

High biodegradability of water-soluble organic carbon in soils at the southern margin of the boreal forest

Supplementary Text:2

Supplementary Table:1

Supplementary Text

S1. Additional details of the analysis of WSOM by spectroscopy

Fluorescence Regional Integration (FRI) and the percentage of fluorescence response ($P_{i,n}$) were used for further analysis of the fluorescence spectra in five regions. The volume of the Excitation-Emission Matrix (EEM) $i(\Phi_i)$ was obtained through the formula (1) by integrating the area under the excitation-emission spectra. $\Delta\lambda_{ex}$ and $\Delta\lambda_{em}$ represent the intervals of excitation and emission wavelengths, respectively. $I(\lambda_{ex}\lambda_{em})$ is the fluorescence intensity for each matching set of excitation-emission wavelengths. MF_i is the multiplication factor for each region. The normalized volumes of the excitation-emission regions ($\Phi_{i,n}$, $\Phi_{T,n}$) and the percentage of fluorescence response ($P_{i,n}$) were calculated using the following formulas (Chen et al., 2003):

$$\Phi_i = \sum_{ex} \sum_{em} I(\lambda_{ex}\lambda_{em}) \Delta\lambda_{ex} \Delta\lambda_{em}$$

$$\Phi_{i,n} = MF_i \Phi_i$$

$$\Phi_{i,n} = \sum_{i=1}^5 \Phi_{i,n}$$

$$P_{i,n} = \frac{\Phi_{i,n}}{\Phi_{T,n}} \times 100\%$$

S2. Calculation of BWSOC content and k

The calculation formulas for the content and relative proportion of BWSOC under specific incubation days are as follows (Houston, 2012; Vonk et al., 2015):

$$BWSOC_t = WSOC_{t=0} - WSOC_t$$

$$BWSOC(\%)_t = \frac{BWSOC_t}{WSOC_{t=0}} \times 100\% = \frac{WSOC_{t=0} - WSOC_t}{WSOC_{t=0}} \times 100\%$$

Microbial utilization of low-concentration substrates follows first-order reaction kinetics, wherein the change in BWSOC over time follows the formula:

$$\frac{dBWSOC}{dt} = kBWSOC$$

Where BWSOC represents the microbial degradable water-soluble organic carbon at any given time, k is the reaction kinetic constant, and t is the incubation time. Integrating the above equation yields:

$$BWSOC = BWSOC_u \times e^{-kt}$$

Where $BWSOC_u$ is the total amount of microbial degradable water-soluble organic carbon in the substrate. Therefore, the value of $BWSOC_t$ at any incubation time t can be expressed as:

$$BWSOC_t = BWSOC_u \times (1 - e^{-kt})$$

Non-linear exponential fitting is performed on $BWSOC_t$ to obtain the reaction kinetic constant k value.

Supplementary Table

Table S1. Partition range of fluorescence spectra, Ex represents the excitation wavelength, and Em represents the emission wavelength.

Region	Ex	Em	Component
I	220-250	250-330	Tyrosine-like aromatic protein
II	220-250	330-380	Tryptophan-like aromatic protein
III	220-250	380-500	Fulvic acid-like matter
IV	250-400	250-380	Soluble microbial byproduct-like matter
V	250-400	380-500	Humic acid-like matter

Reference

Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescence Excitation–Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter, *Environmental Science & Technology*, 37, 5701-5710, 10.1021/es034354c, 2003.

Houston, P. L.: *Chemical kinetics and reaction dynamics*, Courier Corporation2012.

Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, *Biogeosciences*, 12, 6915-6930, 10.5194/bg-12-6915-2015, 2015.