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Abstract.

Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse

biotic and abiotic conditions. Systematically informing them with data is key for enhancing their predictive accuracy and

estimating uncertainty. Herewe present ,
:::
we

::::::::::
demonstrate

::::
and

:::::::
evaluate the Simulating Optimal FUNctioning {rsofun}

:
(
:::::
rsofun

:
)

R package, providing
:::::
which

:::::::
provides

:
a computationally efficient and parallelizable implementation of the P-model for site-5

scale simulations of ecosystem photosynthesis
::
and

:::
the

::::::::::
acclimation

::
of

:::::::::::::
photosynthetic

::::
traits, complemented with functionalities

for Bayesian model-data integration and estimation of parameters and
::
the

:::::::::
estimation

:::
of

::::::
model

:::::::::
parameters

::::
and

:::::::::
prediction

uncertainty. We describe a use case to demonstrate the package functionalities for modelling ecosystem gross uptake at one flux

measurement site, including model sensitivity analysis, Bayesian parameter calibration , and prediction uncertainty estimation.

{rsofun} lowers the bar of entry to ecosystem modelling and model-data integration and serves as an open-access resource for10

model development and dissemination.
::::::::
estimated

::::::
model

:::::::::
parameters

:::::::::::::
simultaneously

::::
from

::::::::
observed

::::
time

:::::
series

:::
of

:::::::::
ecosystem

::::
gross

:::::::
primary

::::::::::
productivity

::::::
(GPP),

::::
and

::::
from

:::::::
globally

:::::::::
distributed

::::
data

::
on

::::
leaf

::::::::
carbon-13

:::::::
isotopic

::::::::::::
discrimination

::::::
(∆13C)

::::
and

:::
the

::::
ratio

::
of

:::
the

::::::::
maximum

::::::::::
biochemical

::::
rates

::
of

::::::::::::
carboxylation

::
to

:::::::
electron

:::::::
transport

:::::::::::
(Vcmax/Jmax).

::::
The

::::::::::
multi-target

::::::::
calibration

:::::::
yielded

:::::::
unbiased

:::::::::
predictions

:::
for

:::
all

:::::::
variables

:::::::::::::
simultaneously

:::
and

::::::::
produced

::::::
similar

::::::::::
distributions

:::
of

::::::::::::::::::
prediction–observation

::::::::
residuals

:::
for

::::
both

:::::::::
calibration

:::
and

::::::::::::
out-of-sample

::::
test

::::
data,

:::::::::
indicating

:::
that

:::
the

::::::
model

:::::::::
generalises

::::::::
robustly

:::::
across

:::::::
diverse

:::::::::::
environments.

::::
We15

:::::
found

:::
that

:
a
::::::::
step-wise

::::::::
approach

::
to

:::::::::
successive

:::::
model

:::::::::
integration

:::
and

:::::::::
calibration

:::::::
yielded

:::
best

::::::
results,

::::
and

:::
that

::::::::::
correlations

::::::
among

:::::::::
parameters

::::::
related

::
to

:::::::::::
representing

:::::
water

:::::
stress

:::::
effects

:::::::::::
underpinned

:::::::::
non-robust

:::::::::
parameter

::::::::::
estimations.

::::
This

:::::
likely

::::::::
indicates

::
a

::::::::
dominant

:::::
source

::
of

::::::
model

::::::::
structural

:::::::::
uncertainty

::::::
related

::
to

:::
the

:::::::::::
representation

::
of

:::
the

::::::::
response

::
of

::::::::::::
photosynthesis

::
to

:::
dry

:::::::::
conditions

::
in

:::
soil

:::
and

:::
air.

:

1 Introduction20

The modelling of land ecosystem processes and structure, water, and carbon fluxes relies on both mechanistic and statistical ap-

proaches (Dietze et al., 2018; Hartig et al., 2012; Van Oijen et al., 2005)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Dietze et al., 2018; Hartig et al., 2012; Van Oijen et al., 2005)

. Mechanistic models are formulated as mathematical descriptions of functional relationships between the abiotic environment
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and ecosystem states, rates, and dynamics. These descriptions reflect available theory and general empirical patterns and pro-

vide a means for "translating" hypotheses about governing principles and causal relationships into testable predictions (?)25

:::::::::::::::::
(Marquet et al., 2014), and for upscaling model-based estimates in geographical space and to novel environmental conditions.

However, mechanistic models rely also on statistical (empirical )
::::::::
empirical descriptions of processes at varying levels of ab-

straction.

Mechanistic models have model parameters that are either specified directly or fitted to data. A great advantage of mech-

anistic models is that they explicitly link known physical constants with process representations (e.g., molecular mass of30

CO2 for diffusion and assimilation, or the gravitational constant and viscosity of water for its transport and transpiration).

Other parameters may be specified based on independent measurements under controlled conditions (e.g., the activation

energy of Arrhenius-type metabolic rates), or represent measurable plant functional traits, taken as constant over time and

within plant functional types (PFTs - the basic unit in mechanistic vegetation models). Both types of parameters have tra-

ditionally been
::::::
directly

:
specified in models directly (’direct parameterization’, (Hartig et al., 2012)

::::::::::::::::
(Hartig et al., 2012)). Yet35

other model parameters may not be directly observable and describe processes that are not explicitly resolved but can be

described at a higher level of abstraction. Such parameters are often fitted to
:::::::::::
observational

:
data such that the agreement

between one (or several) related model predictions and observations is optimised. Parameter estimation for mechanistic veg-

etation models typically employs generic optimization algorithms or Bayesian statistical approaches and is often used for

specifying
:
to
:::::::
specify diverse types of parameters (except for universal physical constants). Bayesian methods have the advan-40

tage that they enable a systematic assessment of the correlation structure among multiple fitted parameters, provide a means

for considering uncertainty in observations
::
to

:::::::
consider

::::::::::
uncertainty

::
in

::::::
inputs,

:::::::::::
observations,

:::::::
models,

:
and available prior infor-

mation, generate probabilistic parameter estimations and model predictions, and provide a basis to quantifying
:::::::
quantify the

constraints by various of calibration target data or to identifying
:::
and

::
to

:::::::
identify errors arising from model structural choices

(Bagnara et al., 2015; Dietze et al., 2018; Hartig et al., 2012; van Oijen et al., 2013; Raj et al., 2018; Van Oijen et al., 2005; Xiao et al., 2014)45

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bagnara et al., 2015; Dietze et al., 2018; Hartig et al., 2012; van Oijen, 2017; Raj et al., 2016; Van Oijen et al., 2005; Xiao et al., 2019)

.

As the number of parameters increases in state-of-the-art mechanistic vegetation models, taking into account multiple PFTs

and ecosystem components (e.g. soil, microbes, hydrology), larger amounts of data and computing resources are required to

fully explore the parameter space (Hartig et al., 2012)
:::::::::::::::
(Hartig et al., 2012). This poses a limitation for systematic model-data50

integration and Bayesian parameter estimation. Eco-evolutionary optimality (EEO) principles have been proposed for reducing

model complexity and for a robust grounding of models in governing principles (Franklin et al., 2020; Harrison et al., 2021)

:::::::::::::::::::::::::::::::::::
(Franklin et al., 2020; Harrison et al., 2021). They enable parameter-sparse representations, limit the distinction of separate

PFTs, and may enable better model generalisations to novel environmental regimes.
:::
As

::::
such EEO principles make predictions

of plant functional traits that would otherwise have to be prescribed – typically as temporally fixed model parameters. However,55

although parameter-sparse, EEO-based vegetation models are not devoid of model parameters
:::::::::
Parameters

::
in

::::
EEO

:::::::
models

:::
are

:::::::::
considered

::
to

::
be

::::::::::
universally

:::::
valid,

::::
e.g.,

::::::
across

:::::::
different

:::::
PFTs. Ideally, remaining parameters

:::
they

:
represent known physical

constants or quantities that can be measured independently. But remaining parameters in optimality models typically also
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represent quantities that are not directly measurable
::::::::
However,

:::
not

::
all

::::
can

::
be

::::::::
measured

:::::::
directly – e.g., the marginal cost of water

in Cowan and Farquhar (1977)
::::::::::::::::::::::
Cowan and Farquhar (1977), or the unit cost ratio in Prentice et al. (2014). These are considered60

to be more universally valid (e.g., without distinctions between PFTs), but still must be
:::::::::::::::::
Prentice et al. (2014)

:::
and

::::
need

::
to

:::
be

fitted to data.

The P-model (Prentice et al., 2014; Stocker et al., 2020; Wang et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Prentice et al., 2014; Wang et al., 2017; Stocker et al., 2020)

is an example of an EEO-guided model for terrestrial photosynthesis and its acclimation. It avoids the requirement for prescrib-

ing PFT-specific parameters of photosynthesis and stomatal regulation but instead predicts them from universal EEO principles65

for the full range of environmental conditions across the Earth’s (C3 photosynthesis-dominated) biomes. However, not directly

observable parameters of the underlying
:::::::
Through

:::
its

:::::::::::
representation

:::
of

::
the

:::::::::
vegetation

::
as

::
a

:::
big

:::
leaf

::::
(ref),

:
it
:::::::::
represents

:::
the

::::::
scaling

:::::::
between

:::
leaf

:::::
traits

:::
and

::::::::::::::
ecosystem-level

::::::::::::
photosynthetic

:
CO2 :::::

uptake
:::::
(gross

:::::::
primary

:::::::::::
productivity,

::::::
GPP).

::::::::
However,

::::::
despite

:::
its

:::::::::
foundation

::
on EEO theory and of additional empirical parameterizations employed in the P-model (Stocker et al., 2020) remain

:::::::
resulting

::::::::::::::::::
parameter-sparseness,

:
a
:::::
small

:::
set

::
of

::::::
model

:::::::::
parameters

:::::::
remains

::::::::::::::::::
(Stocker et al., 2020)

:::::
(Table

::
2) and must be specified70

or fitted to data(Tab. 2).
:
.

Here, we provide a solution for this challenge, acknowledging that the data is an integral part of the modelling process

(Dietze et al., 2013) - even in theory-based models of ecosystem processes. We show how the most important parameters

contributing to uncertainty in the
::::::
explore

:::
the

::::::::
respective

:::::::::
constraints

::::::::
provided

::
by

::::::::::::::
ecosystem-level

:::::
fluxes

:::
and

::::::::
leaf-level

:::::
traits

:::
for

:
a
::::::::::
probabilistic

:::::::::
(Bayesian)

::::::::::
multi-target

:::::::::
estimation

::
of

:::
the

:
P-model

:::::::::
parameters.

::::
The

:::::::
selection

::
of

::::::::::::
observational

::::
target

::::
data

:::::
types

::
is75

::::::::
motivated

::
by

::::
their

::::::
known

:::::::::::
effectiveness

::
in

:::::
model

:::::::::
calibration

:::
and

:::::::::
parameter

::::::::
estimation

:::::
from

:::::::
previous

::::
work

::::::::::::::::::::::::::::::::::::::::::::::::::
(Prentice et al., 2014; Wang et al., 2017; Stocker et al., 2020)

:
.
::::::::::
Specifically,

:::
we

:::
use

::::::::::::::::
observations-based

::::
GPP

::::
time

:::::
series

::::
from

:::::::
multiple

:::::
eddy

:::::::::
covariance

:::::::::::
measurement

:::::
sites,

:::
and

:::::::::::
compilations

::
of

:::::::
globally

:::::::::
distributed

::::::::::::
measurements

::
of

::::
leaf

:::::
traits,

::::::::
including

:::
the

::::
leaf

::::::
carbon

::::::
isotopic

:::::::::::
fractionation

:::::::
relative

::
to

:::
the

::::::::::
atmosphere

::::::
(∆13C,

::::::::
hereafter

::::::::
shortened

:::
to

:::
∆),

::::
and

:::
the

:::::
ratio

::
of

::::
the

::::::::
maximum

:::::::::::
biochemical

::::
rate

::
of

::::::::::::
carboxylation

:::
to

:::::::
electron

::::::::
transport

:::::::::::::::
(Vcmax/Jmax ≡ VJ).

:::::
Data

::::
from

:::::
these

::::
two

::::
leaf

::::
traits

:::::
have

:::::::::
previously

::::
been

:::::
used

:::
for

::::::::::::
independently

:::::::::
estimating

:::::::
separate

::::::
model80

:::::::::
parameters

::
in

:::
the

:::::::
P-model

::::::::::::::::
(Wang et al., 2017).

::
In

:::::::::::::::::
Stocker et al. (2020),

:::::
these

::::::::::::
independently

::::::::
estimated

:::::
model

:::::::::
parameters

::::::
where

:::
then

::::::::
specified

:::
for

::::::
model

::::::::::
simulations

::::::
(direct

:::::::::::::::
parametrization),

:::
and

:::::
were

:::
not

:::::::
subject

::
to

::::::
model

:::::::::
parameter

::::::::::
calibration.

:::::
Here,

::
we

:::::::::::
demonstrate

::::
how

:::
the

::::::::
combined

::::::::::::
consideration

::
of

::::::
diverse

::::
data

:::::
types

::::::
within

::
a

:::::::
Bayesian

::::::::::
model-data

:::::::::
integration

::::::::::
framework

:
–
:::::::::
combining

:::::::::
ecosystem

::::
flux

::::
data

::::
and

::::
leaf

::::
traits

::::
data

::
–
:::::::
enables

:::
the

:::::::::::
simultaneous

:::::::::
estimation

:::
of

:
a
:::::::::::::

comprehensive
:::
set

::::::
model

:::::::::
parameters

:::
that

:::::::
control

::::::::
functional

::::::::::::
dependencies

::
of

::::::::
processes

::
at
::::::::

multiple
::::::::::::
organisational

:::::
levels

::
–

::::
from

:::
the

::::
leaf

::
to

:::
the

:::::::
canopy.85

::::
This

::::::
enables

::
a

:::::
better

::::::::::::
understanding

::
of

:::::::::::::::
interdependencies

:::::::
between

::::::
model

:::::::::
parameters

:::
and

::
a
::::
more

:::::::
reliable

:::::::::
estimation

::
of

::::::
model

::::::::
prediction

::::::::::
uncertainty.

::::::::::
Unbalanced

::::::::::
observations

::
of

:::::::
multiple

::::::::::
calibration

:::::
targets

::::
can

:::
lead

:::
to

::::::::
parameter

::::::::
estimates

:::
that

::::::::::
compensate

::::::::
structural

::::::
errors

::
in

::
the

::::::::::
(nonlinear)

::::::
model,

::
as

:::::
shown

:::::::::
previously

::::
with

:::::::
synthetic

::::
data

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(MacBean et al., 2016; Oberpriller et al., 2021; Cameron et al., 2022)

:
.
:::
We

:::
are

::::::::
therefore

:::::::::
interested

::
in
::::

the
::::::::
questions

::
i)
::

if
::::

the
:::::::
P-model

:
can be estimated using observations of ecosystem-level90

photosynthetic uptake (gross primary productivity, GPP) . We provide
::::::::
calibrated

::
in

:
a
:::::::::
consistent

::::::
manner

::
to

:::::
these

:::::
targets

::::::::
resulting

::
in

:::::::
unbiased

:::::::::
parameter

:::::::
estimates

::::::::
(relative

::
to

:::::::
expected

::::::
ranges

:::::
based

::
on

:::
our

::::::::::::
process-based

::::::::::::
interpretation

::
of

::::
each

:::::::::
parameter),

::::
and

::
ii)

:
if
:::

the
:::::::::
calibrated

:::::
model

::::
can

::
be

::::::::
validated

::
on

:::
an

::::::::::
independent

:::
test

::::
data

:::
set.

:

3



:::
We

::::
start

:::
by

::::::::
providing

:
a brief description of the theory embodied in the P-model and introduce the P-model implemen-

tation in the Simulating Optimal FUNctioning {rsofun}
::::::
rsofun version v5.0

::
.1

:
modelling framework, made available as95

an R package
:::::::::::::::::
(Stocker et al., 2025). A more comprehensive P-model description

:::::::::
description

::
of

::::
the

:::::::
P-model

:
can be found

in Stocker et al. (2020).
::::::::::::::::
Stocker et al. (2020)

:
.
::::::
rsofun

::::::::::
implements

:::
the

:::::::
P-model

::::
and

:::
its

:::::::::
connection

:::
to

::::
data

:::::::
through

::::::::
Bayesian

::::::::
parameter

:::::::::::
optimisation

:::
and

:::::::
analysis.

:
We demonstrate the functionalities of {rsofun} through a case study for simulating GPP

at a single flux measurement site. The case study includes sensitivity analysis
::::::::::
implemented

::
in

:::
and

:::::::::
accessible

::::::
through

::::::
rsofun

::::
with

:::::::
different

:::::::::
calibration

::::::
setups

:
–
::::
i.e.,

:::::::
different

:::::::::::
combinations

:::
of

:::::
model

::::::::::
parameters

::::::::
subjected

::
to

::::::::
Bayesian

:::::::::
calibration

:::
and

::::::::
different100

:::::::::::
observational

::::
data

:::::
types.

::::::::::
Alternative

:::::::::
calibration

::::::
setups

:::::
serve

::
to

::::::::
elucidate

:::
the

::::
role

::
of

::::::::
different

:::::::::::
observations

::
in

:::::::::::
constraining

:::::::
estimates

:::
for

:::::::
different

::::::
model

:::::::::
parameters.

::::::
rsofun

::::::::::::
functionalities

:::::::::::
demonstrated

::::
here

::::::
include

:::
the

::::::
flexible

:::::::::::
specification

::
of

::::::::
likelihood

:::::::
functions

::::
for

:::::::::
connecting

::::::
model

:::::::::
predictions

:::
to

:::::::
specific

::::
data

:::::
types, Bayesian model calibration

::::
using

::::::
Monte

::::::
Carlo

:::::::
Markov

:::::
Chain

::::::::
sampling,

:::
the

:::::::
analysis

:::
of

:::::::
posterior

:::::::::::
distributions

::
of

::::::::
estimated

::::::::::
parameters,

::::
and

:::
the

:::::::::
estimation

::
of

:::::::::
prediction

::::::::::
uncertainty,

::::::::::
probabilistic

:::::::::
predictions

::
of

::::
GPP, and inference – the prediction of GPP with an estimation of its uncertainty. This paper presents105

the calibration to GPPobservations only, but the package allows calibration to multiple targets simultaneously, including fluxes

and leaf traits
:::
VJ,

:::
and

:::
∆,

:::
and

::::
their

:::::::::
evaluation

::::::
against

::::::::::::
out-of-sample

:::
test

::::
data.

2 P-model description
::::::::
Methods

2.1
:::::::

P-model
::::::::::
description

The P-model predicts the acclimation of leaf-level photosynthesis to a (slowly varying) environment based on EEO princi-110

ples. It thereby yields a parameter-sparse representation of ecosystem-level quantities, generalising across (C3 photosynthesis-

dominated) vegetation types and biomes. The P-model combines established theory for C3 photosynthesis following the

Farquhar-von Caemmerer-Berry (FvCB, (Farquhar et al., 1980)) model )
::::::

model
:::::::::::::::::::

(Farquhar et al., 1980) with the Least-Cost

hypothesis for the optimal balancing of water loss and carbon gain (Prentice et al., 2014)
:::::::::::::::::
(Prentice et al., 2014), and the coor-

dination hypothesis (Wang et al., 2017)
:::::::::::::::
(Wang et al., 2017), which states that the light and Rubisco-limited assimilation rates115

(as described by the FvCB model) are equal for representative daytime environmental conditions. Based on these theoretical

foundations, gross primary productivity (GPP) can be modelled as the product of absorbed photosynthetically active radiation,

specified by the locally measured photosynthetically active radiation (PAR)and remotely sensed fAPAR,

:::
The

::::::
theory

::::::
results

::
in

:
a
:::::::::

prediction
::
of

::::
the

::::
ratio

::
of

:::::::::::
leaf-internal

::
to

:::::::
ambient CO2 :::::::::::

concentration
::::::::::
(ci : ca ≡ χ)

:::
as

:
a
:::::::
function

:::
of

::
the

:::::::::::
atmospheric

:::::::::::
environment,

:::::::::::
characterised

::
by

:::
the

:::::::::
following

::::::::::::
meteorological

:::::::::
variables:

:::::::
daytime

::::
mean

:::
air

::::::::::
temperature

::
T

:::::
(°C),120

::::::
daytime

:::::
mean

:::::
vapor

:::::::
pressure

::::::
deficit

::
D

::::
(Pa),

::::
and

:::
the

::::::::::
atmospheric

:
CO2 :::::

partial
:::::::
pressure

::::
(ca,

:::
Pa).

:

χ
:
=

Γ∗

ca
+

(
1− Γ∗

ca

)
ξ

ξ+
√
D

::::::::::::::::::::::

(1)

ξ=

√
β(K +Γ∗)

1.6 η∗
:::::::::::::

(2)
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::
Γ∗

::
is

:::
the

:::::::::::::
photorespiratory

::::::::::::
compensation

:::::
point

::::
(Pa).

::
η∗

::
is

:::
the

::::
ratio

:::
the

::::::::::::::::::::
(temperature-dependent)

::::::::
viscosity

::
of

:::::
water,

::::::
relative

::
to
:::
its

::::
value

::
at

:::::
25°C,

:
and the theory-based prediction of the ecosystem-level light use efficiency (LUE)(Stocker et al., 2020; Wang et al., 2017)125

. LUE acclimates to preceding environmental conditions with a characteristic, empirically determined (calibrated), time scale τ .

Two latent (not directly observable) parameters govern the optimality-guided water-carbon trade-off: the
:
K

::
is
:::
the

:::::::::::::::
Michaelis–Menten

::::::::
coefficient

:::
for

::::::::::::
photosynthesis

:::::
(Pa).

:
β
::::::::
(unitless)

::
is

:::
the unit cost ratio β (governing the balancing of maintaining the carboxylation

capacity versus the transpiration stream) and c∗ (the marginal cost of maintaining the electron transport rate). These have

previously been calibrated separately to data and specified as fixed model parameters in the P-model (Stocker et al., 2020; Wang et al., 2017)130

. The theory for predicting acclimated LUE then requires only the atmospheric environment to be specified (meteorological

variables and ).
:
of

::::::::::::
carboxylation

::
to

:::::::::::
transpiration

::
in

:::
the

::::
EEO

:::::::::
framework

::
of

::::::::::::::::::
Prentice et al. (2014),

::::
and

:
is
:::::::::
calibrated

::
to

::::
data

::::
here

:::
(see

::::
Tab.

:::
1).

:::
The

:::::::::
functional

::::::::::
dependency

::
of

:::
Γ∗

::
on

::::::::::
temperature

:::
and

:::::::::::
atmospheric

:::::::
pressure,

:::
the

::::::::::
dependency

::
of

:::
η∗

::
on

:::::::::::
temperature,

:::
and

:::
the

::::::::::
dependency

::
of
:::
K

:::
on

::::::::::
temperature

:::
and

:::::::::::
atmospheric

:::::::
pressure

:::
are

:::::::::
described

::
in

:::::
detail

::
in

::::::::::::::::::
Stocker et al. (2020)

::::
based

:::
on

::::::::
published

::::
work

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Farquhar et al., 1980; Bernacchi et al., 2001; Huber et al., 2009).

::::::::
Involved

:::::::::
parameters

:::
are

::::
held

::::
fixed

::::
here

::::
and135

::
are

:::
not

:::::::::
calibrated.

:

A set of corollary predictions, physically and physiologically consistent with the simulated LUE
:::::::
predicted

::
χ, follows. These

include the acclimated base rates of photosynthetic capacities in the FvCB model (Vcmax25 and Jmax25) , the acclimated average

ratio of leaf internal-to-ambient
:::
The

:::::::::
following

::::::::
predicted

::::::::
quantities

::::
are

::::
used

:::
for

::::::::::
model-data

::::::::::
integration

::::
here.

:::
A

::::::::
complete

:::::::::
description

::
of

:::
the

:::::::::::
mathematical

:::::::::
derivation

::
of

:::::
these

::::::::
quantities

::::
from

::::
first

::::::::
principles

::
is

:::::
given

::
in

:::::::::::::::::
(Stocker et al., 2020)

:
.140

2.1.1
::::::
Isotope

::::::::::::
fractionation

::
by

::::::::::::::
photosynthesis

:
χ
:::::::
directly

:::::::
controls

::::::
isotopic

::::::::::::
discrimination

::
of

::::::
carbon

:::::::::
assimilates

::::
(∆)

::::::
relative

::
to

:::
the

::::::::::
atmospheric

::::::::
signature

::::::
(δ13Ca)

:::::::::::::::::::::::::::::::::::::::::
(Farquhar et al., 1989, 1982; Lavergne et al., 2020)

:
.

∆= a∆ +(b∆ − a∆) χ− f∆
Γ∗

ca
,

:::::::::::::::::::::::::::

(3)

::::
Here,

::::::::::
parameters

::::::::
represent

:::
the

::::::
isotope

:::::::::::
fractionation

:::::
from CO2 concentration (ci : ca), acclimated average daytime stomatal145

conductance (gs:::::::
diffusion

::
in

:::
air

:::::::::::
(a∆ = 4.4‰,

::::::::::
Craig (1953)

::
),

::::
from

:::::::
Rubisco

:::::::::::
carboxylation

::::::::::
(b∆ = 27‰), and the acclimated base

rate of leaf dark respiration (Rd25). Physical constants and additional parameters that determine the instantaneous temperature

dependence of Vcmax, Jmax, Rd, and parameters in the FvCB model are prescribed and held fixed in the P-model (Tab. A2

in (Stocker et al., 2020)) .
::::
from

:::::::::::::
photorespiration

:::::::::::
(f∆ = 8.0‰,

::::::::::::::::::::::::
Ubierna and Farquhar (2014)

:
).
:::::
Also

::::
these

:::::::::
parameters

:::::
were

::::
held

::::
fixed

::::
here

:::
and

:::
not

::::::::
subjected

::
to
::::::::::
calibration.

:
150

For simulating GPP, the P-model is conceived as a single-big-leaf model (Fig. 1). While describing leaf-level quantities at

relatively high mechanistic detail, the link between the leafand the canopy-scale is not explicitly resolved. Instead, an empirical

approach for leaf-to-canopy scaling of uptake is employed by treating the quantum yield parameter φ0 to be representative for

2.1.2
:::::::::
Maximum

:::::
rates

::
of

::::::::::::
carboxylation

::::
and

:::::::
electron

:::::::::
transport

5



:::
For

:::::::
daytime

:::::::::
conditions,

::::::::
averaged

::::
over

:::::::
multiple

:::::
days, the canopy-scale and allowing it to be calibrated to ecosystem-level flux155

data. The implementation of the P-model in the {rsofun} package (version v5.0) further includes an empirical parameterization

of the temperature dependency of
::::::
assumes

::::
the

:::::::
Rubisco

::::::::::::::::::
carboxylation-limited

::::
and the quantum yield φ0, generalising the

approach taken in Stocker et al. (2020),
::::::
electron

::::::::::::::
transport-limited

:::::
rates

::
of

::::::::::::
photosynthesis

::
to

:::
be

:::::
equal:

:

AC =AJ
:::::::

(4)

::::::::
Following

:::
the

:::::::::::
Farquhar-von

:::::::::::::::
Caemmerer-Berry

:::::::
(FvCB)

:::::
model

:::
for

::
C3::::::::::::

photosynthesis
:::::::::::::::::::::::::::::::::::::::::::::::::
(Farquhar et al., 1980; von Caemmerer and Farquhar, 1981)160

:
,
::
the

:::::::::
maximum

::::
rate

::
of

:::::::::::
carboxylation

:::::
Vcmax:::

can
::::
thus

:::
be

::::::::
expressed

::
as

:

Vcmax = φ0 Iabs
m′

mC
,

:::::::::::::::::

(5)

::::
with

mC =
ci −Γ∗

ci +K
,

::::::::::::

(6)

:::
and

::::
with165

m′ =m

√
1−

(
c∗

m

)2/3

:::::::::::::::::::

(7)

and an empirical

m=
ci −Γ∗

ci +2Γ∗ .
::::::::::::

(8)

::::
Here,

:::
φ0::

is
:::
the

:::::::
intrinsic

::::::::
quantum

::::
yield

::
of

:::::::::::
photosystem

::
II

::::
(mol

:::::::
mol−1)

:::::
which

:::::::
depends

:::
on

:::
the

:::
leaf

::::::::::
temperature

::
T
::::

(see
::::
Eq.

:::
14)

:
–
::::
here

:::::
taken

::
as

::::::::
identical

::
to

:::
air

::::::::::
temperature.

:::
c∗

::::::::
(unitless)

::
is

:::
the

::::
unit

:::
cost

:::
of

:::::::
electron

:::::::
transport

::::
and

::
is

::::::
treated

::
as

::
a
::::::::::
calibratable170

:::::
model

:::::::::
parameter

:::
(see

:::::
Table

::
2
:::
for

::
an

::::::::
overview

::
of

:::::::::
calibrated

:::::
model

:::::::::::
parameters).

:::
Iabs::

is
:::
the

:::::::::::::
photosynthetic

::::::
photon

:::
flux

:::::::
density

:::::::
absorbed

:::
by

:::
the

::::
leaf.

:::
Eq.

:
7
::::::::
accounts

:::
for

:
a
::::::
limited

:::::::
electron

::::::::
transport

:::::::
capacity

:::::
(Jmax)

::::
such

::::
that

:::
m′

:::
can

::::
also

::
be

::::::
written

::
as
:

m′ =m
1√

1+
(

4 φ0 Iabs

Jmax

)2

::::::::::::::::::::::

(9)

:::::
Again

:::::
using

:::::::::
AC =AJ ,

::::
Jmax :::

can
::
be

::::::
solved

:::
for

:::
and

::::
can

::
be

::::::::
expressed

:::
as175

Jmax =
4 φ0 Iabs√
L−2 − 1

,

:::::::::::::::

(10)

::::
with

L= Vcmax
ci +2Γ∗

φ0 Iabs(ci +K)
.

::::::::::::::::::::::

(11)

:::
The

::::
ratio

:::
VJ

:::::::::::
= Vcmax/Jmax::

is
::::::
finally

::::::::
calculated

:::
by

:::::::
dividing

:::::::::
respective

:::::
values

::::::::
obtained

::::
with

::::
Eqs.

:
5
::::
and

:::
10.
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2.1.3
:::::
Gross

::::::::
primary

:::::::::::
productivity180

:::::
Gross

::::::
primary

::::::::::
productivity

::::::
(GPP)

:::
can

::
be

:::::::::
expressed

:
in
:::
the

:::::
form

::
of

:
a
::::
light

:::
use

::::::::
efficiency

::::::
model

::::::::::::::::::::::::::::::::::::::::::::
(Prentice et al., 2024; Bao et al., 2022; Monteith, 1972)

:
:

GPP = fAPAR · PPFD ·LUE ,
::::::::::::::::::::::::

(12)

::::
with

::::::
fAPAR

:::::
being

::
the

:::::::
fraction

::
of

::::::::
absorbed

:::::::::::::::
photosynthetically

:::::
active

:::::::
radiation

:::::::::
(unitless),

:::::
PPFD

:::::
being

:::
the

::::::::::::
photosynthetic

::::::
photon

:::
flux

:::::::
density,

:::::
PPFD

::::
(mol

::::
s−1

:::::
m−2),

::::
and

::::
LUE

::
(g

::
C

::::::
mol−1)

:::::
being

:::
the

::::
light

::::
use

::::::::
efficiency,

:::::::::
calculated

::
as185

LUE = φ0(T )fβ(θ)MC m′ .
:::::::::::::::::::::::

(13)

::::
Here,

:::
fβ::

is
:::
the

:::::::
unitless soil moisture stress function, generalising the approach taken in Stocker et al. (2020) (Appendix A).

Acclimating quantities are derived by
::::::
varying

:::::::
between

:
0
::::
and

:
1
::::
(see

:::
Eq.

::::
15),

::::
with

::
θ

::::::::::
representing

:::
the

::::::::::::
plant-available

::::
soil

:::::
water

::::::
content

::
in

::::
mm.

::::
MC::

is
::::

the
:::::
molar

:::::
mass

::
of

::
C

::::::::
(12.0107

::
g

:::::::
mol−1).

::::
Note

::::
that

:::
the

::::::::::
application

::
of

:::
Eq.

:::
12

:::::::
assumes

:::::
GPP

::
to

:::::
scale

::::::
linearly

::::
with

::::::::
absorbed

:::::
light.

::::
This

::::::::
functional

::::::::::
relationship

::
is

::::::::
assumed

:::
here

:::
to

:::::::
describe

:::
the

::::::::::
relationship

:::::::
between

::::::::
multi-day

:::::
sums190

::
of

::::
GPP

:::
and

::::
PAR

::::
and

:::::::
emerges

::::
from

:::
the

::::::::::
assumption

::
of

:::
the

:::::::::::
Coordination

:::::::::
Hypothesis

::::::::::::::::
(Wang et al., 2017)

:
.
::::::::
However,

::
it

:::::
cannot

:::
be

:::::::
expected

::
to

:::::::
describe

:::
the

:::::::::
functional

:::::::::::
dependencies

::
at

::::::
shorter

::::
time

::::::
scales,

:::::
where

:::
the

:::::::::
limitation

::
by

:::
the

:::::::
electron

::::::::
transport

:::::::
capacity

:::::
(Jmax)

:::::::
becomes

::::::::
effective

:::::::::::::::::::::::::::::::::::
(Mengoli et al., 2022; Farquhar et al., 1980)

:
.

::::
Such

::::::::::
acclimation

:
is
:::::::::
considered

:::
by employing the P-model theory to gradually varying environmental conditions

::
(P ,

:::
D, CO2:

,

:::
and

:::::
PAR)

:
where variations are damped and lagged by a characteristic (calibrated)

::
by

:
a
::::::::
low-pass

::::
filter

::::
with

::
a
::::::::::::
characteristic,195

:::::::::
empirically

:::::::::
determined

:
time scale τ . The continuous treatment of the acclimation time scale is different from Stocker et al. (2020)

, where monthly mean values of environmental variables were considered for the acclimation.
:::::
(days)

::::
(see

:::::::
equation

:::
B1

:::
for

:::
the

::::::::
definition

::
of

:::
the

:::::::
low-pass

::::::
filter).

2.1.4
::::::::
Quantum

:::::
yield

::::::::
efficiency

The temperature dependency of
::
the

::::::::
quantum

::::
yield

:::::::::
efficiency φ0 can be turned off by setting a (see Tab. 2 and Appendix A) to200

0 (’ORG’ model setup in (Stocker et al., 2020))
::
is

:::::::::
empirically

:::::::::::
parametrized

:::
as:

:

φ0(T ) = φ∗
0(1+ aφ(T − bφ)

2), bounded to the range
:::::::::::::::::::::::::::::::::::::::::::::

[0,φ∗
0

::::
]. (14)

::::
This

::
is

::
in

:::::::
contrast

:::
to

:::
the

::::::::::
formulation

::::
used

:::
in

:::::::::::::::::
Stocker et al. (2020),

::::::
where

:::
aφ::::

and
:::
bφ ::::

were
::::::::::

effectively
:::::::::
prescribed

:::
and

::::
not

::::::::
subjected

::
to

:::::::::
calibration.

:

2.1.5
:::
Soil

::::::::
moisture

:::::
stress205

:::
Soil

::::::::
moisture

:::::
stress

::
is

::::::::
computed

::
as

:

fβ(θ) =

1− (θ−θ∗)2

θ∗2 if x≥ 0,

1 if x < 0.
:::::::::::::::::::::::::::::

(15)

7



Static site information
drivers$site_info

Forcing time series
drivers$forcing

Model parameters
par

Simulation parameters
drivers$params_siml

Ecosystem fluxes
GPP, latent heat, 

AET, PET, net radiation

Acclimating leaf traits
Vcmax,  Jmax,  gs, 

ci:ca,  Rd,  iWUE

Ecosystem water balance
relative soil water content, 

soil water content, 
soil temperature, snow

Observed flux 
time series

Measured leaf 
traits 

INPUT OUTPUT OBSERVATIONS

Calibration

P-model simulations

cost function

Figure 1. P-model inputs, outputs, and target observations for the calibration
:::::::
parameter

:::::::::
estimation. The model takes as inputs static site

information(longitude, latitude, elevation and root zone water storage capacity), time series of meteorological forcings(listed in Tab. 1),

simulation parameters(spinup years, recycle period length, vegetation type (evergreen, deciduous, grass (/) with/without N-fixation) and ,

common
::::
model

:::::::::
parameters for all sites, model parameters (listed in Tab. 2). The simulation returns a time series of several ecosystem fluxes,

acclimating leaf traits and ecosystem water balance quantities
::::
states. By comparing these outputs to field measurements

:::
with

::::::::
measured

::::
traits

and flux data in a Bayesian calibration routine, model parameters can be estimated.

:::::
where

:::
θ∗

:::::
(mm)

:::::::::
represents

:::
the

::::::::
threshold

:::::
below

::::::
which

::::
GPP

::
is
::::::::

reduced. The soil moisture stress function can be turned off

by setting β0 (see Tab. 2 and Appendix A)to 1 (’BRC’ model setup in (Stocker et al., 2020)) . Taken together, the P-model

approach is guided by EEO and thus yields predictions for quantities that otherwise must be prescribed and fitted to data. Yet, a210

small set of model parameters, related to empirical parametrizations and latent quantities remain and must be calibrated to data.

See Tab. 2 for a list of all (calibratable) model parameters of the P-model implementation in the {rsofun} package
::::
water

:::::::
balance

:
is
:::::::::
simulated

::::
with

:
a
::::::
bucket

:::::
model

::
of

::::
soil

::::
water

:::::::
content

:::::::
(uniform

::::
total

:::::
water

:::::::
storage

::::::::
capacity),

:::::::
whereby

:::
the

::::::::
dynamics

::
of

::
θ
:::::
(mm)

::::::::
considers

::::
daily

:::::::::::
precipitation,

:::
the

:::::
snow

::::
melt,

::
a
::::::::::::::::::
Priestley-Taylor-based

::::::::::::::::
evapotranspiration

:::::::
estimate,

::::
and

:::::
runoff

:::::
when

:::
the

::::::
bucket

:
is
::::
full.

::::::
Except

:::
for

::::::::
implicitly

::::::::
enforcing

::::::::::::
fβ(θ = 0) = 0

:::::
here,

:::
this

::::::::::
formulation

::::::
follows

:::
the

::::::::::
description

::
in

:::::::::::::::::
Stocker et al. (2020)

:::
and215

:
is
:::::
based

:::
on

:::
the

::::::::
SPLASH

:::::
model

::::::::::::::::
(Davis et al., 2017).

2.2
:::::::::

Calibration
::::::
setups

:::::::
Different

:::::::::
calibration

::::::
setups

::::
were

::::
used

::
to

::::::::
illustrate

:::
the

:::::::::
constraints

:::::::
imposed

:::
by

:::
the

:::::::
different

:::::::::
calibration

::::::
targets

:::
for

::
the

:::::
same

::::
task

::
of

::::::::::::
simultaneously

::::::
fitting

::
all

:::::::::
parameters

:::::
listed

::
in

::::
Tab.

::
1.

:

Calibratable parameters in the {rsofun}
:::
The

::::::
choice

::
of

::::::::::
calibration

:::::
setups

::::
was

:::::::
guided

::
by

::::
our

::::::::::
expectation

::
of

::::::::::
constraints220

::::::::
contained

::
in

:::
the

::::::::
different

:::::
target

::::
data

::::
sets

::::
and

::::
their

::::::::::::
combinations,

:::::
given

:::
the

::::::
model

::::::::
structure.

::::::
Using

::::::::
common

:::::
priors

::::::
across

:::::
(most)

::::::
setups,

:::
the

::::::::
resulting

::::::::
parameter

::::::::
estimates

:::
can

::::::::
illustrate

::
the

::::::::::
constraints

:::::::
imposed

::
by

::::
data

:::::
alone.

::::
This

::::::::
approach

:::
can

:::
be

::::
seen

::
as

::
an

:::::::
extreme

:::::
form

::
of

:::
the

::::::::
approach

::::::::
suggested

:::
by

::::::::::::::::::
Cameron et al. (2022),

::::::
where

::::
they

::::::::
increased

:::
the

:::::::
number

::
of

::::::::::
observations

:::
of

:::::
certain

:::::
target

::::::::
variables

::
to

:::::::
identify

::::::
model

::::::::
structural

:::::
errors.

:::::
Here,

:::
the

::::::
setups

::::::::::::
systematically

:::::
tested

::::
each

::::
trait

:::::
target

:::::::::::
individually:
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Table 1. Forcing time series. Daily time series
:::::::
Overview

:
of

::::
targets

::::
used

:::
and

::::::::
parameters

:::::::::
estimatable

::
in the following meteorological variables

are required for simulation
:::
six

::::::::
calibration

:::::
setups. If a spin-up period is specified,

::
For

::::::::
parameter

::::::::
description

::::
and

::::
units

::
see

:::::
Table

::
2.

:::::::
Columns

:::
with

::
c)

::::
mean

:
the corresponding years are recycled for the spin-up

:::::::
posterior

::
of

:::
that

::::
setup

:::
had

::::
been

::::
used

::
as

::::::::
(truncated)

::::
prior.

Parameter name
Description

::::
Data Units

:::::
Model

::::::::
parameters

::::
Error

:::::
model

::::::::
parameters

temp
::::
Setup

:
Daytime average air temperature

::
∆ °C tmin

::
VJ

:
Daily minimum air temperature

::::
GPP °C tmax

::
φ∗

0 Daily maximum air temperature
::
aφ °C vpd

::
bφ Daytime average vapour pressure deficit

:
θ∗

:
Pa ppfd

:
β
:

Photosynthetic photon flux density (PPFD
:
τ

::
c∗

::::
σGPP :::

σ∆ :::
σVJ

:
a) mol m−2 s−1

:
x
: :

x
: :

x
:

netrad
::
b) Net radiation W m−2

:
x
: :

x
: :

x
: :

x
:

patm
::
c) Atmospheric pressure

:
x
:

Pa
:
x
: :

x
: :

x
: :

x
: :

x
:

rain
::
d) Rainfall as precipitation in liquid form mm s−1

:
x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
:

snow
::
e) Snowfall in water equivalents

:
x mm s−1 x

: :
x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

x
:

fapar
::
h) Fraction of photosynthetic active radiation (fAPAR

:
x

:
x
: :

x
: :

x
: :

x
: :

x
: :

x
: :

c) unitless ccov
:
x Cloud coverage

:
c)
:

% co2
:
x
:

Atmospheric concentration
:
x
:

ppm
:
x

::
∆

::
in

:::::
setup

:::
a),

:::
VJ

::
in

:::::
setup

:::
b),

:::
and

:::
in

::::::::::
combination

:::
in

::::
setup

:::
c);

::::::
before

::::
then

::::::::::
considering

:::::
GPP

:::::
alone

:::::
setup

:::
d),

:::
and

:::::::::
combined225

::::
with

:::
the

::::
traits

:::::
setup

::
e).

:::::::
Finally,

:::::
setup

::
h)

:::::
tested

:
a
::::::::
stepwise

::::::::
approach

::::
using

:::
the

:::::::::
posteriors

::::
from

:::::
setup

::
c)

::
as

:::::
prior

:::::::::::
specification,

::
to

:::::::
inclusion

::
of
::::

trait
::::::::::
information

::
in

:::
the

::::
final

::::::::
estimates

::
in

::::
spite

:::
of

:::::::
potential

::::::
model

::::::::::::::
misspecifications.

:

:::
We

:::
use

:::
the

:::::::::::::
implementation

::
of

:
P-model implementation

:
in

:::
the

::::::
rsofun

::::::::
framework

::::::::::::::::::
(Stocker et al., 2025)

::
to

:::::
model

:::::
daily

:::::
gross

::::::
primary

:::::::::::
productivity,

::::
GPP,

::::
and

::::::::
leaf-level

:::::
traits,

::::::
namely

:::
the

:::::
ratio

::
of

:::
the

::::
rates

::
of

:::::::::::::
photosynthetic

::::::::
capacities

::
in

:::
the

::::::
FvCB

::::::
model,

:::
VJ,

:::
and

:::
the

:::::::
isotopic

:::::::::::
fractionation

::
of

::::::::::
assimilated

:::::::
carbon,

::
∆.

::::::::::::::
Implementation

:::::
details

:::
of

:::
the

:::::
rsofun

:::::::::
framework

:::
are

::::::::
provided

::
in230

::::::::
Appendix

::
C.

:

:::::
Three

:::::
latent

::::
(not

::::::
directly

::::::::::
observable)

::::::::::
parameters

::::::
govern

:::
the

:::::::::::::::
optimality-guided

:::::::::::
water-carbon

::::::::
trade-off:

:::
the

::::
unit

::::
cost

:::::
ratio,

::
β,

:::::::::
(governing

:::
the

:::::::::
balancing

::
of

::::::::::
maintaining

:::
the

::::::::::::
carboxylation

:::::::
capacity

::::::
versus

:::
the

:::::::::::
transpiration

:::::::
stream),

:::
the

::::::::
marginal

:::
cost

:::
of

::::::::::
maintaining

::
the

:::::::
electron

::::::::
transport

::::
rate,

:::
c∗,

:::
and

:::
the

::::::::
quantum

::::
yield

::::::::
efficiency

:::
φ0::::::::::::

(parametrized
::::
with

:::
φ∗
0,

:::
aφ,

::::
bφ).

:::
The

::::::::::
parameters

::
τ ,

::
β,

:::
c∗

::::
have

:::::::::
previously

:::::
been

::::::::
calibrated

:::::::::
separately

::
to

::::
data

::::
and

::::
have

:::::
been

::::
been

::::::::
specified

::
as

:::::
fixed

::::::
model235

:::::::::
parameters

::
in

:::
the

:::::::
P-model

::::::::::::::::::::::::::::::::
(Stocker et al., 2020; Wang et al., 2017).

:::::
Here

::::
they

::::
were

::::::
instead

::::::::
calibrated

:::::::::::::
simultaneously

::
to

:::::::
multiple

:::::::::
calibration

::::::
targets,

:::::::
together

::::
with

::::::::
additional

::::::::::
parameters.

:

:::
For

:::::::::
simplicity,

:::
the

::::
same

:::
θ∗,

:::
the

:::
soil

:::::
water

:::::::
volume

:
(mm

:
)
:::::
below

::::::
which

:::::
plants

:::
are

:::::::
stressed,

::::
was

::::
used

::::::
across

::
all

:::::
sites.

:::::
Three

:::::::
different

:::::::::
calibration

::::::
targets

::::
were

::::
used

::
in

:::
this

:::::
study.

::
∆

:::::::::
represents

::::::::::
accumulated

:::::::::
assimilates

::::
and

:
is
:::::::::
influenced

:::
by

:::::::
stomatal

::::::
opening

:::::::
through

:::
the

:::::::::::
leaf-internal

::
to

:::::::
ambient

::::::
carbon

:::::::
dioxide

:::::
ratio.

:::
Eq.

::
2

:::::::
indicates

:::
its

::::::::::
dependency

:::
on

:::
the

::::::::
parameter

:::
β.

:::
VJ

::
is240

:::::::
assumed

:::::::
constant

:::::::::
throughout

:::
the

::::::
season.

:::::::::::
Observations

:::
of

:::
this

::::
ratio

::::
(Eq.

:
5
::::
and

:::
10)

:::
are

:::::::
expected

::
to

::::::
inform

:::
the

:::::
model

::::::::::
parameters

:
β
::::
and

::
c∗. The maximum a posteriori

::::::
GPP(t)

:::::::::::
observations

:::::::
represent

:::::
daily

:::::
values

::
of

:::::::::::::
ecosystem-level

:::::::::::::
photosynthetic CO2::::::

uptake

:::::
fluxes

::::
(with

::::::::::
acclimation

::
of

::::::::
LUE(t)).

::::
Eqs.

:::
12

::
to

:
3
::::::::
illustrate

:::
the

::::::::::
dependence

::
of

::::
these

:::::::::::
observations

::
to

:::::
model

::::::::::
parameters

::
β,

:::
c∗,

::
as

:::
well

:::
as

:::
θ∗,

::
τ ,

:::
φ∗
0,

:::
aφ,

:::
and

:::
bφ.

:

::::
Note

:::
that

:::::
Vcmax::::

and
::::
Jmax::::

both
:::::
scale

::::::
linearly

:::::
with

::
φ0::::

(Eq.
::
5
:::
and

::::
10).

::::
This

::::::::::
dependency

:::
to

::
φ0:::::::

cancels
:::
out

:::::
when

::::::::::
considering245

::
the

:::::
ratio

::
of

:::
the

:::
two

:::
VJ.

:
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3 The {rsofun} model framework

2.1
:::::::::

Calibration
::::::
target

::::
and

:::
test

::::
data

{rsofun} implements the P-model (Stocker et al., 2020) and provides off-the-shelf methods for Bayesian (probabilistic) parameter

and prediction uncertainty estimation. {rsofun} is distributed as an R package on R’s central and public package repository.250

{rsofun} also implements the BiomeE vegetation demography model (?Weng et al., 2015). The latter is not further described

here and is implemented at an experimental stage in {rsofun} version v5.0. The P-model implementation in {rsofun} is designed

for time series simulations by accounting for temporal dependencies in the acclimation to a continuously varying environment

(Tab. 1). Function wrappers in R make the simulation workflow user-friendly and all functions and input forcing data structures

are comprehensively documented (https:
:::
The

::::
data

:::
set

::::::::
consisted

::
of

:::
50

::::
sites

:::::
with

::::
GPP

::::
flux

::::
time

:::::
series

::::::::
(172’055

::::::::
site-dates

:::
in255

:::::
total),

::
49

:::::
sites

::::
with

::
a

::::
total

::
of

::::
597

:::::::::
individual

:::
VJ

:::::::::::
observations

::::::::
(multiple

:::::::::
individual

:::::
plants

::::
and//geco-bern.github.io/rsofun/).

::
or

::::::
species

::::
per

:::
site

:::::::::
sampled),

:::
and

::::
325

::::
sites

:::::
with

:
a
:::::

total
::
of

:::::
2357

::
∆

::::::::::::
observations.

::::
Data

:::
for

:::
all

::::::::
variables

::::
were

:::::
split

::
by

:::::
sites

::
for

::::::
model

:::::::::
calibration

:::::::::
(training)

:::
and

::::::::::::
out-of-sample

::::::
testing

:::::
(Fig.

::
2

:::
and

:::::
listed

:::
in

::::
Tab.

:::
S2

::
in

:::
the

:::::::::::
supplemental

:::::::::
material).

::::
The

:::
split

::::
into

:::::::
training

::::
and

:::
test

::::
data

::::
sets

::::
was

:::::::::
performed

::
in

:
a
::::::::
stratified

:::::::
manner

::::::::
according

::
to
:::::::::

vegetation
::::

type
::::

and
::::
land

:::::
cover

:::::
class

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beck et al., 2018; Copernicus Climate Change Service, 2019; Hufkens and Stocker, 2025)

::
to

::::::
ensure

:::::::
balanced

:::::::::::::
representations260

::
of

::::
each

::::::
stratum

::
in

:::
the

:::
test

::::
and

::::::
training

::::
data

:::
set.

:::
For

:::::
GPP

::::
sites,

:::
we

::::::::::
additionally

:::::::
required

:::
that

::
a
:::
site

::::::::
contained

:::::
more

::::
than

::
12

:::::
years

::
of

::::::::::
good-quality

::::::::
gap-free

:::
data

:::
to

::
be

::::::::
available

::
as

:
a
:::::::
training

::::
site.

:::
We

::::
used

::::
GPP

::::
data

:::::
from

::
12

::::
sites

:::
for

:::::::
training

:::
and

::::
data

:::::
from

:::
the

::::::::
remainder

:::
38

::::
sites

:::
for

::::::
testing.

::::
The

:::
VJ

:::
and

:::
the

::
∆

::::
data

:::::
were

::::
split

::::
such

:::
that

::::
data

:::::
from

:::::::
roughly

::::
50%

::
of

:::
all

::::
sites

::
in

::::
each

:::::::
stratum

::::
were

::::
used

:::
for

:::::::
training

:::
and

::::::
testing,

:::::::::::
respectively.

In {rsofun}, model parameters can be calibrated using a calibration function calib_sofun(), providing two modes of265

calibration, one based on generalised simulated annealing ({GenSA} R package) for global optimization (Xiang et al., 2013)

andone based on Markov chain Monte Carlo (MCMC)implemented by the {BayesianTools} R package, giving access to a wide

variety of Bayesian methods (Hartig et al., 2023). The former being fast, while the latter provides more informed parameter

optimization statistics (Clark, 2004; Dietze et al., 2013). This gives the option for both exploratory and more in-depth analysis

of estimated parameters. A set of standard cost functions are provided for the calibration , facilitating the exploration of various270

metrics or target variables and the specification of calibrated model parameters. Furthermore, the vignettes accompanying the

package (https://geco-bern. github.io/rsofun/articles/) explain how to customise the calibration cost functions and interpret the

calibration results.

3 Case study

We use {rsofun} to model GPP as estimated from ecosystem flux measurements taken at one site using the275

::::
GPP

::::::::::
observations

:::::
were

:::::
taken

::::
from

:::::::::::
FluxDataKit

:::::
(FDK

:::::::
v3.4.2)

::::::::::::::::::::::::::::::::::::::::::
(Hufkens and Stocker, 2025; Pastorello et al., 2020),

::::::
which

::::::::
combines

::::::::
published

:::::::
releases

::
of

:::::::::::
consistently

::::::::
processed

:
eddy-covariance technique. The site, selected here for demonstration

purposes, is Puéchabon (Rambal et al., 2004), an evergreen Mediterranean forest, dominated by Quercus ilex, growing on
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Figure 2.
:::::
Global

::::
maps

::
of
:::
site

::::
with

::::::::::
observations

:
of
:::

the
::::
three

:::::
target

::::
types

::
in

::
the

::::::
training

::::
and

::
test

::::
data

::::
sets.

relatively shallow soil on karstic bedrock, and located in southern France. The climate is governed by a distinct seasonality in

solar radiation and temperature, peaking in summer, and a dry period during summer months with recurrent ecosystem water280

limitation in late summer (Rambal et al., 2004). Data used here cover years 2007-2012. Both the model target data (GPP ) and

model forcing data (see Fig. 1) were measured at the site and obtained from the FLUXNET2015 dataset (Pastorello et al., 2020)

. Data for years 2013 and 2014 were available from FLUXNET2015 but removed here due to unexpectedly low GPP measurements

(pers. comm. Jean-Marc Limousin) . GPP data is taken as the FLUXNET standard variable (
:::
data

:::::
from

:::::::
multiple

::::::::
regional

:::::::
networks

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ukkola, 2020; Warm Winter 2020 Team et al., 2022; Drought 2018 Team et al., 2020)

:
.
::::
GPP

:::::::::
estimated

:::::::
through

:::
the285

::::::::
nighttime

:::
flux

::::::::::
partitioning

::::
was

:::::
used

:::::::
(variable

:
’GPP_NT_VUT_REF’ ) derived from the nighttime flux partitioning method

(Reichstein et al., 2005) and was filtered
::::::::::::::::::
Reichstein et al. (2005)

::
).

:::
For

:::::
model

:::::::::
calibration

::::
and

:::::::::
evaluation,

:::
we

::::::
filtered

::::
data to re-

tain only (daily) values that were derived from
::::::::
computed

::::
with at least 80% measured or good-quality

:
, gap-filled (half-hourly)

values.
:::::
Sites,

::::::::
classified

::
as

::::::::
croplands

:::
or

:::::::
wetlands

:::::
were

::::::::
removed,

::
as

::::
well

:::
as

:::
any

::::
site

::::
with

:::
five

:::
or

:::
less

::::::::
complete

:::::
years

::
of

:::::
data.

:::::
Based

::
on

::::::
visual

:::::::::
inspection,

:::
the

::::::::
following

::::::::
site-year

:::::::::::
combinations

::::::::
exhibited

::::::::
spurious

:::::::
patterns

:::
and

:::::
were

::::::::::
additionally

::::::::
removed:290

:::::::
ES-LJu,

::::
year

:::::
2006;

::::::::
US-Ho2,

::::
year

:::::
2007;

::::::::
CH-Dav,

::::
year

:::::
2010;

:::::::
US-Whs

:::::
years

::::
2016

::::
and

:::::
2017.

2.1 Sensitivity analysis

:::::::::::
Observations

::
of

:::
VJ

::::
were

::::::::
obtained

::::
from

:::
the

::::
data

::::::::::
compilation

:::
of

:::::::::::::::
Smith et al. (2019)

:
,
:::::::::
containing

::::
data

:::::::
reported

:::
for

:::
top

:::::::
canopy

::::
from

:::::::
multiple

::::::
sources

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(De Kauwe et al., 2016; Keenan and Niinemets, 2016; Smith and Dukes, 2017; Kattge et al., 2011; Wang et al., 2018; Fürstenau Togashi et al., 2018; Togashi et al., 2018; Domingues et al., 2010; Ferreira Domingues et al., 2015; Serbin et al., 2015; Tarvainen et al., 2013; Ellsworth, 2016; Rogers et al., 2017)

:
.295
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The
:::::::::::
Observations

::
of

:::::::::
carbon-13

::::::
isotope

::::::::::::
discrimination

::
in

:::
leaf

:::::::
material

::
∆

::::
were

:::::
taken

::::
from

:
a
::::::
global

::::
data

::
set

::::::::::::::::::::::::::::::::
(Cornwell et al., 2018; Cornwell, 2025)

:
,
::::::::
subsetting

::::
only

:::::::::::
observations

:::
that

:::::
were

::::::
marked

::
as

:::
C3

::::::
plants.

:::
We

::::
used

:::
∆

:::::
values

::::
that

::::
were

:::::::
derived

::::
from

:::
the

:::::::
isotopic

::::::::
signature

::
of

:::
leaf

:::::::
material

::
in

:::::::
relation

::
to

:::
the

::::::::::
atmospheric

::::::::
signature

::
at

:::
the

::::
date

:::
and

:::::::
latitude

::::::::::::
measurements

::::
were

:::::
made.

:

2.1
::::::

Forcing
::::
data

:::
For

:::::::::
simulations

:::
of

::::
GPP

::::
time

:::::
series,

:::::
daily

::::::::::::
meteorological

::::::::::::
measurements,

::::::::
obtained

::
in

::::::
parallel

::::
with

::::
GPP

:::::::::::
observations,

:::::
were

::::
used300

::
as

:::::
model

:::::::
forcing.

:::::
Daily

::::::
forcing

:::
data

::::
was

:::::
taken

::::
from

::::::::::
FluxDataKit

:::::
(FDK

::::::
v3.4.2)

::::::::::::::::::::::::::::::::::::::::::
(Hufkens and Stocker, 2025; Pastorello et al., 2020)

:
.
:::
The

:::::::
required

:::::
daily

:::::::
variables

:::
are

:::::
listed

::
in

::::
Tab.

:::
S1

::
in

:::
the

:::::::::::
supplemental

:::::::
material.

:

:::
For

:::::::::
predictions

::
of

:::
the

::::
two

:::
leaf

:::::
traits

:::
(∆,

::::
VJ),

:::
the

:
P-model implementation in {rsofun} has a total of nine model parameters

that are available for calibration (Tab. 2). Due to the relatively high computational cost of simultaneously calibrating all nine

model parameters, we start by performing a sensitivity analysis to determine the most influential parameters on the model fit and305

exclude the least influential ones for the subsequent calibration step. Here, we apply the Morris method for global sensitivity

analysis (Morris, 1991) from the {sensitivity} R package (Looss et al., 2023) and compute the sensitivity metrics µ∗, indicating

the magnitude of the overall influence of
:::
was

::::::
forced

::::
with

::::::
average

:::::::
climate

:::::::::
conditions

:::::
during

:::
the

::::::::
growing

::::::
season,

::::::
derived

:::::
from

::
the

::::::
global

::::::::::
WorldClim

::::
data

:::
set

::::::::::::::::::::::
(Fick and Hijmans, 2017)

::::::::::
(comprising

:::::::
monthly

::::::::
averages

::
of

:::::
daily

:::::::::
minimum,

:::::::::
maximum

::::
and

::::::
average

:::::::::::
temperature,

:::::
vapor

:::::::
pressure,

::::
and

::::
solar

::::::::
radiation)

::::
and

::::::::::
considering

:::::::::
geographic

::::::::
positions

::
of

:::
the

::::
sites.

:
310

:::
The

:::::::
monthly

:::::::::
WorldClim

::::
data

::::
were

::::::::::
temporally

:::::::::::
disaggregated

::
to

::::
daily

::::::
values

::::::
through

::::::::::
polynomial

::::::::::
interpolation

:::::
(daily

:::::::::
minimum,

:::::::::
maximum,

:::
and

:::::::
average

:::::::::::
temperatures,

:::::
cloud

:::::
cover

::::::::
fraction,

::::
solar

::::::::
radiation,

::::
and

:::::
vapor

::::::::
pressure).

::::::::::
Interpolated

:::::
daily

:::::::::
maximum

:::
and

::::::::
minimum

:::::::::::
temperatures

::::
were

::::
then

:::::::::
combined

::
to

::
an

:::::::
average

:::::::
daytime

::::::::::
temperature

:::::
using

::::::::::::
location-based

:::
day

::::::
length

::::::::
assuming

:
a
:::::::::
sinusoidal

::::::::::
temperature

::::::
profile

::::::::::::::::::::::::::::::
(Davis et al., 2017; Peng et al., 2023)

:
.
::::
The

:::::::
average

:::::::
daytime

:::::
vapor

:::::::
pressure

::::::
deficit

::::
(D)

::::
was

::::::
derived

::::
from

:::
the

:::::::
average

:::::
vapor

:::::::
pressure

:::
and

:::::
daily

:::::::::
maximum

:::
and

::::::::
minimum

:::::::::::
temperature.315

::::
Daily

::::::
values

:::::
were

::::::::
averaged

::
to

:::::::::
conditions

:::::::::::
representing

:::
the

::::::::
growing

::::::
season.

::::::::
Growing

::::::
season

::::
was

:::::::
defined

:::
as

:::
the

::::::
period

::::
with

::::
daily

:::::::
average

::::::::::
temperature

::::::
above

::
0 ◦C.

:::::
Then,

::::::::
daytime

::::::::::
temperature,

::::::
vapor

:::::::
pressure

::::::
deficit

::
D

::::
and

::::
solar

::::::::
radiation

:::::
were

:::::::
averaged

::::::
(mean)

::::::
across

:::
all

::::
days

::
of

:::
the

:::::::
growing

::::::
season

::::
and

::::
used

::
as

::::::
model

::::::
forcing

:::
(T ,

:::
D,

:::::
PAR)

:::
for

:
a given parameter on the

prediction,
:::::::::::::
non-temporally

:::::::
resolved

::::::
single

::::::::
prediction

:::
of

:::
VJ

::
or

:::
∆

:::
for

::::
each

::::
site.

:::::::::::
Atmospheric

:::::::
pressure

:::
P

:::
was

:::::::
derived

:::::
from

::
the

:::::::::
ETOPO-1

::::::
digital

::::::::
elevation

::::::
model

:::::::::::::::::::::::::::::::::::::::::
(NOAA National Geophysical Data Center, 2009),

:::::
using

::::
site

::::::::
positions

:::
and

:::::::::
assuming320

:::::::
standard

::::::::::
atmospheric

::::::::
pressure.

:
CO2 :::

was
:::::
taken

:::::
from

:::::
yearly

:::::
mean

::::::
values

:::::
from

:::
the

::::::
Mauna

::::
Loa

::::::
record

:::::::::::::::::
(Keeling et al., 2017)

:
,

::::
using

:::
the

::::::::::::
corresponding

::::::::::
observation

::::
year

:::
(or

:::
the

::::
year

::::
2000

::
if

::::::::::
observation

::::
year

:::
was

:::::::::::
unavailable).

2.2
:::::::

Bayesian
::::::::::
calibration

:::
We

::::::::
estimated

:::::
model

:::::::::
parameters

::
β,

:::
c∗,

::
τ ,

:::
φ∗
0,

:::
aφ,

:::
bφ,

:::
and

:::
θ∗

::::
(See

::::
Tab.2

:::
for

:
a
::::::::::
description

::
of

::::::::::
parameters)

::
in

:::::::
multiple

:::::::::::
combinations

::
of

:::::::::
parameters

:::
and

::::::
target

:::
data

:::::
(Sec.

:::
2.1

::::
and

::::
Tab.

::
1).

:::::::::
Parameter

:::::::::
estimation

::::
was

::::
done

:::::::
through

:
a
::::::::
Bayesian

:::::::::
calibration

:::::::::
approach,325

::::
using

:::::::
Markov

:::::
chain

:::::
Monte

:::::
Carlo

::::::::
(MCMC)

::::::::
sampling

:::::::::::::::::::::::::::
(Clark, 2004; Dietze et al., 2013),

:::::
using

:::
the

:::::::::
DREAMzs

::::::::
sampling

::::::::
algorithm

::::::::::::::::
(Vrugt et al., 2009)

::
as

::::::::::
implemented

::
in

::::::::::::
BayesianTools

:::::::::::::::
(Hartig et al., 2023)

:
.
:::::
Eight

::::::::::
independent

:::::
chains

:::::
were

:::
run,

::::
each

:::
for

:::::::
100’000

:::::::
iterations

::::
split

::::::
among

:::::
three

:::::::
internal

::::::
chains,

::::::
burn-in

::::::
period

::::
was

::
set

::
to
:::::::
30’000

:::
and

:::::::::::
convergence

:::
was

:::::::
checked

::::::
visuall

::::
with

:::::
trace
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::::
plots

:::
and

:::::::::::::
Gelman-Rubin

:::::::
statistics

::::::::::::::::::::::
(Gelman and Rubin, 1992).

::::::::::
Parameters

::::
were

:::::::::
calibrated

::
to

::
all

:::::
sites’

::::
data

::::::::::::
simultaneously

::::
and

::
are

::::
thus

::::::::
assumed

::
to

::
be

::::::::
universal

:::::
across

:::::
space

::::
and

::::::::::::
environmental

:::::::::
conditions.330

2.2.1
:::::::::
Likelihood

:::
The

::::::
choice

::
of

:::::::::
likelihood

::::::::::
summarized

:::
our

:::::::::::
assumptions

:::::
about

:::::::
different

:::::::
sources

::
of

:::::::::::
uncertainties.

::::::::::::
Uncertainties

::
in

:::::
model

::::::
inputs

:::::::::
(parameters

::
p
:::
and

::::::::
forcings

::
x),

:::
in

:::::
model

::::::::
structure

::
f ,

:::
and

::
in
:::

the
:::::::::

measured
::::::::::
observations

::
y
::
of

:::
all

:::::
target

:::::
types

:::::::::::::::
(van Oijen, 2017)

:::::::
combine

::
as

:

y+ εy = f(p,x+ εx)+ εf
:::::::::::::::::::::

335

:::::
where

::
εy:and σ, a measure of the heterogeneity of a parameter’s influence on the prediction across the parameter space. We

assume
::
εf ::::::::

represent
:::::::::
(unknown)

:::::::::::
observational

::::::
errors

:::
and

::::::
model

::::::::
structural

::::::
errors,

:::::::::::
respectively.

::
εx::

is
:::
the

:::::
error

::
in

:::
the

:::::::
forcing

::::
data.

:::
For

::
all

::::::
target

::::::::
variables,

:::
we

:::::::
assumed

:
an additive and normally distributed model error term for the GPP prediction by the

P-model (Trotsiuk et al., 2020) and express
:::::
around

::::
the

:::::
model

:::::::::
prediction

:::::::::::::::::::
(Trotsiuk et al., 2020)

:::
and

::::::::
expressed

:
the fit to ob-340

served data via the Gaussian log-likelihood . The sensitivity analysis result (Fig. 2)indicates that the quantum yield intercept

parameter φ0 is the most influential parameter, followed by the unit cost of electron transport c∗ and the optimal temperature

for the quantum yield b. The remaining parameters have relatively little influence on the evaluation of daily GPP predictions

from the single site considered here and b0, the ratio of dark respiration to the temperature-normalised maximum carboxylation

rate, has no influence on GPP predictions, which follows from the model structure. Additional analyses (not shown here)345

indicated that the convergence of the parameter calibration (shown in the next section) is undermined when calibrating β and

c∗ simultaneously with other model parameters. Therefore, and based on the sensitivity analysis (Fig. 2), we chose to hold c∗

L(p | y) = 1√
2πσ2

exp

(
− 1

2σ2
(y− f(p,x))2

)
::::::::::::::::::::::::::::::::::::::

(16)

::::
with

:::::::::::
target-specific

:::::::
standard

:::::::::
deviations

::::
σGPP, β, τ

:::
σ∆, and b0 constant and thereby excluded them from the Bayesian calibration

procedure described in the next section.
:::
σVJ.::::::

These
:::::::
standard

:::::::::
deviations

::
of

:::
the

:::::
error

:::::
model

:::::
were

::::::::
estimated

:::::::
together

:::::
with

:::
the350

:::::
model

:::::::::
parameters

:::::
(Tab.

:::
2).

:::::::::
Individual

:::::::::::
observations

::::
were

::::::::::
considered

::::::::::
independent

:::::
from

::::
each

:::::
other,

::::
thus

::::
the

::::
total

:::::::::
likelihood

::
for

::
a
::::::
dataset

::::::
simply

:::::::::
multiplied

:::
the

:::::::::
likelihoods

::
of

:::::
each

::::::::::
observation.

::::
With

::::
this

:::::::::
likelihood,

:::
we

::::::::
neglected

:::::
input

::::
error

::::::
εx = 0

::::
and

::::::
lumped

:::::::
together

:::::::::::
observational

:::::::::::
uncertainties

:::
and

:::::
model

::::::::
structural

:::::::::::
uncertainties

:::
into

::
a

:::::
single

:::::::::
’mismatch’

::
or

::::::::
’residual’

::::::::::
uncertainty

::::::::::::::::::::::::::::::
(van Oijen, 2017; Dietze et al., 2013).

:

Results from the Morris sensitivity analysis. The y-axis represents all nine model parameters and the Gaussian error standard355

deviation (error_gpp) and the x-axis the values of the statistics µ∗ and σ (unitless, like the log-likelihood). µ∗ indicates the

magnitude of the overall influence of a certain parameter on the P-model output, while σ measures the heterogeneity of

such influence across the parameter space. The parameter names are described and identified with corresponding symbols

in Tab. 2.
:::::
Since

:::
the

:::::::
P-model

::
is
:::::::::
conceived

::
as

::
a
::::::::::::
single-big-leaf

::::::
model

::::
(Fig.

:::
1),

::
it

::::::::
represents

:::::::
average

:::::::::
properties

:::
and

::::::
fluxes

:::
for

::
the

::::::
whole

:::::::
canopy.

::::
The

::::::::
estimated

:::::::
residual

::::::::::
uncertainty

::::
thus

:::::::
contains

::::
also

::
a
::::::::
potential

:::::::::
uncertainty

::::
due

::
to

:::
the

:::::
scale

:::::::::
mismatch360
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:::::::
between

::::::::::
observation

:::
and

::::::
model.

:::::::::
Moreover,

:::::::::
across-tree

::::
and

::::::::::::
across-species

::::::::::
variabilities

:::
are

::::
also

:::::::
included

:::::
since

:::
the

:::::::::
likelihood

:::
was

::::::::
computed

:::
for

::::
each

:::
VJ

::::
and

::
∆

::::::::::
observations

::
of
:::::::::
individual

:::::
trees.

2.3 Bayesian calibration

:::::
While

:::::::::
describing

::::::::
leaf-level

::::::::
quantities

::
at

::::::::
relatively

::::
high

::::::::::
mechanistic

::::::
detail,

:::
the

:::
link

:::::::
between

:::
the

::::
leaf

:::
and

:::
the

:::::::::::
canopy-scale

::::
was

:::
not

:::::::
explicitly

::::::::
resolved.

:::::::
Instead,

::
an

::::::::
empirical

::::::::
approach

:::
for

::::::::::::
leaf-to-canopy

::::::
scaling

::
of

::::
GPP

:::
was

:::::::::
employed

::
by

::::::
treating

:::
the

::::::::
quantum365

::::
yield

::::::::
parameter

:::
φ0::

to
:::
be

:::::::::::
representative

:::
for

:::
the

:::::::::::
canopy-scale

:::
and

::::::::
allowing

:
it
::
to

:::
be

::::::::
calibrated

::
to

:::::::::::::
ecosystem-level

::::
GPP

::::
flux

::::
data.

:

We simultaneously calibrate a subset

2.2.1
:::::
Priors

::::
Prior

::::::::::
distributions

:::::
were

::::::
defined

:::::
based

:::
on

::::
prior

::::::::::
knowledge

:::
and

::::
kept

:::
the

:::::
same

:::::
across

:::
all

:::::::::
calibration

::::::
setups,

:::::
except

:::
for

:::::
setup

:::
h),

:::::
where

:::
the

::::::::
posteriors

:
of the model parameters that have been identified as particularly influential (Sec. 4.1.

:
β

:::
and

:::
c∗

::::::::
estimated370

::::
from

:::::
setup

::
c),

:::::
were

::::
used

::
as

:::::
priors

:::::
(Tab.

:
2
:::
and

::::::
shown

::
in

::::
grey

::
in

::::
Fig.

:
3). These include the model error term, φ0::::::::

posteriors
:::::
from

::::
setup

::
c)

:::::
were

:::::::::::
characterized

::
as

::::::::::
uni-variant

::::::
normal

::::::::::
distribution.

:::
For

:::
β,

:
it
::::
was

::::::::::
additionally

::::::::
truncated

::
to

:::
the

:::::
mean

::
±

:::::
three

:::::
times

::
the

::::::::
standard

::::::::
deviation.

:

:::
The

::::
prior

::::::::::
knowledge

::
on

:::
the

::::::::::
acclimation

::::
time

::::
scale

::
τ
:::
was

::::::::::::
approximated

::
by

::
a
::::::
normal

::::::::::
distribution

::::::::::
(N (14, 64))

:::::
based

::
on

:::::
prior

::::::
findings

:::::::::::::::::::::::::::::::::::::::::::::::::
(Mäkelä et al., 2004; Liu et al., 2024; Mengoli et al., 2022)

::
and

::::::::
truncated

::
to

:::
the

:::::
range

::::
from

::
0
::
to

::
40

::::::
days).

:::
For

::
all

:::::
other375

:::::::::
parameters,

:::::::
uniform

:::::
priors

::::
with

:::::::
distinct

:::::
ranges

:::::
were

::::
used.

:::::::
Ranges

::
for

::
β, a

::
c∗,

::::
and

::
φ∗
0:::::

were
:::::::
specified

::
to

:::::
range

:::::::
between

::::
10%

::::
and

:::::
300%

::
of

::::::::
published

::::::::
estimates

::
of

:::
146

::::::::
(unitless), b

:::
0.41

::::::::
(unitless),

:::
and

::::
0.05 molmol−1,

:::::::::::
respectively,

::::::::::::::::::::::::::::::::
(Stocker et al., 2020; Wang et al., 2017)

:
.
:::
We

:::::
chose

::::
wide

:::::::
uniform

:::::
priors

:::::
with

:::
the

:::
aim

::::
that

::::::::
posteriors

::::::
would

:::::
solely

:::
be

:::::::
informed

:::
by

:::
the

::::
used

:::::::::::
observations.

::::
The

:::::::
optimal

::::::::::
temperature

::
bφ::::

and
:::::
shape

:::::::::
parameter

:::
aφ::::

were
::::::::

specified
:::
to

:::::
range

:::::::
between

:::
10

:::
and

:::
30

:

◦C
:::
and

::::::
-0.004

:::
and

::::::
-0.001

:

◦C−2
:
.
::::
The

:::
soil

::::::::
moisture

::::::::
limitation

::::::::
threshold

:
θ∗

:::
was

::::::::
specified

::
to

:::::
range

:::::::
between

::
1
:
and β0. We use the Differential-Evolution MCMC zs380

(DEzs) sampler (Ter Braak and Vrugt, 2008), implemented in {BayesianTools} (Hartig et al., 2023), to estimate the posterior

distribution of the calibrated parameters (Fig. 3). All parameters are given a uniform prior with bounds informed by their

physical interpretations (Tab. 2) . The prediction error is assumed to be normally distributed, as in the Morris analysis. On a

12th Gen Intel Core i7-1270P processor, it took 1100 sec. to run 3 independent MCMC chains of 24000 iterations (of which

12000 are discarded as burn-in period). The algorithm converged with a scale reduction factor (Gelman and Rubin, 1992) of385

1.05 (≤1.1). More detail, examples, and explanations of calibration diagnostics are provided through the example vignettes

in the package documentation or can be inferred directly from archived the scripts used to create the results (for both, see

Sections on Code availability and Data availability). The calculation of the log-likelihood is implemented in the function

cost_likelihood_pmodel(), enabling custom calibrations, also for multiple target variables that are considered simultaneously

during model calibration (examples also provided in the package documentation)
:::
250

:
mm

:
.
:::::
Given

:::
the

::::
lack

::
of

::::
prior

::::::::::
knowledge390

::
on

:::
the

::::
error

::::::::::
parameters

::::::::::::
characterizing

:::
the

::::::::
combined

::::::::
structural

::::
and

:::::::::::
observational

:::::::::
uncertainty

:::::
large,

::::::::::::
uninformative

:::::
priors

:::::
were

:::::::
assumed.
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Prior and posterior distributions of the calibrated model parameters and error term. The maximum a posteriori (MAP)

estimate for the gaussian error standard deviation is 1.06 and the estimate for each calibrated parameter are given in Tab. 2.

2.3
::::::::

Prediction
:::::::::::
uncertainty395

2.4 Inference and prediction uncertainty estimation

The parameter sets generated by the MCMC chains provide the basis for inference (model prediction ) and prediction uncertainty

estimation , allowing us to get insights into the sources of uncertainty. We consider a simple representation of the uncertainty

, split between the parameter uncertainty and the model error (Dietze, 2017)
:::::
model

:::::::::
prediction

::::::::
including

::
an

:::::::::
estimation

:::
of

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::
predictions

:::
on

::
the

::::
train

::::
and

:::
test

::::
data

:::
set.

:::::
Here,

::
we

::::::::::
propagated

::::
both

:::::::::::
characterized

:::::::::::
uncertainties:

:::
the

:::::::::
parametric400

:::
and

:::
the

:::::::
residual

::::::::
(structural

::::
and

::::::::::::
observational)

:::::::::
uncertainty.

Predicted and observed daily mean GPP. The comparison is provided for the first year of GPP observations (black dots)

at the site FR-Pue against GPP predictions (red line), calculated as the median of the posterior distribution. A light green

band indicates the 90% credible interval for GPP predictions, which captures parameter uncertainty, while the 90% predictive

interval for GPP predictions (in orange) captures model uncertainty.405

Retaining 600
::::::::
Retaining

::
20

:
samples from the combined Markov chains, statistically representative of the joint parameter

posterior distribution (estimated during the calibration
::::::::
including

::::::::
parameter

::::::::::
correlations), we ran the P-model for each set of

parameters to predict GPP. The credible interval was computed for each time step from the posterior distribution of predicted

GPP. The prediction interval for GPP was computed by adding the Gaussian error standard deviation error, to
::
the

:::::
target

::::::::
variables

::
for

:
the predicted GPP. Fig. 4 shows that the uncertainty ascribable to the parameters (in green) is much smaller than the410

uncertainty due to the model error (orange area) . A point estimate of GPP at each time step is calculated as the median of

the posterior distribution of GPP (dark orange line).
:::
test

::::
and

:::::::
training

::::
data

:::
set.

:::::
These

:::
20

::::
sets

::
of

::::::::::
predictions

::::::::::
represented

:::
the

:::::::::
parametric

:::::::::
uncertainty

::
of

:::
the

::::::
model.

:

3 Discussion

The {rsofun} R package provides a user-friendly and fast implementation of the P-model. It implements off-the-shelf model-data415

assimilation routines with simple function calls, while maintaining flexibility for future experiments and further development of

model uncertainty estimation. The {rsofun} vegetation modelling framework is designed to strike a balance between integration

and flexibility, enabled by extensible and user-defined calibration specifications and the parallelizable and fast low-level code

implementation in Fortran. Its high computational efficiency offers the potential for effective model parameter and uncertainty

estimation using Bayesian statistical methods - as demonstrated here.420

With the function calib_sofun(), {rsofun} provides a blueprint for model-data assimilation and an implementation of

the likelihood function with flexibility in selecting among a predefined list of model parameters and target observations. We

have demonstrated here how ecosystem flux measurements of GPP from a single site can be used to estimate model parameters
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of the P-model and generate estimations of prediction uncertainty. The approach taken here (as in previous studies with the

P-model) was to specify latent parameters directly, based on independent observations. In Wang et al. (2017), β and c∗ were425

determined from observations of Vcmax, Jmax:::::::::::
Additionally,

:::
for

::::
each

:::::::::
prediction

::::
(i.e.

:::::
target,

::::
site,

::::
and

::::
date

:::::::::::
combination)

:::::
three

:::::::::::
observational

:::::
errors

::::
were

::::::
drawn

::::
from

:::
the

:::::::
residual

:::::
error

:::::
model

::::::::::::
(characterized

:::
by

:::::
σGPP,

:::
σ∆, and ci : ca. These were then used

as constants for modelling GPP, while additional parameters related to empirical photosynthesis stress parameterizations were

calibrated to GPP observations. Exploratory analyses (not shown)indicated that complementary observational constraints are

necessary when calibrating β and c∗ simultaneously with other model parameters. We have thus followed a simplified setup -430

used here for demonstration purposes. Future applications may use Vcmax, Jmax, or ci : ca data directly as additional calibration

targets to provide such complementary constraints. Note also that the FvCB photosynthesis model contains additional parameters

(see Tab. A2 in (Stocker et al., 2020))that are treated as constants here - as in previous publications (Bloomfield et al., 2023; ?; Stocker et al., 2020; Tan et al., 2021; Wang et al., 2017)

:::
σVJ)::::

and
:::::
added

::
to

:::
the

:::::::::
prediction.

:::::
These

:::
60

:::
sets

:::
of

:::::::::
predictions

::::::::::
represented

:::
the

::::::::
combined

:::::::::
parametric

:::
and

:::::::
residual

::::::::::
uncertainty

::
of

::
the

::::::
model.

::
A
::::
third

::::::::::
comparison

::::
with

:::::::::::
observations

:::
was

:::::
based

:::
on

:::
one

:::
set

::
of

:::::::::
predictions

:::::
using

:::
the

:::::::::
Maximum

:
A
:::::::::
Posteriori

:::::::
estimate435

::
as

:
a
:::::
single

:::
set

::
of

:::::::::
parameters

::::
and

::::::
without

::::::::::
considering

:::
the

:::::::
residual

::::::::::
uncertainty.

Our model implementation as an R package takes inspiration from the {r3PG} forest model (Trotsiuk et al., 2020), and our

implementation of model-data integration on the basis of ecosystem data serves similar, yet reduced, aims and functionalities

compared to PEcAn (https://pecanproject.github.io/index.html)(LeBauer et al., 2013). {rsofun} is designed to be minimally

reliant on package dependencies and connections to specific data, while limiting the scope to a predefined set of process440

models (currently P-model, BiomeE at an experimentation stage). Note that the {rpmodel} R package (available on CRAN)also

provides an implementation of the P-model but is written fully in R and in the form of a function of a given environment -

without a treatment of temporal dependencies and without the functionalities for model-data integration.

3
::::::
Results

We have demonstrated how important parameters contributing to uncertainty in GPP predictions by the P-model can be445

estimated using observations of ecosystem-level photosynthetic uptake flux time series. The Bayesian approach to model-data

integration enables a probabilistic prediction of GPP and estimation of model parameters. The {rsofun} model implementation

as an R package makes it possible to leverage a set of methods and complementary libraries for parameter estimation, sensitivity

analysis, and calibration diagnostics - as demonstrated here. Its low-level code in Fortran is geared towards computational

efficiency. Provision of {rsofun} as an open-access library aims at lowering the bar of entry to vegetation modelling for450

both field ecologists and computational ecologists and serves as an Open Science resource for future model development and

experimentation and the further development of model uncertainty estimation.

3.1
:::::::::

Calibrated
::::::::::
parameters
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Figure 3.
::::
Prior

:::
and

:::::::
posterior

:::::::::
distributions

::
of

:::
the

:::::::
calibrated

:::::
model

::::::::
parameters

:::
and

::::
error

:::::
model

:::::
terms

:
in
:::
the

:::::
setups.

:::
The

::::::::
maximum

:
a
::::::::
posteriori

:::::
(MAP)

:::::::
estimates

:::
are

:::::::
indicated

::::
with

:
a
:::::
dashed

:::
line

:::
and

:::::
fixed

::::::::
parameters

::::
with

:::
solid

:::::
lines.

:::
For

:::::::
parameter

:::::::::
description

:::
and

::::
units

::::
refer

:
to
:::::

Table
::
2.

::::::
MCMC

::::::::
sampling

::::
with

::::::::::
DREAMzs

::
of

::
8

:::::::
parallel,

::::::::::
independent

::::::
chains

::::
took

:::::::
between

:::
2.5

:::
(b)

::::
and

::
68

:::
(h)

:::::
hours

:::
to

::::
reach

::::::::
100’000

:::::::
iterations

:::
for

:::
the

::::::
setups

::
a)

::
to

:::
h).

:::
The

:::::
trace

::::
plot

::
of

:::
the

:::::
chain

::
of

:::::
setup

::
h),

:::::::::
including

:::::::::::
computations

::
of

:::
the

:::::
scale

::::::::
reduction

::::::
factors455

::::::::::::::::::::::
(Gelman and Rubin, 1992)

::
are

::::::::
reported

::
in

:::
the

::::::::
Appendix

::::
(Fig.

::::
D1).

:

:::::::
Posterior

:::::::::::
distributions

:::
of

:::
the

::::::::
estimated

::::::::::
parameters

::::::
varied

::::::
across

:::
the

::::::::
different

:::::
setups

:::::
(Fig.

:::
3).

::::::
Setup

::
a)

::::::
(using

::::
only

:::
∆

::
as

:::::::::::
observational

::::::
target)

::::::::::
constrained

::
β
::
to
::

a
:::::::::
maximum

::
a
::::::::
posteriori

:::::::
(MAP)

::
of

::::
207

:::::::::
(unitless),

:
a
:::::::
median

::
of

::::
208

::::
and

::::
with

:::
an

::::::::::
inter-quartile

:::::
range

::::::
(IQR)

::::
from

:::
203

::
to

::::
213

:::
and

:::
the

:::::::
residual

::::::::
prediction

:::::
error

:::
σ∆ ::

to
:
a
:::::
MAP

::
of

::::
2.18

::::::::
(unitless),

::::::
which

::::::::::
corresponds

::
to

:
a
::::
10%

:::
of

:::
the

:::::
mean

::
of

::::::::
predicted

:::
∆.

:::::
Other

::::::::::
parameters

::::
were

:::
not

::::::::
informed

:::
by

:::
the

:::::::::
calibration

::::
and

::::
their

:::::::::
posteriors

::::::::
remained460

::::::
largely

:::::::
identical

::
to

::::
their

:::::
prior

::::::::::
distributions.

:::::
This

::::::
reflects

:::::
model

::::::::
structural

::::::::::::
dependencies

::
of

:::::::::
parameters

:::
and

::::::::
predicted

:::::::::
quantities

::
(∆

::
is
::::::::::
independent

:::
of

:::
the

::::
other

::::::
model

:::::::::
parameters,

:::
see

::::
Eq.

::
3).

:

4 Calibrated empirical functions

:::::
Setup

::
b)

:::::
(using

::::
only

:::
VJ

::
as

:::::::::::
observational

::::::
target)

:::::::::
constrained

:::
c∗

::
to

:
a
:::::
MAP

::
of

:::::
0.214

::::::::
(unitless),

:::::::
(median

::
of

::::::
0.397,

:::
IQR

:::::
from

:::::
0.347

::
to

::::::
0.428).

:::
As

:::::::
revealed

::
by

:::
the

::::::::
posterior

:::::::::
correlation

::::::::
analysis,

::::
these

::::
two

:::::::::
parameters

:::::::
showed

:
a
::::::

strong
:::::::::
correlation

::::
(r =

:::::
0.86,

::::
Fig.465

::::
D2).

:::::
These

:::::::::::
compensating

::::::
effects

:::::
were

::::::::::
disentangled

:::::
when

:::::::::::::
simultaneously

:::::::::
calibrating

::
to

::
∆

:::
and

:::
VJ

::
in

::::
setup

:::
c).

::::
This

::::::::::
constrained

:
β
::
to
::

a
:::::
MAP

::
of

:::::
207.1

:::::::::
(unitless),

:::::::
(median

::
of

::::::
207.9,

::::
IQR

:::::
from

:::::
203.5

::
to

::::::
212.3)

:::
and

:::
c∗

::
to

:::::
MAP

::
of

:::::
0.419

::::::::
(unitless)

:::::::
(median

:::
of
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:::::
0.425,

::::
IQR

::::
from

::::::
0.410

::
to

::::::
0.439),

:::::::
slightly

:::::
higher

::::
than

::
in
:::::

setup
:::
b),

:::
and

:::::::
avoided

:::
the

::::::::::
correlation

::
of

::::::::
posteriors

:::::
(Figs.

::
3
::::
and

::::
D3).

:::
The

::::
error

::::::
model

:::::::::
parameters

:::::::::
associated

::::
with

:::
the

:::
two

::::::
targets

::
∆

::::
and

::
VJ

:::::
were

::::::::
estimated

::
to

:::::
MAPs

:::
of

:::
2.18‰

::::
and

:::::
0.178

::::::::
(unitless).

:

A new formulation of the temperature dependency of the quantum yield efficiency
::::::
Setups

:::
that

::::
use

::::
GPP

::
as

::::::::::::
observational470

:::::
target

:::
and

::::::::::
uninformed

:::::
priors

:
–
::::::
setups

::
d),

::::
and

::
e)

:
–
::::
yield

::::::::
estimates

::
of

::
β
::::
that

::
are

::
at
:::
the

:::::
lower

::::::
bound

::
of

:::
the

::::::
uniform

:::::
prior

:::::
range

:::
(i.e

::::
14.6

:::::::::
(unitless)),

:::::
while

:
τ
::
is
::::::::
estimated

:::
to

::
be

::::::
exactly

::
1
::::
day.

::::
This

:::::::
indicates

::::
that

::::
GPP

:::::::::::
observations

::::::
"push"

::::::::
estimates

::
of

::
β

:::::::
towards

::::::::
extremely

::::
high

::::
unit

:::::
costs

::
of

:::::::::::
transpiration

:::
in

::::::
relation

:::
to

::::::::::::
carboxylation,

::::
and

::::
that

::
no

::::::::::
smoothing

::
of

:::
the

:::::
daily

:::::::::::::
meteorological

::::::::
conditions

:::::
(Eq.

:::
B1)

::::
was

:::::::::
necessary

::
to

::::::::
optimize

:::
the

:::::::::
likelihood

:::
of

::::::::
observing

::::
the

::::
GPP

:::::
data.

::::::::
However,

:::::
while

:::::::::
improving

::::
the

::::::::
likelihood

:::
of

::::
GPP,

:::
the

:::
fit

::::
with

:::
∆

:::::::::::
observations

:::
was

:::::::::::
deteriorated

::
in

:::::
these

::::::
setups,

:::
as

::::::::
indicated

:::
by

::
an

::::::
offset

:::::::
between

::::::
model475

:::::::::
predictions

::::
and

::::::::::
observations

::::::
(Figs.

::
4

:::
and

:::
5).

:::::
Only

:::::
setup

:::
h),

:::::
using

::::
GPP

:::
in

:::::::::::
combination

::::
with

::
a

::::::::
truncated

:::
and

:::::
prior

:::
for

:::
β,

:::::::
informed

:::
by

:::
the

:::::::
reduced

::::
setup

::
of

:::
c),

::::::::
mitigates

:::
this

::::::
offset.

::::
Also

::::
here,

:::
the

::::::::
posterior

:::::::
estimate

::
of

::
β

:::::
came

::
to

::
lie

::
at

:::
the

::::::
border

::
of

:::
the

:::::::
truncated

::::::
region

:::::
(14.6

:::::::::
(unitless)).

::::
The

::::
error

::::::
model

::::::::
parameter

:::::::::
associated

::::
with

:::
the

::::
GPP

:::::
target

::::
was

::::::::
estimated

::
to

::
a

::::
MAP

:::
of

::::
2.04

gCm−2 s−1
::
in

:::::
setup

::
h),

::::::
which

::::
was

::::::
slightly

:::::::
smaller

::::
than

::
the

:::::
error

::
in

::::::
setups

::
d)

:::
and

:::
e).

::
In

:::
the

::::::::
posterior

:::::::::
parameters

::
of

:::::
setup

:::
h),

:::::::::
correlations

:::
of

:::
r =

::::
0.89

::::::
remain

:::::::
between

:::
φ∗
0 :::

and
::
c∗

::::
and

::
of

:::
r =

::::
0.81

:::::::
between

:
φ0 is introduced in the {rsofun} package, allowing480

more flexibility than Eq. 18 in Stocker et al. (2020). It is expressed as follows:
:::
and

::
bφ:::::

(Fig.
::::
D4).

φ0(T )= c(1+ a(T − b)2) if 0< c(1+ a(T − b)2)< 1,

φ0(T )= 0 if c(1+ a(T − b)2)≤ 0,

φ0(T )= 1 if c(1+ a(T − b)2)≥ 1.

3.1
::::::::

Prediction
:::::::::::
uncertainty485

Where T stands for temperature, c is the quantum yield efficiency at optimal temperature (in mol mol−1), a is a unitless

shape parameter and b is the optimal temperature. Whenever a= 0, the quantum yield efficiency is kept constant at φ0 = c. A

possible improvement for the model would be to use a peaked Arrhenius function instead of a parabola (Medlyn et al., 2002)

. Furthermore, the soil moisture stress function follows Stocker et al. (2020), but the parameters considered for calibration

there differ from the calibratable parameters in the package:
:::::
Model

:::::::::
predictions

:::::
were

::::::::
unbiased

:::
and

::::::::
residuals

::::
were

:::
of

::::::
similar490

::::::::
magnitude

:::::
when

:::::::::
evaluated

::
on

::::
the

:::
test

::::
and

::
on

:::
the

:::::::
training

::::
data

::::
sets

:::::
(Fig.

::
4),

::::::
which

::::::::
indicates

:
a
:::::

good
:::::::::::::
generalizability

:::
of

:::
the

::::::::::
parametrized

:::::::
model.

::::::::
Including

:::::::::
structural

:::
and

::::::::::::
observational

:::::::::::
uncertainties

:::
on

:::
top

:::
of

:::::::::
parametric

:::::::::::
uncertainties

:::::
only

:::::::
slightly

::::::::
increased

::
the

:::::::::
deviations

:::::::
between

::::::::
predicted

::::
and

:::::::
observed

::::::
targets

::
in

:::::
setup

:::
h),

::::
with

:::::::
strongest

:::::::
relative

::::::::
increases

::
for

:::::
GPP.

β(θ)=
β0 − 1

θ∗2
(θ− θ∗)2 +1 if 0≤ θ ≤ θ∗,

β(θ)= 1 if θ > θ∗.495
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Figure 4.
::::::
Density

:::
plot

::
of
:::::::
residuals

:::::::
between

:::::::
predicted

:::
and

:::::::
observed

:::::
values

::::
from

:::
the

::::::
training

:::
and

:::
test

:::
sets

:::
for

::::::::
calibration

:::::
setups

::
a,

::
b,

::
d,

:::
and

:
h.
::::::

Model
:::::
output

::
is

::::::::
computed

:::
with

:::::::::
parametric

::::::::
uncertainty

:::::
(filled

:::::
area,

::::
based

:::
on

::
20

:::::::
samples

::::
from

:::
the

:::::::
posterior

:::::::::
distribution)

:::
and

:::::::
residual

::::::::
uncertainty

:::::
(solid

:::
line,

:::::
based

::
on

::
3
::::::
samples

::::
from

::::
error

::::::
model).

:::::
Model

::::::
outputs

:::
are

::::::::
compared

:::::
against

::::::::
individual

::::::::::
observations

::::
(dates

::::
from

:::
all

:::
sites

::::::
pooled

::
for

::::
GPP,

:::
and

::::::::
individual

:::::::::
observations

::
of
::::
each

:::
site

:::
for

::
∆

:::
and

:::
VJ).

::
∆

:::
and

:::::
GPP

:::::::::
predictions

::::::
based

::
on

::::::
MAP

::::::::
parameter

::::
sets

::
of
:::::

setup
:::

h)
:::::::
showed

::
no

:::::::::::::::::::
magnitude-dependent

::::
bias

::::::
(linear

:::::
slopes

:::
of

:::::::::
regressions

:::::::
between

::::::::
predicted

::::
and

::::::::
observed

:::::
values

:::::
were

::::
close

:::
to

::
1),

::::::::
whereas

::
VJ

:::::::
showed

:
a
:::::::::

prediction
:::::
range

::::
that

:::::::
appears

:::
too

::::
large

:::::
when

::::::::
compared

::
to

:::
the

::::::::
observed

:::::
range

:::::
(slope

::::
close

::
to
::
0,
::::
Fig.

:::
5).

:::::
Setup

::
h)

::::::
showed

::
a

::::::
slightly

:::::
worse

::::
root

:::::
mean

::::::
squared

:::::
error

:::::::
(RMSE)

::::
than

::::
setup

::
e)
:::
for

:::::
GPP,

:::
but

::::::
clearly

:::::::
reduced

::::::
RMSE

::
for

:::
∆

:::
and

:::
VJ.

:

In the equation above, θ stands for the plant-available soil water (in mm)
::::
Time

:::::
series

::
of

::::
GPP

::
of

:
a
::::
few

:::::
select

:::::
years

::
on

:::::::
training500

:::
site

::::
data

::::::
showed

::::
that

:::
the

::::::
model

::::::::::
successfully

::::::::::
reproduced

:::::::
seasonal

:::::::
patterns

::::
and

:::::::::
differences

::::::
across

:::
site

:::
in

::::
GPP

:::
for

:::::
most

::::
sites

::::
(Fig.

::::
D5),

::::
with

:::::
some

:::::::::::
shortcomings

::
in

:::::::
accurate

::::::::::
simulations

::
of

::::
GPP

::::::
during

:::::
under

:::
dry

::::::::::
conditions,

::
as

::::
seen

:::
for

:::
site

:::::::
US-Var,

:::
and

::
a

::::::
general

:::
low

::::
bias

:::
for

:::
the

:::::
moist

:::::::
tropical

:::
site

::
of

::::::::
GF-Guy.

::::
The

:::::
model

::::
also

:::::
tends

::
to

::::::::::::
systematically

:::::::::::
overestimate

::::
GPP

::
in

:::
the

:::::
early

:::::::
growing

::::::
season

::
at

::::::::
US-MMS

:
and θ∗ for the threshold indicating when the plants start being water stressed. The intercept β0

is the β reduction at low soil moisture, that is β0 = β(0). This intercept is now calibrated directly, rather than expressed as a505

function of mean aridity (see eq. 20 in (Stocker et al., 2020)).
::::::
US-PFa

:
–
::
a
::::::
known

:::
bias

:::::::::::::::
(Luo et al., 2023).

:

4
:::::::::
Discussion

::::
This

::::
study

:::::::
showed

:::
that

:
a
::::::
model

::
for

:::::::::
ecosystem

::::::::::::
photosynthesis

::::
and

::
its

::::::::::
acclimation

::
to

::
the

:::::::::::
environment

:::
can

::
be

:::::::
robustly

::::::::::::
parameterised

:::
and

:::
that

:::
its

:::::::::
predictions

::
of

::::::::
multiple

:::::::
variables

:::::::::
generalise

::::
well

:::::
across

::
a
::::
wide

:::::
range

::
of

::::::::::::
environmental

::::::::::
conditions.

:::::::
Multiple

::::::
model

:::::::::
parameters

:::
can

:::
be

::::::::
estimated

:::::::::::::
simultaneously

:::
by

:::::
using

::::::
diverse

::::::::::
calibration

:::::
target

::::
data

:::::
types,

::::::::::
combining

:::::::::
ecosystem

:::
flux

:::::
time510

:::::
series

:::
and

:::::
static,

::::::::::::::
species-specific

::::
traits

:::::
data.

::::
This

:::::::::::
demonstrates

::::
how

:::
the

::::::
explicit

::::::::::::
representation

:::
of

::::::::::
connections

:::::::
between

:::::
traits

:::
and

::::::
process

:::::
rates

:::::
enable

::::::::::
model-data

:::::::::
integration

:::
on

::
the

:::::
basis

::
of

::::::
diverse

:::::::::::
observations,

::::::::
obtained

::
at

:::::::
multiple

::::::::::::
organisational

:::::
levels
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Figure 5.
:::::::
Predicted

:::::
versus

:::::::
observed

:::::
values

:::
for

:::::::
different

:::::
target

:::::::
variables

:::
(∆,

:::
VJ,

:::
and

::::
GPP

:::::
along

:::::::
columns)

::::
and

::::::::
calibration

:::::
setups

:::
(a,

::
b,

:
c,
::

d,
::

e,
::::

and
::
h,

::::
along

:::::
rows),

::::::::
evaluated

::
on

:::
the

::::
test

:::
set.

:::::
Model

:::::
output

::
is
::::::::

computed
::::
with

::::::::
Maximum

::
A
::::::::
Posteriori

::::::::
parameter

:::::
values

::::::
(MAP)

::
for

::::
each

::::::::
calibration

:::::
setup.

::::
Note

:::
that

:::
the

:::::
MAP

::::::::
parameters

::::
from

:::::
setup

::
a)

::::
result

::
in

::::::::::::
null-predictions

::
of

:::
VJ

:::
and

::::
GPP.

:::::
Color

:::::::
indicates

::::::
density,

::
red

::::
line

:::::::
indicates

:
a
:::::
linear

::::::::
regression.

:::::
Green

::::
panel

::::::::::
backgrounds

:::::::
indicate

:::::
which

:::::::
variables

::::
were

:::
used

:::
as

:::::
targets

:::
for

:::::
model

::::::::
calibration

::
in

:::
the

::::::::::
corresponding

:::::
setup.

:::::
Model

::::::
outputs

:::
are

::::::::
compared

:::::
against

::::::::
individual

::::::::::
observations

:::::::
(predicted

::::
and

:::::::
observed

::::
daily

::::
GPP

:::::
values

::::
from

::
all

::::
sites

:::::
pooled

:::
and

:::::::::
site-specific

::::::::
predictions

::::::
against

::
all

::::::::::
observations

::::
from

::
the

::::::::
respective

:::
site

:::
for

::
∆

:::
and

:::
VJ).

20



:
–
::::
from

:::
the

::::
leaf

::
to

:::
the

:::::::
canopy.

:::
The

:::::::::
robustness

::
of

:::
the

:::::::::
parameter

::::::::
estimates

:
is
::::::::
indicated

:::
by

:::
the

::::::::::
convergence

::
of

:::
the

:::::::
MCMC

::::::
chains

::::
(Fig.

::::
D1)

:::
and

:::
the

::::::::
resulting

::::::
narrow

::::::::
posterior

::::::::::
distributions

:::
of

::::::::
Bayesian

::::::::
parameter

::::::::
estimates

:::::
(Fig.

::
3).

:::::::
Despite

:::::
being

:::::::::
calibrated

::
to

::::
only

:
a
::::::::
relatively

:::::
small

:::
set

::
of

:::::
sites

::::
with

::::
GPP

::::
data

::::::::
(N =12),

:::
the

:::::::::
calibrated

::::::
model

:::::::::
generalizes

:::::
well,

::
as

::::::::
validated

::::::
against

:::
an515

::::::::::
independent

:::
and

:::::
much

:::::
larger

:::
set

::
of

:::
test

::::
data

:::
for

::::
GPP

:::::
from

::
38

::::
sites

:::::
(Figs.

::
4

:::
and

:::
5).

:::
Our

::::::
results

:::::::::
confirmed

:::
the

:::::::::
expectation

::::
that

:::
the

:::
use

::
of

::::::::
multiple

:::::::::::
observational

::::::
targets

:::::
yields

:::::
more

:::::
robust

:::::::::
parameter

::::::::
estimates

::::::::
compared

::
to

:
a
::::::::::
calibration

::::
setup

::::
that

:::::
relies

::
on

::
a

:::::
single

::::
data

::::::
source,

::::
and

:::
that

:::::::
specific

::::::::::
observation

::::
types

::::::::
imposed

:::::::::
constraints

:::
for

::::::
specific

::::::
model

:::::::::
parameters.

:::::
Leaf

:::::
carbon

:::::::::::
fractionation

:::::::::::
observations,

:::
∆,

:::::::
allowed

::
to

::::::::
constrain

:::
the

:::
unit

::::
cost

::::
ratio

::
of

::::::::::::
carboxylation

::
to

:::::::::::
transpiration,

::
β

::::
(Fig.

:::
3).

::::::::
Observed

:::::
ratios

:::
of

:::
the

::::::::::
biochemical

:::::
rates

::
of

::::::::::::
carboxylation

::
to

:::::::
electron

::::::::
transport,

::::
VJ,

::::::::::
constrained520

:
β
::::
and

:::
c∗,

:::::
albeit

::::
with

:::::
strong

::::::::::
correlations

::::::::
between

:::::
them,

::::::::
indicating

::::::::::::
compensating

::::::
effects

:::
and

::
a
::::
lack

::
of

:::::::::
robustness

::
in

::::::::
resulting

::::::::
parameter

::::::::
estimates

:::::
(Figs.

::
3

:::
and

::::
D2).

::::
The

:::::::::::
combination

::
of

::::
both

:::::
these

::::::::::
observation

::::
types

:::::::
allowed

::
to

::::::::
constrain

::::
both

::::::::::
parameters

::::::::::::
simultaneously,

::::::::
avoiding

::::::::::
correlations

::::::::
between

::::::::
parameter

:::::::::
estimates.

::::
This

::::::::
indicates

::::
that

:::
the

:::
use

:::
of

:::
two

::::::::::::
observational

::::::
targets

::::::::::::
simultaneously

:::::
made

:::
use

::
of

::::
their

:::::::::::::
complementary

::::::::::
information

:::::::
content

:::
for

::::::::
parameter

:::::::::
estimation

::
in

:::
our

::::::
model

::::
(Fig.

::::
D3).

:

We thank Florian Hartig for advice on uncertainty modelling and
:::::::
Despite

:::
the

::::::
general

:::::::::
robustness

::
of

::::::::
parameter

:::::::::
estimates,

:::
we525

:::::
found

::::::
several

:::::::::
limitations

::::
and

::::::
aspects

::::
that

:::::::
indicate

:::::::::
challenges

:::
for

::::::
model

:::::::::
calibration

::
in

:::
our

:::::
case.

:::::
When

:::::::::::
observations

::
of

:::::
GPP

::::
were

:::::::
included

:::
in

:::::::::
calibration

::::::
setups,

:::::::::
parameter

::::::::
estimates

::
of

::
β
:::::::
differed

:::::::
strongly

:::::
from

::::::
results

:::::::
obtained

:::::
from

::::::
setups

:::
that

:::::
used

::::
only

::::::::::
observations

::
of
:::
∆

:::
and

::::::
tended

:::::::
towards

:::
the

:::::
lower

::::::
margin

:::
of

:::
the

:::::::
uniform

::::
prior

:::::
range

::
–
:::::::::::
substantially

:::::
lower

::::
than

:::
the

:::::
value

::::
used

:::
for

:::::
direct

::::::::::::
parameterisatio

:::
of

:::
the

:::::
model

::
in

::::::::
previous

::::
work

::::::::::::::::
(Wang et al., 2017)

:
.
:
β
:::::::::
represents

:::
the

::::
ratio

:::::::
between

:::
the

::::
unit

::::
cost

::
of

:::::::::::
carboxylation

::
to

:::::::::::
transpiration

::::::
within

:::
the

::::
EEO

:::::::::
modelling

:::::::::
framework

::::::
applied

::::
here

::::::::::::::::::
(Prentice et al., 2014)

:
.
:::
An

::::::::
extremely

::::
low530

::::
value

::
of

::
β
:::::::
implies

:::::::
relatively

::::
high

:::::
costs

:::::::::
associated

::::
with

:::::::::::
transpiration,

:::::
which

::
is

:::::
driven

:::
by

:::::
VPD.

:::
The

::::::::::
calibration

::::::
tending

:::::::
towards

:::
low

::::::
values

::
of

::
β
::::::::::
potentially

::::::
reflects

::
a
::::::::::::
compensating

:::::
effect

:::
for

:
the maintenance of the BayesianTools package, Volodymyr

Trotsiuk for an initial template of the R package,
:::
lack

::
of
:::::

GPP
:::::::::
reductions

:::::
under

:::::::::
conditions

::
of

::::
dry

::::
soils,

::::
e.g.,

::::::
during

:::
the

::::
dry

::::::
summer

:::::::
periods

::
at
:::

the
::::

site
:::::::
US-Var

::::
(Fig.

:::::
D5).

::
In

:::::
other

::::::
words,

::::
this

:::::::
apparent

::::
lack

:::
of

:::::::::
robustness

::
of

:::::::::
parameter

::::::::
estimate

::::
may

::::::
indicate

::
a
:::::::::::::
misspecification

:::
of

:::
the

:::::
model

::::::::
structure.

::::
This

::::::::::::
interpretation

::::
could

:::
be

:::::
tested

::::
with

:::::::
targeted

::::::
setups

::::
(e.g.,

:::::::::
removing

:::
dry535

::::
sites

::::
from

:::
the

:::::::::
calibration

::::
data

:::
set)

::
or

:::
by

:::::::::
alternative

:::::::::::
specifications

::
of

:::
the

:::
soil

::::::::
moisture

:::::
stress

:::
that

:::::
better

::::::::
accounts

:::
for

::
its

:::::::
limiting

:::::
effect

::
on

::::
GPP.

:

::
To

:::::::
address

:::
this

::::::::
challenge

:::
and

:::::
avoid

:::::::::::
unexpectedly

::::
low

::::::::
estimates

::
of

:::
the

:::
unit

::::
cost

::::
ratio

::::::::
parameter

:::
β,

::
we

:::::::
resorted

::
to
::
a
::::::::
step-wise

:::::::
Bayesian

:::::::::
calibration

::::::::::::::::::::
(MacBean et al., 2016)

:::
and

::::
used

:::
the

::::::::
posterior

:::::::::
distribution

::
of

:::::
setup

::
c)

::
as

::
a
::::
prior

::
in

:::::
setup

:::
h).

::::
This

:::::::
resulted

::
in

:::
the

::::::::::::
disappearance

:::
of

::::::
offsets

::
in

:::
∆

::::::::::
observation,

::
a
:::
c∗

:::::
closer

:::
to,

:::
but

::::
not

:::
at,

:::
the

:::::
upper

:::::
limit

::
of

::::
the

::::
prior

::::::
(MAP

::
=
::::::

0.58),540
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:
a
::::::
sightly

:::::
lower

::::
φ∗
00::::

than
::
in

::::::::
GPP-only

:::::
setup

:::
(d)

::
or

::
in

:::
the

:::::::::::
unconstrained

::::::::::
GPP-∆-VJ

:::::
setup

:::
(e).

:::
The

::::::::
step-wise

::::::::
posterior

:::::::::
estimation

:::
and

:::::
prior

::::::::::
specification

::
of

::::::::
P-model

:::::::::
parameters

::
in

:::::
setup

::
h)

:::::
yield

::::::::
estimates

::
of

::
all

::::::::::
parameters545

:::
taht

:::::::
compare

:::::::::
favourably

::::
with

::::::::
previous

::::::::
estimates

::::::::::::::::::::::::::::::::
(Stocker et al., 2020; Wang et al., 2017).

::::
This

:::::
study

::::::::
estimated

:::::::
(MAP):

::::::
β=208

:::::::
(unitless,

:::::::::
compared

::::
with

:::
146

:::
and

:::
the

:::::
range

::::
from

::::
200

::
to

::::
240),

:::::::
c∗=0.58

::::::::
(unitless,

::::::::
compared

::::
with

:::::
0.41),

:::
and

:::
φ∗
0:

=
::::
0.05

:
molmol−1
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:::::::::
(compared

::
to

:::::
0.05).

:::::::::
However,

:::
the

:::::
MAP

:::::::
estimate

::
of

::
τ
::
=
::
1,
::::::::

indicated
:::

an
::::::::::::
instantaneous

::::::::::
acclimation

:::::::
appeared

:::
to

::::
yield

::::::
better

::::::::
agreement

::
of

::::::
model

:::::
output

::::
with

:::::
daily

::::
GPP

:::::::::::
observations,

:::
than

::
a

::::::
delayed

::::::::::
acclimation

:::::
using

::::::::
smoothed

:::::::
versions

::
of

:::
the

::::::::::::
environmental

:::::::::
conditions.

::::
This

:::::::
contrasts

::::
with

:::::::
previous

::::::::::
estimations

::
of

:::
the

:::::::::
acclimation

::::
time

:::::
scale

:::::
being

::
on

:::
the

::::
order

::
of
:::
14

::
to

::
15

::::
days

::::::::::::::::::::::::::::::::::::::::::::::::
(Mäkelä et al., 2004; Liu et al., 2024; Mengoli et al., 2022)550

:
.

:::::::::
Remaining

::::::::::
correlations

::
in

:::::::
posterior

:::::::::
parameters

::
of

:::::
setup

::
h)

:::::::
between

:::
φ∗
0 :::

and
::
c∗

:::::::
indicate

::::
some

::::::::::
equifinality.

:::::
These

::::::::::::
compensating

:::::
effects

:::::::
indicate

::::::
another

::::::::
potential

:::::
source

:::
of

::::::::::::::
misinterpretation

::
of

::::
what

:::
the

::::::::
parameter

::
c∗

:::::::::
represents

::
in

::::
setup

:::
b)

:::::
versus

:::::
setup

::
h).

::::
The

:::::::
Bayesian

::::::::
approach

::::::
allows

::::::::::
propagating

:::
the

:::::
effect

:::
of

:::
this

::::
into

:::::::::
predictive

::::::::::
uncertainties

:::
by

:::::
using

::::::::
posterior

::::::::::
distributions

::::::
instead

::
of

:::::::::::::
point-estimates

::
of

::::::::::
parameters.

::::
Still,

::::
this

:::::::::::
entanglement

:::::
might

:::
be

:::::::
resolved

::
in
::::::
future

::::::::::
calibrations

::
by

::::::
fixing

:::
one

::
of

:::::
these

::::
two555

:::::::::
parameters

::
or

:::
by

:::::
using

::::::::
additional

:::::::::::
observations.

::::::
Future

:::::
work

::
is

::::::
needed

::
to
:::::

look
:::
into

::::::
causes

::
of
::::

this
::::::::
posterior

:::::::::
variability

::
of

:::
c∗,

::::::
identify

::::::::
potential

:::::::::::
observational

::::::::::
constraints,

:::
and

:::::::::
potentially

::
to

:::::
revise

::::::
related

::::::
model

:::::::::
structures.

:::
The

::::::::
calibrated

::::::
model

::
of

:::::
setup

::
h)

::::::
showed

::::::::
unbiased

:::::::::
predictions

::::::
against

:::::::::::
observations

::
in

::
an

::::::::::
independent

:::
test

::::
data

:::
set,

:::::::::
indicating

::
the

:::::::
model’s

::::::::::::::
generalizability.

:::::
Based

:::
on

:::
the

:::::::
universal

:::::::
validity

::
of

:::
the

:::::
EEO

:::::::::
parameters

::::::
across

::::
plant

:::::::::
functional

::::
types

::::
and

:::::::
biomes,

::
the

:::::::::
calibrated

:::::::
P-model

::::
can

::::
may

::
be

::::::
scaled

::
to

::::
new

::::::::
locations

::::
sites

::::
and

::::::::::::
environmental

:::::::::
conditions.

::::::::
However,

::
it
::::::
should

:::
be

:::::
noted560

:::
that

:::
our

::::::::
estimates

::
of

:::::::::
prediction

:::::::::
uncertainty

::::
and

:::
the

::::::
finding

::
of

::::::
robust

:::::::::::::
generalisability

::::
only

::::::
applies

::
to

::::::::::::
environmental

:::::::::
conditions

:::
that

:::
are

::::::
within

:::
the

::::::
domain

::
of

:::
(or

::::::::
similarly

::::::::
distanced

:::
to)

::::
sites

::::
used

:::
for

:::::::
training

:::
and

::::::
testing

::::
here

::::::::::::::::::
(Ludwig et al., 2023).

:::::::
Further

::::::
caveats

:::::
apply.

::::
The

::::::
choice

::
of

:::
the

:::::::::::
specification

::
of

:::
soil

::::::::
moisture

:::::
stress,

::::::
which

::::
uses

:
a
::::::
single

:::::
global

:::::::::
parameter

:::
θ∗,

::::
may

::
be

::::::
overly

::::::::
simplistic

:::
for

:::::::::
describing

:::::::
diverse

:::::::::::
physiological

:::::::::
responses

::
to

::::::::::
dry-downs

:::::
across

:::::
sites

:::::::::::
characterised

:::
by

::::::::
different

:::
soil

:::::::
texture

::::::::::::::::::::::::::::::::::
(Fu et al., 2022; Wankmüller et al., 2024)

:::
and

:::
the

::::::
model

:::::::
neglects

:::
the

::::::
highly

:::::::
variable

:::::::
rooting

::::
zone

:::::
water

:::::::
storage

:::::::::
capacities565

:::::
across

:::::
space

:::::::
globally

:::::::::::::::::
(Stocker et al., 2023)

:
.
::::::::
Although

:::::::::::
generalization

:::
to

::
the

::::
test

:::
data

:::
set

:::
did

:::::::
globally

:::::
show

:::::::
unbiased

::::::::::
predictions

:::::
across

:::
all

::::
sites

:::::
(Fig.

:::
4),

:::::::::::
shortcomings

:::::
were

::::::
visible

:::
for

:::::::
certain

::::
sites

:::::
(e.g.,

:::::::
US-Var,

::::
Fig.

:::
5)

:::
and

:::::::
warrant

::
a
::::::::::::::
re-consideration

:::
and

::::::::
potential

:::::::
revision

::
of

:::
the

::::::
related

:::::::
process

:::::::::::::
representations.

:::
An

:::::::::
improved

::::::::::::
representation

::
of

:::
soil

::::::::
moisture

:::::
stress

::::::
effects

::::
and

::::::::
across-site

:::::::::
variations

::
of
:::::::

critical
:::
soil

::::::::
moisture

:::::::::
thresholds

::::
and

::::::
storage

:::::::::
capacities

::::
may

::::::::::
potentially

::::
also

:::::::
mitigate

:::
the

:::::
need

:::
for

::::::
targeted

:::::::::::
interventions

::::
into

:::
the

:::::::::
calibration

:::::::::
procedure,

::::
e.g.,

:::::::
through

:::
the

:::::::::
truncation

::
of

:::
the

:::::
prior

:::
for

:
β
:::
or

:::
the

::::::::
step-wise

::::::::
approach570

::
to

:::::
model

:::::::::
calibration.

:::::
More

::::::::::
specifically,

::
θ∗

:::::
could

:::::::::
potentially

::
be

:::::::::
expressed

::
by

::::::::::
additionally

::::::::::
considering

:::
soil

::::::::
structural

::::::::::
information

:::::::::::::::::::::
(Wankmüller et al., 2024),

:::::
which

:::::
could

::
be

::::::::
provided

::
as

::::::::
additional

::::::::::
information

:::
for

::::
each

::::
site.

:::::::::::
Alternatively,

:::
the

:::::::
Bayesian

::::::::
approach

:::::
allows

:::
for

:::
the

:::
use

:::
of

::::::::::
hierarchical

::::::
models

:::::::::::::::
(van Oijen, 2017)

:::
that

:::::
could

:::::
make

:::
use

::
of

::::::::
potential,

::::::::
globally

:::::::
available

:::::::::
predictors

:::
(or

:::::::::
covariates)

:::
for

::
the

:::::::::::
site-specific

:::::::::
parameters.

:

::::::::
Generally,

::::::
design

:::::::
choices

:::::::
related

::
to

:::
the

:::::::::
Bayesian

::::::::
likelihood

:::::::::::
specification

::::
and

:::::::::
parameter

::::::::::
calibration

::::
were

::::::::
adequate

:::
to575

::::::::
showcase

:::
the

::::::::
sensitivity

::
of

:::::::::
parameter

::::::::
estimates

:::::
across

::::::
setups

:::
and

:::::::
retrieve

::
an

::::::::
unbiased,

:::::::::::
generalizable

::::::
model.

:::::
While

:::::::
simple,

:::
the

::::::
additive

::::::::
Gaussian

:::::
error

:::::
model

::::::
chosen

:::
for

:::
the

:::::::::
likelihood

::::::
allowed

::
to
:::::::::
showcase

:::
the

:::::::::
constraints,

::
it

:::::
could

:::
use

::::::::
improved

:::::::::
functional

:::::
forms

::::
more

::::::
suited

:::
e.g.

::
to

:::
the

::::::::
positivity

::
of

::::
GPP,

:::
or

::
to

:::::::::
disentangle

:::
the

::::::::::
observation

:::::::::
uncertainty

:::::
from

:::::
model

::::::::
structural

::::::::::
uncertainty

::::::::::::::
(van Oijen, 2017)

:
.
::::::::::
Independent

::::::::
estimates

:::
of

::::::::::
observation

::::::::::
uncertainty

:::::
could

::
be

::::::::
included

:::
as

::::
fixed

::::::::::
parameters

::
or

:::
as

::::::::
informed

:::::
priors.

::::
This

::::::
would

::::::::::
potentially

::::
lead

::
to

::
a

:::::::
reduced

:::::::
residual

::::
error

:::::::::::
representing

:::::
more

::::::
closely

::::
the

::::::::
structural

::::::
model

::::::::::
uncertainty.580

:::::::
Potential

::::::::
estimates

:::
for

:::::
these

:::::
could

::
be

:::
the

::::
error

:::
on

::::
GPP

::::::::::::
measurements

::
or

::::::
errors

::
of

:
a
::::
trait

:::::::::::
measurement

::
to

::::::::
represent

:::
the

::::::
model

::::
scale

::::
(i.e.

:::
the

::::::::::::::
ecosystem-level

:::::::
averages

::::::
across

:::::::
species

::::::
instead

:::
of

::::::::
individual

::::::::::::
observations).

::::::::::::
Alternatively,

:::::
fitting

:::
to

:::::::
average
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::::::::::
observations

::::::
instead

:::
of

::::::::
individual

:::::::::::
observations

:::::
might

::::::
reduce

:::
the

::::::::::::
(independent)

:::::::::::
observational

::::::
errors.

::::
This

:::::
would

:::::
mean

::::::
fitting

::
to

:::::::
averaged

:::::
traits

::::
over

:::::::
different

::::::
species

::
at
::
a

:::::
given

:::
site

::
or

::::::
weekly

::::::::::
cumulative

:::::
fluxes

::::::
instead

::
of

:::::
daily

::::::
values.

:
A
:::::::
strength

::
of

:::
the

::::::::
Bayesian

::::::::
approach

:
is
::
to

::::::
update

:::::
model

:::::::::
parameters

:::::::::
iteratively

::::
with

::::::::
additional

::::
data

::
by

:::::
using

:::::::
previous

::::::::
posterior585

::
as

::::
new

::::
prior

:::::::::::
distributions.

::::
Our

:::::::::
illustration

::
of

::::
this

::::::::
approach

::
in

:::::
setup

::
h)

:::::
relied

:::
on

::::::
manual

:::::::::
extraction

:::
and

:::::::::::
specification

::
of

:::::
these

::::::::::
distributions.

::
A
::::::
future

:::::::::::
development

:::
step

:::
for

:::
the

::::::
rsofun

:::::::::
framework

:::::
would

::::
thus

:::
be

::
to

::::::
support

::::::
easier

:::::::::::
specifications

::
of

:::::
these

::::
type

::
of

:::::::
stepwise

:::::::::
calibration

:::::::::::::::::::
(MacBean et al., 2016)

:::::::
directly

::::::
through

:::
the

::::::
model

::::::::
interface.

Bagnara, M., Harrison, S. P. , Prentice, I. C., Bartlein, P. J., Kelley, D. I. , Daniau, A. L., Krawchuk, M. A., and Moritz, M.

A.: A model-based approach to predicting fire weather and carbon dynamics in Mediterranean ecosystems, Biogeosciences,590

12, 6173–6196, https://doi. org/10.5194/bg-12-6173-2015, 2015.
:::::::
P-model

::
is

::::::
limited

::
in

:::::
scope

::
to
:::

the
:::
to

::::::
canopy.

:::
We

::::::
found

::::
even

::
for

:::::::
models

::::
with

::::
this

::::::
degree

::
of

::::::::::
complexity,

:::::::::
parameter

::::::::::
interactions

:::
and

::::::::
structural

::::::
model

:::::
errors

::::
can

::
to

::::
lead

:::::::::
parameter

::::::
biases.

:::
The

::::::::
stepwise

:::::::::
calibration

::::::::
approach

:::::::
allowed

::
to

::::::
rectify

:::
the

::::::::
perceived

::::
bias

::
in

::
β.

:::::
This

:::::::
violated

:::
the

:::::
initial

::::
aim

::
of

:::::::::::::
simultaneously

::::::::
estimating

:::
all

::::::::::
parameters,

::::
but

::
is

:::::::::
interpreted

:::::
here

::
as

::::::::::
indications

::
of

::::::
where

::
to

::::
find

:::::::::
structural

::::::::::
deficiencies

::::
and

:::::
target

::::::
model

:::::::::::
improvements

::::::::::::::::::::
(Oberpriller et al., 2021)

:
.
:::::
More

::::::::::::
comprehensive

:::::::::
vegetation

::::::
models

::
of

:::::
larger

:::::
scope

:::
will

:::::
likely

::::
face

::::::
similar

:::::::::
challenges,595

:::::::::
considering

::::
that

:::::::::
structural

::::::::::
deficiencies

:::
are

:::::::::::
unavoidable

:::
and

:::::
more

:::::::::
parameter

::::::::::
interactions

:::::
may

::::
arise

:::::::
through

:::::::::
feedbacks

:::
in

::
the

:::::::::
soil-plant

::::::
system.

::::
Our

:::::::
findings

:::::::
indicate

::::
that

::::::::
stepwise

:::::::::
approaches

::
to
::::::

model
:::::::::
calibration

::::
can

::
be

::::::::
potential

::::::::
solutions

::
to

::::
this

::::::::
challenge.

:

Bloomfield, K. J. , van Hoolst, R. , Balzarolo, M. , Janssens, I. A., Vicca, S. , Ghent, D., and Prentice, I. C.: Towards a General

Monitoring System for Terrestrial Primary Production: A Test Spanning the European Drought of 2018, Remote Sensing, 15,600

1693, https://doi. org/10.3390/rs15061693, 2023.
:::::
While

::::
this

::::
study

::::::
looked

::
at
::::::

seven
:::::
model

:::::::::
parameters

::::::::::::::
simultaneously,

::::::
several

::::
other

:::::::::
parameters

:::::
were

::::
held

:::::
fixed,

::::::
namely

:::::
those

:::::::
involved

::
in

:::::::::
describing

::::::::::
temperature

::::
and

:::::::
pressure

:::::::::::
dependencies

::
of

:::::::
physical

::::
and

:::::::::::
physiological

:::::::::
quantities,

::::::
isotope

:::::::::::
fractionation,

::::
etc.

::::
This

::::::::
simplified

:::
the

:::::::::
calibration

::::
and

::::::::
parameter

:::::::::
estimation

::::
task,

:::
but

::::::::
assumed

:::
that

:::
the

::::::::::
uncertainty

::::::::
stemming

:::::
from

::::
these

::
is
:::::::::
negligible

:::
for

:::
the

:::::::::
prediction

::
of

:::::
target

::::::::
variables.

::::
This

::
is
::

a
::::::
strong

:::::::::
assumption

::::
and

:::::
should

:::
be

::::::
relaxed

::
in

:::::
future

:::::::
attemps

::
at

:::::::::
calibrating

::::::::
P-model.605

Clark, J. S.: Why environmental scientists are becoming Bayesians: Modelling with Bayes, Ecology Letters, 8, 2–14, https://doi.

org/10.1111/j.1461-0248.2004.00702.x, 2004.
:::::
Lastly,

:::
the

::::::
chosen

:::::::::
likelihood

::::::
ignored

:::::
input

::::
data

::::::::::
uncertainty

:::
εx.

:::
For

::::
GPP

:::::
sites,

::
we

::::::
expect

:::::
small

:::::::::
uncertainty

::
in

::::::::::::
meteorological

::::::::
variables

:::::
thanks

::
to
:::::
local

::::::::::::
measurements,

:::
but

::::::
fAPAR

::::
data

::
is

:::::::
obtained

::::
from

:::::::
satellite

::::::
remote

::::::
sensing

:::::
data,

:::::
which

::
is

:::::
likely

::
to

:::::::
include

:::::::::::
uncertainties.

:::
For

::
∆

::::
and

:::
VJ

::::
sites,

:::::
input

::::::
forcing

::::
was

:::::
based

:::
on

:
a
::::::
global

::::::
dataset

::
of

::::
high

::::::
spatial

::::::::
resolution

::::
(∼1

:::
km

::::::
around

:::
the

::::::::
equator).

::::::::
However,

::::::::::::
topographical

::::::
effects

:::
and

::::::
related

::::::::::::
micro-climata

:::
that

:::::::
deviate610

::::
from

:::
the

:::::
larger

::::::
climate

:::::
could

:::
be

::::::::
remaining

:::::::
sources

::
of

::::::
errors.

Cowan, I. R. and Farquhar, G. D.: Stomatal function in relation to leaf metabolism and environment. In: Integration of

Activity in
:::
The

::::::
rsofun

:
R

:::::::
package

::::::::
provides

:
a
:::::::::::
user-friendly

::::
and

:::::::
efficient

:::::::::::::
implementation

::
of

:
the Higher Plant, 471–505, 1977.

:::::::
P-model

:::
and

:::::::::::
off-the-shelf

::::::::::
model-data

:::::::::::
assimilation

::::::::::::
functionalities

:::::::
through

:::
its

:::::::::
connection

:::
to

:::
the

::::::::::::
BayesianTools

:
R
::::::::

package

::::::::::::::::
(Hartig et al., 2023),

:::::
while

::::::::::
maintaining

::::::::
flexibility

:::
for

::::::
altered

:::::::::
calibration

:::::
setups

:::
and

:::::::::
likelihood

:::::::::
definitions.

:::::::::
P-model’s

:::::::::::
computational615
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::::::::
efficiency

::::::
offered

:::
the

::::::::
potential

::
for

::::::::
effective

:::::
model

:::::::::
parameter

:::
and

::::::::::
uncertainty

:::::::::
estimation

::::
using

::::::::
Bayesian

::::::::
statistical

::::::::
methods

::
in

::::::::::
combination

::::
with

::::
flux

:::
and

:::::
traits

:::
data

:::::
here.

Dietze, M. C.: Ecological Forecasting, Princeton University Press, https://doi.org/10.2307/j.ctvc7796h, 2017.
:::
Our

:::::
model

:::::::::::::
implementation

::
as

::
an

::
R

:::::::
package

:::::
takes

:::::::::
inspiration

:::::
from

:::
the

:::::
r3PG

:::::
forest

:::::
model

::::::::::::::::::
(Trotsiuk et al., 2020)

:
,
:::
and

::::
our

:::::::::::::
implementation

::
of

::::::::::
model-data

:::::::::
integration

::
on

:::
the

:::::
basis

:::
of

:::::::::
ecosystem

::::
data

:::::
serves

:::::::
similar,

:::
yet

::::::::
reduced,

::::
aims

::::
and

::::::::::::
functionalities

::::::::
compared

:::
to

::::::
PEcAn

:
(https:620

//pecanproject.github.io/index.html
:
)
::::::::::::::::::
(LeBauer et al., 2013).

::::::
rsofun

:
is
::::::::
designed

::
to

::
be

:::::::::
minimally

:::::
reliant

:::
on

:::::::
package

:::::::::::
dependencies

:::
and

::::::::::
connections

::
to

:::::::
specific

::::
data,

:::::
while

:::::::
limiting

:::
the

:::::
scope

::
to

:
a
:::::::::
predefined

:::
set

::
of

::::::
process

:::::::
models

::::::::
(currently

::::::::
P-model,

:::::::
BiomeE

::
at

::
an

:::::::::::::
experimentation

::::::
stage).

:::::
rsofun

:::
and

::
the

:::::::::::::
implementation

::
of

:::
our

::::::::::
simulations

:::
and

::::::::
analyses

:::::::
analyses

:::::
shown

::::
here

::
in

::::::::::::
accompanying

::::
code

:::
(see

:::::
code

:::::::::
availability

:::::::::
statement)

:::
and

:::::::
package

::::::::
vignettes

:::::::
provide

:
a
::::::::
blueprint

:::
for

:::::::::
model-data

:::::::::::
assimilation.

Dietze, M. C., Lebauer, D. S., and Kooper, R.: On improving the communication between models and data, Plant, Cell &625

Environment, 36, 1575–1585, https://doi. org/10.1111/pce.12043, 2013.

5 Conclusions

::::
This

::::
study

::::
used

::::::
rsofun

::::::::
(available

::
as

::
an

::
R

::::::::
package)

::
to

:::::::
calibrate

:::::
latent

:::::::
P-model

:::::::::
parameters

::
to

:
a
:::
set

::
of

::::
flux

:::
and

::::
traits

::::
data,

::::::::
obtained

::::
from

:::
193

:::::::
training

::::
sites

::::
and

::::
231

:::
test

:::::
sites.

:::::::::
Predictions

::::::
across

::
all

::::
test

::::
sites

:::::::
showed

:::
that

:::
the

:::::::::
calibrated

:::::
model

::::::::::
generalized

:::::
well,

:::
not

:::::::
showing

:::
any

::::::
biases

:::
and

:::::::
similar

::::::::
prediction

::::::::
residuals

:::::::
between

:::::
train

:::
and

::::
test

::::
data.

::::
The

::::::::
Bayesian

:::::::::
calibration

::::
also

::::::::
exhibited630

:::::::::
challenges.

::::::::
Structural

::::::::::
uncertainty,

:::
the

::::::::::
imbalanced

:::
data

::::
set,

:::
and

:
a
:::::::::
potentially

:::
too

:::::::::
simplistic

::::::::
likelihood

::::
lead

::
to

:::::
biased

::::::::::
parameters

:::
(β)

:::
and

::::::::::
predictions

:::
(∆)

:::
in

:::
the

::::
first

:::::::::
calibration

:::::::
attempt.

:::
An

:::::::::
alternative

::::::::::
calibration

:::::
setup

:::::
made

:::
use

::
of

::
a
:::::::
stepwise

::::::::::
calibration

:::
and

:::
the

::::::::::
hierarchical

::::::
design

:::
of

:::
the

:::::
model

::::::::
structure

::::
and

::::::::::
predictions,

::::::::
enabling

:
a
:::::::::
successive

::::::
model

:::::::::
integration

::::
and

:::::::::
parameter

:::::::::
calibration.

::::
The

::::::::
necessity

::
for

::::
this

::::::::
approach

::
to

:::::
obtain

::::::
robust

:::
and

:::::::
reliable

:::::::::
parameter

:::::::::
estimations

::::
may

:::::::
indicate

::::::
model

::::::::
structural

::::::::::
deficiencies,

:::::
which

:::
we

::::::::
identified

::::
here

::
as

::::::::
primarily

:::::
being

::::::
related

::
to

:::
the

::::::::::::
representation

::
of

::::::
effects

::
by

:::::::
dryness

::
in

:::
soil

::::
and

:::
air.635
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Appendix B:
::::::::::
Acclimation665

Hartig, F. , Dyke, J., Hickler, T., Higgins, S. I., O’Hara, R. B., Scheiter, S., and Huth, A. : Connecting dynamic vegetation

models to data - an inverse perspective: Dynamic vegetation models - an inverse perspective, J. Biogeogr., 39, 2240–2252,

https://doi. org/10.1111/j.1365-2699.2012.02745.x, 2012.
:::::::
Damped

::::::::::
acclimation

::
to

::::
daily

::::::::::::
environmental

:::::::::
conditions

:::
was

:::::::::
considered

::
for

:::
the

::::
GPP

::::::::::
prediction,

::::
while

:::
for

::
∆
::::
and

:::
VJ

:::::::::
predictions

::::
used

:::::::
growing

::::::
season

:::::::
average

:::::::::
conditions.

:

Hartig, F., Minunno, F., Paul, S., Cameron, D., Ott, T., and Pichler, M. : BayesianTools: General-Purpose MCMC and SMC670

Samplers and Tools for Bayesian Statistics, 2023.
:::
The

:::
the

::::::::
low-pass

::::
filter

::
of

:::::::::::
characteristic

::::
time

:::::
scale

:
τ
::::::
(days)

::
is

::::::
defined

::
as

:

T (t+1) = T (t)+
1

τ
(T ′(t+1)−T (t))

:::::::::::::::::::::::::::::::::

initialized as T (0) = T ′(0),
::::::::::::::::::::::

(B1)

:::::
where

::
T

::
is

:::
the

::::::::
low-pass

::::::
filtered

:::::::
quantity

:::::
(here

::::::::::
temperature)

::::
and

:::
T ′

:::
the

::::
daily

:::::::::::
observations,

::::::::
resulting

::
in

::
a

::::
daily

::::
time

:::::
series

:::
of

::
the

:::::::
damped

::::::::
quantity.

:::::::::
Equivalent

::::::::::
expressions

::::
with

:::
the

::::
same

::
τ

:::
are

::::
used

:::
for

::
P ,

:::
D, CO2:

,
:::
and

:::::
PAR.

LeBauer, D. S., Wang, D. , Richter, K. T., Davidson, C. C., and Dietze, M. C.: Facilitating feedbacks between field measurements675

and ecosystem models, Ecological Monographs, 83, 133–154, 2013.
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Appendix C:
:::
The

::::::
rsofun

:::::
model

::::::::::
framework

Looss, B. , Iooss, B., Prieur, C. , Veiga, S. de, Koehler, J. R. , Pujol, G. , and Saltelli, A.: sensitivity: Global Sensitivity Analysis

of Model Outputs, https:
:::::
rsofun

:::::::::
implements

:::
the

::::::::
P-model

:::::::::::::::::
(Stocker et al., 2020)

:::
and

::::::::
provides

::::::::::
off-the-shelf

:::::::
methods

:::
for

::::::::
Bayesian

:::::::::::
(probabilistic)

:::::::::
parameter

:::
and

:::::::::
prediction

:::::::::
uncertainty

::::::::::
estimation.

:::::
rsofun

:
is

:::::::::
distributed

::
as

::
an

::
R
:::::::
package

:::
on

:::
R’s

::::::
central

:::
and

::::::
public680

:::::::
package

:::::::::
repository.

:::::
rsofun

:::
also

::::::::::
implements

:::
the

:::::::
BiomeE

::::::::
vegetation

:::::::::::
demography

:::::
model

:::::::::::::::::::::
(Weng et al., 2017, 2015)

:
.
:::
The

:::::
latter

::
is

:::
not

::::::
further

::::::::
described

::::
here

:::
and

::
is
:::::::::::
implemented

::
at
:::
an

:::::::::::
experimental

:::::
stage

::
in

:::::
rsofun

::::::
version

::::
v5.0.

::::
The

::::::::
P-model

:::::::::::::
implementation

::
in

:::::
rsofun

:
is

::::::::
designed

::
for

::::
time

:::::
series

::::::::::
simulations

:::
by

:::::::::
accounting

:::
for

:::::::
temporal

::::::::::::
dependencies

::
in

:::
the

:::::::::
acclimation

:::
to

:
a
:::::::::::
continuously

::::::
varying

:::::::::::
environment.

::::::::
Function

::::::::
wrappers

::
in

::
R

::::
make

:::
the

:::::::::
simulation

:::::::::
workflow

::::::::::
user-friendly

::::
and

::
all

::::::::
functions

::::
and

::::
input

:::::::
forcing

:::
data

:::::::::
structures

:::
are

::::::::::::::
comprehensively

::::::::::
documented

::::::
(https://cran. r-project.org

::::::::::::::::
geco-bern.github.io/package=sensitivity, 2023.685

Marquet, P. A ., Allen, A. P., Brown, J. H., Dunne, J. A ., Enquist, B. J., Gillooly, J. F., Gowaty, P. A., Green, J. L., Harte,

J., Hubbell, S. P., O’Dwyer, J., Okie, J. G., Ostling, A., Ritchie, M., Storch, D., and West, G. B.: On Theory in Ecology,

BioScience, 64, 701–710, https:
:::::
rsofun//doi. org/10.1093/biosci/biu098, 2014.

::
).

Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X., Montpied, P.,

Strassemeyer, J., Walcroft, A., Wang, K., and Loustau, D.: Temperature response of parameters of a biochemically based690

model of photosynthesis. II. A review of experimental data, Plant, Cell & Environment, 25, 1167–1179, https:
:
In

::::::
rsofun

:
,

:::::
model

:::::::::
parameters

::::
can

::
be

:::::::::
calibrated

::::
using

::
a
:::::::::
calibration

:::::::
function

::::::::::::::::
calib_sofun()

:
,
::::::::
providing

::::
two

:::::
modes

:::
of

:::::::::
calibration,

::::
one

:::::
based

::
on

::::::::::
generalised

::::::::
simulated

:::::::::
annealing

:::::::::
({GenSA}

::
R

::::::::
package)

:::
for

::::::
global

::::::::::
optimization

:::::::::::::::::
(Xiang et al., 2013)

:::
and

::::
one

:::::
based

::
on

:::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

::::::::
(MCMC)

:::::::::::
implemented

:::
by

:::
the

::::::::::::
BayesianTools

::
R

:::::::
package,

::::::
giving

::::::
access

::
to

::
a

::::
wide

::::::
variety

:::
of

:::::::
Bayesian

::::::::
methods

::::::::::::::::
(Hartig et al., 2023).

::::
The

::::::
former

:::::
being

::::
fast,

:::::
while

::
the

:::::
latter

:::::::
provides

:::::
more

::::::::
informed

::::::::
parameter

:::::::::::
optimization695

:::::::
statistics

:::::::::::::::::::::::::::
(Clark, 2004; Dietze et al., 2013).

::::
This

:::::
gives

:::
the

::::::
option

::
for

:::::
both

:::::::::
exploratory

::::
and

::::
more

:::::::
in-depth

:::::::
analysis

:::
of

::::::::
estimated

:::::::::
parameters.

::
A
:::
set

::
of

::::::::
standard

:::
cost

::::::::
functions

:::
are

::::::::
provided

:::
for

:::
the

::::::::::
calibration,

:::::::::
facilitating

:::
the

:::::::::
exploration

:::
of

::::::
various

::::::
metrics

:::
or

:::::
target

:::::::
variables

::::
and

:::
the

:::::::::::
specification

::
of

:::::::::
calibrated

:::::
model

::::::::::
parameters.

:::::::::::
Furthermore,

:::
the

::::::::
vignettes

::::::::::::
accompanying

::::
the

:::::::
package

:::::
(https://doi. org

::::::::::::::::
geco-bern.github.io/10.1046

:::::
rsofun/j.1365-3040.2002.00891. x, 2002.

Mengoli, G., Agustí-Panareda, A., Boussetta, S. , Harrison, S. P., Trotta, C., and Prentice, I. C.: Ecosystem Photosynthesis700

in Land-Surface Models: A First-Principles Approach Incorporating Acclimation, Journal of Advances in Modeling Earth

Systems, 14, e2021MS002767, https:
:::::
articles//doi. org/10.1029/2021MS002767, 2022. )

:::::::
explain

:::
how

::
to
:::::::::
customise

:::
the

::::::::
calibration

:::
cost

::::::::
functions

::::
and

:::::::
interpret

:::
the

:::::::::
calibration

::::::
results.

:

Morris, M. D.: Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, 33, 161–174, https://doi.

org/10.1080/00401706.1991.10484804, 1991.705

Appendix D:
::::::::
Posterior

:::::::::
parameter

:::::::::
estimates

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A.,

Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann,
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Figure D1.
::::
Trace

:::
plot

::
of

::::::
MCMC

:::::::
sampling

::
of

::
all

::::::::
parameters

::
in
:::::
setup

::
h).

C., Arain, M. A., and others: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci

Data, 7, 225, https://doi. org/10.1038/s41597-020-0534-3, 2020.710

D1
::::::::
Posterior

::::::::::
parameter

::::::::
sampling
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Table 2.
:::::::
Parameter

:::::
listing

::::
with

:::::::::
description,

:::::::
including

::::::::
Maximum

::
A

:::::::
Posteriori

:
(MAP) estimates

::
and

::::
prior

:::::::::::
specifications,

:::::::
obtained from the

Bayesian model
::::::
different

:
calibration

::::
setups

:
(Sec. 4.2) are listed in column ’Values’

:::::::
columns). The

:::::
values

::::
given

::
in

:::::
square

:::::::
brackets

:::::::
represent

::
the

:::::
lower

:::
and

:::::
upper bounds of uniform prior distributions are given in parentheses

:
or

:::::::
truncated

::::::
normal

::::
prior

:::::::::
distributions. Parameters that

were held fixed for the calibration are marked with
:
a
::::
single

::::::
number

::
in

:::::::
brackets

:::
and an asterisk (*)

:
in

:::
the

::::::::::
corresponding

:::::
setup

::::::
columns.Fixed

site information was: longitude = 3.6°E, latitude = 43.7°N, elevation = 270 m a.s.l., and total root zone water storage capacity = 432 mm.

Symbol
Parameter

name

::::
Units

Description
Units

::::
Setup

::
a)

Values

::::
Setup

::
b)

::::
Setup

::
c)

::::
Setup

::
d)

::::
Setup

::
e)

::::
Setup

::
h)

φ0

::
φ∗

0:

kphio

molmol−1

Quantum yield at optimal

temperature mol mol−1 0.041

(0.02,

0.15)

:::
0.09

[0.02,

0.15]

:::
0.09

[0.02,

0.15]

:::
0.08

[0.02,

0.15]

a
::
aφ kphio_par_a

°C−2

Shape parameter for the

temperature dependence of

the quantum yield

°C−2 -0.0023

(-0.004,

-0.001)

[-0.004,

-0.001]

:::::
-0.001

[-0.004,

-0.001]

:::::
-0.001

[-0.004,

-0.001]

b
::
bφ kphio_par_b

°C

Optimal temperature for the

quantum yield °C 15.3 (10,

30)
:::
28.2

[10, 30]
:::
28.2

[10, 30]
:::
27.5

[10, 30]

θ∗

soilm_thetastar

mm

Threshold plant-available

soil water content in the soil

moisture stress function

:::
Soil

::::::::
moisture

:::::::::
limitation

:::::::
threshold

:::
(eq.

:::
15)

mm 158 (4.3,

432)β0

soilm_betao Stress

factor at

low soil

moisture,

intercept

for the soil

moisture

stress

function

:::
23.9

[1, 250]

unitless

:::
24.5

[1, 250]

0.0001 (0,

1)
:::
26.7

[1, 250]

β
beta_unitcostratio

::::::
unitless

Unit cost ratio of car-

boxylation (maintenance of

Vcmax) to transpiration

unitless

::::
207.3

[14.6,

438.0]

146* b0

:::
18.7

[14.6,

438.0]

rd_to_vcmax

::::
207.1

[14.6,

438.0]

Ratio of

temperature-normalised

dark

respiration

(Rd25)

to the

temperature-normalised

maximum

carboxylation

rate

Vcmax25

:::
14.6

[14.6,

438.0]

unitless

:::
14.6

[14.6,

438.0]

0.014*

::::
187.5

::::::::::::
N (207.9, 6.82)b

τ
tau_acclim

:::
days

:

Acclimation time scale of

photosynthesis days 20*
::
1.0

::::::::
N (14, 64)a

::
1.0

::::::::
N (14, 64)a

::
1.0

::::::::
N (14, 64)a

c∗

::
c∗

kc_jmax

::::::
unitless

Unit cost of electron trans-

port (maintenance of Jmax) :::
0.21

[0.04,

1.23]

:::
0.42

[0.04,

1.23]

:::
0.45

[0.04,

1.23]
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