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Ref. No.:  egusphere-2025-1284- “Uncertainty Assessment in Deep Learning-based Plant Trait Retrievals from 
Hyperspectral data” 
 

Dear Reviewer, dear Editor, 

Thank you for your time reviewing our manuscript and for your constructive and helpful comments. In response to 

the comments and suggestions provided, the main changes to the manuscript will include: 

1. Methodology presentation: We will improve the methodological section by adding equations describing 

the dissimilarity indices. 

2. Spectral data description and preprocessing: We will add a dedicated supplementary section describing 

preprocessing in full detail, including band exclusions, interpolation methods, and smoothing parameters. 

3. Sensitivity analysis: We conducted and will include a supplementary sensitivity analysis of Dis_UN across 

different quantile levels (τ = 0.75–0.99), to justify our choice of the 95th quantile. 

4. Novelty and Future Directions: We extended the introduction and discussion to better distinguish Dis_UN 

from prior methods and to position it for future research in uncertainty quantification. 

In addition to addressing the reviewer’s comments, we have enriched the comparison to state-of-the-art 

uncertainty estimation methods. In the literature, both probabilistic and deterministic deep ensemble approaches 

are used; we now explicitly include both methods. 

A detailed, point-by-point response, including the proposed changes in the manuscript, are attached. 

Kind regards, 

Eya Cherif (on behalf of all co-authors). 

 

 

 

 

 

 

 

https://www.biogeosciences.net/
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Responses to individual comments from RC2 

ID Comment Response 

 
This study introduces a 

distance-based uncertainty 

quantification method 

(Dis_UN) that improves the 

reliability of plant trait 

retrievals from 

hyperspectral data, 

particularly in out-of-

domain (OOD) scenarios. 

This represents an 

advancement for robust 

vegetation monitoring and 

ecological applications. 

However, there are still a 

few issues that need to be 

considered as follows. 

We would like to thank the reviewer for these very constructive comments 

that were very helpful to further improve the manuscript. Please find below 

a detailed answer to the comments.  

1 
The Novelty and 

Comparisons with Existing 

Work: The manuscript 

highlights the limitations of 

traditional uncertainty 

quantification methods 

(Ens_UN and MCdrop_UN) 

in OOD scenarios , and 

positions Dis_UN as a 

solution to these 

challenges. To further 

strengthen the claim of 

novelty, it is suggested to 

provide a more detailed 

discussion on how Dis_UN 

specifically differentiates 

itself from other distance-

based uncertainty methods 

mentioned (e.g., Silvan-

Cardenas et al., 2008; 

Khatami et al., 2017; 

Feilhauer et al., 2021). A 

brief table summarizing key 

differences could be 

considered. 

We thank the reviewer for this comment. We would like to clarify that the 

cited studies (Silván-Cárdenas and Wang, 2008; Khatami et al., 2017; 

Feilhauer et al., 2021) have made important contributions by using distance- 

or probability-based metrics to quantify uncertainty in classification tasks, 

particularly in the context of land cover or vegetation mapping. However, 

these approaches are not directly comparable to our study, which focuses on 

a regression setting for trait estimation using deep learning models. To ensure 

comparability, we benchmarked our method against established state-of-the-

art uncertainty quantification techniques commonly used in deep learning, 

such as deep ensembles and Monte Carlo dropout. 

Rather than providing a comparison table, we will add clarifying sentences in 

the introduction to better articulate these distinctions and to position our 

method relative to previous work. We hope this provides the necessary 

context to highlight the novel contribution of the Dis_UN approach. 

“Introduction 

…Instead of building on the variance in the predictions, uncertainty estimation 

for EO should particularly focus on the dissimilarity between the training and 

the new data. In other words, if an observation is very different from what the 

model has learned, it is likely to be very uncertain (Meyer and Pebesma, 2021, 

Linnenbrink et al., 2024). There is, therefore, a need for an uncertainty 

estimation approach that accounts for dissimilarities between the training 

and unseen data (Silvan-Cardenas et al., 2008; Khatami et al., 2017; Feilhauer 

et al., 2021). 

To address the challenges of uncertainty quantification, especially in OOD 

scenarios, distance-based methods have emerged as a promising solution. 
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Earlier work has applied similarity-based metrics in the context of 

classification (Silvan-Cardenas et al., 2008; Khatami et al., 2017; Feilhauer et 

al., 2021). These approaches remain tied to discrete categorical problems and 

shallow empirical models. More recently, distance-based methods have been 

extended to regression and spatial prediction tasks. For instance, Janet et al. 

(2019) proposed a low-cost uncertainty metric for predictions of chemical 

properties of unknown substances/materials based on the distance of new 

inputs from the training data in latent space, outperforming traditional 

uncertainty metrics such as Monte-carlo dropout and ensembles, particularly 

for data points far from the training set. Meyer and Pebesma (2021) discussed 

the importance of defining an "area of applicability" for spatial models, 

emphasizing the use of dissimilarity metrics to assess model confidence when 

dealing with new data. Building on this, Papacharalampous et al. (2024) and 

Linnenbrink et al. (2024) illustrated the effectiveness of distance-based 

metrics in enhancing uncertainty quantification and improving model 

reliability in spatial predictions.” 

2 
 

Clarification of Ecological 

Applications: While the 

manuscript lists several 

ecological applications (e.g., 

biodiversity monitoring, 

Earth system modeling, 

vegetation health 

assessment), it is suggested 

to clarify which specific 

aspects of these 

applications benefit most 

from reliable uncertainty 

quantification. For instance, 

this could involve 

identifying areas where 

model predictions are less 

trustworthy, or guiding 

more targeted field 

campaigns. 

We thank the reviewer for this comment. In response to the suggestion, we 

will further expand the introduction to include the importance of uncertainty 

propagation in downstream modeling workflows.  

“Introduction 

…While some efforts have been made to quantify uncertainty in the context 

of hyperspectral plant trait retrieval (García-Soria et al., 2024; Singh et al., 

2015; Wang et al., 2019), the results are often not comparable as the 

definition and interpretability of the uncertainty estimates varies depending 

on the methods used. Uncertainty quantification is particularly prevalent in 

EO for vegetation monitoring, where training data is typically sparse, and 

models are often applied to new, unseen regions and, hence, data that are 

OOD (Kattenborn et al., 2022; Ploton et al., 2020, Meyer and Pebesma 2021). 

In addition to providing crucial information on the quality of OOD predictions, 

quantitative estimates of uncertainty are increasingly utilized in a range of 

downstream ecological and environmental applications and are often 

required by data assimilation schemes in order to appropriately weigh all 

available observations (Chernetskiy et al., 2017; Lewis et al., 2012; Mathieu 

and O’Niell, 2008). In applications such as the assessment of land surface 

phenology, for example, recent studies have explored the propagation of plant 

trait prediction uncertainties to derived phenological metrics (Graf et al., 

2023), enabling more robust detection of changes in phenophases (e.g., due 

to the effects of climate change). In ecological modeling more broadly, 

incorporating trait-level uncertainty allows for realistic error propagation, 

thereby increasing the robustness of simulations related to vegetation 

dynamics, biodiversity assessments, and Earth system forecasts. Uncertainty 

estimates also serve as a valuable tool for identifying underrepresented 

conditions in the training set. By highlighting regions with high uncertainty, 
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they can inform active learning strategies and guide targeted data acquisition 

campaigns, ultimately improving both model generalization and data 

representativeness. The increasing importance of uncertainty estimates is 

reflected by the recent efforts of space agencies and data providers (Brown et 

al., 2021b; Gorroño et al., 2018, 2017; Goryl et al., 2023), and uncertainties 

are now a goal of Analysis Ready Data (ARD) standards (Committee on Earth 

Observation Satellites, 2024, https://ceos.org/ard/). In addition, recent 

reports from the European Commission (Camia et al., 2024), highlight 

uncertainty estimations as a specific quantitative requirement for various 

European Union land-related environmental and agriculture policies.” 

3 
Mathematical Formulation 

for Dissimilarity Index: To 

enhance the self-contained 

clarity of the methodology, 

please include the 

mathematical formulation 

for the dissimilarity index 

(DI) directly within Section 

2.1.2. 

We thank the reviewer for this suggestion, which helped improve the clarity 

and readability of our methodology. In response, we will revise Section 2.1.2 

by including a mathematical formulation of the dissimilarity index (DI), which 

was used as a core predictor in our uncertainty estimation approach. The 

added equations will describe the cosine distance calculation between test 

and training spectra, the procedure for summarizing distances via the median 

of the 50 nearest neighbors, and the normalization against the training set 

mean (Equations 1–3). 

We will add the corresponding clarification under the 2.1.2 Dissimilarity 

indices (predictors) section: 

“2.1.2 Dissimilarity indices (predictors) 

The DI, used as a predictor in this study, was calculated using the cosine 

distance, a well-suited metric for analyzing reflectance data. The cosine 

distance effectively captures the angular relationship between two spectra 

(Kruse et al., 1993), emphasizing spectral shape while minimizing the 

influence of amplitude variations that occur uniformly across the spectrum. 

This helps mitigate brightness changes caused by heterogeneous illumination 

and internal shading (Feilhauer et al. 2010). 

Formally, the cosine distance between a test spectrum xi and a training 

spectrum zi is defined as:          

𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝑧𝑗) =  1 − 
𝑥𝑖.𝑧𝑗

||𝑥𝑖||.||𝑧𝑗||
          (1) 

This DI was applied in both the feature space and the embedding space of the 

models (Fig. S2). As a first step, we calculated cosine distances between each 

sample of the test dataset xi and the samples of the training data set zi. These 

calculations were performed using the Python package FAISS (Douze et al., 

2024), which is optimized for fast similarity search and clustering of large 

datasets. As a next step, each DI was calculated as the median of the distance 

distribution between a test sample and its 50 nearest neighbors in the training 

set: 
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                                𝐷𝐼𝑖 =  𝑚𝑒𝑑𝑖𝑎𝑛{𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝑧𝑗)}
𝑗=1

50
      (2) 

To ensure comparability across samples, the indices were normalized against 

the mean DI value of the entire training set (Meyer and Pebesma, 2021): 

𝐷𝐼𝑖
𝑛𝑜𝑟𝑚 =  

𝐷𝐼𝑖

𝜇𝑡𝑟𝑎𝑖𝑛
 , with  𝜇𝑡𝑟𝑎𝑖𝑛 =  

1

𝑛
∑ 𝐷𝐼𝑖

𝑛
𝑗=1  where n is the number of 

training samples                       (3)   “                                

4 
Sensitivity Analysis for 95-

Quantile Regression: The 

choice of 95-quantile 

regression is justified as 

estimating worst-case 

errors. However, please 

include a brief discussion or 

a supplementary analysis on 

the sensitivity of Dis_UN's 

performance to this specific 

quantile choice (e.g., how 

results might differ with 

90th or 99th percentile). 

This would strengthen the 

methodological rigor. 

We thank the reviewer for this suggestion. In response, we conducted a 

sensitivity analysis to evaluate the empirical coverage obtained using Dis_UN 

models trained at various quantile levels (τ), ranging from the 75th to the 99th 

quantile for all six target variables. For each τ, we computed the empirical 

coverage (with 68% Wilson CIs), and exceedance severity (mean magnitude 

of residuals exceeding the predicted bound). The results, which will be 

included in the Supplementary Material (Figure below) show that for all six 

traits, observed coverage increases nearly on the 1:1 line with the target 

quantile, reaching ≈0.94–0.96 at τ=0.95. The exceedance mean varies 

smoothly up to τ=0.95 but shows abrupt jumps at τ=0.97–0.99 (e.g., EWT and 

Car), indicating entry into a less stable, overly conservative tail regime. These 

results support τ=0.95 as a data-driven compromise that attains high 

coverage while avoiding the sudden instability seen at extreme quantiles. 

We will additionally add a short paragraph to justify our choice in the method 

section: 

“2.1.3 Dis_UN Model Training 

…To further support the choice of the 95th quantile, we conducted a sensitivity 

analysis across a range of quantiles for all traits (Fig. below). The results show 

that τ = 0.95 provides a good balance between capturing a high proportion of 

large errors and avoiding overly wide and unstable uncertainty bounds. Lower 

quantiles (τ ≤ 0.93) tend to underestimate the extent of potential errors, 

missing a fraction of extreme cases, while higher quantiles (τ ≥ 0.97) lead to 

unnecessarily conservative bounds that can fluctuate sharply. This balance 

makes the 95th quantile a robust choice for representing worst-case 

uncertainty across variables, avoiding both underestimation and over-

conservatism.“ 
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5 
Dataset Diversity and Bias 

Handling: The manuscript 

describes a "heterogeneous 

training set" compiled from 

50 datasets across various 

ecosystems , but also 

acknowledges inherent 

biases and a lack of fully 

global representation. 

Please expand on the 

specific strategies employed 

during dataset curation to 

minimize known sampling 

biases across regions, 

species, and biomes. Even if 

complete mitigation was 

not possible, detailing the 

efforts made would be 

beneficial. Please also 

explicitly refer to Tables S2 

and S3 in the main text 

when discussing data 

sources and their 

representativeness. 

We agree with the reviewer and have clarified the bias-handling steps in the 

Methods. Specifically, the imbalance was reduced in two stages: 

1. During training of the multi-trait CNN, we applied random 

upsampling with replacement so that each dataset contributed 

equally per epoch, and used a weighted loss function where 

samples from under-represented datasets received larger weights 

(cherif et al. 2023). 

 

2. During training of Dis_UN, we applied a per-sample loss weights 

inversely proportional to the number of samples, which down-

weights over-represented residual ranges and up-weights under-

represented ones for the quantile regression (see Section 2.1.3).. 

We will add a dedicated clarification in section 2.1.1, and refer to Tables S2 

and S3 when discussing the sources and representativeness of the training 

data. 

“2.1.1 The Multi-trait Model 

…Yet, the collected data do not provide a fully global representation due to 

the labor-intensive nature of data collection and the inherent bias in available 

data measurements (Table S2). To reduce over-representation of large 

datasets during training of the multi-trait CNN, we (i) performed random 

upsampling with replacement so that each source dataset contributed 

approximately equally per training epoch, and (ii) applied per-sample loss 

weights inversely proportional to the number of labeled samples in the 

corresponding source dataset, which down-weights over-represented 

datasets and up-weights under-represented ones.” 

6 
Strategies for Spectral 

Saturation Challenges: The 

manuscript identifies 

spectral saturation as a 

remaining challenge for 

certain traits. In the 

discussion or future work 

section, please propose 

specific experimental 

avenues or mitigation 

strategies to address this 

limitation for affected traits. 

For example, exploring 

alternative spectral indices, 

radiative transfer models, 

or machine learning 

We appreciate the reviewer’s point; spectral saturation of traits like LAI is a 

long-standing and physics-governed challenge (Zheng et al. 2009, Camps-

Valls et al. 2021). However, this limitation is not methodological but physical, 

arising from radiative transfer: once foliage coverage becomes high, 

additional leaf layers contribute little new information to top-of-canopy 

reflectance. The fundamental problem is that we cannot see through leaves, 

so lower leaf layers may not alter the spectral responses. This saturation is 

well documented for NDVI and LAI (e.g., Sellers, 1985; Myneni et al., 2002; 

Gitelson, 2004, Steltzer and Welker. 2006, Xu et al. 2020) and persists across 

spectral indices, radiative transfer models, and machine learning methods. 

Thus, the saturation problem reflects the physics of light–canopy interaction 

rather than shortcomings of the specific algorithms we use. 

In the manuscript (Outlook), we will cite these studies, emphasize the physical 

basis of saturation, and acknowledge it as an open, long-standing limitation. 

We also note that mitigations may be possible, such as incorporating spatial 
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architectures less 

susceptible to saturation. 

context, or exploiting multi-angular data, but that no optical method can fully 

overcome the physics-driven saturation. 

“4.5 Outlook: Uncertainty in the Context of Global Trait Mapping 

…At the same time, it is important to recognize that distance-based 

uncertainty estimation cannot by itself overcome data-intrinsic limitations. 

Structural traits such as leaf area index are affected by the long-recognized 

problem of spectral saturation, where top-of-canopy reflectance becomes 

insensitive to additional foliage at high canopy densities (e.g., Sellers, 1985; 

Myneni et al., 2002; Gitelson, 2004, Steltzer and Welker. 2006, Zheng et al. 

2009, Xu et al. 2020). In such cases, saturation arises from the inherent 

distribution of the data and constrains both training and inference. Distance-

based uncertainty is therefore best understood as a diagnostic tool that 

reveals these information gaps, rather than as a mechanism to eliminate 

them. Progress will require more sophisticated sensing strategies, where 

recent work has shown promising directions (Mutanga et al., 2022; Wan et 

al., 2022). However, no purely optical method fully overcomes saturation, as 

this limitation is rooted in the physics of canopy reflectance. This limitation, in 

turn, motivates the continued development of distance-aware uncertainty 

methods that more explicitly link the training samples to unseen data. 

Importantly, such methods are not restricted to vegetation trait retrieval but 

can be readily applied and extended to a wide range of applications where 

robustness under distribution shift and reliable uncertainty quantification are 

critical. 
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7 
Additional Potential 

Limitations: Consider briefly 

discussing the 

computational cost 

associated with the training 

phase of the Dis_UN model 

itself. While inference is 

computationally efficient, 

the training cost could be a 

factor for extremely large 

datasets. 

We appreciate the reviewer’s point. In response to this comment we will add 

clarification in the discussion to distinguish between the training and 

inference phase running time and we will add and refer to the results in the 

supplemental materials: 

The modified version will read as follows: 

“4.2.1 Comparison with other methods 

…Beyond enhancing uncertainty prediction performances, the proposed 

distance-based uncertainty estimation method provides substantial 

computational advantages over variance-based approaches. Unlike variance-

based methods that require multiple forward passes to compute prediction 

variance, the distance-based approach allows for straightforward application 

once the uncertainty model is trained. This eliminates the need for repeated 

inference runs, making it significantly more computationally efficient (Table 

S6 below). Such efficiency is particularly valuable for large-scale remote 

sensing applications, where fast and scalable uncertainty estimation is crucial. 

Though, it is important to distinguish between the training and inference costs 

of the proposed method (Table S6 and S7). In our experimental setup, the 

training time of the distance-based uncertainty model was of a similar order 

to that of deep ensembles, as we adopted a leave-one-dataset-out (LODO) 

transferability analysis to explicitly evaluate out-of-distribution conditions, 

requiring the training of 50 models. However, this design reflects a specific 

validation strategy rather than an intrinsic requirement of the approach. In 

practice, distance-based uncertainty estimation can be integrated into more 

conventional validation schemes, such as k-fold cross-validation, thereby 

substantially reducing the training overhead.” 
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8 
Abstract Terminology 

Simplification: While terms 

are defined later in the 

manuscript, consider 

simplifying technical jargon 

in the abstract, such as 

"predictor and embedding 

space", for broader 

accessibility. Phrases like 

"data characteristics and 

model features" might be 

more immediately 

understandable. 

We thank the reviewer for pointing this out and agree that the abstract should 

be accessible to a broad readership. Here, we have to particularly serve the 

ecology, remote sensing and data science communities. Thus, in the revised 

abstract, we retained the technical terms for precision but added short 

clarifications in parentheses—“predictor space (spectral data )” and 

“embedding space (features learned by the deep model)”—so that the 

terminology is both accessible to the different communities. 

“Abstract: 

…To address this limitation, we propose a distance-based uncertainty 

estimation method (Dis_UN) that quantifies prediction uncertainty by 

measuring dissimilarity in the predictor space (spectral data) and embedding 

space (features learned by the deep model) between training and test data. 

Dis_UN leverages residuals as a proxy for uncertainty and employs 

dissimilarity indices in data manifolds to estimate worst-case errors via 95-

quantile regression.2” 

9 
Figure Caption 

Enhancement: Figure 

captions (e.g., Figure 3 , 

Figure 4 , Figure 5 , Figure 6 

, Figure 7 ) could be more 

descriptive. For instance, 

for Figure 3, explicitly state 

what the X and Y axes 

represent (e.g., "Predicted 

Uncertainty vs. Observed 

Residuals"). For Figures 4, 5, 

6, and 7, please ensure the 

captions clearly explain the 

relationship between the 

spatial maps, the box/violin 

plots, and the JM/KS values 

to guide the reader through 

We will check and improve the description of the figures’ captions. 
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the interpretation of 

uncertainty comparisons. 

10 
Early Definition of OOD 

Data: Although the concept 

of OOD data is 

contextualized well (Lines 

29-30, 48-53), for 

immediate comprehension, 

please provide a concise 

and explicit definition of 

"OOD data" with concrete 

examples (e.g., "unseen 

geographical regions, 

species, biomes, different 

sensors, or scene 

components like clouds and 

water bodies") at its first 

introduction. 

We thank the reviewer for this suggestion. We revised the abstract (and 

ensured consistency with the introduction) to include an immediate 

definition of OOD data. It now reads:  

“Abstract: 

…out-of-distribution (OOD) data, i.e. test samples that differ substantially 

from the training distribution, such as unseen geographical regions, species, 

biomes, sensors, or scene components (e.g., clouds, water bodies).”  

11 
Writing Flow and 

Conciseness: The 

manuscript is generally 

well-organized and 

readable. However, some 

sentences could be 

rephrased for improved 

conciseness or flow. For 

example, the sentence 

describing the two phases 

of the method (Lines 129-

130) could be streamlined 

for better readability. 

We will carefully check and improve the readability and flow of the entire 

manuscript in the revised version. 

12 
 

Detailed Preprocessing in 

Supplementary Material: 

While some preprocessing 

steps are mentioned (Lines 

145-147), for full 

reproducibility, please 

include a dedicated 

supplementary section with 

more detailed 

preprocessing steps, 

including specific 

interpolation methods, 

filtering parameters, and 

In response to the reviewer’s suggestion, we will add a supplementary section 

adding detailed information for our data processing. The section will read as 

follows: 

“S1. Preprocessing pipeline 

All 50 compiled datasets were pre-processed using the same standardized 

pipeline, without any dataset-specific deviations. The procedure followed here 

is based on the analysis of Cherif et al. (2023) and summarized as follows: 

First, reflectance spectra were quality-checked. Reflectance values outside the 

physical range were masked: values below zero were set to missing, and 
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precise band exclusions for 

each dataset. 

values greater than one were treated as spurious spikes. These missing values 

were then replaced by the mean of the nearest valid neighbors. 

Second, all datasets were resampled to a common 1 nm resolution to 

harmonize the diverse measurements from different sensors (from proximal 

and airborne), which varied in spectral sampling and band centers. This 

resampling was not intended to enhance spectral resolution or recover fine-

scale features absent in coarser sensors, but to provide a uniform input 

representation required for the deep learning model. Most datasets were 

already acquired at 1 nm resolution, so upsampling was preferred over 

downsampling to minimize manipulation of the data and avoid loss of 

information from higher-resolution sensors.  

Third, spectral intervals strongly affected by atmospheric water absorption 

were excluded uniformly across all datasets. In the implementation, the 

following wavelength ranges were removed: 1351–1430 nm, 1801–2050 nm, 

and 2451–2500 nm. 

Finally, the remaining reflectance data were smoothed using a Savitzky–Golay 

filter applied independently to three contiguous segments of the spectrum: 

400–1350 nm, 1431–1800 nm, and 2051–2451 nm. Each segment was filtered 

with a window size of 65 nm and a polynomial order of one.” 

13 
 

Data Availability 

Clarification: The GitHub 

link for code availability 

(Line 1043) is excellent. 

Please explicitly state 

whether the full processed 

datasets used for training 

and testing are also 

available or how they can 

be accessed (e.g., if too 

large for GitHub, mention a 

data repository). 

We thank the reviewer for this recommendation. The training datasets of the 

deep learning model were made available as part of the previous study (cherif 

et al. 2023). However, we will share the distance data relevant for the current 

study. Due to the large size of the data, we will share it via other platforms 

like HuggingFace. 

14 
Applications in Other 

Remote Sensing Domains: 

Expand the discussion on 

potential applications of 

Dis_UN beyond vegetation 

monitoring. For instance, 

discuss how it could be 

applied to uncertainty 

quantification in other 

remote sensing domains, 

such as land cover 

We thank the reviewer for this comment. In response we will add the 

following to the outlook section. 

 

“4.5 Outlook: Uncertainty in the Context of Global Trait Mapping 

..Importantly, such methods are not restricted to vegetation trait retrieval but 

can be readily applied and extended to a wide range of applications where 

robustness under distribution shift and reliable uncertainty quantification are 

critical.” 
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classification, deforestation 

detection, or urban 

mapping, where OOD 

conditions (e.g., new urban 

structures, novel land cover 

types) are common. 

15 
 

Integration with Other Data 

Modalities: In the future 

work section, suggest 

avenues for integrating 

Dis_UN with other data 

modalities beyond 

hyperspectral (e.g., LiDAR 

or SAR data) for a more 

comprehensive uncertainty 

assessment, particularly for 

structural traits. This would 

further enhance the 

model's generalizability and 

impact. 

We thank the reviewer for this suggestion. The proposed method is inherently 

sensor-agnostic and can be applied across different remote sensing 

modalities or in multi-sensor settings. Modalities such as LiDAR, SAR, or high-

resolution canopy height models are indeed valuable for improving trait 

predictions and thereby indirectly reducing predictive uncertainty. However, 

the aim of this study is to develop and test a post-hoc framework for 

uncertainty quantification, independent of the input data and based solely on 

how the training and test samples relate to each other. 

 


