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additions for the benefit of the reviewers and editor.  
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you for considering our manuscript for publication.  
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Response to the Referees’ Comments 

 

REFEREE #1 

Greenhouse gas inventories and facility operations – Could the authors elaborate on 
how this technique will aid facilities in improving their greenhouse gas inventories? It 
is mentioned in the last line of the abstract, but I’d like to see a paragraph on the 
application of these methods to oil and gas facility operators, how it could be 
implemented, and how easy would the models be for operators to use? 

Authors:  

Thanks for your comment. We added additional wording per Referee’s comment. 

Changes: 

Accurate emissions quantification using CMS can enhance the reliability and robustness 
of GHG emissions inventory development. Traditional inventory methods often rely on 
activity data and generic emission factors, which fail to capture the dynamic nature of 
emissions from individual sources or facilities. By providing continuous, real-time 
measurements source-specific emissions, CMS offers a direct and empirically driven 
approach to quantify actual emissions. High temporal resolution of the CMS measurement 
allows for the identification and characterization of gas releases, including the duration 
and frequency of emission events. In addition, accurate quantification offers a more in-
depth understanding of the magnitude of fugitive emissions, intermittent events, and 
variations in operational performance that are often missed by periodic or estimation-
based methods. Integrating CMS data into GHG inventories leads to a more 
comprehensive understanding of emission sources, enables the tracking of emission 
reduction efforts with greater confidence, and supports the development of more granular 
and verifiable inventories, informing climate policies, and tracking progress towards 
decarbonization goals. 

Length/brevity – The authors clearly know these models well and have robust 
statistical evidence for the accuracy of the models, but this paper is around 50 pages 
long. I would like to see the authors work on making the paper more concise. Perhaps 
some of the introduction can be cut or combined to make the thesis of the paper 
clearer. Also, maybe some parts of Section 3 Methodology can be moved to a 
supplement, and the detailed explanation of the summary statistics to the 
supplement (keeping some of the explanation in the main body obviously). Right now, 
the introduction and methodology read like a literature review, so I’d like to see it 
condensed to focus on the main point of the paper that the Puff/MCMC model works 
best for the CM system and the data explaining why. Another suggestion could be to 
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add the description of the figures to the figure captions themselves instead of in the 
body of the paper. 

Authors:  

We moved parts of the Introduction and Methodology sections to the Appendix to make the 
paper more concise.  

Changes: 

Please see Appendices A and B.  

Meteorological Conditions – I’d like to see in the discussion how the meteorological 
conditions could affect the outcome of the various models, for example if it’s very 
windy would more leaks be missed? How does meteorology affect the performance of 
the CMS emissions models? 

Authors:  

Thanks for your comment.  We have added a paragraph in the discussion about how certain 
meteorological conditions may affect the performance of the system, but defer a more in-
depth analysis of accuracy as a function of various conditions to future work, as the paper 
is already long to the point of being somewhat cumbersome, as pointed out by both 
reviewers. 

Changes: 

While a detailed analysis of how meteorological conditions affect the accuracy of the 
detection, localization, and quantification algorithms is deferred to a future study, there 
are several expectations that can be provided based on the underlying physics of gas 
dispersion and assumptions utilized by Gaussian models that may provide some insight 
into how they will perform under certain conditions.  For instance, the utility of these 
systems may be significantly decreased during time periods with extremely high wind 
speeds.  This is because the measured concentrations scale inversely with wind speed, so 
if the wind speed is sufficiently high such that the measured concentration enhancements 
are within noise of the measurement device, then the system's reliability in terms of 
converting these concentration enhancements to localized source rates will be 
significantly inhibited, and in some cases, impossible.  The precise wind speed cutoff for 
this depends on the characteristic source-sensor distances, release rates, atmospheric 
stability, and the sensitivity of the hardware.  In addition to high wind speeds having the 
potential to negatively impact the performance of CMS-based estimates, extended periods 
of time with extremely low wind speeds can also pose challenges.  In the plume-based 
implantation presented in Section 3.1.1, measurement data points with corresponding 
wind speeds of less than 0.5 m/s are excised from the analysis due to the Plume's 
inapplicability under these circumstances.  In practice, this means that if there is a period 
of time when the wind speed is always less than this threshold, then the plume model, as 
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implemented and presented here, will not be able to quantify emissions from this time 
period.  In contrast, the puff-based model can capture these low wind speed time periods, 
however the standard dispersion coefficients that are employed may not be as accurate 
during extremely low-wind speed conditions, when gas pools in place, and as such, the 
accuracy of puff-based quantification estimates will likely be negatively impacted.  Finally, 
time periods with little variability in wind direction are prone to source confusion (see, e.g., 
Ball, Eichenlaub, and Lashgari 2025), and as such, the accuracy of the system during these 
time periods will be negatively impacted.  Future work will more quantitatively explore how 
the output of CMS-based quantification estimates is affected by these various 
meteorological conditions. 

Paper thesis - I’d like to see more discussion on why the Puff model is the most 
reasonable approach operationally. Is the point of the paper to compare different 
measurement techniques or to offer a solution for facilities to implement? 

Authors:  

Thanks for your comment. We have added a paragraph in the discussion that goes into a bit 
more detail on the choice of models and the factors that may be in play (computational cost, 
complex wind fields, availability of high-frequency wind data, at-scale deployment) when 
deciding on which model to deploy. 

Changes: 

It is worth noting that while the puff model, driven by high-frequency spatially-informed 
wind measurements, outperformed the plume across all metrics, the decision of which 
model to employ should be informed by the needs of the specific application.  For 
instance: in many cases, high-frequency wind data may not be available, which may 
render some of the advantages of the puff model moot.  Additionally, with the same 
inversion framework, the plume model's overall quantification estimates were not 
dramatically worse than the puff: for instance, when comparing the Plume+MCMC and 
Puff+MCMC models, the fraction of estimates within a factor of 2 was only 4% lower, and 
the mean relative absolute error was only 6% higher when using the plume model.  
Additionally, the cumulative mass estimate, while showing more negative bias than the 
puff model, was only off from the true cumulative mass by about 5%.  In many cases, such 
as deployment of these algorithms at scale, especially on facilities without high-frequency 
wind data (or at extremely simple facilities with no obstructions where the wind field is 
more homogeneous), the additional computational cost of employing the puff model may 
not be worth the marginal gains.  In cases with more complex wind fields, available high-
frequency wind data, and a need for accurate localization, then the puff model should 
likely be implemented. 
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Cumulative facility emissions rate – Could you elaborate on the sentence in the 
conclusion on the cumulative mass emissions estimate (L947)? I think this is critical 
for understanding total flux emissions from a facility and deserves more attention. 
Maybe a table comparing all the methods together and how they compare them to 
what METEC reported. 

Authors:  

Thanks for your comment.  We have added several sentences clarifying the interpretation of 
the cumulative mass estimate error shown in Table 1 across the different models. 

Changes: 

However, for cumulative metrics, all models performed reasonably well: as shown in Table 
1, the cumulative mass error for the Plume LSQ, Puff LSQ, Plume MCMC, and Puff MCMC 
were -135, -55, -117, and 12 kilograms, respectively, out of a total of 2,284 kg actually 
emitted, corresponding to percent errors in cumulative mass estimates of 

-6%, -2%, -5%, and 0.5%, respectively.  This demonstrates that CMS systems, under the 
conditions present during this testing (sensor deployment and configuration, release rates 
and patterns, environmental conditions) are capable of highly-accurate cumulative 
emission estimation, even when using lower-fidelity and simple models such as the 
Gaussian Plume and simple least-squares based rate inference. 

Validation – could you elaborate more on validating the models against the reported 
METEC emissions and locations? (goes with the previous comment) 

Authors:  

Thanks for your comment. We have added a case study experiment to illustrate an example 
experiment, associated release rates, estimates, and evaluation to help clarify the meaning 
of some of these metrics 

Changes: 

To aid in the understanding of these metrics, an illustrative example of these evaluative 
metrics applied to a single experiment from the study is shown in Figure 3.  This figure 
shows an image and two tables that summarize the output of the system (rate estimates 
for each equipment group) alongside the ground-truth release rates (top table) and 
computes the relevant evaluative metrics for this single experiment (bottom table).  During 
this experiment, there were three active release sources: the tanks (group 4T), the western 
separators (group 4S), and the eastern separators (group 5S).  The western and eastern 
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wellheads (groups 4W and 5W, respectively) were not emitting.  The quantification 
estimates are shown in the 2nd column of the top table, while the ground-truth release 
rates are shown in the 3rd column of the top table.  The final column shows the 
classification of the estimate as either a TP/FP/FN/FP as previously described.  The table 
on the bottom shows the relevant evaluative metrics applied to the estimated and ground-
truth rates in the top table.  We see that, for this example experiment, there were 2 true 
positives (the system accurately identified that both the 4S and the 5S groups were 
emitting), one false negative (the system missed that the tanks were emitting), one false 
positive (the system assigned a small but nonzero rate to the 4W group, which was not 
emitting), and one true negative (the system accurately identified that the 5W group was 
not emitting).  These statistics are summarized in the bottom table, along with the overall 
“localization score”, which in the case, was 3 (i.e., the emission status of 3 out of the 5 
equipment groups were correctly identified).  The total estimated and actual facility-level 
emission rate is shown in the bottom table as Q and Q' (these are computed as the sum 
down the “Estimated Rate” and “Actual Rate” columns, respectively).  In this example, the 
estimated facility rate is 1.73 kg/hr while the actual emission rate is 1.83, representing an 
error of -0.1 kg/hr (E) and a relative error of -0.055 (i.e., -5.5% error, Erel).  In terms of the 
other quantification-related metrics (F2 and ΔC), this experiment's estimated facility-level 
rate is within a factor of 2 of the actual rate (so it would positively contribute to the fraction 
of estimates that were within this factor, when summing over all experiments), and the 
contribution to the cumulative error from this experiment would simply be E.Δt, where Δt is 
the duration of this experiment. The duration of this particular experiment is 30 minutes, so 
the contribution to ΔC is -0.05 kg. 

 

Figure 3. Example experiment to illustrate the evaluation of the output of the system with 
respect to ground truth rates.  The image on the left shows each equipment group's 
estimate classified as either a TP/FP/FN/FP.  The upper table summarizes the estimated 
rates, actual rates, and the detection classification, while the lower table applies the 
evaluative metrics described above to the data from the upper table. 

Number of CMS instruments – How many CMS instruments would be needed to 
perform an accurate DLQ using the Puff/MCMC method (and other methods as well)? 

 Authors:  
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Thanks for your comment.  We have added a paragraph in the discussion on the expected 
impact of sensor density on DLQ accuracy. 

Changes: 

These results represent something of a best-case-scenario in terms of the relative 
simplicity of the facility as well as the overdense network of sensors that is deployed for 
this study.  In general, the accuracy of the system will likely decrease with lower sensor 
density.  How, exactly, the performance is affected by varying the number of sensors and 
their configuration will likely depend on the details of the specific facility (number and 
layout of emission points) as well as the typical variability in the wind direction.  In general, 
we expect the impact of sensor density on DLQ accuracy to be independent of specific 
model choices (in terms of inverse solvers and forward models). However, future research 
should explore more quantitatively how the sensor deployment strategy, in terms of both 
density and configuration, affects the accuracy of various DLQ algorithms from CMS..  

Introduction – Add references for factual statements L16, L19, L26, L43 (AVO), L45 
(OGI), L73 (‘smoke alarms’), L75 (CMS development), L859 (why Appalachia?) 

Authors:  

Thanks for your comment. We added references to the referred parts of the Introduction. 

Changes: 

Please see the updated Introduction section.  

L12 – “anomalous (emissions) patterns”? 

Authors:  

We added “emission” to the abstract 

Changes: 

The study highlights the importance of long-term integration for accurate total mass 
emission estimates and the detection of anomalous emission patterns 

L55 – Which one, 1-2 kg/hr or 200 kg/hr? 

Authors:  

We edited the text to clarify this point.  

Changes: 

Satellite and aerial remote sensing techniques can detect emissions from specific 
sources, with aerial methods capable of detecting emissions as low as 1-3 kg/hr, while 
satellites have minimum detection limits of to approximately 200 kg/hr or higher (Sherwin, 
Rutherford, Chen, et al. 2023). 
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The last two paragraphs of the intro are good. More of this. 

Authors:  

We added three paragraphs to the intro, covering key research questions, the role of 
accurate quantification in developing emission inventories, and the use of controlled 
release data in this study.  

Changes: 

Three key questions will be addressed in this study: (i) under an optimum sensor density 
and placement, how effectively can a CMS pinpoint emissions to the correct equipment 
group? (ii) what is the accuracy of the total site-integrated emissions estimates for such 
CMS network? And, (iii) How well can an advanced CFD-based forward model, coupled 
with various inversion frameworks perform in predicting emission rates compared to 
traditional plume and puff models?  

Accurate emissions quantification using CMS can enhance the reliability and robustness 
of GHG emissions inventory development. Traditional inventory methods often rely on 
activity data and generic emission factors, which fail to capture the dynamic nature of 
emissions from individual sources or facilities. By providing continuous, real-time 
measurements source-specific emissions, CMS offers a direct and empirically driven 
approach to quantify actual emissions. High temporal resolution of the CMS measurement 
allows for the identification and characterization of gas releases, including the duration 
and frequency of emission events. In addition, accurate quantification offers a more in-
depth understanding of the magnitude of fugitive emissions, intermittent events, and 
variations in operational performance that are often missed by periodic or estimation-
based methods. Integrating CMS data into GHG inventories leads to a more 
comprehensive understanding of emission sources, enables the tracking of emission 
reduction efforts with greater confidence, and supports the development of more granular 
and verifiable inventories, informing climate policies, and tracking progress towards 
decarbonization goals. 

In this study selected quantification algorithms are evaluated using the data from 
controlled release experiments featuring constant-rate emission events with known start 
and end times. However, it's crucial to recognize that these controlled release scenarios 
are highly idealized, as they involve constant release rates and simultaneous emissions 
from all active sources. This idealization may impact the practical applicability of these 
algorithms in more complex, real-world conditions. A more in-depth evaluation of the 
performance of fixed-point CMS in complex emission environments is provided in a 
separate study (Ball, Eichenlaub, and Lashgari 2025). 

Data – Conceptually, I’m having a hard time understanding how a controlled release 
works, are there only 5 locations where a leak could be? Does each leak have a 
different release rate? Could my confusion be cleared up by a more detailed figure? 
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Authors:  

Thanks for your comment. We added more wording to explain it.  

Changes: 

This paper aims to address the critical need for developing a more comprehensive 
understanding of the performance and robustness of various multi-source methane 
quantification methods by evaluating the performance of several established atmospheric 
dispersion modeling and inversion frameworks within a controlled, multi-leak 
experimental setting with synchronous emission sources and constant rates. 

L205 – This is good and targets the scope of the paper, move this to the intro? 

Authors:  

Thanks for your comment. We added a paragraph with similar content to the Intro.  

Changes: 

In this study selected quantification algorithms are evaluated using the data from 
controlled release experiments featuring constant-rate emission events with known start 
and end times. However, it's crucial to recognize that these controlled release scenarios 
are highly idealized, as they involve constant release rates and simultaneous emissions 
from all active sources. This idealization may impact the practical applicability of these 
algorithms in more complex, real-world conditions. A more in-depth evaluation of the 
performance of fixed-point CMS in complex emission environments is provided in a 
separate study (Ball, Eichenlaub, and Lashgari 2025). 

Figure 2 – Make the wind data into a wind rose? Use lat/lon for the location figure 
instead of x and y? Are the colors in the concentration figure for each instrument? 

 

Authors:  

Thanks for your comment. We added individual anemometer measurements to bottom right 
panel as opposed to mean values and added wording to clarify the meaning of colors and 
coordinate system that facility layout is shown in. 

Changes: 

Figure 2 offers a visual illustration of the layout of the controlled release facility (left), 
including bounding boxes around each of the 5 equipment groups (left) and sensor locations 
(x's). It also shows measurement data from a randomly selected controlled release 
experiment, including concentration measurements from individual sensors (top right) and 
the QU and V components of the anemometer measurements (with solid and dotted lines, 
respectively, bottom right).  The colors of the curves in the right panels here correspond to 
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the colored x's in the left panels.  This figure encapsulates all of the data necessary to run 
quantification algorithms (sensor locations, source locations, concentration timeseries 
data, and wind timeseries data). 

 

L290 – How do you determine k? Is it a measurement? 

Authors:  

Thanks for your comment. We added a sentence clarifying the significance of the 
wavenumber, k.  

Changes: 

It is important to note how different turbulent wavenumbers (k) affect a plume at different 
characteristic scales (L). For reference, k can be thought of simply as the inverse spatial 
scale of a turbulent eddy, k = 2π/Leddy , where Leddy represents the characteristic length 
scale associated with a particular turbulent eddy. 

L317 – remove quotes from Pasquill, it is a noun (person). 

Authors:  

We removed the quotes. 

Changes: 

Many of the standard methods for computing the dispersion coefficients σy and σz rely 
first on an approximation of the “Pasquill” atmospheric stability class (ASC). 

L345 – Could you elaborate on which ‘fewer assumptions’ are made in Gaussian Puff? 

Authors:  

We have reworded the introductory paragraph of the gaussian puff to more clearly link its 
capabilities to the underlying assumptions (or lack of assumptions). 
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Changes: 

The Gaussian Puff model is a Lagrangian approach to approximating the solution to the 
advection-diffusion equation that makes fewer assumptions than the Gaussian Plume. 
More specifically, this method can capture the relevant physical effects embedded in 
spatially varying wind fields (i.e., it does not assume homogeneous wind fields), can 
handle time-varying emission rates (does not assume steady-state emission rate), and 
also more properly account for low wind speeds and unstable conditions when the wind 
vector rapidly changes (does not assume steady-state wind fields). 

Section 3.3 – I like the beginning of the first paragraph that explains the questions this 
study is attempting to answer – could you make this clearer in the introduction? 
Maybe move this to the intro? 

Authors:  

Thanks for your comment. We added a paragraph with similar content to the Intro.  

Changes: 

Three key questions will be addressed in this study: (i) under an optimum sensor density 
and placement, how effectively can a CMS pinpoint emissions to the correct equipment 
group? (ii) what is the accuracy of the total site-integrated emissions estimates for such 
CMS network? And, (iii) How well can an advanced CFD-based forward model, coupled 
with various inversion frameworks perform in predicting emission rates compared to 
traditional plume and puff models?  

Figure 8,9 – Move to supplement? 

Authors:  

Thanks for your comment. We moved Figure 9 as well as the text associated with it to the 
Appendix. However, we believe that Figure 8 is a key part of the results, helping readers 
better understand the differences between various methods. As a result, we would like to 
keep it in the main body. 

Changes: 

Please see Appendix D. 
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REFEREE #2 

Half the metrics are directly related to detection (TP, FP, FN, TN, N(L=5), Lbar), however 
how is detection actually done in the different methods? 

Authors:  

Thanks for your comment. We have added a case study experiment to illustrate an example 
experiment, associated release rates, estimates, and evaluation to help clarify the meaning 
of some of these metrics. 

Changes: 

To aid in the understanding of these metrics, an illustrative example of these evaluative 
metrics applied to a single experiment from the study is shown in Figure 3.  This figure 
shows an image and two tables that summarize the output of the system (rate estimates 
for each equipment group) alongside the ground-truth release rates (top table) and 
computes the relevant evaluative metrics for this single experiment (bottom table).  During 
this experiment, there were three active release sources: the tanks (group 4T), the western 
separators (group 4S), and the eastern separators (group 5S).  The western and eastern 
wellheads (groups 4W and 5W, respectively) were not emitting.  The quantification 
estimates are shown in the 2nd column of the top table, while the ground-truth release 
rates are shown in the 3rd column of the top table.  The final column shows the 
classification of the estimate as either a TP/FP/FN/FP as previously described.  The table 
on the bottom shows the relevant evaluative metrics applied to the estimated and ground-
truth rates in the top table.  We see that, for this example experiment, there were 2 true 
positives (the system accurately identified that both the 4S and the 5S groups were 
emitting), one false negative (the system missed that the tanks were emitting), one false 
positive (the system assigned a small but nonzero rate to the 4W group, which was not 
emitting), and one true negative (the system accurately identified that the 5W group was 
not emitting).  These statistics are summarized in the bottom table, along with the overall 
“localization score”, which in the case, was 3 (i.e., the emission status of 3 out of the 5 
equipment groups were correctly identified).  The total estimated and actual facility-level 
emission rate is shown in the bottom table as Q and Q' (these are computed as the sum 
down the “Estimated Rate” and “Actual Rate” columns, respectively).  In this example, the 
estimated facility rate is 1.73 kg/hr while the actual emission rate is 1.83, representing an 
error of -0.1 kg/hr (E) and a relative error of -0.055 (i.e., -5.5% error, Erel).  In terms of the 
other quantification-related metrics (F2 and ΔC), this experiment's estimated facility-level 
rate is within a factor of 2 of the actual rate (so it would positively contribute to the fraction 
of estimates that were within this factor, when summing over all experiments), and the 
contribution to the cumulative error from this experiment would simply be E.Δt, where Δt is 
the duration of this experiment. The duration of this particular experiment is 30 minutes, so 
the contribution to ΔC is -0.05 kg. 
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Figure 3. Example experiment to illustrate the evaluation of the output of the system with 
respect to ground truth rates.  The image on the left shows each equipment group's 
estimate classified as either a TP/FP/FN/FP.  The upper table summarizes the estimated 
rates, actual rates, and the detection classification, while the lower table applies the 
evaluative metrics described above to the data from the upper table. 

A lot of space spent on the models and metrics, comprising Section 3, a lot of which is 
already described in the literature. I think it could be shortened, if possible, to better 
highlight the results Section 4. A key novelty of the manuscript is the multi-source 
estimation estimate, along with large number of experiments with continuous 
monitors. Many analyses could be envisioned, in particular detection curve vs 
emission rate, whether any equipment groups perform better (perhaps due to 
prevailing wind patterns or other factors), simulating if there were fewer sensors (as 
mentioned might be realistic), interference (if small leaks sometimes are hidden by 
larger ones), effect of experiment time vs DLQ accuracy (30 minutes vs 8 hours), etc. 

Authors:  

We moved parts of the Introduction and Methodology sections to the Appendix to make the 
paper more concise.  

Changes: 

Please see Appendices A and B.  

L43 add AVO in parentheses 

Authors:  

We added the abbreviation in parentheses.  

Changes: 

Traditional approaches for detecting methane emissions often rely on human senses 
(auditory, visual, and olfactory (AVO) inspections) or portable sensors used in close 
proximity to potential sources. 

Cheptonui 2024 a/b are same paper 
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Authors:  

We corrected the reference.  

Changes: 

Several studies have independently evaluated the efficacy of CMS in quantifying emissions, 
suggesting promising advancements in recent years (Bell et al. 2023; Ilonze et al. 2024; 
Cheptonui et al. 2025).  

 

More details on the data collected as part of the 2024 CSU METEC controlled release study 
can be found elsewhere (Cheptonui et al. 2025). 

Sec 2 – for releases at multiple equipment groups, does each release rate simply 
randomly belong to the overall distribution in Fig 1b? 

Authors:  

That is correct. We have added a figure and some explanation that more concretely shows 
the releases from a single experiment, the output of the system, and how this particular case 
is "scored". 

Changes: 

The experiments are designed such that only one release point is active per equipment 
group at the METEC facility.  Each equipment group is composed of numerous “equipment 
units” (i.e., individual tanks, wellheads, or separators) and each equipment unit may have 
multiple potential release points on it.  In other words, each equipment group has numerous 
\textit{potential} release points, but only one is ever active at a time for a given experiment.  
In this study, we focus on the ability of the system to correctly detect, localize, and quantify 
to the equipment group level. As such, the centroid of each equipment group is computed 
and these 5 coordinate pairs (corresponding to the 5 equipment groups at the facility) are 
used as the potential source locations as an input to the localization and quantification (LQ) 
algorithms.  

L270 I am surprised to characterize the importance of the stability class and dispersion 
coefficient parameterization as minimal. Sure they may be representing the same 
behavior, but don’t they empirically have a significant effect? 

Authors:  

To clarify, the stability class and dispersion coefficients indeed play a large role in predicting 
concentrations (and hence, quantified flux rates). However, many of the parametrizations of 
them are simply different empirical formulae, derived from the same underlying publicly 
available data, and give very similar approximations of the stability class and dispersion as 
a function of distance.  If a poor parametrization is used, then the performance of the 
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quantification will be poor. However, most of the commonly accepted and standard 
methods are very similar to one another and are just different functional forms and 
associated coefficients.  We have added a sentence clarifying this statement  

Changes: 

The following subsections provide brief overviews of the theory underpinning the dispersion 
models, followed by more specific implementation details.  Note that there are myriad small 
choices (e.g., stability class calculations, dispersion parametrization) that must be made in 
the data processing and algorithmic workflow when it comes to running these dispersion 
models. It is outside the scope of this study to enumerate and present results from every 
combination of valid choices. Instead, we will provide clear justifications for the specific 
choices made in this study and demonstrate the efficacy of the models under these specific 
implementations. It should be noted that the impact of most of these higher-order decisions 
on the results is minimal, as they are often different approaches of approximating the same 
underlying phenomena.  For example, there are several commonly-used functional forms 
and associated coefficients to describe how the dispersion of a gas plume scales with 
distance.  While these empirical formulae may look very different (e.g., some utilize power 
laws while others employ logarithms), they are generally inferred by fitting these functional 
forms to the same underlying data, and result in similar general characteristics despite the 
sometimes dramatically different functional forms. 

 L275 GMP -> GPM 

Authors:  

Thanks for your note. We corrected the error. 

Changes: 

The commonly used Gaussian Plume model (GPM) provides a closed-form solution to the 
steady-state advection-diffusion equation for a single point source emitting at rate Q from 
height H.  

Eq 8 (for the Gaussian puff) seems unusual – please check. Normally there is a 
2*pi^(3/2) factor, and importantly, time dependence 

Authors:  

Thanks for your comment. The correct exponent of 3/2 on the 2*pi has been added to the 
equation, and the explicit time dependence is mentioned. 

Changes: 
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L439 Is a no flux condition typical in these simulations? A 200 m boundary seems like it 
would significantly affect the dispersion behavior 

Authors:  

Thanks for your note. If we were considering much larger length scales, then the 200m zero-
flux upper boundary may artificially impact on the results, however here, the average source-
sensor distance is around 50 meters, and the releases are effectively at ground level.  As 
such, virtually no simulated gas reaches the "ceiling" of the simulation within the relevant 
length scales of source->sensor. 

Changes: 

No changes were made. 

Fig 5 some information is not visible on this plot (puff LSQ on L=4 and plume MCMC on 
L = 1) 

Authors:  

Thanks for your note. The plot has been modified to include variable line widths and marker 
styles so that overlapping lines are more distinguishable. 

Changes: 

 

Figure 11 suggest using different marker types, as the colors by themselves can be 
difficult to distinguish 

Authors:  

Thanks for your note. Each model now has a unique marker in the plot and the marker size 
has been increased to help with visibility. 

Changes: 
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L173 Inverse distance weighting is mentioned, and “sonic anemometers” (plural) here, 
but is unclear to me where/how many where used. Could this be added to Fig 2 or 
otherwise? 

Authors:  

Thanks for your note. We have added a sentence clarifying that each of the sensors in this 
study was equipped with an anemometer in Section 2 and also added some wording around 
this in discussing the inverse distance weighting. 

Changes: 

Ten Canary X integrated devices were installed within the METEC site perimeter to measure 
ambient methane concentrations.  All of the Canary X devices used for this study were 
equipped with an anemometer. 
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