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Ref. No.:  egusphere-2025-1284- “Uncertainty Assessment in Deep Learning-based Plant Trait Retrievals from 
Hyperspectral data” 
 

Dear Reviewer, dear Editor, 

Thank you for your time reviewing our manuscript and for your constructive and helpful comments. In response to 

the comments and suggestions provided, the main changes to the manuscript will include: 

1. Methodology presentation: We will improve the methodological section by adding equations describing 

the dissimilarity indices and by including a clearer and more comprehensive workflow diagram. 

2. Spectral data description and preprocessing: We will clarify the description of datasets and provide an 

explanation of the spectral resampling and smoothing strategy, including its rationale. 

3. Uncertainty modeling and fairness of comparison: We will clarify in the discussion section our rationale 

for comparing different uncertainty estimation methods as they are typically applied in literature, while 

also providing recalibrated results in the appendix for additional context. 

4. Vegetation type interpretation: We will revise the discussion of grasslands to avoid ambiguity around the 

term “simple,” now framing them in terms of structural homogeneity. We also included additional 

references. 

5. Technical corrections: We will address all technical comments, including supplementary material citations, 

terminology consistency, unit reporting in figures and tables, and clarification of dropout rate usage. 

In addition to addressing the reviewer’s comments, we have enriched the comparison to state-of-the-art 

uncertainty estimation methods. In the literature, both probabilistic and deterministic deep ensemble approaches 

are used; we now explicitly include both methods. 

A detailed, point-by-point response, including the proposed changes in the manuscript, are attached. 

Kind regards, 

Eya Cherif (on behalf of all co-authors). 

 

 

 

 

 

 

 

https://www.biogeosciences.net/
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Responses to individual comments from RC1 

ID Comment Response 

1 This is an interesting work that 

deals with the capability of inferring 

the uncertainty of machine (i.e., 

Deep) learning models’ predictions 

based on the dissimilarity between 

the seen and input data of the 

model. The proposed methodology 

is tested using a complete dataset 

of observations, and the results 

suggest that, particularly for unseen 

data, the uncertainty estimates are 

more accurate or at least more 

conservative than those provided 

by other methods, which appear to 

underestimate uncertainty 

systematically. The results depend 

on the biophysical variable 

predicted by the model, with large 

differences in performance or 

behaviour in some cases. The 

manuscript and the results are well 

presented, and the discussion is 

consistent with them; still, some 

relevant questions remain to be 

clarified. Overall, the work is 

relevant to the domain of remote 

sensing and machine learning, and 

the proposed method appears to 

improve upon the state-of-the-art 

alternatives. 

 

 

We would like to thank the reviewer for these very constructive 

comments that were very helpful to further improve the manuscript. 

Please find below a detailed answer to the comments.  

 

                                                                                             

1a The methodology could be more 

clearly presented (e.g., including 

equations and a flowchart). 

Additionally, some results, 

particularly those regarding LAI, 

require a deeper inspection that 

justifies the hypothesis presented 

by the authors to justify their 

findings. Some points made in the 

discussion should be reviewed or 

 

While a flowchart was already included in the original manuscript (Fig. 

1), we recognize that it may not have clearly conveyed the 

methodology. We have therefore revised and improved the flowchart 

to provide a clearer representation of the workflow (see response to 

comment 4). In addition, we have elaborated on the specific case of 

LAI (see response to comment 10), with further clarification in the 

discussion to better justify the interpretation of saturation effects. We 

will also revise the discussion in response to comments 5, 6, and 9 to 

improve clarity of the manuscript.       
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linked to the methodological 

choices made by the authors. 

 Specific comments:  

1 Lines 162-166: Clarify to the reader 

that spectral data correspond to 

proximal sensing and airborne 

canopy reflectance factors so that it 

is not necessary to access Table S3 

to know this detail. Also, specify 

whether these datasets were 

gathered from open-access 

repositories or were privately lent 

by the producers for this study. 

 

We thank the reviewer for pointing out the ambiguity in the 

description of the spectral datasets. We will revise the paragraph to 

more clearly state at the beginning that the data include proximal and 

airborne reflectance sources and clarify the origin of the datasets 

(open-access and private contributions).  

Below a copy of the updated paragraph: 

“2.1.1 The Multi-trait Model 

… 

The dataset used for this study is a curation of multiple datasets, 

incorporating spectra and trait observations from diverse ecosystems, 

including forests, grasslands, shrublands, and agricultural regions. 

Reflectance data, spanning wavelengths from 400 to 2500 nm, were 

collected using a variety of hyperspectral sensors, including proximal 

field spectrometers and airborne imaging instruments. These datasets 

were gathered from both open-access repositories and privately 

shared contributions. In total, 50 datasets were integrated into this 

study (Herrmann et al., 2011; Pottier et al., 2014; Singh et al., 2015; 

Hank et al., 2015, 2016; Wang et al., 2016; Wocher et al., 2018; Ewald 

et al., 2018; Cerasoli et al., 2018; Ewald et al., 2020; Kattenborn et al., 

2019; van Cleemput et al., 2019; Brown, 2019; Chlus et al., 2020; 

Wang et al., 2020; Burnett et al., 2021; Dao et al., 2021; Rogers et al., 

2021; Brown et al., 2021a; Brodrick et al., 2023; Chadwick et al., 2023; 

Zheng et al., 2023; Gravel et al., 2024; Table S3). “ 

2 Lines 170-172: While the approach 

is generally accepted (e.g., the ASD 

field spectroradiometers 

interpolate to one nm step in their 

output), I wonder how the authors 

pondered this choice. Overall, 

interpolation will not be able to 

improve the information of the 

datasets with the coarsest spectral 

resolution.  

 

 

We thank the reviewer for raising this important point. To clarify, the 

interpolation step was not intended to improve the spectral 

resolution or enhance the information content of lower-resolution 

sensors. Instead, it was a necessary step to harmonize reflectance 

data from multiple sources with varying spectral sampling and band 

positions. This harmonization strategy was developed and described 

in detail in our earlier work (Cherif et al. 2023), and the current study 

builds directly upon that unified dataset. Maintaining the same 

resolution across all spectra is required for the deep learning model.  

We acknowledge that interpolating coarse-resolution spectra cannot 

recover fine spectral features not originally measured. However, 

downsampling all data to the lowest resolution would result in a net 

loss of useful information for sensors that do capture fine-grained 

features and may reduce model performance overall. Additionally, 

even with such downsampling, interpolation would still be necessary 

to harmonize the central band positions, since the sensors differ not 

only in resolution but also in band centers. 
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In the revised manuscript we will provide an elaborated explanation 

and rationale on how the data was processed: 

 

“2.1.1 The Multi-trait Model 

… 

In line with Cherif et al. (2023), all datasets were resampled to a 

common 1 nm resolution across the 400–2500 nm range to 

harmonize the diverse measurements. We chose to upsample rather 

than downsample, as most of the samples were originally acquired at 

1 nm resolution, thereby minimizing manipulation of the data.  To 

address known challenges associated with atmospheric water 

absorption in open-sky canopy reflectance spectra, we excluded the 

water absorption regions (1251–1529 nm, 1801–2050 nm, and 2451–

2501 nm). The remaining three spectral segments were 

independently smoothed using a Savitzky-Golay filter (Savitzky and 

Golay, 1964) with a 65 nm window size.  As no sensor-specific noise 

information was available, the same preprocessing procedure was 

applied consistently across all datasets to ensure comparability 

within the curated collection.” 

2a What impact do the authors expect 

from this imbalance in the 

information rendered in each 

dataset? Do they expect that the 

information contained in the 

narrow spectral features, which 

remain only in the datasets with 

the highest spectral performance, 

will be learned by the model, even 

if not present in all the datasets, or 

would this mixture just be a source 

of confusion and uncertainty for 

the training? In the second case, 

wouldn’t it be more robust to 

downgrade the spectral resolution 

to the lowest among the datasets? 

 

We thank the reviewer for raising this important point. We 

acknowledge the potential concern regarding variable spectral 

resolution across datasets. However, we would like to clarify that 

vegetation reflectance spectra are typically smooth and continuous 

reflectance curves without narrow absorption features. Therefore, 

the fact that some datasets have coarser spectral resolutions than 

others is unlikely to pose a significant problem for trait retrieval. Fine-

scale spectral detail is generally less critical in vegetation studies (see 

figure below extracted from Cherif et al. 2023, RSE) than in, for 

example, mineralogy applications. 

 

Consequently, we do not expect that the interpolation to a common 

1 nm grid introduces substantial bias or confusion into the model 

training. We have to choose one common spectral resolution (see 

comment above) and 1 nm resolution is the most common resolution 

across all datasets and ensures that we introduce minimal alterations 

across datasets. 

While we agree that exploring the impact of spectral resolution and 

downsampling could be valuable, we consider this beyond the scope 
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of the current study, which builds directly on a previously established 

modeling pipeline (Cherif et al. 2023). Future work could certainly 

examine how harmonization strategies affect model performance 

across sensors in both training and inference contexts. 

 

Cherif, E., Feilhauer, H., Berger, K., Dao, P. D., Ewald, M., Hank, T. B., 

... & Kattenborn, T. (2023). From spectra to plant functional traits: 

Transferable multi-trait models from heterogeneous and sparse 

data. Remote Sensing of Environment, 292, 113580. 

 

In the revised manuscript, we will provide an elaborated rationale on 

spectral resampling (see comment 2 above). 

3 Lines 172-174: Spectra with 

different noise levels are smoothed 

with the same window width. 

Likely, the field spectroradiometers 

are less noisy than airborne 

imagers; thus, there’s a risk of over-

smoothing already smooth data. 

Overall, the aim should be to 

achieve a comparable noise level 

for each dataset. Could processing 

data according to their noise levels 

improve the learning process?  

Considering this further, I 

understand that the levels of 

uncertainty are unknown, but 

perhaps different degrees of 

reliability could be provided for 

field spectroscopy and airborne 

imagery. Would giving different 

weights to each type of data 

improve the results? 

 

We thank the reviewer for this comment. While this preprocessing 

step is not the central focus of the current manuscript, we note that 

the spectral data used here were pre-processed following the 

protocol established in a previous study (Cherif et al. 2023). However, 

to address the reviewer’s concern, we would like to clarify the 

rationale behind using the same smoothing setup across all datasets. 

We intentionally applied identical smoothing parameters to all 

spectra to ensure consistent data treatment. Using different 

smoothing parameters for each dataset, even if motivated by 

differences in sensor noise, would introduce non-stationarity in the 

data (e.g. dampening of some spectral features for some sensor 

types). 

Furthermore, noise levels are influenced by multiple factors, such as 

illumination conditions, calibration protocols, reference target 

quality, and atmospheric correction procedures, that vary across 

datasets and are often undocumented. This makes it infeasible to 

develop a simple sensor-specific or noise-aware smoothing strategy. 

Moreover, the optimal setup for smoothing is not determined solely 

by the noise characteristics of the sensor, but also by the nature of 

the spectral features that must be preserved. In our case, we are 

dealing exclusively with vegetation spectra, which exhibit consistent 

and broad biophysical features (e.g., the red-edge, green reflectance 

peak, and chlorophyll absorption features). The smoothing method 

(Savitzky-Golay filter with the selected parameters) is similarly applied 

in a range of related studies and were carefully chosen to suppress 

sensor noise while preserving these critical spectral features. 

Vegetation spectra are not characterized by narrow absorption 

features (as is common in mineral spectroscopy), so moderate 

smoothing does not risk removing meaningful information.  

This is also supported by the feature importance analysis in Cherif et 

al. (2023), where SHAP values (Figure below) showed that trait 
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predictions largely depend on broader spectral patterns rather than 

isolated narrow bands. This further confirms that minor differences in 

spectral resolution or smoothing have limited impact on model 

learning.

 

In the revised manuscript, we will provide an elaborate rationale on 

spectral smoothing (see comment 2 above). 

We will also add a supplementary section, adding detailed 

information for our data processing. The section will read as follows: 

“S1. Preprocessing pipeline 

All 50 compiled datasets were pre-processed using the same 

standardized pipeline, without any dataset-specific deviations. The 

procedure followed here is based on the analysis of Cherif et al. (2023) 

and summarized as follows: 

First, reflectance spectra were quality-checked. Reflectance values 

outside the physical range were masked: values below zero were set 

to missing, and values greater than one were treated as spurious 

spikes. These missing values were then replaced by the mean of the 

nearest valid neighbors. 

Second, all datasets were resampled to a common 1 nm resolution to 

harmonize the diverse measurements from different sensors (from 

proximal and airborne), which varied in spectral sampling and band 

centers. This resampling was not intended to enhance spectral 

resolution or recover fine-scale features absent in coarser sensors, but 

to provide a uniform input representation required for the deep 

learning model. Most datasets were already acquired at 1 nm 

resolution, so upsampling was preferred over downsampling to 

minimize manipulation of the data and avoid loss of information from 

higher-resolution sensors.  

Third, spectral intervals strongly affected by atmospheric water 

absorption were excluded uniformly across all datasets. In the 

implementation, the following wavelength ranges were removed: 

1351–1430 nm, 1801–2050 nm, and 2451–2500 nm. 
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Finally, the remaining reflectance data were smoothed using a 

Savitzky–Golay filter applied independently to three contiguous 

segments of the spectrum: 400–1350 nm, 1431–1800 nm, and 2051–

2451 nm. Each segment was filtered with a window size of 65 nm and 

a polynomial order of one.” 

4 Section 2.1.2: This section’s clarity 

could benefit from some equations. 

Additionally, a flowchart 

summarizing the methodology 

would provide a clearer view for 

the reader at an early stage of the 

manuscript. 

 

We thank the reviewer for this constructive suggestion, which helped 

improve the clarity and readability of our methodology. In response, 

we will revise Section 2.1.2 by including a mathematical formulation 

of the dissimilarity index (DI), which was used as a core predictor in 

our uncertainty estimation approach. The added equations describe 

the cosine distance calculation between test and training spectra, the 

procedure for summarizing distances via the median of the 50 nearest 

neighbors, and the normalization against the training set mean 

(Equations 1–3). 

We will add the corresponding clarification under the 2.1.2 

Dissimilarity indices (predictors) section: 

“2.1.2 Dissimilarity indices (predictors) 

The DI, used as a predictor in this study, was calculated using the 

cosine distance, a well-suited metric for analyzing reflectance data. 

The cosine distance effectively captures the angular relationship 

between two spectra (Kruse et al., 1993), emphasizing spectral shape 

while minimizing the influence of amplitude variations that occur 

uniformly across the spectrum. This helps mitigate brightness changes 

caused by heterogeneous illumination and internal shading (Feilhauer 

et al. 2010). 

Formally, the cosine distance between a test spectrum xi and a 

training spectrum zi is defined as:          

𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝑧𝑗) =  1 − 
𝑥𝑖.𝑧𝑗

||𝑥𝑖||.||𝑧𝑗||
          (1) 

This DI was applied in both the feature space and the embedding space 

of the models (Fig. S2). As a first step, we calculated cosine distances 

between each sample of the test dataset xi and the samples of the 

training data set zi. These calculations were performed using the 

Python package FAISS (Douze et al., 2024), which is optimized for fast 

similarity search and clustering of large datasets. As a next step, each 

DI was calculated as the median of the distance distribution between 

a test sample and its 50 nearest neighbors in the training set: 

                                𝐷𝐼𝑖 =  𝑚𝑒𝑑𝑖𝑎𝑛{𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡(𝑥𝑖 , 𝑧𝑗)}
𝑗=1

50
      (2) 
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To ensure comparability across samples, the indices were normalized 

against the mean DI value of the entire training set (Meyer and 

Pebesma, 2021): 

𝐷𝐼𝑖
𝑛𝑜𝑟𝑚 =  

𝐷𝐼𝑖

𝜇𝑡𝑟𝑎𝑖𝑛
 , with  𝜇𝑡𝑟𝑎𝑖𝑛 =  

1

𝑛
∑ 𝐷𝐼𝑖

𝑛
𝑗=1  where n is the number 

of training samples                       (3)   “                                 

Furthermore, we have updated Fig. 1 to include a clearer and more 

comprehensive workflow diagram of our distance-based uncertainty 

method (Dis_UN). The revised figure provides an overview of the 

entire pipeline and will be presented earlier in the manuscript to guide 

the reader through the subsequent sections. 

 

Figure 1: Workflow of the distance-based uncertainty method 

(Dis_UN) to assess uncertainty of a deep learning model. The method 

consists of three phases: (a) Leave-one-dataset-out cross-validation 

(LODO-CV) on the deep learning model, (b) Training data generation 

for uncertainty estimation using the LODO-C), and (c) uncertainty 

modeling, which incorporates the following inputs: dissimilarity 

indices between the training and the test samples in feature and 

embedding space of the multi-trait model, the trait predictions 

obtained from the deep learning models and the true trait 

observations.       

5 Lines 205-207, Section 4.4: The 

absolute value of the errors is 

taken. Do the authors expect the 

errors to be symmetric and 

centered on zero, or was this 

checked? Would any knowledge be 

gained if the error and the 2.5- and 

97.5-quantile regressions were 

applied instead? (e.g., biases in 

 

We thank the reviewer for this comment. We would like to clarify 

two important aspects in this comment. 

First, we used absolute errors to focus on the magnitude of 

prediction errors, independent of direction. This choice aligns with 

standard practice for evaluating and comparing uncertainty 

quantification methods such as Ens_UN and MCdrop_UN, which 

estimate uncertainty through predictive variance (a measure 

inherently tied to the dispersion of predictions, not their sign). While 

this approach does not capture directional bias, we recognize the 
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specific directions for specific 

vegetation types). In the discussion 

(Section 4.4), they precisely raise 

the issue of assuming or forcing 

symmetric error distributions, but 

their analyses start from absolute 

error values. Could they comment 

on the potential impact of their 

choice in the context of symmetric 

distributions, and maybe foresee 

future lines of research at least? 

importance of analyzing signed residuals, and we will highlight this 

as a potential extension in future work: 

“4.5 Outlook: Uncertainty in the Context of Global Trait Mapping 

In addition, while directional errors were not explicitly modeled in 

this study, analyzing signed residuals could help reveal trait- or 

vegetation-specific biases. We recognize this as a valuable avenue 

for future research and recommend that future developments in 

uncertainty modeling explore the use of signed residuals and the 

estimation of both lower and upper quantiles.” 

Second, we emphasize that our approach does not make any 

assumptions about the symmetry or shape of the residual 

distribution. In fact, a key motivation behind our method is to provide 

a conservative and distribution-agnostic estimate of uncertainty. 

Specifically, we model only the upper bound (95th quantile) of the 

absolute residuals, focusing on extreme errors rather than assuming 

any distributional form. This is particularly valuable in contexts where 

errors are skewed or heavy-tailed, as it avoids the limitations of 

traditional variance-based methods. In contrast, approaches such as 

Ens_UN and MCdrop_UN typically estimate uncertainty via the mean 

± std, implicitly assuming that the prediction errors follow a 

symmetric (often Gaussian) distribution. This assumption can lead to 

underestimation of uncertainty in the presence of asymmetric error 

distributions, especially in ecological applications where such 

asymmetries are common. We clarify this point further in the 

discussion section: 

 

“4.4 Challenges in comparing and interpreting the uncertainty of 

state-of-the-art methods 

Comparing and interpreting the uncertainty estimates produced by 

different state-of-the-art methods is challenging  due to the 

underlying assumptions of each approach. Traditional methods, such 

as Ens_UN techniques and MCdrop_UN, often assume Gaussian 

uncertainty, implying that prediction errors are symmetrically 

distributed around the mean (i.e., mean ± std) (Hu et al., 2022; Klotz 

et al., 2022). However, this assumption does not hold true for many 

plant trait distributions, which are inherently skewed and variable 

due to ecological and physiological factors across diverse vegetation 

types—including forests, grasslands, and crops.  Models that cannot 

account for this asymmetry will produce biased or inaccurate 

uncertainty estimates, as they assume that the data's spread around 

the mean is similar on both sides. For instance, Klotz et al. (2022) 

emphasize the importance of accounting for asymmetric 

distributions in natural data, noting how uncertainty estimates can 

be improved by modeling heavy tails and skewed data. When plant 

trait distributions are skewed, their corresponding uncertainty 
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estimates should reflect this asymmetry. Our approach addresses this 

by not assuming any specific distributional form. Instead, we 

estimate the upper bound of residuals directly using the 95th 

quantile of absolute errors, which allows for a distribution-agnostic 

uncertainty estimate.” 

6 Dis_UN model and training, and 

lines 440-445: The performance of 

this model’s training (and test) is 

not presented; therefore, the 

reader can’t know whether the 

predictions were expected to be 

accurate or precise when applied.  

 

 

We thank the reviewer for this comment. To clarify this point, we will 

add the evaluation results of the model’s predictive performance 

under leave-one-dataset-out cross-validation (LODO-CV) in the 

Appendix. The results are presented as scatter plots comparing 

predicted versus observed trait values (Figure below). 

 

 

6a Despite being more “conservative” 

than the other methods, Dis_UN 

predictions are also uncertain. Fig. 

3 compares the absolute value of 

the error with the expected 95 % of 

their distribution predicted by 

Dis_UN, but the 68 % (one standard 

deviation) for the others, which 

may not be the most appropriate 

comparison. The statement in lines 

440-445 raises the question of 

whether this comparison is then 

fair, or whether, comparing the 

same uncertainty coverages, the 

difference between the uncertainty 

predictions would become lower. 

Perhaps the 95% tail should be 

calculated and compared for all 

methods (e.g., multiplying the 

Ens_UN and MCdrop_UN estimates 

by 1.96), or the 68-quantile 

regression (one standard deviation) 

used for Dis_UN. 

 

We thank the reviewer for this important observation. We agree that 

comparing different uncertainty estimation methods under varying 

coverage levels may raise concerns regarding fairness and 

interpretability. Nonetheless, we acknowledge that the uncertainty 

estimation methods differ fundamentally in their rationale, quantile 

regression (Dis_UN) estimates an upper bound on prediction error, 

while variance-based methods like Ens_UN and MCdrop_UN estimate 

the spread of model predictions. As a result, their uncertainty values 

are not directly comparable in magnitude, as they convey different 

interpretations. However, the intent of Figure 3 is not to compare 

these absolute values, but to assess how well each method’s 

predicted uncertainty aligns with the actual model residuals, that is, 

how well-calibrated the uncertainties are in practice. Our focus is on 

evaluating this alignment rather than calibrating all methods to a 

common nominal confidence level. 

While calibration of variance-based methods is an active area of 

research (e.g., Rahaman et al., 2021; Egele et al., 2022; Bethell et al., 

2024), its evaluation is beyond the scope of this study. Nonetheless, 

we acknowledge its practical relevance: for example, scaling Ens_UN 

by ~1.96 under Gaussian assumptions improved alignment with 

residuals, whereas MCdrop_UN did not benefit similarly. These 

results are included in the Appendix and mentioned in the main text. 
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Importantly, Fig. 3 presents all methods as they are typically applied 

in the literature (e.g., Pullanagari et al., 2021; Lang et al., 2022; Palmer 

et al., 2022; García-Soria et al., 2024), without post hoc adjustments, 

to reflect current real-world practice. 

Moreover, the concept of “coverage” differs between the approaches 

(Figure below). In quantile regression, coverage is the proportion of 

residuals below the predicted quantile bound; for example, a 95% 

quantile model aims for 95% of residuals to fall beneath this bound. 

In variance-based methods, coverage is the proportion of residuals 

within a symmetric prediction interval [μ ± zσ] under an assumed 

parametric distribution (often Gaussian). These are not statistically 

equivalent: prediction interval coverage reflects calibration of a 

symmetric probabilistic model, whereas quantile regression coverage 

measures the accuracy of an asymmetric, one-tailed bound. For this 

reason, we evaluate each method in its native uncertainty 

representation rather than forcing them to a common nominal level. 

 

To reduce potential misunderstanding, we have revised the 

corresponding paragraph in the discussion to clarify our rationale. The 

revised text (Discussion section) now reads: 

“4.1 Local-Scale Uncertainty in OOD Vegetation data 

These findings emphasize the importance of carefully selecting and 

interpreting uncertainty estimation methods. Recalibration of 

variance-based approaches has been increasingly recommended 

(JCGM, 2008), and several recent efforts have proposed post hoc 

methods to better align their uncertainty estimates with observed 

residuals. For example, we observed that the underestimation in 

Ens_UN improved when scaling uncertainty by a factor of 1.96 (Fig. 

S5), although this adjustment did not improve MCdrop_UN. In Fig.3 , 

however, we present all methods as they are typically applied in the 

literature (e.g., Pullanagari et al., 2021; Lang et al., 2022; Palmer et 

al., 2022; García-Soria et al., 2024), without additional adjustments. 

More broadly, calibration of predictive uncertainty remains an active 

research area (Rahaman et al., 2021; Egele et al., 2022; Palmer et al., 
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2022; Bethell et al., 2024; Yang et al., 2024; Zeevi et al., 2024), but the 

evaluation of such strategies lies beyond the scope of the present 

study.” 
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grasslands using a convolutional neural network. Remote Sensing of 

Environment, 257, 112353. 

Palmer, G., Du, S., Politowicz, A., Emory, J. P., Yang, X., Gautam, A., ... 

& Morgan, D. (2022). Calibration after bootstrap for accurate 

uncertainty quantification in regression models. npj Computational 

Materials, 8(1), 115. 

7 Lines 431-433: Perhaps 

“correlation” is not the most 

representative term for the 

problem; for example, ens_UN 

might feature higher Pearson 

coefficient correlations than the 

other methods (Fig. 3). The 

coefficient of determination might 

neither represent the achievement 

the authors report, thus, another 

term should be used instead. 

 

We thank the reviewer for this important observation. We will revise 

the paragraph as follows: 

“In this study, both the Ens_UN and MCdrop_UN methods tended to 

largely underestimate residuals when applied to OOD vegetation data 

(on average 26.7% and 6.5% respectively, Table S4 and Fig. S3). The 

observed low alignment between predicted uncertainty and residuals 

suggests that the uncertainty estimates produced by these models do 

not fully represent the model's errors (Fig. 3).” 

8 Lines 456-457: If the embedded 

space misses some spectral 

information that might be different 

between vegetated and non-

vegetated surfaces, do these 

differences matter when the traits 

are predicted? 

 

We thank the reviewer for this comment. To clarify, the current trait 

model was optimized exclusively for vegetation trait prediction. 

Consequently, when confronted with non-vegetated spectra (e.g., 

water, urban, clouds), the model assigns them the closest values 

represented in the embedding, however, these outputs are not 

intended to be meaningful trait estimates.  

To address this, we could explicitly include non-vegetated spectra in 

the training process by assigning trait values of zero to spectra from 

water, rocks, urban materials, or clouds would allow the embedding 

space to capture these differences more explicitly and yield more 

reliable predictions in mixed or OOD conditions. While such an 

approach was beyond the scope of this study, we see it as a promising 

extension for our trait model. 

9 
Lines 460-466: Grasslands are not 

so simple; they can include non-

green elements, such as standing 

senescent material (e.g., Pacheco-

Labrador et al, 2021), flowers 

(Perrone et al, 2024), and pixels 

usually mix numerous species 

(Darvishzadeh et al, 2008), which 

hamper the relationships between 

spectral and biophysical properties. 

Phenology during sampling is not 

We thank the reviewer for their instructive comment. We agree that 

the term “simple” in reference to grasslands may have been 

misunderstood, and we appreciate the helpful suggestions and 

references provided. In response, we will revise the corresponding 

paragraph and now explicitly refer to structural homogeneity rather 

from a radiative transfer modeling perspective than broad "simplicity"   

that could be indeed confused with  ecological or spectral uniformity 

per se. We also acknowledged the lower BRDF effects in grasslands 

and added that most in-situ measurements were collected during the 

green-peak period, which likely minimized background contributions 

and contributed to lower observed uncertainty. 
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reported in the manuscript, but if 

all the datasets correspond to the 

green-peak period, grasses will 

cover most of the soil, and unlike in 

the shrublands, the background 

contribution will be minimized. 

Lower uncertainties might result 

from bias in the sampling time of 

the grasslands towards the green 

peak, if this is indeed the case 

(which could be confirmed). Unlike 

forests and shrublands, grasslands 

exhibit a significantly lower 

geometrical BRDF component, 

which may explain the differences 

between cover types. Forests, in 

addition to shrublands, will present 

a more complex vertical profile 

with a distinct understory of 

vegetation. There are arguments to 

justify the findings, but grasslands 

should not be regarded as “simple”. 

The issue of the phenology bias is, 

in fact, commented on in the 

discussion (Section 4.3). 

References: 

Darvishzadeh, R., Skidmore, A., 

Schlerf, M., and Atzberger, C.: 

Inversion of a radiative transfer 

model for estimating vegetation LAI 

and chlorophyll in a heterogeneous 

grassland, Remote Sensing of 

Environment, 112, 2592-2604, 

https://doi.org/10.1016/j.rse.2007.

12.003, 2008. 

Pacheco-Labrador, J., El-Madany, T. 

S., van der Tol, C., Martin, M. P., 

Gonzalez-Cascon, R., Perez-Priego, 

O., Guan, J., Moreno, G., Carrara, 

A., Reichstein, M., and Migliavacca, 

M.: senSCOPE: Modeling mixed 

canopies combining green and 

brown senesced leaves. Evaluation 

in a Mediterranean Grassland, 

Remote Sensing of Environment, 

257, 112352, 

The revised text (Discussion section) now reads: 

“4.1 Local-Scale Uncertainty in OOD Vegetation data 

… 

This can be explained by the fact that grassland is one of the more 

highly represented land cover types in the dataset (1403 of 5573 

samples, Table S1) and, from a radiative transfer point of view, it is 

considered structurally more homogeneous compared to forests and 

shrubland (Asner, 1998; Ollinger, 2011; Brown et al., 2024). 

Grasslands typically exhibit lower 3D canopy complexity, and reduced 

geometric BRDF components, which may reduce spectral variability 

and residual errors (Jacquemoud et al. 2009). Forests and shrublands 

are structurally more complex, often containing many scene 

components beyond green leaves, such as bare ground in canopy 

gaps, stems, bark, canopy shadow, and other non-photosynthetic 

components, that contribute to the spectral measurements but are 

not directly related to the plant traits being measured .” 

references 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., 

Asner, G. P., ... & Ustin, S. L. (2009). PROSPECT+ SAIL models: A review 

of use for vegetation characterization. Remote sensing of 

environment, 113, S56-S66. 
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https://doi.org/10.1016/j.rse.2021.

112352, 2021. 

Perrone, M., Conti, L., Galland, T., 

Komárek, J., Lagner, O., Torresani, 

M., Rossi, C., Carmona, C. P., de 

Bello, F., Rocchini, D., Moudrý, V., 

Šímová, P., Bagella, S., and 

Malavasi, M.: “Flower power”: How 

flowering affects spectral diversity 

metrics and their relationship with 

plant diversity, Ecological 

Informatics, 81, 102589, 

https://doi.org/10.1016/j.ecoinf.20

24.102589, 2024. 

10 LAI and saturation: The authors 

argue that the different 

performance of Dis_UN for LAI is 

due to saturation; however, in the 

training datasets, maximum LAI 

barely reaches 6. I think this 

hypothesis should be more robustly 

explored, which may have been 

done but not presented to the 

reader.  

 

I am not sure saturation can justify 

the negative coefficients presented 

in Table S6. Usually, LAI and 

canopy-scale vegetation variables 

are easier to retrieve from remote 

sensing than leaf-level 

measurements, which should raise 

some flags. 

The authors could start by checking 

how well the DL model performs in 

predicting LAI compared to the 

other variables; i.e., the training 

and test statistics of the model 

could be presented in the 

supplementary material. I would 

expect LAI to be more predictable 

than foliar traits. 

If there is saturation, where does it 

happen? The authors could plot, for 

example, NDVI (or other index, e.g., 

NIRv) vs. LAI from their training 

We thank the reviewer for this constructive comment. We agree 

that the behavior of the LAI uncertainty model deserves further 

clarification, especially in relation to saturation and spectral 

distance. 

When examining LAI prediction maps for inference, we observe that 

the deep learning model tends to predict LAI values close to the 

median of the training distribution (LAI of ~4), across the land cover 

components including unseen vegetation, shadow, and water (Figure 

Figure S11b and figure below). 

 

As shown in a range of studies, LAI estimation is, in comparison to 

foliar traits, not trivial and particularly for large LAI gradients 

expected to have severe uncertainty due to saturation effects 

(Schiefer et al. 2021, Cherif et al. 2023, Mederer et al. 2024) LAI 

estimation can suffer from  saturation, where the model struggles to 

differentiate between high and very high LAI due to limited spectral 

sensitivity at those levels, which is a common and unresolved 

physical problem for remote sensing of LAI (Zheng et al. 2009, 
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datasets and explore above which 

LAI level their dataset saturates. 

Then, could they check whether the 

problems for Dis_UN to predict 

uncertainty occur above the 

threshold? 

In the case of non-vegetated 

surfaces, the DL model might have 

learnt to predict low LAI for clouds, 

buildings, or soils even without 

having seen them. Under this 

hypothesis, it would also be worth 

checking whether the estimation 

uncertainty is low because, indeed, 

the LAI prediction is accurate. 

Therefore, the authors may also 

want to explore the maps of 

predicted variables to confirm 

whether the predicted values are 

reasonable for any of the variables 

(i.e., LAI being close to 0) for the 

OOD pixels. 

Camps-Valls at al. 2021). Increasing LAI beyond a certain threshold 

(e.g., LAI > 4–5) does not result in a change of the spectral signal. As 

a result, the model’s predictive distribution becomes compressed at 

the upper range, which may also lead to residual skewness. This is 

consistent with the distribution of LAI residuals (median: 0.94, max: 

5.88), which shows a right-skewed pattern driven by the model's 

underestimation of high-LAI cases due to spectral and predictive 

saturation. 

In terms of spectral distance, we observe that high-LAI vegetation 

often appears spectrally similar, even across unseen ecosystems, 

because dense green canopies produce similar reflectance patterns. 

In contrast, low-LAI samples exhibit greater spectral variability, due 

to background effects (e.g., soil, understory, senescent material). 

This creates a counterintuitive scenario: high spectral distances may 

correspond to low LAI, and low distances may occur in high-LAI 

cases, despite the latter being harder to predict. This mismatch 

explains the inverse relationship between spectral distance (and 

embedding distance) and LAI uncertainty, as seen in our regression 

analysis (Table S6). And this is indirectly linked to the reflectance 

saturation effect with LAI. 

That said, we will clarify our conclusion related to these challenges 

and emphasize that our distance-based uncertainty method provides 

clear advantages over state-of-the-art variance-based approaches 

like MC Dropout or Deep Ensembles. We find that integrating 

spectral or latent distance improves the alignment between 

predicted uncertainty and actual residuals, especially in out-of-

distribution settings. We will clarify this point further in the revised 

discussion section and highlight that the performance of distance-

based uncertainty is trait-dependent, with structural traits like LAI 

posing more challenges due to spectral saturation and narrow value 

ranges.  

The corresponding discussion section now reads: 

“4.2.2 Uncertainty Patterns Across scene components and Spatial 

Resolutions 

…While most of the traits showed a similar spatial pattern in the 

predicted uncertainties (Fig. 4 and 5), also when compared to the 

range of uncertainty values of training data samples (Fig. S7 and 

S10), LAI was distinguishingly different. Traits, such as LMA, EWT and 

N, exhibit lower uncertainty in areas with dense canopies, where a 

strong leaf signal is present. This contrasts with LAI, which shows 

greater uncertainty in dense vegetation, likely due to saturation 

effects—where increases in leaf area are no longer detectable by the 
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sensor. This saturation issue is common for LAI that have limited 

sensitivity in dense vegetation conditions (Asner et al., 2003; 

Mutanga et al., 2023) and is reflected in our training data (Fig. below 

to be added). Specifically, scatter plots of observed and predicted LAI 

against NDVI show that while LAI observations continue to increase 

with NDVI up to ~6, the predicted values plateau around LAI ≈ 4–5 

once NDVI exceeds ~0.8. This indicates that the model systematically 

underestimates high-LAI cases, producing a compressed predictive 

distribution and a right-skewed residual pattern. This behavior 

diverges from that of other traits, where uncertainties were typically 

higher in OOD regions due to substantial deviations between 

predicted trait values and the training data distributions of the multi-

trait model (Fig. S8 and S11). In the case of LAI, high values produce 

spectrally similar signals across ecosystems, reducing distances in 

both feature and embedding spaces, while low-LAI samples are more 

spectrally variable due to background effects (e.g., soil, litter, 

understory). This explains the negative regression coefficients 

observed in Table S6 and the unique behavior of LAI uncertainty 

predictions: higher uncertainties were detected in dense vegetation 

areas, while OOD pixels such as water, shadow, and urban regions 

showed lower and less variable uncertainty.” 

 

 

References: 

Mederer, D., Feilhauer, H., Cherif, E., Berger, K., Hank, T. B., Kovach, 

K. R., ... & Kattenborn, T. (2025). Plant trait retrieval from 

hyperspectral data: Collective efforts in scientific data curation 
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... & Kattenborn, T. (2023). From spectra to plant functional traits: 

Transferable multi-trait models from heterogeneous and sparse 

data. Remote Sensing of Environment, 292, 113580. 

Schiefer, F., Schmidtlein, S., & Kattenborn, T. (2021). The retrieval of 

plant functional traits from canopy spectra through RTM-inversions 

and statistical models are both critically affected by plant phenology. 

Ecological Indicators, 121, 107062 

Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., 

Walther, S., Duveiller, G., Cescatti, A., ... & Running, S. W. (2021). A 

unified vegetation index for quantifying the terrestrial biosphere. 

Science Advances, 7(9), eabc7447. 

Zheng, G., & Moskal, L. M. (2009). Retrieving leaf area index (LAI) 

using remote sensing: theories, methods and sensors. Sensors, 9(4), 

2719-2745. 

11 Uncertainty modeling: The variable-

dependence on the capability of 

Dis_UN to predict the uncertainty 

might be alleviated by computing 

the dissimilarity in different 

spectral regions (E.g., Visible, Red-

Edge, NIR, and SWIR). While I do 

not ask the authors to apply this 

approach, they might want to 

consider it in the Outlook section 

(4.5) 

Here, we follow a data-driven approach to predict the uncertainty 

that incorporates all spectral regions. The uncertainty of each trait is 

modelled separately. Thus, the data-driven approach will 

automatically identify the relevant spectral information (represented 

by the feature space and embedding space). Thus, it is unlikely 

reducing the spectral information to sub-regions will enhance the 

performance. 

 TECHNICAL CORRECTIONS  

1 Supplementary materials’ citations: 

I am unsure whether the journal 

requires them to be presented in 

the order of appearance in the 

main text, but it might make more 

sense or facilitate the reader’s 

search. 

We will change the supplementary citations accordingly. 

2 Line 245: For the least familiarized 

readers, define what a “dropout 

rate of 0.5” means and maybe 

justify why this rate is chosen. 

We will elaborate the description as follows: 

“ 2.2.1 Monte Carlo Dropout for Uncertainty Estimation 

(MCdrop_UN) 

…. 
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To quantify uncertainty, multiple forward passes are performed on 

the input data while keeping dropout active. Each pass generates a 

different set of neuron activations, effectively simulating different 

sub-networks. By aggregating these predictions, the mean serves as 

the final output, while the variability among the predictions (i.e., the 

standard deviation) reflects the epistemic uncertainty. In our 

analysis, we calculated the standard deviation of 50 repeated 

forward passes of the multi-trait model on unseen data with a 

dropout rate of 0.5 enabled during inference. A dropout rate of 0.5 

means that each neuron has a 50% probability of being turned off 

during a given forward pass. This rate is widely adopted in practice, 

as it provides a good balance between preserving sufficient network 

capacity and introducing stochasticity for both regularization and 

uncertainty quantification (Gal & Ghahramani, 2016; Kendall & Gal, 

2017).” 

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian 

approximation: Representing model uncertainty in deep learning. 

International Conference on Machine Learning, 1050-1059. 

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in 

Bayesian deep learning for computer vision? Advances in Neural 

Information Processing Systems, 30, 5574-5584. 

 

3 Line 296: Maybe better: “For clouds 

delineation we used…” 

We will change the text accordingly 

4 Table S2, and overall, figures and 

tables: Provide the units of the 

variables presented. 

We will add the units in the revised version. 

5 Table S4: Indicate that the ratio is 

expressed in percentage. 

We will correct the unit in the revised version. 

6 Supplementary material: Enhance 

the presentation and ensure that 

units and symbols are properly 

introduced. 

We will carefully revise the supplementary material in the revised 

version. 

7 Terminology: Review and 

homogenize terminology in the 

main text, tables, and figures. For 

example, in the paper and figures, 

the terms “Ens_UN” and “ens_UN” 

can be found. 

We will carefully revise the terminology in the revised version. 

 


