
Dear editor and reviewers, 

Thank you for your time and for the constructive feedback on our manuscript titled 

"Breathing Storms: Enhanced Ecosystem Respiration During Storms in a Heterotrophic 

Headwater Stream". We appreciate your thoughtful and insightful comments, which will 

help us improve the quality and clarity of the manuscript. Below, we respond to each 

comment. The original text of the decision letter is in black and italics, while our responses 

are in dark blue. 

From RC1 

Jativa et al. present an elegant study on stream metabolic rates during storm events from 

continuous data collection in a non-perennial Mediterranean stream. The framing of the 

story is logical and methods clearly address the narrative throughout the manuscript. Indeed, 

this contributes to a small but intriguing literature on resistance and resilience of ecosystem 

function in rivers. I have no large comments but raise a handful of additions to improve the 

clarity of the methods in the specific comments below and a comment on addressing temporal 

variability in metabolic patterns in rivers that could be expanded on in the introduction. 

Many thanks for your positive and encouraging comments. We are glad that you find our 

study elegant and clear, and we have worked carefully to incorporate your comments in the 

revised version of the manuscript.  

L30: ‘regulates’ 

We have changed to “regulates” as suggested. 

L50: ‘triggers’ and ‘stoppers’ seem like unnecessary potential jargon. Is there another 

schema or metaphor that could be used? 

We appreciate your concern about potential jargon. However, and considering that Reviewer 

2 was prone to these concepts, and actually asked to better frame and emphasize these ideas, 

we have chosen to keep the terms “metabolic triggers” and “metabolic stoppers” in the 

revised version of the manuscript.  We believe that these are easy-to-catch concepts that can 

be used by other authors in future studies to describe the contrasting effects of storm events 

on stream metabolism. To ensure that these terms are interpreted correctly, we have added 

some clarification in the introduction to make the rationale behind clearer. Updated text (L52-

56):“... increasing discharge can act either as a “metabolic trigger” or as a “metabolic 

stopper” depending on the balance between biological processes and physical disruptive 

forces. A storm event can trigger stream metabolic rates by supplying limiting resources, 

such as nutrients and organic matter. Conversely,  a storm event can inhibit metabolic 

activity either through biofilm scouring or by increasing turbidity and reducing light 

availability.” 



L71: I have no disagreement with any of the introduction to this point, but I think the strong 

temporal variability in GPP and ER need to be emphasized as potential variability to deal 

with in identifying resistance or resilience. A wide range of recent literature have shown 

within year and across year variability in GPP that are influenced by river size, hydrologic 

variability, and light availability (e.g., Savoy et al. 2019; Marzolf et al. 2024). I would also 

recommend citing Lowman et al. 2024 as an example of identifying recovery of GPP in 

response to storm events across large scales. 

Thanks for the suggested readings; these three papers are very interesting and relevant for 

our study. Following your recommendation, we have added these citations to the revised 

manuscript. Further, we agree that temporal variability in stream metabolic rates could 

influence the detection and interpretation of resistance and resilience to storm events. 

However, note that our estimates of resistance and resilience are expressed as relative 

changes of GPP and ER to pre-event metabolic rates. Thus, any potential temporal variability 

in metabolic rates did not influence our estimates.  

L116: reviewer preference for ‘concentration’ instead of ‘levels’ 

We have changed to “concentration” as suggested 

L122: odd wording. Maybe change to ‘we installed a monitoring station in the stream with 

upstream area of 9.9 km2’. 

We have changed the sentence to “... we installed a monitoring station in the stream with an 

upslope contributing area of 9.9 km²” 

L125: what is average depth in this case? In a stilling well or staff gauge? Or is this hydraulic 

depth of the 200 m upstream reach? Are the pools located in areas that may alter or disrupt 

advective flow and create longitudinal heterogeneity in DO patterns (Rexroade et al. 2025)? 

We agree with the reviewer that stream depth might vary along the 200-m reach. In this study, 

average stream depth was estimated from water level measurements recorded by a pressure 

sensor installed in a stilling well. To verify the representativeness of this value, we conducted 

manual depth measurements at random transects across the reach every two weeks. We have 

clarified this procedure in the methods section. Updated text (L137-141): 

“Stream water depth (h, in cm) was estimated from 10-minute pressure measurements using 

a HOBO water level logger installed in a stilling well, with atmospheric pressure corrections 

applied using a paired barometric logger located in a nearby tree. To verify the 

representativeness of these data across the 200-m study reach, manual depth measurements 

were conducted biweekly at randomly selected transects. These manual measurements were 

also used to calibrate the water level data, confirming that the sensor reliably captured 

overall depth variability during both baseflow and storm conditions.” 



We also agree that pools can generate longitudinal heterogeneity in advective flow and that 

this could influence stream metabolic measurements, especially during low flow periods. To 

assess this effect, we installed two DO sensors along the reach during the transition from wet 

to dry conditions in 2023. These data showed similar DO patterns at the top and the bottom 

of the reach, suggesting that the pools did not disrupt advective flow at the scale of our 

metabolism measurements during that particular period. Given that our analyses focus on 

storm events, when longitudinal connectivity is higher than during the transition from wet to 

dry conditions, we are certain that the influence of slow-flow zones on DO dynamics was 

negligible in the present study.  

L129: how was lux converted to PPFD? This is an increasingly common practice in the 

literature and readers would benefit from specifics on how this was done for use in their own 

studies. 

In the revised Methods section, we have clarified this point as follows (L134-135): 

“Lux values from the two sensors were averaged and converted to photosynthetic photon flux 

density (PPFD, in μmol m-2 s-1) using a conversion factor of 0.0185, which is commonly 

applied for forested environments (Thimijan and Heins, 1983). The resulting PPFD values 

were then aggregated into daily totals.” 

L150: What value of Q during the storm event was used in calculating RC? Or is it the total 

water flux during the storm (i.e., the integral of stream flow/total precipitation)? A few more 

details would be welcome as this is a potentially useful metric for others to use. 

In the revised Methods section, we have clarified this point as follows  (L160-162): 

“The RC was calculated using the total water flux in mm during each storm event, estimated 

as the integral of Q over P. This cumulative approach accounts for antecedent moisture 

conditions and captures the stream’s overall hydrological response to each storm event, 

avoiding dependence on potentially unrepresentative single-point Q values.” 

L155: this is a great presentation of metabolism data collection and modeling. One addition 

I would like to see is how mean depth was determined. Mean depth is the average cross-

sectional depth of the upstream contributing reach, as is defined in this study as the 200 m 

upstream of their sensor installation. Mean depth is often the most difficult measure to obtain 

from a stream reach and across flow conditions but can be estimated in similar ways with 

rating curves and presumably available with the data collected for the propane injections. I 

would like to see 1-2 sentences added to this section describing how mean depth was 

determined. And another sentence on QAQC approaches to the continuous data and how 

DO.sat was calculated too (basically address how each of the inputs to streamMetabolizer 

were prepared). 



Thanks for the positive comment. In a previous comment we already addressed how we 

measured and validated mean water depth and presented a corrected version of the text in the 

manuscript (L137-141). Moreover, we have added this clarification (L172-176): 

“All inputs for the streamMetabolizer model (i.e., light, water temperature, depth, DO, and 

DO saturation) were derived from the high-frequency sensor data described in Section 2.2. 

DO saturation was calculated from 10-minute water temperature and barometric pressure 

values using the García and Gordon (1992) solubility equation. Sensor data were quality-

checked by removing implausible values (e.g., negative DO, sensor spikes) and smoothed 

using LOESS regression (span = 0.03) to reduce noise and filter outliers.” 

Finally, in the Supplementary Materials (Appendix 1), there is a section called “Data 

preparation” detailing the step-by-step QA/QC process.  

L166: this is a great way of constraining K in the model inputs and a great example for future 

researchers to approach single-site evaluations. How well does the coverage of propane 

injections cover the hydroperiod in the stream? These injections are often biased towards 

lower flows for logistical reasons, but I wonder how well empirical measures were obtained 

at higher flows? And as you say in L174, getting metabolism estimates during highest flows 

is difficult or impossible based on data and/or the models failing to converge on days with 

high flows. 

We were able to conduct propane additions across a wide range of flows, from 0.6 to 32 L 

s⁻¹. Logistic constraints would have been an issue, but the truth is that during the period in 

which we were able to conduct gas additions (2022-2024), there was an intense drought that 

precluded us from performing propane additions at higher discharges. We don’t discard the 

idea of conducting more propane additions in the future to better constrain this parameter. 

Nevertheless, and for the sake of this study, note that we verified the accuracy of the 

empirically measured K₆₀₀ values by comparing them with independent estimates obtained 

from both the night-time regression method (Odum, 1956) and hydraulic geometry-based 

predictions (Raymond et al., 2012). This exercise showed that K₆₀₀ obtained from propane 

additions were similar to those estimated with the hydraulic geometry method (Raymond et 

al., 2012). Thus, we are confident about the robustness of our K₆₀₀-Q relationship. To further 

clarify this procedure, we have included the comparison curves showing K₆₀₀ values from 

propane additions alongside those predicted by the other two methods in the Supplementary 

Materials (Figure S1b).   



 

Figure S1. Mean daily discharge (Q) and gas exchange coefficient (K600). (a) K₆₀₀ estimates 

from 11 propane tracer additions using a mixed tracer injection method (Jin et al., 2012). A 

logarithmic relationship between Q and K₆₀₀ was derived from these measurements. (b) K₆₀₀ 

estimates for all days before, during, and after storm events using three methods: night-time 

regression (yellow dots, n = 417), hydraulic geometry following Raymond et al. (2012) (grey 

dots, n = 774), and modeled K₆₀₀ values (black dots) calculated using the Q–K₆₀₀ relationship 

derived from panel (a). 

L206: subscript PImax as is in L194 

We have changed to “PImax” as suggested 

L280: might nit-pick on the ‘biota’ part of the response. Yes, organisms from bacteria to 

macro-fauna contribute to ecosystem metabolism, particularly ER, but with that statement, I 

would anticipate some measure of re-colonization of organisms post-storm events, whereas 

the response variable in this study is integrative ecosystem-scale metabolic function. 

We acknowledge that our study evaluates stream metabolism as an integrative, ecosystem-

scale function, rather than tracking biotic recovery directly. To better reflect the nature of our 

response variable, we have revised this sentence and refer to stream processes rather than 

biota, thus avoiding any potential misinterpretation (L302).  

 

 



Figure 1) should the caption for the orange dot also include ‘ER’? 

We included only GPP for the orange dot because it represents a light-limited scenario, which 

affects GPP but not ER. Since ER is not directly influenced by light availability, it was only 

associated with the blue line. 

Figure 4) It maybe my computer screen but it’s difficult to see the non-filled circles against 

the filled circles. Might recommend a different, contrasting color. Also, purely aesthetic, but 

can the x-axis be extended to 1000? An additional component that may help the reader 

discern the relationship with flow: could a vertical line be added where the typical storm 

flow begins? Or where is the typical baseflow? This would create a part of the graph with 

baseflow or losing flow metabolism could be easily compared with gaining or stormflow 

metabolism. If there is not a single or narrow range of flows that separate base from storm 

flows, disregard this final comment. 

Thanks for your suggestions. We have removed the points corresponding to estimates that 

failed quality checks, as they may be misleading to the reader.  

Regarding the suggestion to include a vertical line to separate baseflow from stormflow 

conditions, we agree that such a reference could be helpful. However, given the wide range 

of storm magnitudes observed in our dataset, there is no consistent discharge threshold that 

marks the onset of stormflow. Instead, we have highlighted the days prior to each storm (i.e., 

baseflow conditions) using a different color in new Figure 4. This change allows for a clearer 

visual distinction between baseflow and stormflow conditions while accounting for the 

variability in stream discharge across events.  

 

 

 

 

 

 



 

Figure 4. Relationship between mean daily discharge (Q) and daily a) gross primary 

production (GPP) and b) ecosystem respiration (ER) across all individual storm events (in 

blue) and for the days 1 to 6 prior to each event (orange). The black line represents the linear 

regression between variables (only shown when p < 0.01) and the shaded area indicates the 

95% confidence interval. Note that regressions were based only on storm event days.  

Figure 5) Just to be sure, the lines of best fit are coming from the methods text L193-199? 

What model comparison or evaluation was done to determine linear, logarithmic, or 

exponential was the ‘best’ fit to the data? Could all the evaluations be compiled into a 

supplementary table, perhaps with AIC and AICw values? 

Thank you for this suggestion. We have included a supplementary table summarizing the 

model comparisons to enhance transparency (Table S4). After conducting AIC-based 

evaluations, we found that linear and logarithmic models were equally supported in two 

cases: the relationships between ΔQ and ΔER, and between ΔQ and RTER. These findings 

have been incorporated into the Results section, and Figure 5 has been updated accordingly 

to show both relationships. Additionally, we chose not to include exponential models, as they 

were not significant in any case and did not align with our expectations.  



Table S4. Comparison of linear and logarithmic regression model performance comparing hydrological, 

environmental, and biological variables. Each row shows a pair of variables tested as predictors and responses. 

For each model type, the Akaike Information Criterion (AIC), p-value, and coefficient of determination (R²) are 

reported. Predictor variables include maximum rainfall intensity (PImax), storm duration (D), runoff coefficient 

(RC), change in discharge (ΔQ), daily discharge (Q), temperature (T), and light (PAR). Response variables 

include gross primary production (GPP), ecosystem respiration (ER), metabolic resistance as the change in 

metabolic rates between the storms and pre-storm conditions (ΔGPP, ΔER), and metabolic resilience as 

recovery time (RTGPP, RTER). In bold are the models that were finally selected based on AIC and p-values (p 

value < 0.01). When the difference in AIC between the two models was less than 2, we considered them equally 

supported. Missing values (--) indicate cases where logarithmic transformation was not possible. 

  Linear model Logarithmic model 

Relationship explored AIC p value R2 AIC p value R2 

PImax GPP 126 0.035 0.13 129 0.183 0.05 

PImax ER 232 0.015 0.17 234 0.034 0.13 

D GPP 131 0.632 0.01 130 0.424 0.02 

D ER 236 0.104 0.08 237 0.157 0.06 

RC GPP 131 0.775 0.00 131 0.659 0.01 

RC ER 238 0.386 0.02 239 0.650 0.01 

ΔQ GPP 130 0.312 0.03 131 0.660 0.01 

ΔQ ER 237 0.212 0.05 236 0.143 0.06 

Q GPP 1405 0.025 0.01 1409 0.803 0.00 

Q ER 2549 < 0.001 0.21 2586 <0.001 0.12 

T GPP 1903 0.06 0.01 1902 0.04 0.01 

T ER 3554 <0.001 0.06 3552 <0.001 0.06 

PAR GPP 128 0.097 0.08 125 0.017 0.16 

PAR ER 239 0.734 0.00 239 0.753 0.00 

PImax ΔGPP 391 0.477 0.02 391 0.539 0.01 

PImax ΔER 341 0.352 0.03 342 0.862 0.00 

D ΔGPP 391 0.672 0.01 391 0.526 0.01 

D ΔER 342 0.936 0.00 342 0.928 0.00 

RC ΔGPP 391 0.663 0.01 391 0.739 0.00 

RC ΔER 340 0.216 0.05 339 0.103 0.08 

ΔQ ΔGPP 387 0.034 0.13 388 0.071 0.10 

ΔQ ΔER 325 <0.001 0.37 325 <0.001 0.39 

PImax RTGPP 153 0.427 0.02 152 0.184 0.05 

PImax RTER 150 0.864 0.00 150 0.563 0.01 

D RTGPP 151 0.110 0.08 151 0.161 0.06 

D RTER 148 0.246 0.04 149 0.352 0.03 

RC RTGPP 153 0.380 0.02 153 0.930 0.00 

RC RTER 147 0.132 0.07 148 0.221 0.05 

ΔQ RTGPP 153 0.490 0.01 153 0.822 0.00 

ΔQ RTER 126 <0.001 0.49 128 <0.001 0.46 

RTGPP ΔGPP 387 0.046 0.11 -- -- -- 

RTER ΔER 321 <0.001 0.45 -- -- -- 



From RC2 

General comments:  The authors investigate how storm events influence stream metabolism, 

GPP and ER, in a headwater stream, by using high-frequency DO, hydrological, and 

environmental measurements to analyze 35 storm events, applying Bayesian modeling. A key 

strength of this study lies in its robust, high-resolution dataset, which allows for a detailed 

examination of metabolic dynamics. The clear finding is that most analyzed storms (those 

with Q < 100 L/s) act as "metabolic triggers" significantly stimulating ER and demonstrating 

a positive relationship between ER stimulation (ΔER) and storm magnitude (ΔQ). The second 

finding is also very nice information about the quantification of metabolic resilience, 

particularly the finding that ER recovery time increases with storm magnitude but appears 

to saturate around 6 days. 

Despite these strengths, the manuscript requires major revisions to address the conceptual 

framework established in the Introduction fully and to enhance the robustness and 

transparency of its interpretations. Specifically, revisions should focus on (1) evaluating the 

concept of metabolic saturation introduced in the Introduction section, (2) addressing the 

implications of excluding high-flow data (Q>100 L/s) for testing the "stopper" hypothesis 

and the overall representativeness of the findings, and (3-optional) acknowledging 

uncertainty related to gas exchange estimation during dynamic conditions.  

Many thanks for your positive and insightful comments. We are glad that you find our dataset 

robust and our findings nice and clear. We have worked to improve the revised version of 

the manuscript following your suggestions and comments. Please, find below our responses 

to your specific queries regarding how to improve the discussion of the metabolic saturation 

concept and the implications of excluding the high-flow data.  

Specific comments: 

Lines 58: introduces an interesting question about River Network Saturation concept. 

However, the Results section, the authors only focus on the positive linear relationship found 

between ΔER and ΔQ, and the Discussion does not revisit whether the data showed signs of 

approaching or reaching this saturation/asymptote.  

Was the ecosystem's processing capacity likely exceeded in the largest analyzed storms, or 

was the range insufficient to observe this? The authors may explore more Figure 5b, such as 

whether the observed range of storm magnitudes was likely sufficient or insufficient to induce 

metabolic saturation in this system. It seems that in Figure 5d, there is a visual saturation, 

but this is not the concept the authors introduced in the Introduction. Please clearly 

differentiate the observed saturation in recovery time from the lack of observed saturation in 

the magnitude of the ER response. 

We appreciate this insightful comment. Following your suggestion as well as suggestions 

from R1, we re-analyzed the data considering AIC criteria. We found that linear and 



logarithmic models were equally supported to understand the relationship between ΔQ and 

ΔER. These findings have been incorporated into the Results section, and Figure 5 has been 

updated accordingly to show both relationships. Updated text (L370-376): 

“Moreover, the relationship between ΔER and ΔQ was equally well explained by both linear 

and logarithmic models, preventing us from identifying a clear saturation pattern in ER–

unlike the saturation responses often reported for nutrient uptake with increasing discharge 

(sensu River Network Saturation concept; Wollheim et al., 2018). Nevertheless, we observed 

certain constraints in ER during storms. For instance, ER rates were never more negative 

than –36.4 g O₂ m⁻² d⁻¹, and the maximum ΔER was around 100%, indicating that storm-

driven increases in ER never exceeded twice the prior baseflow rates. While these constraints 

do not confirm a saturation effect, they may reflect an upper limit of the heterotrophic 

response to storm disturbances in Fuirosos.” 

Moreover, we agree with the reviewer that the saturation-like response observed in ER 

recovery time (RTER) is a distinct phenomenon, unrelated to the expectations derived from 

the River Network Saturation hypothesis. Rather than indicating saturation of metabolic 

response, this pattern more likely reflects a threshold in system resilience. We have made 

this point clear in the revised version of the manuscript. Updated text (L389-391): 

“Further, this result suggests that, beyond a certain disturbance magnitude, the time needed 

for metabolic rates to return to baseline conditions stabilizes, potentially due to limits in 

biofilm recovery time or the temporal window of resource availability following storms.” 

Line 170: All the estimates with Q>100L/s  were excluded due to failed QC checks. I agree 

that the exclusion of high-flow data (>100 L/s) is based on the reported QC failures, but I 

am not sure if this action may prevent an empirical test of the "stopper" hypothesis. In the 

Introduction, lines 60-65, "Finally, during large storm events, […] decreasing mean water 

residence time, scouring the benthic biomass, […] reduce in-stream processing". These 

sentences refer to the "stopper" for the  large storm events, but most valid estimates were 

skipped to check it. Therefore, the inability to assess larger events means the full spectrum 

proposed in Figure 1 cannot be validated. Here are some suggestions that only use the 

current dataset: 

We thank the reviewer for raising this important issue and for the useful suggestions to 

address this point. We fully agree that the exclusion of high-flow data due to QC failures 

limits our ability to directly test the "stopper" end of the conceptual framework introduced in 

Figure 1. In order to improve this part of the discussion, we have taken steps to explore how 

prevalent these extreme discharges are and whether useful information can still be extracted 

from the high-discharge events. Specifically, we have revised these events using adjusted 

model constraints and providing full access to model outputs, regardless of the QC status. 

With this, we aim to shed light on the potential “stopper” behavior, even if not all data at 

high discharges meet the standard quality thresholds required by the Bayesian model. The 



following responses describe the specific actions we have taken to address each of the 

reviewer’s suggestions. 

1)    Report the frequency/duration of flows > 100 L/s to know the unanalyzed portion. 

In our study, the frequency of high-flow days (>100 L s⁻¹) represented only 26 out of the 567 

storm-related days (4.6%). This limited representation constrained our ability to directly 

evaluate potential “metabolic stopper” effects. In the revised manuscript we have addressed 

this as follows  Updated text (L368-370): 

“During the study period, these high-flow days represented less than 5% of all the storm 

days analyzed and occurred during only 8 of the 53 identified storm events. Thus, large or 

extreme storms that might inhibit ER were relatively rare in this stream, which more 

commonly exhibited ER stimulation during storms.” 

2)    Table S2 does not explicitly link these failures to discharge levels. Please report more 

details on the QC-Failed Outputs in Supplementary Information to know which QC criteria 

failed.  

We agree with the reviewer that this additional information will help to clarify why 

metabolism estimates could not be obtained for certain high-flow events and the model 

limitations under dynamic conditions. In the revised Supplementary Information, we have 

updated Table S3 with the range of discharge values with the specific QC criteria that were 

not met. Table S3 shows that all metabolism estimates for flows >100 L/s failed to meet one 

or more of the quality control criteria. Specifically, model failure at these high flows was 

driven by both poor model fit (e.g., 73% of high-flow days had R² < 0.5, and 73% had RMSE 

> 0.4) and biologically implausible results (e.g., 54% of days with GPP < 0 or ER > 0, and 

69% with unrealistically high K600 values).  

  



Table S3.  Diagnostics assessing model performance, detailing the total days analyzed (including storm days and days prior 

to each storm event) and storm events affected by each criterion. The table includes the total available data, the number of 

imputed days using miceRanger, and occurrences of biologically implausible values (i.e., negative GPP or positive ER). It 

also reports instances of unsuccessful model convergence (R̂-hat > 1.2 and n_eff < 8000) and days with poor model fit (R² 

< 0.5, RMSE > 0.4). Finally, the number of days that passed all quality checks is indicated. The same diagnostics are shown 

for different ranges of discharge during storm events. 

Quality test  Days 

analyzed 

Number of 

storm 

events 

Discharge Range During Storm events (L/s) 

0.7–10 10.1–40 40.1–100 >100 

Total data 698 53 347 135 57 26 

Imputed data 48 6 32 0 2 14 

GPP < 0, ER > 0 53 18 8 11 9 14 

K600 > 110 18 8 0 0 0 18 

R̂-hat  > 1.2 48 9 18 10 0 0 

n_eff > 8000  0 0 0 0 0 0 

R2 < 0.50  147 31 56 18 7 19 

RMSE > 0.4 92 26 30 23 7 19 

Passed quality 

check  

542 35 274 106 37 0 

% Success 72% 66% 79% 79% 65% 0% 

 

 

3)    Figure S1 about Q-K600 relationship is very informative, but the highest discharge 

measured during these injections appears to be only around 32 L/s. Applying the derived Q-

K600 relationship via extrapolation beyond the measured range (~32 L/s) during dynamic 

storm flows (up to 100 L/s) introduces uncertainty. Is it a reason for the model failing at high 

discharge? I recommend the SI provide a discussion about why the model likely failed QC at 

high flows in this system while contrasting with successful high-flow modeling in larger 

systems (e.g., Diamond et al., 2025a, 2025b) 

Thank you for this observation. As we addressed in our responses to R1, we acknowledge 

that we were unable to conduct propane additions at discharges greater than 32 L s⁻¹ due to 

prolonged drought during the study period. This limitation introduces some uncertainty when 

extrapolating the Q-K₆₀₀ relationship to high-flow conditions. In that response, we explained 

how we compared the propane-based K₆₀₀ estimates with independent values from the night-

time regression method and the hydraulic geometry approach to assess the robustness of the 

derived relationship. Please refer to that comment for a detailed explanation. 



To further clarify why model performance deteriorated at high flows, Table S3 shows that 

most days failing QC did so because the model produced unrealistic estimates (e.g., negative 

GPP or positive ER) or because modeled DO patterns diverged substantially from observed 

diel dynamics. These issues likely stem from sensor displacement or burial during turbulent 

flow, or from diel variability in metabolic (GPP, ER) or physical (K₆₀₀) parameters not 

captured by the model. This point is now included in the discussion (L365-368): 

“Fuirosos is a small stream (median Q = 12 L s⁻¹; median depth = 7.5 cm), where floods 

exceeding 100 L s⁻¹ often lead to overbank flooding and displacement or burial of sensors. 

These complex hydrodynamics and field constraints can disrupt DO signals and complicate 

gas exchange inference, ultimately violating key assumptions of metabolic models. These 

complex hydrodynamics and field constraints can disrupt DO signals and complicate gas 

exchange inference, ultimately violating key assumptions of metabolic models.” 

4)    I would like to see output distributions (credible intervals/ranges) for GPP/ER/K600 for 

all these high-flow runs (Q>100 L/s). Even though the median values failed for QC, using 

the credible intervals may give us some helpful information, such as the system is more 

"stoppers" or more "triggers" behavior at these high flows. 

--> I suggest that authors may explicitly state the "stopper" hypothesis remains empirically 

untested by reliable data from this study for higher flows if using credible intervals output 

still does not give any further information. 

We thank the reviewer for this constructive suggestion. We will include in a public repository 

(HydroShare) the full set of metabolism model outputs from streamMetabolizer, including 

all daily GPP, ER, and K₆₀₀ estimates, regardless of whether they passed the quality check. 

This will allow readers to evaluate the full distribution of outputs, including those from high-

flow events (>100 L s⁻¹), and to interpret model behavior beyond the subset of accepted 

values. 

Following the reviewer’s recommendation, we revisited the 26 high-flow days (Q > 100 L 

s⁻¹) by re-running the metabolism model using adjusted constraints, specifically narrowing 

the feasible range for depth and K₆₀₀ based on our empirical data. We found that for most of 

these high-flow days, model outputs remained unreliable even after these adjustments, 

typically due to persistent convergence issues or implausible parameter estimates (see 

example figure below). However, in 8 of the 26 days, where the original model failures were 

specifically due to K₆₀₀ values exceeding 110 d⁻¹, the constrained model produced estimates 

that met our convergence and plausibility criteria. For these days, high Q ranged from 100 to 

1370 L s⁻¹ and ER values were similarly elevated (range: 20 to 41g O₂ m⁻² d⁻¹) as on days 

with large ΔQ increases, providing no evidence for a metabolic stopper effect within our data. 

 



Fig R1. Temporal patterns of dissolved oxygen dynamics during a period including three 

consecutive high-flow days (Q > 100 L/s). The panels show (top) dissolved oxygen 

concentration (DO, mg/L), (middle) DO saturation (%), and (bottom) the rate of change in 

DO (dDO/dt, mg/L/d). Bold lines represent observed values, while lighter lines indicate 

model predictions generated using StreamMetabolizer. The figure illustrates both the 

general agreement and discrepancies between observed and modeled values under high-

discharge conditions. 

 

Line 174: "did not passed" -> did not pass 

We have changed to “did not pass” as suggested 

Line 155 and 175: Add a brief example of ΔER calculation with negative ER. This is quite 

confusing when saying to increase or decrease ER while the ER is negative. 

We have added a clarification in the Methods section (L296-204) to explain that for the ΔER 

calculations, we used absolute values. In this sense, an increase in ER (i.e., more negative) 

indicates a stimulation of respiration. 

Line 270-275: Consistent adding ΔMET/ΔGPP/ΔER definition. Better clarifying axis labels 

in Figs 5 & 6. 

We have changed the captions of both figures to make it more clear.  

“Figure 5. Relationship between changes in discharge (ΔQ, defined as the difference 

between peak flow and baseflow) and stream metabolic responses. Panels (a) and (b) show 

the change in gross primary production (ΔGPP) and ecosystem respiration (ΔER), 

respectively, used as proxies for metabolic resistance. Panels (c) and (d) show recovery time 



for GPP (RTGPP) and ER (RTER), used as proxies for metabolic resilience. Color coding 

indicates whether metabolic activity was stimulated (blue), suppressed (red), or showed no 

significant change (yellow) in response to the storm event. Solid and dashed lines represent 

the best fit models, only when statistically significant (p < 0.01) and the shaded area indicates 

the 95% confidence interval. For panels (b) and (d), there were no differences in the 

goodness of fit between the logarithmic (log) and linear (lm) models (Table S4).” 

“Figure 6.Relationship between resistance and resilience of gross primary production 

(GPP) and  (b) ecosystem respiration (ER)  during storm events. Resistance is the relative 

change in metabolic rates compared to prior baseflow conditions (i.e., ΔGPP and ΔER). 

Resilience is the recovery time of metabolic rates to prior conditions (i.e., RTGPP and RTER).  

Color coding indicates whether metabolic activity was stimulated (blue), suppressed (red), 

or showed no significant change (yellow) in response to the storm event. The black line 

represents the linear regression between variables (only shown when p < 0.01) and the 

shaded area indicates the 95% confidence interval.” 

Line 55/88: Clarify "recovery time" vs. River Network Saturation. 

Thanks, this distinction is important. As mentioned earlier, rather than indicating saturation 

of metabolic response, the recovery time pattern reflects a threshold in system resilience. We 

have added a clarification in the discussion (L389-391). 

Line 352: "ER recovery times at ca. 6 days (Fig. 5a)" -> it should be Fig. 5d 

We have fixed it as suggested 
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