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Abstract. Mechanistic vegetation models serve to estimate
terrestrial carbon fluxes and climate impacts on ecosystems
across diverse biotic and abiotic conditions. Systematically
informing them with data is key for enhancing their predic-
tive accuracy and estimating uncertainty. Here, we demon-5

strate and evaluate the Simulating Optimal FUNctioning
(rsofun) R package, which provides a computationally ef-
ficient implementation of the P-model for site-scale sim-
ulations of ecosystem photosynthesis and the acclimation
of photosynthetic traits, complemented with functionalities10

for Bayesian model-data integration and the estimation of
model parameters and prediction uncertainty. We estimated
model parameters simultaneously from observed time series
of ecosystem gross primary productivity (GPP), and from
globally distributed data on leaf carbon-13 isotopic discrim-15

ination (113C) and the ratio of the maximum biochemical
rates of carboxylation to electron transport (Vcmax/Jmax).
The multi-target calibration yielded unbiased predictions for
all variables simultaneously and produced similar distribu-
tions of prediction–observation residuals for both calibration20

and out-of-sample test data, indicating that the model gener-
alises robustly across diverse environments. We found that a
step-wise approach to successive model integration and cali-
bration yielded best results, and that correlations among pa-
rameters related to the representation of water stress effects25

underpinned non-robust parameter estimations. This likely
indicates a dominant source of model structural uncertainty
related to the representation of the response of photosynthe-
sis to dry conditions in soil and air.

1 Introduction 30

The modelling of land ecosystem processes and structure,
water, and carbon fluxes relies on both mechanistic and sta-
tistical approaches (Dietze et al., 2018; Hartig et al., 2012;
Van Oijen et al., 2005). Mechanistic models are formulated
as mathematical descriptions of functional relationships be- 35

tween the abiotic environment and ecosystem states, rates,
and dynamics. These descriptions reflect available theory and
general empirical patterns and provide a means for translat-
ing hypotheses about governing principles and causal rela-
tionships into testable predictions (Marquet et al., 2014), and 40

for upscaling model-based estimates in geographical space
and to novel environmental conditions. However, mechanis-
tic models rely also on empirical descriptions of processes at
varying levels of abstraction.

Mechanistic models have model parameters that are either 45

specified or fitted to data. A great advantage of mechanis-
tic models is that they explicitly link known physical con-
stants with process representations (e.g., molecular mass of
CO2 for diffusion and assimilation, or the gravitational con-
stant and viscosity of water for its transport and transpira- 50

tion). Other parameters may be specified based on indepen-
dent measurements under controlled conditions (e.g., the ac-
tivation energy of Arrhenius-type metabolic rates), or rep-
resent measurable plant functional traits, taken as constant
over time and within plant functional types (PFTs – the ba- 55

sic unit in mechanistic vegetation models). Both types of pa-
rameters have traditionally been directly specified in mod-
els (“direct parameterization”, Hartig et al., 2012). Yet other
model parameters may not be directly observable and de-
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scribe processes that are not explicitly resolved but can be
described at a higher level of abstraction. Such parameters
are often fitted to observational data such that the agreement
between one (or several) related model predictions and ob-
servations is optimised. Parameter estimation for mechanistic5

vegetation models typically employs generic optimization al-
gorithms or Bayesian statistical approaches and is often used
to specify diverse types of parameters (except for universal
physical constants). Bayesian methods have the advantage
that they enable a systematic assessment of the correlation10

structure among multiple fitted parameters, provide a means
to consider uncertainty in inputs, observations, models, and
available prior information, generate probabilistic parame-
ter estimations and model predictions, and provide a basis
to quantify the constraints by various calibration target data15

and to identify errors arising from model structural choices
(Bagnara et al., 2015; Dietze et al., 2018; Hartig et al., 2012;
van Oijen, 2017; Raj et al., 2016; Van Oijen et al., 2005; Xiao
et al., 2019).

As the number of parameters increases in state-of-the-art20

mechanistic vegetation models, taking into account multiple
PFTs and ecosystem components (e.g. soil, microbes, hy-
drology), larger amounts of data and computing resources
are required to fully explore the parameter space (Hartig
et al., 2012). This poses a limitation for systematic model-25

data integration and Bayesian parameter estimation. Eco-
evolutionary optimality (EEO) principles have been pro-
posed for reducing model complexity and for a robust
grounding of models in governing principles (Franklin et al.,
2020; Harrison et al., 2021). They enable parameter-sparse30

representations, limit the distinction of separate PFTs, and
may enable better model generalisations to novel environ-
mental regimes. As such EEO principles make predictions
of plant functional traits that would otherwise have to be
prescribed – typically as temporally fixed model parame-35

ters. Parameters in EEO models are considered to be uni-
versally valid, e.g., across different PFTs. Ideally, they repre-
sent known physical constants or quantities that can be mea-
sured independently. However, not all can be measured di-
rectly, e.g., the marginal cost of water in Cowan and Farquhar40

(1977), or the unit cost ratio in Prentice et al. (2014) and need
to be fitted to data.

The P-model (Prentice et al., 2014; Wang et al., 2017;
Stocker et al., 2020) is an example of an EEO-guided model
for terrestrial photosynthesis and its acclimation. It avoids the45

requirement for prescribing PFT-specific parameters of pho-
tosynthesis and stomatal regulation but instead predicts them
from universal EEO principles for the full range of envi-
ronmental conditions across the Earth’s (C3 photosynthesis-
dominated) biomes. Through its representation of the vege-50

tation as a big leaf (Bonan et al., 2021; De Pury and Far-
quhar, 1997), it represents the scaling between leaf traits
and ecosystem-level photosynthetic CO2 uptake (gross pri-
mary productivity, GPP). However, despite its foundation on
EEO theory and resulting parameter-sparseness, a small set55

of model parameters remains (Stocker et al., 2020) (Table 2)
and must be fitted to data.

Here, we explore the respective constraints provided by
ecosystem-level fluxes and leaf-level traits for a probabilis-
tic (Bayesian) multi-target estimation of the P-model pa- 60

rameters. The selection of observational target data types
is motivated by their known effectiveness in model calibra-
tion and parameter estimation from previous work (Prentice
et al., 2014; Wang et al., 2017; Stocker et al., 2020). Specifi-
cally, we use observations-based GPP time series from mul- 65

tiple eddy covariance measurement sites, and compilations
of globally distributed measurements of leaf traits, includ-
ing the leaf carbon isotopic fractionation relative to the at-
mosphere (113C, hereafter shortened to 1), and the ratio of
the maximum biochemical rate of carboxylation to electron 70

transport (Vcmax/Jmax ≡ VJ). Data from these two leaf traits
have previously been used for independently estimating sep-
arate model parameters in the P-model (Wang et al., 2017).
In Stocker et al. (2020), these independently estimated model
parameters where then specified for model simulations (di- 75

rect parametrization), and were not subject to model parame-
ter calibration. Here, we demonstrate how the combined con-
sideration of diverse data types within a Bayesian model-data
integration framework – combining ecosystem flux data and
leaf traits data – enables the simultaneous estimation of a 80

comprehensive set model parameters that control functional
dependencies of processes at multiple organisational levels –
from the leaf to the canopy. This enables a better understand-
ing of interdependencies between model parameters and a
more reliable estimation of model prediction uncertainty. 85

Unbalanced observations of multiple calibration targets
can lead to parameter estimates that compensate structural
errors in the model, as shown previously with synthetic data
(MacBean et al., 2016; Oberpriller et al., 2021; Cameron
et al., 2022). We are therefore interested in the questions (i) if 90

the P-model can be calibrated in a consistent manner to these
targets resulting in unbiased parameter estimates (relative to
expected ranges based on our process-based interpretation of
each parameter), and (ii) if the calibrated model generates un-
biased predictions with consistent precision on independent 95

test data set.
We start by providing a brief description of the P-model

and introduce the P-model implementation in the Simulating
Optimal FUNctioning rsofun version v5.1 modelling frame-
work, made available as an R package (Stocker et al., 2025). 100

A more comprehensive description of the P-model can be
found in Stocker et al. (2020). rsofun implements the P-
model and its connection to data through Bayesian param-
eter optimisation and analysis. We demonstrate the function-
alities implemented in and accessible through rsofun with 105

different calibration setups – i.e., different combinations of
model parameters subjected to Bayesian calibration and dif-
ferent observational data types used for calibration. Alterna-
tive calibration setups serve to elucidate the role of differ-
ent observations in constraining estimates for different model 110
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parameters. rsofun functionalities demonstrated here include
the flexible specification of likelihood functions for connect-
ing model predictions to specific data types, Bayesian model
calibration using Monte Carlo Markov Chain sampling, the
analysis of posterior distributions of estimated parameters,5

and the estimation of prediction uncertainty, probabilistic
predictions of GPP, VJ, and 1, and their evaluation against
out-of-sample test data.

2 Methods

2.1 P-model description10

The P-model predicts the acclimation of leaf-level pho-
tosynthesis to a (slowly varying) environment based on
EEO principles. It thereby yields a parameter-sparse
representation of ecosystem-level quantities, generalising
across (C3 photosynthesis-dominated) vegetation types and15

biomes. The P-model combines established theory for
C3 photosynthesis following the Farquhar–von Caemmerer–
Berry (FvCB) model (Farquhar et al., 1980) with the Least-
Cost hypothesis for the optimal balancing of water loss and
carbon gain (Prentice et al., 2014), and the coordination hy-20

pothesis (Wang et al., 2017), which states that the light and
Rubisco-limited assimilation rates (as described by the FvCB
model) are equal for representative daytime environmental
conditions.

The theory results in a prediction of the ratio of leaf-25

internal to ambient CO2 concentration (ci : ca ≡ χ ) as a func-
tion of the atmospheric environment, characterised by the
following meteorological variables: daytime mean air tem-
perature T (◦C), daytime mean vapor pressure deficitD (Pa),
and the atmospheric CO2 partial pressure (ca, Pa).30

χ =
0∗

ca
+

(
1−

0∗

ca

)
ξ

ξ +
√
D

(1)

ξ =

√
β (K +0∗)

1.6η∗
(2)

0∗ is the photorespiratory compensation point (Pa). η∗ is the
ratio the (temperature-dependent) viscosity of water, relative
to its value at 25 ◦C, and K is the Michaelis–Menten coef-35

ficient for photosynthesis (Pa). β (unitless) is the unit cost
ratio of carboxylation to transpiration in the EEO framework
of Prentice et al. (2014), and is calibrated to data here (see Ta-
ble 1). The functional dependency of 0∗ on temperature and
atmospheric pressure, the dependency of η∗ on temperature,40

and the dependency of K on temperature and atmospheric
pressure are described in detail in Stocker et al. (2020) based
on published work (Farquhar et al., 1980; Bernacchi et al.,
2001; Huber et al., 2009). Involved parameters are held fixed
here and are not calibrated.45

A set of corollary predictions, physically and physiolog-
ically consistent with the predicted χ , follow. The follow-
ing predicted quantities are used for model-data integration

here. A complete description of the mathematical derivation
of these quantities from first principles is given in Stocker 50

et al. (2020).

2.1.1 Isotope fractionation by photosynthesis

χ directly controls isotopic discrimination of carbon assimi-
lates (1) relative to the atmospheric signature (δ13Ca) (Far-
quhar et al., 1989, 1982; Lavergne et al., 2020). 55

1= a1+ (b1− a1)χ − f1
0∗

ca
(3)

Here, parameters represent the isotope fractionation from
CO2 diffusion in air (a1 = 4.4 ‰, Craig, 1953), from Ru-
bisco carboxylation (b1 = 27 ‰), and from photorespiration
(f1 = 8.0 ‰, Ubierna and Farquhar, 2014). Also these pa- 60

rameters were held fixed here and not subjected to calibra-
tion.

2.1.2 Maximum rates of carboxylation and electron
transport

For daytime conditions, averaged over multiple days, the P- 65

model assumes the Rubisco carboxylation-limited and the
electron transport-limited rates of photosynthesis to be equal:

AC = AJ . (4)

Following the Farquhar–von Caemmerer–Berry (FvCB) 70

model for C3 photosynthesis (Farquhar et al., 1980;
von Caemmerer and Farquhar, 1981), the maximum rate of
carboxylation Vcmax can thus be expressed as

Vcmax = ϕ0Iabs
m′

mC
, (5)

with 75

mC =
ci−0

∗

ci+K
, (6)

and with

m′ =m

√
1−

(
c∗

m

)2/3

(7)

and

m=
ci−0

∗

ci + 20∗
. (8) 80

Here, ϕ0 is the intrinsic quantum yield of photosys-
tem II (mol mol−1) which depends on the leaf temperature T
(see Eq. 14) – here taken as identical to air temperature.
c∗ (unitless) is the unit cost of electron transport and is
treated as a calibratable model parameter (see Table 2 for 85
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an overview of calibrated model parameters). Iabs is the pho-
tosynthetic photon flux density absorbed by the leaf.

Equation (7) accounts for a limited electron transport ca-
pacity (Jmax) such that m′ can also be written as

m′ =m
1√

1+
(

4ϕ0Iabs
Jmax

)2
. (9)5

Again using AC = AJ , Jmax can be solved for and can be
expressed as

Jmax =
4ϕ0Iabs
√
L−2− 1

, (10)

with

L= Vcmax
ci+ 20∗

ϕ0Iabs (ci+K)
. (11)10

The ratio VJ= Vcmax/Jmax is finally calculated by dividing
respective values obtained with Eqs. (5) and (10).

2.1.3 Gross primary productivity

Gross primary productivity (GPP) can be expressed in the
form of a light use efficiency model (Prentice et al., 2024;15

Bao et al., 2022; Monteith, 1972):

GPP= fAPAR ·PPFD ·LUE, (12)

with fAPAR being the fraction of absorbed photosynthet-
ically active radiation (unitless), PPFD being the photo-
synthetic photon flux density, PPFD (mol s−1 m−2), and20

LUE (g C mol−1) being the light use efficiency, calculated
as

LUE= ϕ0(T )fβ(θ)MCm
′. (13)

Here, fβ is the unitless soil moisture stress function, varying
between 0 and 1 (see Eq. 15), with θ representing the plant-25

available soil water content in mm. MC is the molar mass
of C (12.0107 g mol−1). Note that the application of Eq. (12)
assumes GPP to scale linearly with absorbed light. This func-
tional relationship is assumed here to describe the relation-
ship between multi-day sums of GPP and PAR and emerges30

from the assumption of the Coordination Hypothesis (Wang
et al., 2017). However, it cannot be expected to describe
the functional dependencies at shorter time scales, where the
limitation by the electron transport capacity (Jmax) becomes
effective (Mengoli et al., 2022; Farquhar et al., 1980).35

Such acclimation is considered by employing the P-model
theory to gradually varying environmental conditions (P ,
D, CO2, and PAR) where variations are damped by a low-
pass filter with a characteristic, empirically determined time
scale τ (days) (see Eq. A1 for the definition of the low-pass40

filter).

2.1.4 Quantum yield efficiency

The temperature dependency of the quantum yield effi-
ciency ϕ0 is empirically parametrized as:

ϕ0(T )=ϕ
∗

0

(
1+ aϕ

(
T − bϕ

)2)
,

bounded to the range
[
0,ϕ∗0

]
. (14) 45

This is in contrast to the formulation used in Stocker et al.
(2020), where aϕ and bϕ were effectively prescribed and not
subjected to calibration.

2.1.5 Soil moisture stress

Soil moisture stress is computed as 50

fβ(θ)=

{
1− (θ−θ

∗)
2

θ∗2
if x ≥ 0,

1 if x < 0
(15)

TS1 where θ∗ (mm) represents the threshold below which
GPP is reduced. The soil water balance is simulated with a
bucket model of soil water content (uniform total water stor-
age capacity), whereby the dynamics of θ (mm) considers 55

daily precipitation, the snow melt, a Priestley-Taylor-based
evapotranspiration estimate, and runoff when the bucket is
full. Except for implicitly enforcing fβ(θ = 0)= 0 here, this
formulation follows the description in Stocker et al. (2020)
and is based on the SPLASH model (Davis et al., 2017). 60

2.2 Calibration setups

Different calibration setups were used to illustrate the con-
straints imposed by the different calibration targets for fitting
different sets of parameters (Table 1).

The choice of calibration setups was guided by our ex- 65

pectation of constraints on different model parameters, pro-
vided by the different target data types, given the model
structure. Using common priors across (most) setups, the re-
sulting parameter estimates can illustrate the constraints im-
posed by data alone. Setup S1 is chosen in view of the ex- 70

pected constraint of 1 data on model parameter β, Setup S2
for the expected constraint of VJ data on model parame-
ters β and c∗, Setup S3 for these data combined constraint
on both parameters simultaneously. Setup S4 analyses the
constraint of GPP data on all model parameters simultane- 75

ously. Setup S5 analyses the constraint of using all three data
types on all model parameters simultaneously. Setup S6 re-
duces the “freedom” of Setup S5 in that the posteriors from
Setup 3 for β and c∗ were used as priors. This corresponds
to a stepwise approach and was chosen in view of results ob- 80

tained for Setup S5.
We use the implementation of P-model in the rsofun

R package (Stocker et al., 2025) to model daily gross pri-
mary productivity, GPP, and leaf-level traits, namely the ratio
of the rates of photosynthetic capacities in the FvCB model, 85
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Table 1. Overview of targets used and parameters estimatable in the six calibration setups. For parameter description and units, see Table 2.
Entries “S3” mean the posterior of that setup had been used as (truncated) prior.

Data Model parameters Error model parameters

Setup 1 VJ GPP ϕ∗0 aϕ bϕ θ∗ β τ c∗ σGPP σ1 σVJ

S1 x x x
S2 x x x x
S3 x x x x x x
S4 x x x x x x x x x
S5 x x x x x x x x x x x x x
S6 x x x x x x x S3 x S3 x x x

VJ, and the isotopic fractionation of assimilated carbon, 1.
Implementation details of the rsofun framework are provided
in Appendix B.

Three latent (not directly observable) parameters gov-
ern the optimality-guided water-carbon trade-off: the unit5

cost ratio, β, (governing the balancing of maintaining the
carboxylation capacity versus the transpiration stream), the
marginal cost of maintaining the electron transport rate, c∗,
and the quantum yield efficiency ϕ0 (parametrized with ϕ∗0 ,
aϕ , bϕ).10

The parameters τ , β, c∗ have previously been calibrated
separately to data and have been been specified as fixed
model parameters in the P-model (Stocker et al., 2020; Wang
et al., 2017). Here they were instead calibrated simultane-
ously to multiple calibration targets, together with additional15

parameters.
For simplicity, the same θ∗, the soil water volume (mm)

below which plants are stressed, was used across all sites.
Three different calibration targets were used in this study.

1 represents accumulated assimilates and is influenced by20

stomatal opening through the leaf-internal to ambient car-
bon dioxide ratio. Equation (2) indicates its dependency on
the parameter β. VJ is assumed constant throughout the
season. Observations of this ratio (Eqs. 5 and 10) are ex-
pected to inform the model parameters β and c∗. GPP(t)25

observations represent daily values of ecosystem-level pho-
tosynthetic CO2 uptake fluxes (with acclimation of LUE(t)).
Equations (3)–(12) illustrate the dependence of these obser-
vations to model parameters β, c∗, as well as θ∗, τ , ϕ∗0 , aϕ ,
and bϕ .30

Note that Vcmax and Jmax both scale nearly linearly with ϕ0
(Eqs. 5 and 10). This dependency to ϕ0 mostly cancels out
when considering the ratio of the two VJ.

2.3 Calibration target and test data

The data set consisted of 50 sites with GPP flux time se-35

ries (172 055 site-dates in total), 49 sites with a total of
597 individual VJ observations (multiple individual plants
and/or species per site sampled), and 325 sites with a total
of 2357 1 observations. Data for all variables were split by

sites for model calibration (training) and out-of-sample test- 40

ing (Fig. 2 and listed in Table S2). The split into training
and test data sets was performed in a stratified manner ac-
cording to vegetation type and land cover class (Beck et al.,
2018; Copernicus Climate Change Service, 2019; Hufkens
and Stocker, 2025) to ensure balanced representations of 45

each stratum in the test and training data set. Sites, classi-
fied as croplands or wetlands were removed, as well as any
site with five or less complete years of data. We additionally
required that a site contained more than 12 years of good-
quality gap-free GPP data to be available as a training site. 50

We used GPP data from 12 sites for training and data from
the remaining 38 sites for testing. The VJ and the 1 data
were split such that data from roughly 50 % of all sites in
each stratum were used for training and testing, respectively.

GPP observations were taken from FluxDataKit 55

(FDK v3.4.2) (Hufkens and Stocker, 2025; Pastorello
et al., 2020), which combines published releases of con-
sistently processed eddy-covariance data from multiple
regional networks (Ukkola, 2020; Warm Winter 2020 Team
et al., 2022; Drought 2018 Team et al., 2020). GPP estimated 60

through the nighttime flux partitioning was used (variable
“GPP_NT_VUT_REF”, Reichstein et al., 2005). For model
calibration and evaluation, we filtered data to retain only
(daily) values that were computed with at least 80 % mea-
sured or good-quality gap-filled (half-hourly) values. Based 65

on visual inspection, the following site-year combinations
exhibited spurious patterns and were additionally removed:
ES-LJu, year 2006; US-Ho2, year 2007; CH-Dav, year 2010;
US-Whs years 2016 and 2017.

Observations of VJ were obtained from the data com- 70

pilation of Smith et al. (2019), containing data reported
for top canopy from multiple sources (De Kauwe et al.,
2016; Keenan and Niinemets, 2016; Smith and Dukes, 2017;
Kattge et al., 2011; Wang et al., 2018; Fürstenau Togashi
et al., 2018; Togashi et al., 2018; Domingues et al., 2010; Fer- 75

reira Domingues et al., 2015; Serbin et al., 2015; Tarvainen
et al., 2013; Ellsworth, 2016; Rogers et al., 2017).

Observations of carbon-13 isotope discrimination in leaf
material (1) were taken from a global data set (Cornwell
et al., 2018; Cornwell, 2025), subsetting only observations 80
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Table 2. Model parameters, their descriptions, and estimated values from different setups. Values refer to the Maximum A Posteriori (MAP)
estimates. Values in square brackets represent the lower and upper bounds of uniform prior distributions or truncated normal prior distri-
butions. N represents a normal distribution with its mean and variance in parenthesis. Parameters that were held fixed are shown as empty
cells.

Symbol Units Description Setup S1 Setup S2 Setup S3 Setup S4 Setup S5 Setup S6

ϕ∗0 mol mol−1 Quantum yield
at optimal
temperature

0.09
[0.02, 0.15]

0.09
[0.02, 0.15]

0.08
[0.02, 0.15]

aϕ
◦C−2 Shape

parameter for
the temperature
dependence of
the quantum
yield

−0.001
[−0.004,
−0.001]

−0.001
[−0.004,
−0.001]

−0.001
[−0.004,
−0.001]

bϕ
◦C Optimal

temperature for
the quantum
yield

28.2
[10, 30]

28.2
[10, 30]

27.5
[10, 30]

θ∗ mm Soil moisture
limitation
threshold
(Eq. 15)

23.9
[1, 250]

24.5
[1, 250]

26.7
[1, 250]

β unitless Unit cost ratio
of
carboxylation
to transpiration

207.3
[14.6,
438.0]

18.7
[14.6,
438.0]

207.1
[14.6,
438.0]

14.6
[14.6, 438.0]

14.6
[14.6, 438.0]

187.5
N (207.9, 6.82)b

τ days Acclimation
time scale of
photosynthesis

1.0
N (14, 82)a

1.0
N (14, 82)a

1.0
N (14, 82)a

c∗ unitless Unit cost of
electron
transport

0.21
[0.04,
1.23]

0.42
[0.04,
1.23]

0.45
[0.04, 1.23]

0.45
[0.04, 1.23]

0.58
N (0.4, 0.02)

σGPP g C m−2 s−1 Gaussian error
standard
deviation of
GPP

2.11
[0.01, 3]

2.11
[0.01, 3]

2.04
[0.01, 3]

σ1 ‰ Gaussian error
standard
deviation of 1

2.18
[0.01,
15]

2.18
[0.01,
15]

6.57
[0.01, 15]

2.04
[0.01, 15]

σVJ unitless Gaussian error
standard
deviation of VJ

0.17
[0.01,
3]

0.18
[0.01,
3]

0.25
[0.01, 3]

0.19
[0.01, 3]

a Truncated to [0.0, 40.0]. b Truncated to [187.5 to 228.2].

that were marked as C3 plants. We used 1 values that were
derived from the isotopic signature of leaf material in relation
to the atmospheric signature at the date and latitude measure-
ments were made.

2.4 Forcing data 5

For simulations of GPP time series, daily meteorological
measurements, obtained in parallel with GPP observations,
were used as model forcing. Daily forcing data was taken
from FluxDataKit (FDK v3.4.2) (Hufkens and Stocker, 2025;
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Pastorello et al., 2020) and was derived from half-hourly
data. The required daily variables are listed in Tab. S1. We
used mean daytime air temperature and vapor pressure deficit
(based on half-hourly values during daylight conditions),
daily minimum and maximum temperatures, daily sum of5

precipitation, and daily means of net radiation, atmospheric
pressure and CO2 concentration.

For predictions of the two leaf traits (1, VJ), the P-model
was forced with average climate conditions during the grow-
ing season, derived from the global WorldClim data set (Fick10

and Hijmans, 2017) (comprising monthly averages of daily
minimum, maximum and average temperature, vapor pres-
sure, and solar radiation) and considering geographic posi-
tions of the sites.

The monthly WorldClim data were temporally disaggre-15

gated to daily values through polynomial interpolation (daily
minimum, maximum, and average temperatures, cloud cover
fraction, solar radiation, and vapor pressure). Interpolated
daily maximum and minimum temperatures were then com-
bined to an average daytime temperature using location-20

based day length assuming a sinusoidal temperature profile
(Davis et al., 2017; Peng et al., 2023). The average daytime
vapor pressure deficit (D) was derived from the average va-
por pressure and daily maximum and minimum temperature.

Daily values were averaged to conditions representing the25

growing season. Growing season was defined as the period
with daily average temperature above 0 ◦C. Then, daytime
temperature, vapor pressure deficit D and solar radiation
were averaged (mean) across all days of the growing season
and used as model forcing (T ,D, PAR) for a non-temporally30

resolved single prediction of VJ or 1 for each site. Atmo-
spheric pressure P was derived from the ETOPO-1 digital
elevation model (NOAA National Geophysical Data Cen-
ter, 2009), using site positions and assuming standard atmo-
spheric pressure. CO2 was taken from yearly mean values35

from the Mauna Loa record (Keeling et al., 2017), using the
corresponding observation year (or the year 2000 if observa-
tion year was unavailable).

2.5 Bayesian calibration

We estimated model parameters β, c∗, τ , ϕ∗0 , aϕ , bϕ , and40

θ∗ (see Table 2 for a description of parameters) in multi-
ple combinations of parameters and target data (Sect. 2.3
and Table 1). Parameter estimation was done through a
Bayesian calibration approach, using Markov chain Monte
Carlo (MCMC) sampling (Clark, 2004; Dietze et al., 2013),45

using the DREAMzs sampling algorithm (Vrugt et al., 2009)
as implemented in BayesianTools (Hartig et al., 2023). Eight
independent chains were run, each for 100 000 iterations split
among three internal chains, burn-in period was set to 30 000
and convergence was checked visuall with trace plots and50

Gelman–Rubin statistics (Gelman and Rubin, 1992). Param-
eters were calibrated to all sites’ data simultaneously and are

thus assumed to be universal across space and environmental
conditions.

2.5.1 Likelihood 55

The choice of likelihood summarized our assumptions about
different sources of uncertainties. Uncertainties in model in-
puts (parameters p and forcings x), in model structure f , and
in the measured observations y of all target types (van Oijen,
2017) combine as 60

y+ εy = f (p,x+ εx)+ εf

where εy and εf represent (unknown) observational errors
and model structural errors, respectively. εx is the error in
the forcing data.

For all target variables, we assumed an additive and nor- 65

mally distributed model error term around the model predic-
tion (Trotsiuk et al., 2020) and expressed the fit to observed
data via the Gaussian log-likelihood

L(p | y)=
1

√
2πσ 2

exp
(
−

1
2σ 2 (y− f (p,x))

2
)

(16)

with target-specific standard deviations σGPP, σ1, and σVJ. 70

These standard deviations of the error model were estimated
together with the model parameters (Table 2). Individual
observations were considered independent from each other,
thus the total likelihood for a dataset simply multiplied the
likelihoods of each observation. With this likelihood, we ne- 75

glected input error εx = 0 and lumped together observational
uncertainties and model structural uncertainties into a single
“mismatch” or “residual” uncertainty (van Oijen, 2017; Di-
etze et al., 2013).

Since the P-model is conceived as a single-big-leaf model 80

(Fig. 1), it represents average properties and fluxes for the
whole canopy. The estimated residual uncertainty thus con-
tains also a potential uncertainty due to the scale mismatch
between observation and model. Moreover, across-tree and
across-species variabilities are also included since the likeli- 85

hood was computed for each VJ and 1 observations of indi-
vidual trees.

While describing leaf-level quantities at relatively high
mechanistic detail, the link between the leaf and the canopy-
scale was not explicitly resolved. Instead, an empirical ap- 90

proach for leaf-to-canopy scaling of GPP was employed by
treating the quantum yield parameter ϕ0 to be representa-
tive for the canopy-scale and allowing it to be calibrated to
ecosystem-level GPP flux data.

2.5.2 Priors 95

Prior distributions were defined based on prior knowledge
and kept the same across all calibration setups, except for
setup S6, where the posteriors of the model parameters β
and c∗ estimated from setup S3, were used as priors (Table 2
and shown in grey in Fig. 3). These posteriors from setup S3 100
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Figure 1. P-model inputs, outputs, and target observations for the parameter estimation. The model takes as inputs static site information,
time series of meteorological forcings, simulation parameters, and common model parameters for all sites. The simulation returns a time
series of several ecosystem fluxes, acclimating leaf traits and ecosystem states. By comparing these outputs with measured traits and flux
data in a Bayesian calibration routine, model parameters can be estimated. The structure (named list) of the input data object (driver) used
for the model call within the rsofun R package is given in the “arrow boxes” on the left. Variable names of predicted quantities are given in
the “arrow boxes” under “output” and are described in the main text.

Figure 2. Global maps of site locations (red dots) with observations of the three target variables in the training and test data sets for (a) GPP,
(b) VJ, (c) 1.

were characterized as uni-variant normal distribution. For β,
it was additionally truncated to the mean± three times the
standard deviation.

The prior knowledge on the acclimation time scale τ was
approximated by a normal distribution (with mean and vari-5

ance of N (14, 82)) based on prior findings (Mäkelä et al.,
2004; Liu et al., 2024; Mengoli et al., 2022) and trun-
cated to the range from 0 to 40 d. For all other parame-
ters, uniform priors with distinct ranges were used. Ranges
for β, c∗, and ϕ∗0 were specified to range between 10 % and10

300 % of published estimates of 146 (unitless), 0.41 (unit-
less), and 0.05 mol mol−1, respectively, (Stocker et al., 2020;
Wang et al., 2017). We chose wide uniform priors with the
aim that posteriors would solely be informed by the used

observations. The optimal temperature bϕ and shape pa- 15

rameter aϕ were specified to range between 10 and 30 ◦C
and −0.004 and −0.001 ◦C−2. The soil moisture limitation
threshold θ∗ was specified to range between 1 and 250 mm.
Given the lack of prior knowledge on the error parameters
characterizing the combined structural and observational un- 20

certainty large, uninformative priors were assumed.

2.6 Prediction uncertainty

The parameter sets generated by the MCMC chains provide
the basis for model prediction including an estimation of the
uncertainty in the predictions on the train and test data set. 25

Here, we propagated both characterized uncertainties: the
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Figure 3. Prior and posterior distributions of the calibrated model parameters and error model terms for different setups. The maximum a
posteriori (MAP) estimates are indicated with a solid line. See Table 2 for parameter descriptions.

parametric and the residual (structural and observational) un-
certainty.

Retaining 20 samples from the combined Markov chains,
representative of the joint parameter posterior distribution
(including parameter correlations), we ran the P-model for5

each set of parameters to predict the target variables for the
test and training data set. These 20 sets of predictions repre-
sented the parametric uncertainty of the model.

Additionally, for each prediction (i.e. target, site, and date
combination) three observational errors were drawn from the10

residual error model (characterized by σGPP, σ1, and σVJ)
and added to the prediction. These 60 sets of predictions rep-
resented the combined parametric and residual uncertainty of
the model. These samplings appeared sufficient, since results
did not change upon sampling 50×10 parameter/error pairs.15

A third comparison with observations was based on one set
of predictions using the Maximum A Posteriori estimate as a
single set of parameters and without considering the residual
uncertainty.

3 Results20

3.1 Calibrated parameters

MCMC sampling with DREAMzs of 8 parallel, indepen-
dent chains took between 2.5 h (S2) and 68 h (S6) to reach
100 000 iterations for the setups S1 to S6. The trace plot of
the chain of setup S6, including computations of the scale re-25

duction factors (Gelman and Rubin, 1992) are reported in the
Appendix (Fig. C1).

Posterior distributions of the estimated parameters varied
across the different setups (Fig. 3). Setup S1 (using only1 as
observational target) constrained β to a maximum a posteri-30

ori (MAP) of 207 (unitless), a median of 208 and with an
inter-quartile range (IQR) from 203 to 213 and the residual
prediction error σ1 to a MAP of 2.18 (unitless), which corre-
sponds to a 10 % of the mean of predicted 1. Other parame-
ters were not informed by the calibration and their posteriors 35

remained largely identical to their prior distributions. This re-
flects model structural dependencies of parameters and pre-
dicted quantities (1 is independent of the other model pa-
rameters, see Eq. 3).

Setup S2 (using only VJ as observational target) con- 40

strained c∗ to a MAP of 0.214 (unitless), (median of 0.397,
IQR from 0.347 to 0.428). As revealed by the posterior
correlation analysis, β and c∗ showed a strong correlation
(r = 0.86, Fig. C2). These compensating effects were dis-
entangled when simultaneously calibrating to 1 and VJ in 45

setup S3. This constrained β to a MAP of 207.1 (unit-
less), (median of 207.9, IQR from 203.5 to 212.3) and c∗ to
MAP of 0.419 (unitless) (median of 0.425, IQR from 0.410
to 0.439), slightly higher than in setup S2, and avoided the
correlation of posteriors (Figs. 3 and C3). The error model 50

parameters associated with the two targets 1 and VJ were
estimated to MAPs of 2.18 ‰ and 0.178 (unitless).

Setups that use GPP as observational target and unin-
formed priors – setups S4, and S5 – yield estimates of β
that are at the lower bound of the uniform prior range – 55

i.e. 14.6 (unitless) –, while τ is estimated to be exactly 1 d.
This indicates that GPP observations “push” estimates of β
towards extremely high unit costs of transpiration in relation
to carboxylation, and that no smoothing of the daily meteo-
rological conditions (Eq. A1) was necessary to optimize the 60

likelihood of observing the GPP data. However, while im-
proving the likelihood of GPP, the fit with 1 observations
was deteriorated in these setups, as indicated by an offset be-
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Figure 4. Density plot of residuals between predicted and observed (a) 1, (b) VJ and (c) GPP from the training (grey) and test sets (green)
for calibration setups S1, S2, S4, and S6. Model output is computed with parametric uncertainty (filled area, based on 20 samples from
the posterior distribution) and residual uncertainty (solid line, based on 3 samples from error model). Model outputs are compared against
individual observations (dates from all sites pooled for GPP, and individual observations of each site for 1 and VJ).

tween model predictions and observations (Figs. 4 and 5).
Only setup S6, using GPP in combination with a truncated
and prior for β, informed by the reduced setup S3, mitigates
this offset. Also here, the posterior estimate of β came to lie
at the border of the truncated region – 14.6 (unitless). The5

error model parameter associated with the GPP target was
estimated to a MAP of 2.04 g C m−2 s−1 in setup S6, which
was slightly smaller than the error in setups S4 and S5. In the
posterior parameters of setup S6, correlations of r = 0.89 re-
main between ϕ∗0 and c∗ and of r = 0.81 between ϕ0 and bϕ10

(Fig. C4).

3.2 Prediction uncertainty

Model predictions were unbiased and residuals were of sim-
ilar magnitude when evaluated on the test and on the train-
ing data sets (Fig. 4), which indicates a good generalizability15

of the parametrized model. Including structural and observa-
tional uncertainties on top of parametric uncertainties only
slightly increased the deviations between predicted and ob-
served targets in setup S6, with strongest relative increases
for GPP.20

1 and GPP predictions based on MAP parameter sets of
setup S6 showed no magnitude-dependent bias (linear slopes
of regressions between predicted and observed values were
close to 1), whereas VJ showed a prediction range that ap-
pears too large when compared to the observed range (slope25

close to 0, Fig. 5). Setup S6 showed a slightly worse root
mean squared error (RMSE) than setup S5 for GPP, but
clearly reduced RMSE for 1 and VJ.

Time series of GPP of a few select years on training site
data showed that the model successfully reproduced seasonal30

patterns and differences across site in GPP for most sites
(Fig. C5), with some shortcomings in accurate simulations
of GPP during under dry conditions, as seen for site US-Var,
and a general low bias for the moist tropical site of GF-Guy.
The model also tends to systematically overestimate GPP in 35

the early growing season at US-MMS and US-PFa – a known
bias (Luo et al., 2023).

4 Discussion

This study showed that a model for ecosystem photosynthe-
sis and its acclimation to the environment can be robustly 40

parameterised and that its predictions of multiple variables
generalise well across a wide range of environmental condi-
tions. Multiple model parameters can be estimated simulta-
neously by using diverse calibration target data types, com-
bining ecosystem flux time series and static, species-specific 45

traits data. This demonstrates how the explicit representa-
tion of connections between traits and process rates enable
model-data integration on the basis of diverse observations,
obtained at multiple organisational levels – from the leaf to
the canopy. The robustness of the parameter estimates is indi- 50

cated by the convergence of the MCMC chains (Fig. C1) and
the resulting narrow posterior distributions of Bayesian pa-
rameter estimates (Fig. 3). Despite being calibrated to only a
relatively small set of sites with GPP data (N = 12), the cal-
ibrated model generalizes well, as validated against an inde- 55

pendent and much larger set of test data for GPP from 38 sites
(Figs. 4 and 5).

Our results confirmed the expectation that the use of mul-
tiple observational targets yields more robust parameter es-
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Figure 5. Predicted versus observed values for different target variables (1, VJ, and GPP along columns) and calibration setups (S1, S2,
S3, S4, S5, and S6, along rows), evaluated on the test set. Model output is computed with Maximum A Posteriori parameter values (MAP)
for each calibration setup. Note that the MAP parameters from setup S1 result in null-predictions of VJ and GPP. Color indicates density,
red line indicates a linear regression. Green panel backgrounds indicate which variables were used as targets for model calibration in the
corresponding setup. Model outputs are compared against individual observations (predicted and observed daily GPP values from all sites
pooled and site-specific predictions against all observations from the respective site for 1 and VJ).
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timates compared to a calibration setup that relies on a sin-
gle data source, and that specific observation types imposed
constraints for specific model parameters. Leaf carbon frac-
tionation observations, 1, allowed to constrain the unit cost
ratio of carboxylation to transpiration, β (Fig. 3). Observed5

ratios of the biochemical rates of carboxylation to electron
transport, VJ, constrained β and c∗, albeit with strong corre-
lations between them, indicating compensating effects and a
lack of robustness in resulting parameter estimates (Figs. 3
and C2). The combination of both these observation types10

allowed to constrain both parameters simultaneously, avoid-
ing correlations between parameter estimates. This indicates
that the use of two observational targets simultaneously made
use of their complementary information content for parame-
ter estimation in our model (Fig. C3).15

Despite the general robustness of parameter estimates, we
found several limitations and aspects that indicate challenges
for model calibration in our case. When observations of GPP
were included in calibration setups, parameter estimates of β
differed strongly from results obtained from setups that used20

only observations of 1 and tended towards the lower mar-
gin of the uniform prior range – substantially lower than the
value used for direct parameterisation of the model in previ-
ous work (Wang et al., 2017). β represents the ratio between
the unit cost of carboxylation to transpiration within the EEO25

modelling framework applied here (Prentice et al., 2014). An
extremely low value of β implies relatively high costs asso-
ciated with transpiration, which is driven by vapor pressure
deficit D. The calibration tending towards low values of β
potentially reflects a compensating effect for the lack of GPP30

reductions under conditions of dry soils, e.g., during the dry
summer periods at the site US-Var (Fig. C5). In other words,
this apparent lack of robustness of parameter estimate may
indicate a misspecification of the model structure. This inter-
pretation could be tested with targeted setups (e.g., removing35

dry sites from the calibration data set) or by alternative spec-
ifications of the soil moisture stress that better accounts for
its limiting effect on GPP.

To address this challenge and avoid unexpectedly low esti-
mates of the unit cost ratio parameter β, we resorted to a step-40

wise Bayesian calibration (MacBean et al., 2016) and used
the posterior distribution of setup S3 as a prior in setup S6.
This resulted in the disappearance of offsets in 1 observa-
tion, a c∗ closer to, but not at, the upper limit of the prior
(MAP= 0.58), and a sightly lower ϕ∗0 than in GPP-only45

setup (S4) or in the unconstrained GPP-1-VJ setup (S5).
The step-wise posterior estimation and prior specification of
P-model parameters in setup S6 yielded estimates of all pa-
rameters that compared favourably with previous estimates
(Stocker et al., 2020; Wang et al., 2017). This study esti-50

mated (MAP): β = 208 (unitless, compared with 146 and
the range from 200 to 240), c∗ = 0.58 (unitless, compared
with 0.41), and ϕ∗0 = 0.05 mol mol−1 (compared to 0.05).
However, the MAP estimate of τ = 1, indicated an instan-
taneous acclimation appeared to yield better agreement of55

model output with daily GPP observations, than a delayed ac-
climation using smoothed versions of the environmental con-
ditions. This contrasts with previous estimations of the accli-
mation time scale being on the order of 14 to 15 d (Mäkelä
et al., 2004; Liu et al., 2024; Mengoli et al., 2022). 60

Remaining correlations in posterior parameters of setup S6
between ϕ∗0 and c∗ indicate some equifinality. These com-
pensating effects indicate another potential implicit “misin-
terpretation” of what the parameter c∗ represents in setup S2
versus setup S6, and/or model structural error and inaccu- 65

rate process representation. The Bayesian approach allows
propagating the effect of this into predictive uncertainties by
using posterior distributions instead of point-estimates of pa-
rameters. Still, this entanglement might be resolved in future
calibrations by fixing one of these two parameters or by us- 70

ing additional observations. Future work is needed to look
into causes of this posterior variability of c∗, identify poten-
tial observational constraints, and potentially to revise related
model structures.

The calibrated model of setup S6 showed unbiased pre- 75

dictions against observations in an independent test data set,
indicating the model’s generalizability. Based on the univer-
sal validity of the EEO parameters across plant functional
types and biomes, the calibrated P-model can may be scaled
to new locations sites and environmental conditions. How- 80

ever, it should be noted that our estimates of prediction un-
certainty and the finding of robust generalisability only ap-
plies to environmental conditions that are within the domain
of (or similarly distanced to) sites used for training and test-
ing here (Ludwig et al., 2023). Further caveats apply. The 85

choice of the specification of soil moisture stress, which uses
a single global parameter θ∗, may be overly simplistic for de-
scribing diverse physiological responses to dry-downs across
sites characterised by different soil texture (Fu et al., 2022;
Wankmüller et al., 2024) and the model neglects the highly 90

variable rooting zone water storage capacities across space
globally (Stocker et al., 2023). Although generalization to the
test data set did globally show unbiased predictions across all
sites (Fig. 4), shortcomings were visible for certain sites (e.g.,
US-Var, Fig. 5) and warrant a re-consideration and potential 95

revision of the related process representations. An improved
representation of soil moisture stress effects and across-site
variations of critical soil moisture thresholds and storage ca-
pacities may potentially also mitigate the need for targeted
interventions into the calibration procedure, e.g., through the 100

truncation of the prior for β or the step-wise approach to
model calibration. More specifically, θ∗ could potentially be
expressed by additionally considering soil structural infor-
mation (Wankmüller et al., 2024), which could be provided
as additional information for each site. Alternatively, the 105

Bayesian approach allows for the use of hierarchical mod-
els (van Oijen, 2017) that could make use of potential, glob-
ally available predictors (or covariates) for the site-specific
parameters.
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Generally, design choices related to the Bayesian likeli-
hood specification and parameter calibration were adequate
to showcase the sensitivity of parameter estimates across se-
tups and retrieve an unbiased, generalizable model. While
simple, the additive Gaussian error model chosen for the like-5

lihood was sufficient to illustrate the constraints. However,
more appropriate functional forms could be used – for ex-
ample, ones that account for the fact that GPP values should
be non-negative and that observational errors tend to scale
with the magnitude of the flux (Cameron et al., 2022), or that10

better separate observation uncertainty from model structural
uncertainty (van Oijen, 2017). Independent estimates of ob-
servation uncertainty could be included as fixed parameters
or as informed priors. This would potentially lead to a re-
duced residual error representing more closely the structural15

model uncertainty. Potential estimates for these could be the
error on GPP measurements or errors of a trait measurement
to represent the model scale (i.e. the ecosystem-level aver-
ages across species instead of individual observations). Al-
ternatively, fitting to average observations instead of indi-20

vidual observations might reduce the (independent) observa-
tional errors. This would mean fitting to averaged traits over
different species at a given site or weekly cumulative fluxes
instead of daily values.

A strength of the Bayesian approach is to update model25

parameters iteratively with additional data by using previous
posteriors as new prior distributions. Our illustration of this
approach in setup S6 relied on manual extraction and speci-
fication of these distributions. A future development step for
the rsofun framework would thus be to support easier specifi-30

cations of these type of stepwise calibration (MacBean et al.,
2016) directly through the model interface.

The model employed here, the P-model, describes light
absorption, utilisation, and CO2 uptake at an aggregated or-
ganisational scale – the canopy-level. Despite this simpli-35

fied representation, we found that parameter interactions and
structural model errors can to lead biases in parameter esti-
mates. The stepwise calibration approach allowed to rectify
(likely biased) estimates of β that deviated from estimates
used in previous work (Prentice et al., 2014; Wang et al.,40

2017; Stocker et al., 2020). This violated the initial aim of
simultaneously estimating all parameters, but is interpreted
here as an indication of where to find structural deficiencies
and target model improvements (Oberpriller et al., 2021).
More comprehensive vegetation models of larger scope, e.g.,45

Dynamic Global Vegetation Models (Sitch et al., 2024), will
likely face similar challenges, considering that structural de-
ficiencies are unavoidable and more parameter interactions
may arise through feedbacks in the soil-plant system. Our
findings indicate that stepwise approaches to model calibra-50

tion can be a solution to this challenge.
While this study looked at seven model parameters simul-

taneously, several other parameters were held fixed, namely
those involved in describing temperature and pressure de-
pendencies of physical and physiological quantities, isotope55

fractionation, etc. This simplified the calibration and param-
eter estimation task, but assumed that the uncertainty stem-
ming from these is negligible for the prediction of target vari-
ables. This is a strong assumption and may be relaxed in fu-
ture attempts at calibrating P-model. 60

Lastly, the chosen likelihood ignored input data uncer-
tainty εx . For sites from which GPP estimates were ob-
tained, we expect small uncertainty in meteorological vari-
ables thanks to local measurements. In contrast, fAPAR data
is obtained from satellite remote sensing data, which is likely 65

to include uncertainties. For sites from which 1 and VJ data
was obtained, input forcing was based on a global dataset of
high spatial resolution (∼ 1 km around the equator). How-
ever, topographical effects and related micro-climata that de-
viate from the larger climate could be remaining sources of 70

errors.
The rsofun R package provides a user-friendly and ef-

ficient implementation of the P-model and off-the-shelf
model-data assimilation functionalities through its connec-
tion to the BayesianTools R package (Hartig et al., 2023), 75

while maintaining flexibility for altered calibration setups
and likelihood definitions. P-model’s computational effi-
ciency offered the potential for effective model parameter
and uncertainty estimation using Bayesian statistical meth-
ods in combination with flux and traits data here. 80

Our model implementation as an R package takes inspira-
tion from the r3PG forest model (Trotsiuk et al., 2020), and
our implementation of model-data integration on the basis of
ecosystem data serves similar, yet reduced aims and func-
tionalities compared to PEcAn (https://pecanproject.github. 85

io/index.html, last access: 25 November 2025) (LeBauer
et al., 2013). rsofun is designed to be minimally reliant on
package dependencies and connections to specific data, while
limiting the scope to a predefined set of process models (cur-
rently P-model, BiomeE at an experimentation stage). rso- 90

fun and the implementation of our simulations and analy-
ses shown here in accompanying code (see code availabil-
ity statement) and package vignettes provide a blueprint for
model-data assimilation for modelling terrestrial photosyn-
thesis. 95

5 Conclusions

This study used rsofun (available as an R package) to cal-
ibrate latent P-model parameters to a set of flux and traits
data, obtained from 193 training sites and 231 test sites. Pre-
dictions across all test sites showed that the calibrated model 100

generalized well, not showing any biases and similar predic-
tion residuals between train and test data. The Bayesian cali-
bration also exhibited challenges. Structural uncertainty, the
imbalanced data set, and a potentially too simplistic likeli-
hood lead to biased parameter estimates and predictions in 105

the first calibration attempt. An alternative calibration setup
made use of a stepwise calibration and the hierarchical de-

https://pecanproject.github.io/index.html
https://pecanproject.github.io/index.html
https://pecanproject.github.io/index.html
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sign of the model structure and predictions, enabling a suc-
cessive model integration and parameter calibration. The ne-
cessity for this approach to obtain robust and reliable param-
eter estimations may indicate model structural deficiencies,
which we identified here as primarily being related to the5

representation of effects by dryness in soil and air.

Appendix A: Acclimation

Damped acclimation to daily environmental conditions was
considered for the GPP prediction, while for 1 and VJ pre-
dictions used growing season average conditions.10

The the low-pass filter of characteristic time scale τ (days)
is defined as

T (t + 1)=T (t)+
1
τ
(T ′(t + 1)− T (t)),

initialized as T (0)= T ′(0), (A1)

where T is the low-pass filtered quantity (here temperature)
and T ′ the daily observations, resulting in a daily time se-15

ries of the damped quantity. Equivalent expressions with the
same τ are used for P , D, CO2, and PAR.

Appendix B: The rsofun model framework

rsofun implements the P-model (Stocker et al., 2020) and
provides off-the-shelf methods for Bayesian (probabilistic)20

parameter and prediction uncertainty estimation. rsofun is
distributed as an R package on R’s central and public pack-
age repository. rsofun also implements the BiomeE vegeta-
tion demography model (Weng et al., 2017, 2015). The latter
is not further described here and is implemented at an ex-25

perimental stage in rsofun version v5.1. The P-model imple-
mentation in rsofun is designed for time series simulations
by accounting for temporal dependencies in the acclimation
to a continuously varying environment. Function wrappers in
R make the simulation workflow user-friendly and all func-30

tions and input forcing data structures are comprehensively
documented (https://geco-bern.github.io/rsofun, last access:
25 November 2025).

In rsofun, model parameters can be calibrated using a cal-
ibration function calib_sofun(), providing two modes35

of calibration, one based on generalised simulated anneal-
ing (GenSA R package) for global optimization (Xiang et al.,
2013) and one based on Markov chain Monte Carlo (MCMC)
implemented by the BayesianTools R package, giving ac-
cess to a wide variety of Bayesian methods (Hartig et al.,40

2023). The former being fast, while the latter provides more
informed parameter optimization statistics (Clark, 2004; Di-
etze et al., 2013). This gives the option for both exploratory
and more in-depth analysis of estimated parameters. A set
of standard cost functions are provided for the calibration,45

facilitating the exploration of various metrics or target vari-
ables and the specification of calibrated model parameters.

Furthermore, the vignettes accompanying the package (https:
//geco-bern.github.io/rsofun/articles/, last access: 25 Novem-
ber 2025) explain how to customise the calibration cost func- 50

tions and interpret the calibration results.

https://geco-bern.github.io/rsofun
https://geco-bern.github.io/rsofun/articles/
https://geco-bern.github.io/rsofun/articles/
https://geco-bern.github.io/rsofun/articles/
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Appendix C: Posterior parameter estimates

C1 Posterior parameter sampling

Figure C1. Trace plot of MCMC sampling of all parameters in setup S6.
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C2 Posterior parameter correlations

Figure C2. Parameter correlation of posterior parameters in setup S2 with 100 000 iterations and 30 000 burn-in.
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Figure C3. Parameter correlation of posterior parameters in setup S3 with 100 000 iterations and 30 000 burn-in.
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Figure C4. Parameter correlation of posterior parameters in setup S6 with 100 000 iterations and 30 000 burn-in.
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C3 Posterior parameter predictions

Figure C5. Time series plot of observed (black crosses) and modelled daily gross primary production (GPP) for setup S6 for years 2012
to 2015 of the training data set. Model output is computed with parametric uncertainty (green shaded area, based on 20 samples from the
posterior) and structural uncertainty (grey shaded area, based on 3 samples from error model).
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Code and data availability. The rsofun R package can be installed
from CRAN (https://cran.r-project.org/package=rsofun, last ac-
cess: 25 November 2025) or directly from its source code on
GitHub (publicly available at https://github.com/geco-bern/rsofun,
last access: 25 November 2025 under an AGPLv3 licence). Ver-5

sioned releases of this GitHub repository are deposited on Zenodo
(https://doi.org/10.5281/zenodo.17313273, Stocker et al., 2025).
Code to reproduce the analysis and plots presented here is con-
tained in the repository at https://github.com/geco-bern/rsofun_
doc (last access: last access: 25 November 2025) and archived10

on Zenodo (https://doi.org/10.5281/zenodo.17204361, Bernhard
and Stocker, 2025). The model forcing and evaluation data for
GPP sites are based on the publicly available data, prepared
by FluxDataKit v3.4.2 (https://doi.org/10.5281/zenodo.14808331,
Hufkens and Stocker, 2025). Scripts for generating these data15

files from open access sources are contained in the “rsofun_doc”
repository in the subdirectory “data-raw/”. The model forc-
ing for 1 and VJ sites are based on the publicly available
WorldClim (https://doi.org/10.1002/joc.5086, Fick and Hijmans,
2017), ETOPO1 (https://doi.org/10.7289/V5C8276M, NOAA Na-20

tional Geophysical Data Center, 2009), and Mauna Loa CO2
(https://doi.org/10.6075/J08W3BHW, Keeling et al., 2017) data.
The model evaluation data for 1 sites are based on data associ-
ated with Cornwell et al. (https://doi.org/10.1111/geb.12764, 2018)
available at Cornwell (https://doi.org/10.5281/zenodo.15239220,25

2025). The model evaluation data for VJ sites are based on
the freely available subset of the data from Smith et al.
(https://doi.org/10.1111/ele.13210, 2019). Scripts for generating
these data are contained in the “rsofun_doc” repository in subdirec-
tory “data-raw/”. Outputs of those scripts and of the analysis pre-30

sented here are archived in the subdirectory “data/” and “analysis-
output/”.

Supplement. The supplement related to this article is available on-
line at [the link will be implemented upon publication].
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Remarks from the typesetter

TS1 During the proof-reading we noticed a mistake with one of the equations in the accepted manuscript. The equation itself
is correct but the cases determining when which line is to be used is wrong: Instead of x > 1 or x < 1, these should
refer to θ (the function argument) and θ∗. We apologise for this oversight and we would be grateful if this change could
be accommodated for the correctness of the manuscript. Thank you for your understanding and best regards, Fabian
Bernhard.
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