021.778568>, 2022.

Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., and Castellarin, A.: Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, *Hydrological Sciences Journal*, 64, 1769–1782, <https://doi.org/10.1080/02626667.2019.1671982>, 2019.

Silva, R. A. G., Reis, R. C. S., Ramos, D. M., Belém, A. L., Puhl, E., and Manica, R.: Análise de Abertura de Novo Canal de 1225 Maré na Lagoa dos Patos para Atenuação de Cheias no Rio Guaíba, RS, in: II FLUHIDROS – Simpósio Nacional de Mecânica dos Fluidos e Hidráulica e XVI ENES – Encontro Nacional de Engenharia de Sedimentos, 2024a.

Silva, T. S., Teldo Jr., E. E., Nunes, J. C. R., Castro, N., Funke, N., Nievinski, F., Manica, R., Puhl, E., Fick, C., Scottá, F., 1230 Silva, M. L. R., and Ávila, I. M.: Nota Técnica – Vazões no Rio Guaíba durante os picos da enchente de maio de 2024, 1–2 pp., 2024b.

Silva, T. S., Teldo Jr., E. E., Nunes, J. C. R., Castro, N., Funke, N., Nievinski, F., Manica, R., Puhl, E., Fick, C., Scottá, F., 1235 Silva, M. L. R., and Ávila, I. M.: Nota Técnica – Vazões no Rio Guaíba durante os picos da enchente de maio de 2024, U, 2024c.

Stevenson, S., Coats, S., Touma, D., Cole, J., Lehner, F., Fasullo, J., and Otto-Bliesner, B.: Twenty-first century hydroclimate: 1240 A continually changing baseline, with more frequent extremes, *Proceedings of the National Academy of Sciences*, 119, e2108124119, <https://doi.org/10.1073/pnas.2108124119>, 2022.

Swain, D. L., Prein, A. F., Abatzoglou, J. T., Albano, C. M., Brunner, M., Diffenbaugh, N. S., Singh, D., Skinner, C. B., and 1245 Touma, D.: Hydroclimate volatility on a warming Earth, *Nat Rev Earth Environ*, 6, 35–50, <https://doi.org/10.1038/s43017-024-00624-z>, 2025.

Timbadiya, P. V., Patel, P. L., and Perey, P. D.: A 1D–2D Coupled Hydrodynamic Model for River Flood Prediction in a 1250 Coastal Urban Floodplain, *J Hydrol Eng*, 20, 05014017, [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001029](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001029), 2015.

USACE: HEC-RAS river analysis system hydraulic reference manual. Version 5.0, 2016.

Wang, T., Lu, Y., Liu, T., Zhang, Y., Yan, X., and Liu, Y.: The determinants affecting the intention of urban residents to 1255 prepare for flood risk in China, *Natural Hazards and Earth System Sciences*, 22, 2185–2199, <https://doi.org/10.5194/nhess-22-2185-2022>, 2022.

Wasko, C., Nathan, R., Stein, L., and O’Shea, D.: Evidence of shorter more extreme rainfalls and increased flood variability under climate change, *J Hydrol (Amst)*, 603, 126994, <https://doi.org/10.1016/j.jhydrol.2021.126994>, 2021.

Wulandari, S., Pratama, F., Andika, N., Wongso, P., Wijayasari, W., and Rohmat, F. I. W.: Identifying dominant river 1260 contributions to urban flooding: a scenario-based study of Makassar City, *Front Built Environ*, Volume 11, 2025, 2025.

1250 Zarzuelo, C., Díez-Minguito, M., Ortega-Sánchez, M., López-Ruiz, A., and Losada, M. Á.: Hydrodynamics response to planned human interventions in a highly altered embayment: The example of the Bay of Cádiz (Spain), *Estuar Coast Shelf Sci.*, 167, 75–85, <https://doi.org/https://doi.org/10.1016/j.ecss.2015.07.010>, 2015.

1255 Zhang, H., Wu, W., Hu, C., Hu, C., Li, M., Hao, X., and Liu, S.: A distributed hydrodynamic model for urban storm flood risk assessment, *J Hydrol (Amst)*, 600, 126513, <https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126513>, 2021.