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Abstract.

Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse
biotic and abiotic conditions. Systematically informing them with data is key for enhancing their predictive accuracy and
estimating uncertainty. Herewe-present-, we demonstrate and evaluate the Simulating Optimal FUNctioning {rsefan}-(rsofun)

R package, previding-which provides a computationally efficient and-parattelizable-implementation of the P-model for site-
scale simulations of ecosystem photosynthesis and the acclimation of photosynthetic traits, complemented with functionalities

for Bayesian model-data integration and estimation—of-parameters—and-the estimation of model parameters and prediction

uncertainty. We describe-a-use case to-demonstrate the package functionalities formodelling ecosystem-gross uptake at oneflu

moedel-development-and-dissemination—estimated model parameters simultaneously from observed time series of ecosystem
i ABC) and the

ratio of the maximum biochemical rates of carboxylation to electron transport (1, Jmax ). The multi-target calibration yielded

unbiased predictions for all variables simultaneously and produced similar distributions of prediction—observation residuals for
both calibration and out-of-sample test data, indicating that the model generalises robustly across diverse environments. We
found that a step-wise approach to successive model integration and calibration yielded best results, and that correlations among.
parameters related to representing water stress effects underpinned non-robust parameter estimations. This likely indicates a
dominant source of model structural uncertainty related to the representation of the response of photosynthesis to dry conditions

in soil and air,_

GPP), and from globally distributed data on leaf carbon-13 isotopic discrimination

1 Introduction

The modelling of land ecosystem processes and structure, water, and carbon fluxes relies on both mechanistic and statistical ap-

proaches Dietze et al., 2018; Hartig et al., 2012; Van Oijen et al.,

. Mechanistic models are formulated as mathematical descriptions of functional relationships between the abiotic environment
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and ecosystem states, rates, and dynamics. These descriptions reflect available theory and general empirical patterns and pro-
vide a means for "translating" hypotheses about governing principles and causal relationships into testable predictions 2}
(Marquet et al., 2014), and for upscaling model-based estimates in geographical space and to novel environmental conditions.
However, mechanistic models rely also on statistical-tempirical-)-empirical descriptions of processes at varying levels of ab-
straction.

Mechanistic models have model parameters that are either specified direetly-or fitted to data. A great advantage of mech-
anistic models is that they explicitly link known physical constants with process representations (e.g., molecular mass of
CO;, for diffusion and assimilation, or the gravitational constant and viscosity of water for its transport and transpiration).
Other parameters may be specified based on independent measurements under controlled conditions (e.g., the activation
energy of Arrhenius-type metabolic rates), or represent measurable plant functional traits, taken as constant over time and
within plant functional types (PFTs - the basic unit in mechanistic vegetation models). Both types of parameters have tra-
ditionally been directly specified in models direetly—-(’direct parameterization’, (Hartig-et-al526042)(Hartig et al., 2012)). Yet
other model parameters may not be directly observable and describe processes that are not explicitly resolved but can be
described at a higher level of abstraction. Such parameters are often fitted to observational data such that the agreement
between one (or several) related model predictions and observations is optimised. Parameter estimation for mechanistic veg-
etation models typically employs generic optimization algorithms or Bayesian statistical approaches and is often used for
speeifying-to specify diverse types of parameters (except for universal physical constants). Bayesian methods have the advan-
tage that they enable a systematic assessment of the correlation structure among multiple fitted parameters, provide a means
for-considering-unecertainty in-observations—{o consider uncertainty in inputs, observations, models, and available prior infor-
mation, generate probabilistic parameter estimations and model predictions, and provide a basis to quantifying-quantify the
constraints by various ef-calibration target data or-te-identifying-and to identify errors arising from model structural choices
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Bagnara et al., 2015; Dietze et al., 2018; Hartig et al., 2012; van Oijen, 2017; Raj et al., 2016; Van Oijen et al., 2005;

As the number of parameters increases in state-of-the-art mechanistic vegetation models, taking into account multiple PFTs
and ecosystem components (e.g. soil, microbes, hydrology), larger amounts of data and computing resources are required to
fully explore the parameter space (Hartig-et-al52642)(Hartig et al., 2012). This poses a limitation for systematic model-data
integration and Bayesian parameter estimation. Eco-evolutionary optimality (EEO) principles have been proposed for reducing
model complexity and for a robust grounding of models in governing principles i
(Franklin et al., 2020; Harrison et al., 2021). They enable parameter-sparse representations, limit the distinction of separate

PFTs, and may enable better model generalisations to novel environmental regimes. As such EEO principles make predictions

of plant functional traits that would otherwise have to be prescribed — typically as temporally fixed model parameters. Hewever;

etation-models-are not devoid-of model parametersParameters in EEQ models are

considered to be universally valid, e.g., across different PFTs. Ideally, remaining-parameters-they represent known physical
constants or quantities that can be measured independently. But-remaining-parameters—in-optimality-medels—typically—alse

Xiao et al., 2019)
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represent-quantities-thatare-not-directly-measurable- However, not all can be measured directly — e.g., the marginal cost of water
in owan and Farquhar (1977), or the unit cost ratio in Prentice-et-al(2014)-These-are-considered

Prentice et al. (2014) and need to be

fitted to data.
The P-model

is an example of an EEO-guided model for terrestrial photosynthesis and its acclimation. It avoids the requirement for prescrib-
ing PFT-specific parameters of photosynthesis and stomatal regulation but instead predicts them from universal EEO principles
for the full range of environmental conditions across the Earth’s (Cs photosynthesis-dominated) biomes. However;not-direetly

observable-parameters-of-the-underlying Through its representation of the vegetation as a big leaf (ref), it represents the scalin

between leaf traits and ecosystem-level photosynthetic CO5 uptake (gross primary productivity, GPP). However, despite its
foundation on EEO theory and 6 i

resulting parameter-sparseness, a small set of model parameters remains (Stocker et al., 2020) (Table 2) and must be specified
orfitted to dataé’F&b—Q—}

contributing-to-uneertainty-in-the-explore the respective constraints provided by ecosystem-level fluxes and leaf-level traits for
a probabilistic (Bayesian) multi-target estimation of the P-model parameters. The selection of observational target data types is

- Specifically, we use observations-based GPP time series from multiple eddy covariance measurement sites, and compilations
of globally distributed measurements of leaf traits, including the leaf carbon isotopic fractionation relative to the atmosphere
(A’C, hereafter shortened to A), and the ratio of the maximum biochemical rate of carboxylation to_electron transport
Vi Junax = V). Data from these two leaf traits have previously been used for independently estimating separate model
parameters in the P-model (Wang et al., 2017). In Stocker et al. (2020), these independently estimated model parameters where
then specified for model simulations (direct parametrization), and were not subject to model parameter calibration. Here,
we demonstrate how the combined consideration of diverse data types within a Bayesian model-data integration framework
~ combining ecosystem flux data and leaf traits data — enables the simultaneous estimation of a comprehensive set model
parameters that control functional dependencies of processes at multiple organisational levels — from the leaf to the canopy.
This enables a better understanding of interdependencies between model parameters and a more reliable estimation of model
prediction uncertainty.

Unbalanced observations of multiple calibration targets can lead to parameter estimates that compensate structural errors in

the (nonlinear) model, as shown previously with synthetic data (MacBean et al., 2016; Oberpriller et al., 2021; Cameron et al., 2022

mewmwg@kcan be estimated-using-observations—of—ecosystem-level
ide-calibrated in a consistent manner to these targets resulting
in unbiased parameter estimates (relative to expected ranges based on our process-based interpretation of each parameter), and
ii) if the calibrated model can be validated on an independent test data set.

Prentice et al., 2014; Wang et al., 2017; Stocker et al., 2020

motivated by their known effectiveness in model calibration and parameter estimation from previous work (Prentice et al., 2014; Wang et al
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We start by providing a brief description of the theery-embedied-in-the-P-model and introduce the P-model implemen-
tation in the Simulating Optimal FUNctioning {rsefun}—rsofun version v5:6-.1 modelling framework, made available as
an R package (Stocker et al., 2025). A more comprehensive P-modet-deseription—description of the P-model can be found
in Stoekeretak(2620)—Stocker et al. (2020). rsofun implements the P-model and its connection to data through Bayesian
WMW&: demonstrate the functionalities ef{rsefun}-through-a-casestudyforsimulating- GPP
isimplemented in and accessible through rsofun with
different calibration setups — i.c.. different combinations of model parameters subjected to Bayesian calibration and different
observational data types. Alternative calibration setups serve to elucidate the role of different observations in constraining
functions for connecting model predictions to specific data types, Bayesian model calibration using Monte Carlo Markoy.
Chain sampling, the analysis of posterior distributions of estimated parameters, and the estimation of prediction uncertainty,

andHeaftraits V], and A, and their evaluation against out-of-sample test data.

2 P-medel deseriptionMethods

2.1 P-model description

The P-model predicts the acclimation of leaf-level photosynthesis to a (slowly varying) environment based on EEO princi-

ples. It thereby yields a parameter-sparse representation of ecosystem-level quantities, generalising across (Cs photosynthesis-

dominated) vegetation types and biomes. The P-model combines established theory for C3 photosynthesis following the
Farquhar-von Caemmerer-Berry (FvCB%Fafquha%eHﬂ—HSG})—rﬁedel») model (Farquhar et al., 1980) with the Least-Cost

hypothesis for the optimal balancing of water loss and carbon gain 5 Prentice et al., 2014), and the coor-
dination hypothesis — Wang et al., 2017), which states that the light and Rubisco-limited assimilation rates
(as described by the FvCB model) are equal for representative daytime environmental conditions. Based-on-these-theoretieal

The theory results in a prediction of the ratio of leaf-internal to ambient COs concentration (¢; : ¢, = x) as a function of
the atmospheric environment, characterised by the following meteorological variables: daytime mean air temperature 7' (°C)

daytime mean vapor pressure deficit D (Pa), and the atmospheric CO partial pressure (c,, Pa)._

X:F*+<1_F*)f 1)

2
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* is the photorespiratory compensation point (Pa). n* is the ratio the (temperature-dependent) viscosity of water, relative to its

125

130

vartables-and-)—of carboxylation to transpiration in the EEO framework of Prentice et al. (2014), and is calibrated to data here
see Tab. 1). The functional dependency of I'* on temperature and atmospheric pressure, the dependency of 1* on temperature
and the dependency of K on temperature and atmospheric pressure are described in detail in Stocker et al. (2020) based on

135 published work (Farquhar et al., 1980; Bernacchi et al., 2001; Huber et al., 2009). Involved parameters are held fixed here and

are not calibrated.

A set of corollary predictions, physically and physiologically consistent with the simulated=UEpredicted x, follows. These

td ated-ba a of-photo pa B-mod Y ermaxos-antd-Fmaxos)s ated g
ratto—of teafinternal-to-ambient-The following predicted quantities are used for model-data integration here. A complete

140 description of the mathematical derivation of these quantities from first principles is given in (Stocker et al., 2020).

2.1.1 Isotope fractionation by photosynthesis

directly controls isotopic discrimination of carbon assimilates (A) relative to the atmospheric signature (§'3C,) (Farquhar et al., 1989, 19:

1—‘*
A=apn+(ba—aa) x— fa —, 3)

Ca
145 Here, parameters represent the isotope fractionation from COs eoncentration—{e—¢cq);-acelimated-average-daytime stomatat
eonduetanee{(gzdiffusion in air (ap = 4.4%o, Craig (1953)), from Rubisco carboxylation (ba = 27%o), and the-acchimated-base

ate-of-Heatda piratto azs)—Ph al-constants-and-additional-para at-d antancoy mperatare

in-(Stocker-et-al20209)—from photorespiration = 8.0%o, Ubierna and Farquhar (2014)). Also these parameters were held
150 fixed here and not subjected to calibration.

2.1.2 Maximum rates of carboxylation and electron transport
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approach-taken-in-Stocker et al(2626); electron transport-limited rates of photosynthesis to be equal:

Ac=Ay @

160 Following the Farquhar-von Caemmerer-Berry (FvCB) model for Cs photosynthesis (Farquhar et al., 1980; von Caemmerer and Farquhar,

the maximum rate of carboxylation V/ can thus be expressed as

m/

V::max = %o Iabs ) (5)
ISUSUUSUNSUSUN (o5
with
C; -
= 6
e ©)
165 and with
o\ 2/3
m' =m/1— () (7
m
and anempirieal-
—I*
(®)

Here is the intrinsic quantum vyield of photosystem II (mol mol~!) which depends on the leaf temperature 7" (see Eq. 14

170 — here taken as identical to air temperature. ¢* (unitless) is the unit cost of electron transport and is treated as a calibratable

model parameter (see Table 2 for an overview of calibrated model parameters). I, is the photosynthetic photon flux densit

absorbed by the leaf.
Eq. 7 accounts for a limited electron transport capacity (Jmax) such that m’ can also be written as

m' =m ! ©)

1+ (4490 Iabs)2

Jmax

175 Again using Ao = A7, Jua.x can be solved for and can be expressed as

_ 4 ¥0 Laps
Jmax —_ ﬁ ) (10)
with
L= Vi —i 28 (11)

00 Lans(ci + K)

The ratio VJ =V,




180 2.1.3 Gross primary productivit

GPP) can be expressed in the form of a light use efficiency model (Prentice et al., 2024; Bao et al., 2022; Monte

GPP = APAR - PPFD LUE, 12)

with fAPAR being the fraction of absorbed photosynthetically active radiation (unitless), PPFD being the photosynthetic photon
185 flux density, PPFD (mol s ! m~2), and LUE (g C mol~!) being the light use efficiency, calculated as

LUE = ¢o(T)fs(8) Mo . (1

Here, f3 is the unitless soil moisture stress function, generalising-the-approach-taken-in-Stocker-et-al(2020)-(Appendix-A)-
Acclimating quantities-are-derived-by-varying between 0 and 1 (see Eq. 15), with 0 representing the plant-available soil water
content in mm. Mc is the molar mass of C (12.0107 g mol~"). Note that the application of Eq. 12 assumes GPP to scale
of GPP and PAR and emerges from the assumption of the Coordination Hypothesis (Wang et al., 2017). However, it cannot be

expected to describe the functional dependencies at shorter time scales, where the limitation by the electron transport capacit
J, becomes effective (Mengoli et al., 2022: Farquhar et al., 1980).

Such acclimation is considered by employing the P-model theory to gradually varying environmental conditions (P, D, COq,

195 and PAR) where variations are damped aﬁekmgged%whameteﬁsﬁ&(eal%%a{ed%b a low-pass filter with a characteristic
empirically determined time scale 7 —Fhe

definition of the low-pass filter).

2.1.4 uantum yield efficienc

200 The temperature dependency of the quantum yield efficiency ¢ ean-be-turned-off-by-setting-a{see-Tab-—2-and-Appendix-A)to
0-CORG-modelsetup-in-(Stoeker-et-at2020)) is empirically parametrized as:

©o(T) = (1 +ay(T —b,)?), bounded to the range [0, ¢p]. (14)

This is in contrast to the formulation used in Stocker et al. (2020), where a,, and b, were effectively prescribed and not
subjected to calibration.

205 2.1.5 Soil moisture stress

Soil moisture stress is computed as

1- 000 ifgp >0,

fa(0) = B (15)
1 if x <O.
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P-model simulations

INPUT OUTPUT OBSERVATIONS

Static site information Ecosystem fluxes
drivers$site_info GPP, latent heat,

AET, PET, net radiation
[
Forcing time series — ot}”r;:v;‘:i:: x
driverss$forcing — - Acclimating leaf traits
V, J,
Simulation parameters -
drivers$params_siml ‘ Measured leaf
traits

fem=0 Yoo Cly
CiC, Ruv iWUE
Model parameters
par

soil water content,
soil temperature, snow

cost function
Calibration

Figure 1. P-model inputs, outputs, and target observations for the eatibrationparameter estimation. The model takes as inputs static site
informationlengitade, lati 5 ation— ¢ StOTe apaeity);—time series of meteorological forcingsttisted-in—TFab—1),
simulation parameters{spinup-years, reeyele-period-length,vegetation—typ i i i i

common model parameters for all sites;-model-parameters-(histed-in-Tab. 2)-The simulation returns a time series of several ecosystem fluxes,
acclimating leaf traits and ecosystem water-balanee-quantitiesstates. By comparing these outputs to-field-measurements-with measured traits

and flux data in a Bayesian calibration routine, model parameters can be estimated.

U

Ecosystem water balance
relative soil water content,

evergreen;—deeiduous;—grass with/withoutIN-fi em-and 5

whe

re 0* (mm) represents the threshold below which GPP is reduced. The soil meistare—stress—function—ean-beturned-off

a S o I nd—Append A O "RR
19 dOr atic PP . O D

is simulated with a bucket model of soil water content (uniform total water storage capacity), whereby the dynamics of # (mm

considers daily precipitation, the snow melt, a Priestley-Taylor-based evapotranspiration estimate, and runoff when the bucket
is full. Except for implicitly enforcin,

= 0) = 0 here, this formulation follows the description in Stocker et al. (2020) and

is based on the SPLASH model (Davis et al., 2017).
2.2 Calibration setups

Different calibration setups were used to illustrate the constraints imposed by the different calibration targets for the same task
of simultaneously fitting all parameters listed in Tab. 1.

Calibratable-parameters—in-the{rsofun}—The choice of calibration setups was guided by our expectation of constraints
contained in the different target data sets and their combinations, given the model structure. Using common priors across
(most) setups, the resulting parameter estimates can illustrate the constraints imposed by data alone. This approach can be seen

as an extreme form of the approach suggested by Cameron et al. (2022), where they increased the number of observations of

certain target variables to identify model structural errors. Here, the setups systematically tested each trait target individually:



Table 1. Forcing-timeseries-Daily-time-series Qverview of targets used and parameters estimatable in the foHowing-meteorological-vartables
are-required-for-simulationsix calibration setups. H-a-spin-up-period-is-speetfied;-For parameter description and units see Table 2. Columns
with ¢) mean the eorresponding-years-arereeyeled-for-the-spin-upposterior of that setup had been used as (truncated) prior.

Parameter-name-
Deseription- Data \ Onits- \ Model parameters
temp-Setup | Paytime-average-air-temperature-A\ °Ctmin-V]  Daily-minimumrair-temperature-GPP | °Ctmax—<)  Pailyn
a) mobnr s Lx
netradb) | Nevradiation Wonr Tx
SHOW-€) Snowfat-in-waterequivatentsx FﬂFﬂ—SiXN X_ X_ X_

225 A in setup a), VJ in setup b), and in combination in setup ¢); before then considering GPP alone setup d), and combined
with the traits setup e). Finally, setup h) tested a stepwise approach using the posteriors from setup c) as prior specification, to
inclusion of trait information in the final estimates in spite of potential model misspecifications.

We use the implementation of P-model implementationin the rsofun framework (Stocker et al., 2025) to model daily gross
primary productivity, GPP, and leaf-level traits, namely the ratio of the rates of photosynthetic capacities in the FvCB model,

230 VJ, and the isotopic fractionation of assimilated carbon, 4. Implementation details of the rsofun framework are provided in
Appendix C.

Three latent (not directly observable) parameters govern the optimality-guided water-carbon trade-off: the unit cost ratio,
. (governing the balancing of maintaining the carboxylation capacity versus the transpiration stream), the marginal cost of

*

maintaining the electron transport rate, ¢*, and the quantum yield efficienc

235 The parameters 7, 3, ¢* have previously been calibrated separately to data and have been been specified as fixed model

parameters in the P-model (Stocker et al., 2020; Wang et al., 2017). Here they were instead calibrated simultaneously to multiple_
calibration targets, together with additional parameters.

For simplicity, the same ¢, the soil water volume (mm) below which plants are stressed, was used across all sites.

Three different calibration targets were used in this study. A represents accumulated assimilates and is influenced by stomatal

240 opening through the leaf-internal to ambient carbon dioxide ratio. Eq. 2 indicates its dependency on the parameter
assumed constant throughout the season. Observations of this ratio (Eq. 5 and 10) are expected to inform the model parameters
[ and ¢”. The-maximum-a-posteriort GPP(¢) observations represent daily values of ecosystem-level photosynthetic CO; uptake
fluxes (with acclimation of LUE(%)). Egs. 12 to 3 illustrate the dependence of these observations to model parameters 3, c*, as
well as 07, 7. ¢5, G, a0d b

245 Note that V. and Jy,., both scale linearly with Eq. 5 and 10). This dependency to g cancels out when considerin

the ratio of the two VJ._
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3 The{rsofun}moedeHramework

2.1 Calibration target and test data

are-comprehensively-documented-(https:The data set consisted of 50 sites with GPP flux time series (172’055 site-dates in
total), 49 sites with a total of 597 individual VJ observations (multiple individual plants and//geee-bern-github-ie/rsefun)-

or species per site sampled), and 325 sites with a total of 2357 A observations. Data for all variables were split by sites

for model calibration (training) and out-of-sample testing (Fig. 2 and listed in Tab. S2 in the supplemental material). The

split into training and test data sets was performed in a stratified manner according to vegetation type and land cover class
(Beck et al., 2018; Copernicus Climate Change Service, 2019; Hufkens and Stocker, 2025) to ensure balanced representations
of each stratum in the test and training data set. For GPP sites, we additionally required that a site contained more than 12 years
of good-quality gap-free data to be available as a training site. We used GPP data from 12 sites for training and data from the
remainder 38 sites for testing. The VJ and the A data were split such that data from roughly 50% of all sites in each stratum
were used for training and testing, respectively.

GPP observations were taken from FluxDataKit (FDK v3.4.2) (Hufkens and Stocker, 2025; Pastorello et al., 2020), which
combines published releases of consistently processed eddy-covariance feehmqtte#he%&e—%e}eeteﬁiere—feﬁdemeﬂs&&ﬂeﬂ

10



Vcmax/Jmax sites

- -

G?}‘%e\

¢ éﬁb)

Test set (n=38) Test set (n=24) Test set (n=169)

Figure 2. Global maps of site with observations of the three target types in the training and test data sets.

280

nighttime flux partitioning was used (variable 'GPP_NT_VUT_REF’ )-derived-from-the-nighttimefluxpartitioning-method
tain only (daily) values that were derivedfrom-computed with at least 80% measured or good-quality, gap-filled (half-hourly)
values. Sites, classified as croplands or wetlands were removed, as well as any site with five or less complete years of data.
290  Based on visual inspection, the following site-year combinations exhibited spurious patterns and were additionally removed:

21 Sensitivi Ivsi

Observations of VJ were obtained from the data compilation of Smith et al. (2019), containing data reported for top cano

from multiple sources (De Kauwe et al., 2016; Keenan and Niinemets, 2016; Smith and Dukes, 2017; Kattge et al., 2011; Wang et al., 201

295

11



Fhe-Observations of carbon-13 isotope discrimination in leaf material A were taken from a global data set (Cornwell et al., 2018; Cornwe
subsetting only observations that were marked as C3 plants. We used A values that were derived from the isotopic signature
of leaf material in relation to the atmospheric signature at the date and latitude measurements were made.

2.1 Forcing data

300  For simulations of GPP time series, daily meteorological measurements, obtained in parallel with GPP observations, were used
as model forcing. Daily forcing data was taken from FluxDataKit (FDK v3.4.2) (Hufkens and Stocker, 2025 Pastorello et al., 2020)
- The required daily variables are listed in Tab. S1 in the supplemental material.
For predictions of the two leaf traits (A, VJ), the P-model implementation-in-{rsofun}-has-a-total-of nine-model parameters

are-avatrao or—-€caroratio aO—)—1Heto atrvery < omputattonar€oSto tta ouSry-€anota o34

305

’ atH was forced with average climate conditions during the growing season, derived from
the global WorldClim data set (Fick and Hijmans, 2017) (comprising monthly averages of daily minimum, maximum and
310 average temperature, vapor pressure, and solar radiation) and considering geographic positions of the sites.

The monthly WorldClim data were temporally disaggregated to daily values through polynomial interpolation (daily minimum,
maximum, and average temperatures, cloud cover fraction, solar radiation, and vapor pressure). Interpolated daily maximum
and minimum temperatures were then combined to an average daytime temperature using location-based day length assuming

a sinusoidal temperature profile (Davis et al., 2017; Peng et al.,
315 derived from the average vapor pressure and daily maximum and minimum temperature.

Daily values were averaged to conditions representing the growing season. Growing season was defined as the period
with daily average temperature above 0 °C. Then, daytime temperature, vapor pressure deficit [) and solar radiation were
averaged (mean) across all days of the growing season and used as model forcing (7, D, PAR) for a given-parameter-on-the
predietion;—non-temporally resolved single prediction of VI or A for each site. Atmospheric pressure P was derived from

320 the ETOPO:1 digital elevation model (NOAA National Geophysical Data Center, 2009), using site positions and assuming
standard atmospheric pressure. CO2 was taken from yearly mean values from the Mauna Loa record (Keeling et al., 2017),
using the corresponding observation year (or the year 2000 if observation year was unavailable).

2023). The average daytime vapor pressure deficit (D) was

2.2 Bayesian calibration

We estimated model parameters 3, ¢*, 7, o3, ay, by, and 6* (See Tab.2 for a description of parameters) in multiple combinations

325 of parameters and target data (Sec. 2.1 and Tab. 1). Parameter estimation was done through a Bayesian calibration approach

using Markov chain Monte Carlo (MCMC) sampling (Clark, 2004; Dietze et al., 2013), using the DREAMzs sampling algorithm
Vrugt et al., 2009) as implemented in BayesianTools (Hartig et al., 2023). Eight independent chains were run, each for 100’000
iterations split among three internal chains, burn-in period was set to 30’000 and convergence was checked visuall with trace

12



330

335

340

345

350

355

360

lots and Gelman-Rubin statistics (Gelman and Rubin, 1992). Parameters were calibrated to all sites’ data simultaneously and
are thus assumed to be universal across space and environmental conditions.

221 Likelihood

The choice of likelihood summarized our assumptions about different sources of uncertainties. Uncertainties in model inputs
arameters p and forcings x), in model structure f, and in the measured observations ¥ of all target types (van Oijen, 2017)

combine as

y+ey=f(px+e,)+es

where ¢, and &
asswme—¢ ¢ represent (unknown) observational errors and model structural errors, respectively. €, is the error in the forcin

data.

For all target variables, we assumed an additive and normally distributed model error term for-the-GPP-prediction-by-the
P-medel{Frotsiuk-et-al;2020)-and-express-around the model prediction (Trotsiuk et al., 2020) and expressed the fit to ob-

served data via the Gaussian log-likelihood -

1 1
ﬁ(p | y) = omo? exp (‘M

with target-specific standard deviations ggpe, 704, and b
procedure-deseribed-in-the next-seetion—oy). These standard deviations of the error model were estimated together with the
model parameters (Tab. 2). Individual observations were considered independent from each other, thus the total likelihood
for a dataset simply multiplied the likelihoods of each observation. With this likelihood, we neglected input error £, =0 and
lumped together observational uncertainties and model structural uncertainties into a single "mismatch’ or 'residual’ uncertainty
(van Oijen, 2017; Dietze et al., 2013).

in—Fab—2- Since the P-model is conceived as a single-big-leaf model (Fig. 1), it represents average properties and fluxes for
the whole canopy. The estimated residual uncertainty thus contains also a potential uncertainty due to the scale mismatch

13



between observation and model. Moreover, across-tree and across-species variabilities are also included since the likelihood
was computed for each VJ and A observations of individual trees.

2.3 Bayesian-ealibration

While describing leaf-level quantities at relatively high mechanistic detail, the link between the leaf and the canopy-scale was
365 not explicitly resolved. Instead, an empirical approach for leaf-to-canopy scaling of GPP was employed by treating the quantum
ield parameter @ to be representative for the canopy-scale and allowing it to be calibrated to ecosystem-level GPP flux data.

2.2.1 Priors

Prior distributions were defined based on prior knowledge and kept the same across all calibration setups, except for setup h)
370 where the posteriors of the model parameters that-have-been-identified-as-particularly-influential{See—4-1—[ and c* estimated
from setup ¢), were used as priors (Tab. 2 and shown in grey in Fig. 3). These inctude-the-medet-error-term,yposteriors from

setup c¢) were characterized as uni-variant normal distribution. For 3, it was additionally truncated to the mean = three times

the standard deviation.

The prior knowledge on the acclimation time scale 7 was approximated by a normal distribution (N (14, 64)) based on prior

375 findings (Mikeli et al., 2004; Liu et al., 2024; Mengoli et al., 2022) and truncated to the range from O to 40 days). For all other

parameters, uniform priors with distinct ranges were used. Ranges for §, e’ and ¢ were specified to range between 10% and
300% of published estimates of 146 (unitless), b0.41 (unitless), and 0.05 mol mol ™", respectively, (Stocker et al., 2020; Wang et al., 2017)
- We chose wide uniform priors with the aim that posteriors would solely be informed by the used observations. The optimal
temperature b, and shape parameter a,, were specified to range between 10 and 30 °C and -0.004 and -0.001 °C~2, The

380

385

390

on the error parameters characterizing the combined structural and observational uncertainty large, uninformative priors were
assumed.
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400

405

410

2.3 Prediction uncertaint

2.4 Inf ) Yieti . o

The parameter sets generated by the MCMC chains provide the basis for inference-{model-prediction)-and-prediction-uncertainty

model prediction including an estimation of the
uncertainty in the predictions on the train and test data set. Here, we propagated both characterized uncertainties: the parametric
and the residual (structural and observational) uncertainty.

Retaining-600-Retaining 20 samples from the combined Markov chains, statistieally-representative of the joint parameter
posterior distribution (estimated-during-the-ealibrationincluding parameter correlations), we ran the P-model for each set of

parameters to predict GPP-The-eredible-interval-was-computed-for-each-time-step-from-the posteriord bution-of predicted

the-pesterior-distribution-of-GPP(dark-erange-line)—test and training data set. These 20 sets of predictions represented the
arametric uncertainty of the model.
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450

smacJmaxAdditionally, for each prediction (i.e. target, site, and date combination) three
observational errors were drawn from the residual error model (characterized by ogpp, oA, and ¢;—+¢;—These-were-thentsed

ovyy) and added to the prediction. These 60 sets of predictions represented the combined parametric and residual uncertainty of

the model. A third comparison with observations was based on one set of predictions using the Maximum A Posteriori estimate

as a single set of parameters and without considering the residual uncertainty.

31

Calibrated parameters
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Figure 3. Prior and posterior distributions of the calibrated model parameters and error model terms in the setups. The maximum a posteriori

MAP) estimates are indicated with a dashed line and fixed parameters with solid lines. For parameter description and units refer to Table 2.

MCMC sampling with DREAMzs of 8 parallel, independent chains took between 2.5 (b) and 68 (h) hours to reach 100’000

iterations for the setups a) to h). The trace plot of the chain of setup h

Gelman and Rubin, 1992) are reported in the Appendix (Fig. D1).

Posterior distributions of the estimated parameters varied across the different setups (Fig. 3). Setup a

including computations of the scale reduction factors

using only A

as observational target) constrained S to a maximum a posteriori (MAP) of 207 (unitless), a median of 208 and with an

inter-quartile range (IQR) from 203 to 213 and the residual prediction error o to a MAP of 2.18 (unitless), which corresponds.
to a 10% of the mean of predicted A. Other parameters were not informed by the calibration and their posteriors remained
largely identical to their prior distributions. This reflects model structural dependencies of parameters and predicted quantities
(A is independent of the other model parameters, see Eq. 3).

4 Cali | empirical funeti

Setup b) (using only VJ as observational target) constrained ¢* to a MAP of 0.214 (unitless), (median of 0.397, IQR from 0.347

to 0.428). As revealed by the posterior correlation analysis, these two parameters showed a strong correlation (r = 0.86, Fig.
D2). These compensating effects were disentangled when simultaneously calibrating to A and V] in setup ¢). This constrained
to a MAP of 207.1 (unitless), (median of 207.9, IQR from 203.5 to 212.3) and ¢* to MAP of 0.419 (unitless) (median of
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475

480

485

490

495

0.425, IOR from 0.410 to 0.439), slightly hi Figs. 3 and D3).

The error model parameters associated with the two targets A and VJ were estimated to MAPs of 2.18%0 and 0.178 (unitless).
A—new-formulation—of-thetemperature-dependeney-of-the-quantum—yield-effieieney-Setups that use GPP as observational

target and uninformed priors — setups d), and e) — yield estimates of (3 that are at the lower bound of the uniform prior range (i.e

ush"

her than in setup b), and avoided the correlation of posteriors

14.6 (unitless)), while 7 is estimated to be exactly 1 day. This indicates that GPP observations " estimates of 3 towards

extremely high unit costs of transpiration in relation to carboxylation, and that no smoothing of the daily meteorological
conditions (Eq. B1) was necessary to optimize the likelihood of observing the GPP data. However, while improving the
likelihood of GPP, the fit with A observations was deteriorated in these setups, as indicated by an offset between model

informed by the reduced setup of c¢), mitigates this offset. Also here, the posterior estimate of 3 came to lie at the border of the

truncated region (14.6 (unitless)). The error model parameter associated with the GPP target was estimated to a MAP of 2.04

gCm~2s7! in setup h), which was slightly smaller than the error in setups d) and e). In the posterior parameters of setup h)
correlations of r = 0.89 remain between ¢/, and c* and of » = 0.81 between ( isintroducedin-the-{rsofun}package,allowing

s-and by, (Fig. D4).

0o(T)=c(1+a(T —b)?) if0<c(l+a(T—0b)?%) <1,

©o(T)=0 ifc(1+a(T—b)?) <0,

o(T)=1 ifc(1+a(T—b)?) >1.

3.1 Prediction uncertaint

there-differ from-the-calibratable parameters-in-the-package:-Model predictions were unbiased and residuals were of similar
magnitude when evaluated on the test and on the training data sets (Fig. 4), which indicates a good generalizability of the
parametrized model. Including structural and observational uncertainties on top of parametric_uncertainties only slightly
increased the deviations between predicted and observed targets in setup h), with strongest relative increases for GPP.

so)="0

I (0—0")+1 if0<0<0,

BO)=1 ifo>0".
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Figure 4. Density plot of residuals between predicted and observed values from the training and test sets for calibration setups a, b, d, and

h. Model output is computed with parametric uncertainty (filled area, based on 20 samples from the posterior distribution) and residual

uncertainty (solid line, based on 3 samples from error model). Model outputs are compared against individual observations (dates from all

sites pooled for GPP, and individual observations of each site for A and VJ).

A and GPP predictions based on MAP parameter sets of setup h) showed no magnitude-dependent bias (linear slopes of

regressions between predicted and observed values were close to 1), whereas VI showed a prediction range that appears too

large when compared to the observed range (slope close to 0, Fig. 5). Setup h) showed a slightly worse root mean squared error

RMSE) than setup ¢) for GPP, but clearly reduced RMSE for A and VJ.

Time series of GPP of a few select years on trainin

site data showed that the model successfully reproduced seasonal patterns and differences across site in GPP for most sites

Fig. D5), with some shortcomings in accurate simulations of GPP during under dry conditions, as seen for site US-Var, and a

US-PFa — a known bias (Luo et al., 2023).

0 -

4 Discussion

This study showed that a model for ecosystem photosynthesis and its acclimation to the environment can be robustly parameterised
and that its predictions of multiple variables generalise well across a wide range of environmental conditions. Multiple model
parameters can be estimated simultaneously by using diverse calibration target data types, combining ecosystem flux time
series and static, species-specific traits data. This demonstrates how the explicit representation of connections between traits
and process rates enable model-data integration on the basis of diverse observations, obtained at multiple organisational levels
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Figure 5. Predicted versus observed values for different target variables (A, VJ, and GPP along columns) and calibration setups (a, b,
¢ d. e, and h, along rows), evaluated on the test set. Model output is computed with Maximum A Posteriori parameter values (MAP)
for each calibration setup. Note that the MAP parameters from setup ) result in null-predictions of VI and GPP. Color indicates density,
red line indicates a linear regression. Green panel backgrounds indicate which variables were used as targets for model calibration in the
corresponding setup. Model outputs are compared against individual observations (predicted and observed daily GPP values from all sites
pooled and site-specific predictions against all observations from the respective site for A and VJ).
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— from the leaf to the canopy. The robustness of the parameter estimates is indicated by the convergence of the MCMC chains

ig. D1) and the resulting narrow posterior distributions of Bayesian parameter estimates (Fig. 3). Despite being calibrated

to only a relatively small set of sites with GPP data (IV =12), the calibrated model generalizes well, as validated against an
independent and much larger set of test data for GPP from 38 sites (Figs. 4 and 5).

Qur results confirmed the expectation that the use of multiple observational targets yields more robust parameter estimates
compared to a calibration setup that relies on a single data source, and that specific observation types imposed constraints for
specific model parameters, Leaf carbon fractionation observations, 4, allowed to constrain the unit cost ratio of carboxylation
to transpiration, Fig. 3). Observed ratios of the biochemical rates of carboxylation to electron transport, VJ, constrained
£ and ¢, albeit with strong correlations between them, indicating compensating effects and a lack of robustness in resulting
parameter estimates (Figs. 3 and D2). The combination of both these observation types allowed to constrain both parameters
simultaneously, avoiding correlations between parameter estimates. This indicates that the use of two observational targets
simultaneously made use of their complementary information content for parameter estimation in our model (Fig. D3).

i ' i ' ing-and Despite the general robustness of parameter estimates, we
found several limitations and aspects that indicate challenges for model calibration in our case. When observations of GPP.

were included in calibration setups, parameter estimates of 5 differed strongly from results obtained from setups that used

only observations of A and tended towards the lower margin of the uniform prior range — substantially lower than the value
used for direct parameterisatio of the model in previous work (Wang et al., 2017). 3 represents the ratio between the unit cost

of carboxylation to transpiration within the EEQ modelling framework applied here (Prentice et al., 2014). An extremely low.
value of
low values of /8 potentially reflects a compensating effect for the maintenance-of-the-BayesianTools-package,—Volodymyr
Trotstukfor-an-initiaktemplate-of-the R-package,-lack of GPP reductions under conditions of dry soils, e.g., during the dry.
summer periods at the site US-Var (Fig. D5). In other words, this apparent lack of robustness of parameter estimate ma

indicate a misspecification of the model structure. This interpretation could be tested with targeted setups (e.g., removing dry.
sites from the calibration data set) or by alternative specifications of the soil moisture stress that better accounts for its limitin

effect on GPP.

To address this challenge and avoid unexpectedly low estimates of the unit cost ratio parameter 5, we resorted to a step-wise
Bayesian calibration (MacBean et al., 2016) and used the posterior distribution of setup ¢) as a prior in setup h). This resulted

in the disappearance of offsets in A observation, a ¢* closer to, but not at, the upper limit of the prior (MAP = 0.58)
and . . . . . . L

implies relatively high costs associated with transpiration, which is driven by VPD. The calibration tending towards

Futures-program-J&H—B-D-S)—a sightly lower /0 than in GPP-only setup (d) or in the unconstrained GPP-A-V]J setu
The step-wise posterior estimation and prior specification of P-model parameters in setup h) yield estimates of all parameters

unitless, compared with 146 and the range from 200 to 240), ¢*=0.58 (unitless, compared with 0.41), and o = 0.05 mol mol~*
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compared to 0.05). However, the MAP estimate of 7 = 1, indicated an instantaneous acclimation appeared to yield better

agreement of model output with daily GPP observations, than a delayed acclimation using smoothed versions of the environmental

550 conditions. This contrasts with previous estimations of the acclimation time scale being on the order of 14 to 15 days (Mikeli et al., 2004; L

Remaining correlations in posterior parameters of setup h) between 7 and ¢* indicate some equifinality. These compensatin

effects indicate another potential source of misinterpretation of what the parameter ¢ represents in setup b) versus setup h). The

Bayesian approach allows propagating the effect of this into predictive uncertaintics by using posterior distributions instead
555 of point-estimates of parameters. Still, this entanglement might be resolved in future calibrations by fixing one of these two

parameters or by using additional observations. Future work is needed to look into causes of this posterior variability of ¢”,

identify potential observational constraints, and potentially to revise related model structures.

The calibrated model of setup h) showed unbiased predictions against observations in an independent test data set, indicating.

the model’s generalizability. Based on the universal validity of the EEO parameters across plant functional types and biomes,
560 the calibrated P-model can may be scaled to new locations sites and environmental conditions. However, it should be noted

that our estimates of prediction uncertainty and the finding of robust generalisability only applies to environmental conditions
et al., 2023). Further

that are within the domain of (or similarly distanced to) sites used for training and testing here (Ludwi

caveats apply. The choice of the specification of soil moisture stress, which uses a single global parameter 67, may be overly.
simplistic for describing diverse physiological responses to dry-downs across sites characterised by different soil texture
565 (Fuetal., 2022; Wankmiiller et al., 2024) and the model neglects the highly variable rooting zone water storage capacities
across space globally (Stocker et al., 2023). Although generalization to the test data set did globally show unbiased predictions
Fig. 4) ., US-Var, Fi
and potential revision of the related process representations. An improved representation of soil moisture stress effects and
across:site variations of critical soil moisture thresholds and storage capacities may potentially also mitigate the need for

570 targeted interventions into the calibration procedure, e.g., through the truncation of the prior for 5 or the step-wise approach

to model calibration. More specifically, 07 could potentially be expressed by additionally considering soil structural information
Wankmiiller et al., 2024), which could be provided as additional information for each site. Alternativel
allows for the use of hierarchical models (van Oijen, 2017) that could make use of potential, globally available predictors (or
575 Generally, design choices related to the Bayesian likelihood specification and parameter calibration were adequate to
showcase the sensitivity of parameter estimates across setups and retrieve an unbiased, generalizable model. While simple, the
additive Gaussian error model chosen for the likelihood allowed to showcase the constraints, it could use improved functional
forms more suited e.g. to the positivity of GPP, or to disentangle the observation uncertainty from model structural uncertainty.
(van Oijen, 2017). Independent estimates of observation uncertainty could be included as fixed parameters or as informed
580 priors. This would potentially lead to a reduced residual error representing more closely the structural model uncertainty.
Potential estimates for these could be the error on GPP measurements or errors of a trait measurement to represent the model

scale (i.e. the ecosystem-level averages across species instead of individual observations).

across all sites , shortcomings were visible for certain sites (e. . 5) and warrant a re-consideration

Alternatively, fitting to average
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observations instead of individual observations might reduce the (independent) observational errors. This would mean fittin

to averaged traits over different species at a given site or weekly cumulative fluxes instead of daily values.
585 A strength of the Bayesian approach is to update model parameters iteratively with additional data by using previous posterior

as new prior distributions. Our illustration of this a

roach in setup h) relied on manual extraction and specification of these

distributions. A future development step for the rsofun framework would thus be to support easier specifications of these type
of stepwise calibration (MacBean et al., 2016) directly through the model interface.

590 e e e e e D e Do L e L e e el
1261736196, https:/idei-org/H0:5104/bg-12-6173-2015,2615-P-model is limited in scope to the to canopy. We found even
for models with this degree of complexity, parameter interactions and structural model errors can to lead parameter biases.
The stepwise calibration approach allowed to rectify the perceived bias in 3. This violated the initial aim of simultaneously.
estimating all parameters, but is interpreted here as indications of where to find structural deficiencies and target model

595  improvements (Oberpriller et al., 2021). More comprehensive vegetation models of larger scope will likely face similar challenges,
considering that structural deficiencies are unavoidable and more parameter interactions may arise through feedbacks in
the soil-plant system. Our findings indicate that stepwise approaches to model calibration can be potential solutions to this

challenge.

>

600

+693;-https://dot-org/10:3390/rs15061693,2023-While this study looked at seven model parameters simultaneously, several
other parameters were held fixed, namely those involved in describing temperature and pressure dependencies of physical and
physiological quantities, isotope fractionation, etc. This simplified the calibration and parameter estimation task, but assumed
that the uncertainty stemming from these is negligible for the prediction of target variables. This is a strong assumption and
605 should be relaxed in future attemps at calibrating P-model.

org/O-HHH/jH461-0248:2004:00702:%-2004-Lastly, the chosen likelihood ignored input data uncertainty .. For GPP sites,
we expect small uncertainty in meteorological variables thanks to local measurements, but APAR data is obtained from satellite
remote sensing data, which is likely to include uncertainties. For A and VJ sites, input forcing was based on a global dataset

610 of high spatial resolution (~1 km around the equator). However, topographical effects and related micro-climata that deviate
from the larger climate could be remaining sources of errors.

Aetivity-in-The rsofun R package provides a user-friendly and efficient implementation of the HigherPlant; 4715051977
P-model and off-the-shelf model-data assimilation functionalities through its connection to the BayesianTools R package

615 (Hartig et al., 2023), while maintaining flexibility for altered calibration setups and likelihood definitions. P-model’s computational
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efficiency offered the potential for effective model parameter and uncertainty estimation using Bayesian statistical methods in

combination with flux and traits data here.

~Qur model implementation

as an R package takes inspiration from the 73PG forest model (Trotsiuk et al., 2020), and our implementation of model-data

620 integration on the basis of ecosystem data serves similar, yet reduced, aims and functionalities compared to PEcAn (https:
/Ipecanproject.github.io/index-html) (LeBauer et al., 2013). rsofun is designed to be minimally reliant on package dependencies
and connections to specific data, while limiting the scope to a predefined set of process models (currently P-model, BiomeE at
an experimentation stage). rsofun and the implementation of our simulations and analyses analyses shown here in accompanying
code (see code availability statement) and package vignettes provide a blueprint for model-data assimilation.

625

5 Conclusions

This study used rsofun (available as an R package) to calibrate latent P-model parameters to a set of flux and traits data, obtained

from 193 training sites and 231 test sites. Predictions across all test sites showed that the calibrated model generalized well,
630 not showing any biases and similar prediction residuals between train and test data. The Bayesian calibration also exhibited

challenges. Structural uncertainty, the imbalanced data set, and a potentially too simplistic likelihood lead to biased parameters
5) and predictions (A) in the first calibration attempt. An alternative calibration setup made use of a stepwise calibration

and the hierarchical design of the model structure and predictions, enabling a successive model integration and parameter

calibration, The necessity for this approach to obtain robust and reliable parameter estimations may indicate model structural
635 deficiencies, which we identified here as primarily being related to the representation of effects by dryness in soil and air.

640

Code and data availability. The rsofun R package can be installed from CRAN (https://cran.r-project.org/package=rsofun) or directly from

its source code on GitHub (publicly available at https://github.com/geco-bern/rsofun under an AGPLv3 licence). Versioned releases of the
GitHub repository are deposited on Zenodo (https://doi.org/10.5281/zenodo.15189864). Code to reproduce the analysis and plots presented
645 here is contained in the repository at https://github.com/geco-bern/rsofun_doc and archived on Zenodo (Bernhard and Stocker, 2025). The
model forcing and evaluation data for GPP sites are based on the publicly available FLUXNET2015 data, prepared by FluxDataKit v3.4.2
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655

660

665

670

(10.5281/zenodo.14808331). Scripts for generating these data files from open access sources are contained in the repository in the subdirec-
tory ’data-raw/’. Outputs of the analysis presented here are archived in the subdirectory ’analysis-output/’. The model forcing for A and VJ
sites are based on the publicly available WorldClim (Fick and Hijmans, 2017), ETOPO1 (NOAA National Geophysical Data Center, 2009),
and Mauna Loa CO; (Keeling et al., 2017) data. The model evaluation data for A sites are based on data associated with (Cornwell et al.,
2018) available at (Cornwell, 2025). The model evaluation data for VJ sites are based on the freely available subset of the data from (Smith

et al., 2019). Scripts for generating these data are contained in the repository in subdirectory ’data-raw/’. Outputs of those scripts and of the

analysis presented here are archived in the subdirectory ’data/’ and ’analysis-output/’.

-Damped acclimation to daily environmental conditions was considered
for the GPP prediction, while for A and VJ predictions used growing season average conditions.

R (X} >

Samplers-and-Toolsfor Bayestan-Statisties; 2023 The the low-pass filter of characteristic time scale 7 (days) is defined as

T+ 1) =T(0) + (T(1+1) - T(0) intialized as T(0) = T'(0), @)

where T is the low-pass filtered quantity (here temperature) and 7" the daily observations, resulting in a daily time series of
the damped quantity. Equivalent expressions with the same 7 are used for P, D, CO5, and PAR.
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Appendix C: The rsofun model framework

A qa

N Qiting A

of Model- Outputs-httpssofun implements the P-model (Stocker et al., 2020) and provides off-the-shelf methods for Bayesian
(probabilistic) parameter and prediction uncertainty estimation. rsofun is distributed as an R package on R's central and public
package repository. rsofun also implements the BiomeE vegetation demography model (Weng et al., 2017, 2015). The latter is
not further described here and is implemented at an experimental stage in rsofun version v5.0. The P-model implementation
in rsofun is designed for time series simulations by accounting for temporal dependencies in the acclimation to a continuously.
varying environment. Function wrappers in R make the simulation workflow user-friendly and all functions and input forcing
data structures are comprehensively documented (https://eran-—projeet-orggeco-bern. github.io/package=sensitivity; 2023+

A He

A Eng R

» O D__A aan []
a W v

BioSeienee;-64-701—710:https:rsofun/dei—orgHH0-1093/biosei/binb98;2044-).

An_rsofun,
model parameters can be calibrated using a calibration function calib_sofun (), providing two modes of calibration, one
based on generalised simulated annealing ({GenSA} R package) for global optimization (Xiang et al., 2013) and one based
on Markov chain Monte Carlo (MCMC) implemented by the BavesianTools R package, giving access to a wide variety of
Bayesian methods (Hartig et al., 2023). The former being fast, while the latter provides more informed parameter optimization
statistics (Clark, 2004; Dietze et al., 2013). This
parameters. A set of standard cost functions are provided for the calibration, facilitating the exploration of various metrics or
target variables and the specification of calibrated model parameters. Furthermore, the vignettes accompanying the package
(https://doi-orggeco-bern, github.io/10-H046rsofun/i-1365-3040:2002:00891- %2002

NMen

ives the option for both exploratory and more in-depth analysis of estimated
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Table 2. Parameter listing with description, including Maximum A Posteriori (MAP) estimates and prior specifications, obtained from the
Bayesian-model-different calibration setups (See—4-2)-are-tisted-in eotumn—Vatues’columns). The values given in square brackets represent

the lower and upper bounds of uniform prior distributions are-given-in-parenthesesor truncated normal prior distributions. Parameters that
were held fixed for the calibration are marked with a single number in brackets and an asterisk (*) in the corresponding setup columns . Fixee

o

nform on - lope de= 6°F de=4 ON_eale OR—= O nd—to
a Wa H atty va a a

Symbol Description
Parameter Hnits Vatues Setupc)  Setupd)  Setupe)  Setuph)
fame Setupa)  Setupb)
Units

Quantum yield at optimal

o kphio temperature mokmel—  6:041 0.02 0.02 0.08
@5 molmol™! [IERIRR [0.02, [0.02, [0.02,
015 0.15] 0.15] 0.15]
Shape parameter for the -0.001y-
@l kpl;P.‘ejf’aftatempt;—:rature dependence of e 0:0023 [-0.004, 0.001 0.001
c the quantum yield 0004 -0.001] [-0.004, (-0.004,
-0.001] -0.001]
Optimal temperature for the
lﬂ)}ﬁ klEﬁ]r}ej%lfjbquanturn yield = H53—06; %Svg gSWZ Z,7v§
°C 30)- [10, 30] [10, 30] [10, 30]
0*
motstare—stress—funetion loew—seoil  [1, 250] [1,250]
threshold (eg. 15) intereept
for-the—seoil
meotstare
stress
funetion
23.9
[1,250]
153 Unit cost ratio of car-
beia:tmﬁeesm?mﬁonz . ¢ unitless H6x—>by rd—to—vemax Ratio—of unitless 0:044=
unitless. Vermaso-to transpiration 207.3 187 207.1 temperature-nokisised 187.5
[14.6, [14.6, [14.6, dark [14.6, W
438.0] 438.0] 438.0] respiration  438.0]
Fazs)
to—the
temperatare-normalised
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