Dear editor and reviewers,

Thank you for your time and for the constructive feedback on our manuscript titled
"Breathing Storms: Enhanced Ecosystem Respiration During Storms in a Heterotrophic
Headwater Stream"”. We appreciate your thoughtful and insightful comments, which will
help us improve the quality and clarity of the manuscript. Below, we respond to each
comment and provide an explanation of our plans to address them. The original text of the
decision letter is in black and italics, while our responses are in dark blue.

From RC1

Jativa et al. present an elegant study on stream metabolic rates during storm events from
continuous data collection in a non-perennial Mediterranean stream. The framing of the
story is logical and methods clearly address the narrative throughout the manuscript.
Indeed, this contributes to a small but intriguing literature on resistance and resilience of
ecosystem function in rivers. I have no large comments but raise a handful of additions to
improve the clarity of the methods in the specific comments below and a comment on
addressing temporal variability in metabolic patterns in rivers that could be expanded on in
the introduction.

Many thanks for your positive and encouraging comments. We are glad that you find our
study elegant and clear, and we will work carefully to incorporate your comments in the
revised version of the manuscript.

L30: ‘regulates’
Thanks for noticing.

L50: ‘triggers’ and ‘stoppers’ seem like unnecessary potential jargon. Is there another
schema or metaphor that could be used?

We appreciate your concern about potential jargon. However, and considering that R2 was
prone to these concepts, and actually asked to better frame and emphasize these ideas, we
have chosen to keep the terms “metabolic triggers” and “metabolic stoppers” in the
revised version of the manuscript. We believe that these are easy-to-catch concepts that can
be used by other authors in future studies to describe the contrasting effects of storm events
on stream metabolism. To ensure that these terms are interpreted as metaphorical and not as
technical jargon, we will add a clarification sentence that makes the rationale behind the
terminology clearer.

L71: I have no disagreement with any of the introduction to this point, but I think the strong
temporal variability in GPP and ER need to be emphasized as potential variability to deal
with in identifying resistance or resilience. A wide range of recent literature have shown
within year and across year variability in GPP that are influenced by river size, hydrologic
variability, and light availability (e.g., Savoy et al. 2019; Marzolf et al. 2024). I would also



recommend citing Lowman et al. 2024 as an example of identifying recovery of GPP in
response to storm events across large scales.

Thanks for the suggested readings; these three papers are very interesting and relevant for
our study. We agree that temporal variability in stream metabolic rates could influence the
detection and interpretation of resistance and resilience to storm events. However, note that
our estimates of resistance and resilience are expressed as relative changes of GPP and ER
to pre-event metabolic rates. Thus, any potential temporal variability in metabolic rates did
not influence our estimates. Following your recommendation, we will carefully consider
the best place to cite these previous studies and include additional text if needed, either in
the introduction or the discussion, to better highlight the natural intrannual and interannual
variability of metabolic rates and contextualize our findings.

L116: reviewer preference for ‘concentration’ instead of ‘levels’
Thanks for noticing.

L122: odd wording. Maybe change to ‘we installed a monitoring station in the stream with
upstream area of 9.9 km2’.

Thanks for noticing.

L125: what is average depth in this case? In a stilling well or staff gauge? Or is this
hydraulic depth of the 200 m upstream reach? Are the pools located in areas that may alter
or disrupt advective flow and create longitudinal heterogeneity in DO patterns (Rexroade
etal 2025)?

We agree with the reviewer that stream depth might vary along the 200-m reach. In this
study, average stream depth was estimated from water level measurements recorded by a
pressure sensor installed in a stilling well. To verify the representativeness of this value, we
conducted manual depth measurements at random transects across the reach every two
weeks. We will clarify this procedure in the methods section.

We also agree that pools can generate longitudinal heterogeneity in stream flow, and that
this could influence stream metabolic measurements, especially during low flow periods.
To assess this effect, we installed multiple DO sensors along the reach during the transition
from wet to dry conditions in 2023. These data showed similar DO patterns at the top and
at the bottom of the reach, suggesting that the pools did not disrupt advective flow at the
scale of our metabolism measurements during that particular period. Given that our
analyses focus on storm events, when longitudinal connectivity is likely higher than during
the transition from wet-to dry conditions, we are certain that the influence of slow-flow
zones on DO dynamics was negligible in the present study.



L129: how was lux converted to PPFD? This is an increasingly common practice in the
literature and readers would benefit from specifics on how this was done for use in their
own studies.

In the revised Methods section, we will clarify that lux values were converted to
photosynthetic photon flux density (PPFD, umol m™2s') using a conversion factor of
0.0185, which represents the approximate conversion in forested areas such as ours.

L150: What value of Q during the storm event was used in calculating RC? Or is it the total
water flux during the storm (i.e., the integral of stream flow/total precipitation)? A few
more details would be welcome as this is a potentially useful metric for others to use.

We will include in the text that, for calculating RC, we used the total water flux during each
storm event, estimated as the integral of discharge (Q) over the storm duration (total
precipitation). This approach captures the cumulative effect of the storm on streamflow,
rather than relying on a single value such as peak or mean discharge.

L155: this is a great presentation of metabolism data collection and modeling. One
addition I would like to see is how mean depth was determined. Mean depth is the average
cross-sectional depth of the upstream contributing reach, as is defined in this study as the
200 m upstream of their sensor installation. Mean depth is often the most difficult measure
to obtain from a stream reach and across flow conditions but can be estimated in similar
ways with rating curves and presumably available with the data collected for the propane
injections. 1 would like to see 1-2 sentences added to this section describing how mean
depth was determined. And another sentence on QAQC approaches to the continuous data
and how DO.sat was calculated too (basically address how each of the inputs to
streamMetabolizer were prepared).

Thanks for the positive comment. In the revised manuscript, we will add a brief explanation
of how we calculated all inputs for streamMetabolizer (light, water temperature, depth, DO,
and DO saturation). In particular, depth was estimated by measuring pressure in the water
column every 10 minutes using a HOBO water level logger and correcting these data for
atmospheric pressure using a paired barometric logger. We then calibrated the water level
data with manual depth measurements taken biweekly at the study reach throughout the
whole sampling period.

We will also clarify how dissolved oxygen saturation (DO.sat, in mg L") was calculated.
To do so, we used the standard solubility function from Garcia and Gordon (1992), which
estimates DO.sat from 10-minute data on water temperature (°C) and barometric pressure
(mm Hg).

Finally, we will include a sentence describing our QA/QC procedure for all high-frequency
sensor data used as input to the metabolism model. Briefly, we conducted preliminary data
cleaning by removing clearly erroneous values (e.g., negative DO concentrations or spikes



from sensor fouling) and then removing noise and outliers using the /oess R package.
Specifically, we applied a locally estimated scatterplot smoothing (LOESS) model with a
span parameter of 0.03 to DO, water temperature, light intensity, water depth, and DO.sat
variables, effectively smoothing fluctuations and replacing outliers. The detailed
step-by-step QA/QC process will be described in the Supplementary Materials.

L166: this is a great way of constraining K in the model inputs and a great example for
future researchers to approach single-site evaluations. How well does the coverage of
propane injections cover the hydroperiod in the stream? These injections are often biased
towards lower flows for logistical reasons, but I wonder how well empirical measures were
obtained at higher flows? And as you say in L174, getting metabolism estimates during
highest flows is difficult or impossible based on data and/or the models failing to converge
on days with high flows.

We were able to conduct propane additions across a wide range of flows, from 0.6 to 32 L
s'!. Logistic constraints would have been an issue, but the truth is that during the period in
which we were able to conduct gas additions (2022-2024), there was an intense drought
that precluded us from performing propane additions at higher discharges. We don’t discard
the idea of conducting more propane additions in the future to better constrain this
parameter. Nevertheless, and for the sake of this study, note that we verified the accuracy of
the empirically measured Keoo values by comparing them with independent estimates
obtained from both the night-time regression method (Odum, 1956) and hydraulic
geometry-based predictions (Raymond et al., 2012). This exercise showed that Keoo
obtained from propane additions were similar to those estimated with the hydraulic
geometry method (Raymond et al., 2012), and thus, we are confident about the robustness
of our Keoo-Q relationship. To further clarify this procedure, we will include the comparison
curves showing Keoo values from propane additions alongside those predicted by the other
two methods in the Supplementary Materials.

L206: subscript PImax as is in L194
Thanks for noticing.

L280: might nit-pick on the ‘biota’ part of the response. Yes, organisms from bacteria to
macro-fauna contribute to ecosystem metabolism, particularly ER, but with that statement,
I would anticipate some measure of re-colonization of organisms post-storm events,
whereas the response variable in this study is integrative ecosystem-scale metabolic
function.

We acknowledge that our study evaluates stream metabolism as an integrative,
ecosystem-scale function, rather than tracking biotic recovery directly. To better reflect the
nature of our response variable, we will revise this sentence and refer to stream functional
processes rather than biota, thus avoiding any potential misinterpretation.



Figure 1) should the caption for the orange dot also include ‘ER’?

We included only GPP for the orange dot because it represents a light-limited scenario,
which affects GPP but not ER. Since ER is not directly influenced by light availability, it
was only associated with the blue line.

Figure 4) It maybe my computer screen but it’s difficult to see the non-filled circles against
the filled circles. Might recommend a different, contrasting color. Also, purely aesthetic, but
can the x-axis be extended to 1000? An additional component that may help the reader
discern the relationship with flow. could a vertical line be added where the typical storm
flow begins? Or where is the typical baseflow? This would create a part of the graph with
baseflow or losing flow metabolism could be easily compared with gaining or stormflow
metabolism. If there is not a single or narrow range of flows that separate base from storm
flows, disregard this final comment.

Thanks for your suggestions. We will extend the x-axis to 1000 to enhance visual clarity,
and we will remove the points corresponding to estimates that failed quality checks, as they
may be misleading.

Regarding the suggestion to include a vertical line to separate baseflow from stormflow
conditions, we agree that such a reference could be helpful. However, given the wide range
of storm magnitudes observed in our dataset, there is no consistent discharge threshold that
marks the onset of stormflow. Instead, we will highlight the days prior to each storm (i.e.,
baseflow conditions) using a different color in the figure. This change will allow for clearer
visual distinction between baseflow and stormflow conditions while accounting for the
variability in stream discharge across events.

Figure 5) Just to be sure, the lines of best fit are coming from the methods text L193-199?
What model comparison or evaluation was done to determine linear, logarithmic, or
exponential was the ‘best’ fit to the data? Could all the evaluations be compiled into a
supplementary table, perhaps with AIC and AICw values?

The lines of best fit shown in Figure 5 correspond to the model types described in lines
193-199, selected based on the best fit to the data. Following your recommendation, we
will include a supplementary table summarizing the model comparisons to increase
transparency.



From RC2

General comments: The authors investigate how storm events influence stream
metabolism, GPP and ER, in a headwater stream, by using high-frequency DO,
hydrological, and environmental measurements to analyze 35 storm events, applying
Bayesian modeling. A key strength of this study lies in its robust, high-resolution dataset,
which allows for a detailed examination of metabolic dynamics. The clear finding is that
most analyzed storms (those with Q < 100 L/s) act as "metabolic triggers" significantly
stimulating ER and demonstrating a positive relationship between ER stimulation (AER)
and storm magnitude (4Q). The second finding is also very nice information about the
quantification of metabolic resilience, particularly the finding that ER recovery time
increases with storm magnitude but appears to saturate around 6 days.

Despite these strengths, the manuscript requires major revisions to address the conceptual
framework established in the Introduction fully and to enhance the robustness and
transparency of its interpretations. Specifically, revisions should focus on (1) evaluating the
concept of metabolic saturation introduced in the Introduction section, (2) addressing the
implications of excluding high-flow data (O>100 L/s) for testing the "stopper" hypothesis
and the overall representativeness of the findings, and (3-optional) acknowledging
uncertainty related to gas exchange estimation during dynamic conditions.

Many thanks for your positive and insightful comments. We are glad that you find our
dataset robust and our findings nice and clear. We will work to improve the revised version
of the manuscript following your suggestions and comments. Please, find below our
responses to your specific queries regarding how to improve the discussion of the metabolic
saturation concept and the implications of excluding the high-flow data.

Specific comments:

Lines 58: introduces an interesting question about River Network Saturation concept.
However, the Results section, the authors only focus on the positive linear relationship
found between AER and AQ, and the Discussion does not revisit whether the data showed
signs of approaching or reaching this saturation/asymptote.

Was the ecosystem's processing capacity likely exceeded in the largest analyzed storms, or
was the range insufficient to observe this? The authors may explore more Figure 5b, such
as whether the observed range of storm magnitudes was likely sufficient or insufficient to
induce metabolic saturation in this system. It seems that in Figure 5d, there is a visual
saturation, but this is not the concept the authors introduced in the Introduction. Please
clearly differentiate the observed saturation in recovery time from the lack of observed
saturation in the magnitude of the ER response.

We appreciate this insightful comment. In the revised discussion, we will clearly state that
we did not observe saturation in ER stimulation (AER) across the range of storm discharges



analyzed. The River Network Saturation concept has been tested and empirically proved in
other fluvial systems, mostly using in-stream nutrient processing rates (Wollheim et al,
2018). Following your suggestions, we will re-analyze the data to determine if we did not
observe saturation because (a) discharge never acts as a “stopper” in our system or (b) we
could not estimate metabolic rates at high flows. For instance, we plan to examine the
relationship between Q and AER using asymptotic models or breakpoint analyses to assess
if there really is a lack of evidence for saturation across the observed range. Finally, we will
add a discussion regarding the River Network Saturation in the new manuscript.

Moreover, we agree with the reviewer that the saturation-like response observed in ER
recovery time is a separate phenomenon, not related to the expectations derived from the
River Network Saturation hypothesis. We will make this point clear in the revised version
of the manuscript. Specifically, we will emphasize that this pattern likely reflects a
threshold in metabolic resilience, whereby the system returns to pre-storm conditions
within approximately one week, regardless of further increases in storm magnitude. This
concept is introduced in line 83 of the introduction, as we anticipated that recovery time
may reach a threshold corresponding to the time required for biofilms to rebuild after large
storm disturbances or the extended influence of nutrient and organic matter inputs, We will
clarify the difference between these two phenomena throughout the revised version of the
manuscript.

Line 170: All the estimates with Q>100L/s were excluded due to failed QC checks. I agree
that the exclusion of high-flow data (>100 L/s) is based on the reported QC failures, but I
am not sure if this action may prevent an empirical test of the "stopper" hypothesis. In the
Introduction, lines 60-65, "Finally, during large storm events, [...] decreasing mean water
residence time, scouring the benthic biomass, [...] reduce in-stream processing". These
sentences refer to the "stopper" for the large storm events, but most valid estimates were
skipped to check it. Therefore, the inability to assess larger events means the full spectrum
proposed in Figure 1 cannot be validated. Here are some suggestions that only use the
current dataset:

We thank the reviewer for raising this important issue and for the useful suggestions to
address this point. We fully agree that the exclusion of high-flow data due to QC failures
limits our ability to directly test the "stopper" end of the conceptual framework introduced
in Figure 1. In order to improve this part of the discussion, we will take steps to explore
how prevalent these extreme discharges are and whether useful information can still be
extracted from the high-discharge events. Specifically, we are revisiting these events using
adjusted model constraints and providing full access to model outputs, regardless of the QC
status. With this, we aim to shed light on the potential “stopper” behavior, even if not all
data at high discharges meet the standard quality thresholds required by the Bayesian
model. The following responses describe the specific actions we will take to address each
of the reviewer’s suggestions.



1) Report the frequency/duration of flows > 100 L/s to know the unanalyzed portion.

In the revised Results section, we will include a summary of the occurrence of high-flow
conditions. Specifically, we will report that, only 26 out of the 567 storm days analyzed
exceeded 100 L s (4.6%). These days corresponded to 8 individual storm events out of the
53 analyzed (15.1%). We agree that these numbers will help contextualize the proportion of
storms that could not be analyzed due to model limitations in our study stream.

2) Table S2 does not explicitly link these failures to discharge levels. Please report more
details on the QC-Failed Outputs in Supplementary Information to know which QC criteria
failed.

In the revised Supplementary Information, we will include a new table that links the range
of discharge values with the specific QC criteria that were not met. This table will
summarize which quality checks of the seven considered failed across discharge intervals.
We agree with the reviewer that this additional information will help to clarify why
metabolism estimates could not be obtained for certain high-flow events and the model
limitations under dynamic conditions.

Table RI1. Summary of model performance diagnostics, showing the number of days
affected by each evaluation criterion across different discharge ranges. The table reports
the total number of available days, instances of unsuccessful model convergence
(n<sub>eff</sub> < 8000 or R > 1.2), poor model fit (R* < 0.5 or RMSE > 0.4), and
biologically implausible estimates (e.g., negative GPP or positive ER). The final column
indicates the number of days that failed the quality criteria.

Q(L/s) | #ofdays |n eff >8000 R -hat>1.2| g2 < 0.50 |RMSE > 0.4| GPP <0, ER > 0| K600 > 110 [Total of failed days|
07-10| 347 0 18 56 30 8 0 73
10.140| 135 0 10 18 23 11 0 29
40.1100] 57 0 0 7 7 9 0 20
>100 26 0 0 19 19 14 18 26
LC 148 (26%)
Failed days

3)  Figure SI about Q-K600 relationship is very informative, but the highest discharge
measured during these injections appears to be only around 32 L/s. Applying the derived
0-K600 relationship via extrapolation beyond the measured range (~32 L/s) during
dynamic storm flows (up to 100 L/s) introduces uncertainty. Is it a reason for the model
failing at high discharge? I recommend the SI provide a discussion about why the model
likely failed QC at high flows in this system while contrasting with successful high-flow
modeling in larger systems (e.g., Diamond et al., 2025a, 2025b)



Thank you for this observation. As we addressed in our responses to RC1 (Comment
L166), we acknowledge that we were unable to conduct propane additions at discharges
greater than 32 L s due to prolonged drought during the study period. This limitation
introduces some uncertainty when extrapolating the Q-Keoo relationship to high-flow
conditions. In that response, we explained how we compared the propane-based Koo
estimates with independent values from the night-time regression method and the hydraulic
geometry approach to assess the robustness of the derived relationship. Please refer to that
comment for a detailed explanation.

To further clarify why model performance deteriorated at high flows, Table R1 shows that
most days failing QC did so because the model produced unrealistic estimates (e.g.,
negative GPP or positive ER) or because modeled DO patterns diverged substantially from
observed diel dynamics. These issues likely stem from sensor displacement or burial during
turbulent flow, or from diel variability in metabolic (GPP, ER) or physical (Keoo) parameters
not captured by the model.

It is also important to note that Fuirosos is a small, shallow headwater stream with a median
discharge of 12 L s and a median depth of 7.5 cm. Flow events exceeding 100 L s are
rare and represent an order-of-magnitude increase over baseflow, often resulting in
overbank flooding and complex hydrodynamics that can disrupt DO signals and violate
model assumptions. In contrast, studies such as Diamond et al. (2025) involve larger,
deeper systems where similar flow increases produce less drastic hydromorphological
changes.

As recommended, we will include a brief discussion of these points, along with the
comparison plots, in the Supplementary Information.

4) I would like to see output distributions (credible intervals/ranges) for GPP/ER/K600
for all these high-flow runs (Q>100 L/s). Even though the median values failed for QC,
using the credible intervals may give us some helpful information, such as the system is
more "stoppers" or more "triggers" behavior at these high flows.

--> [ suggest that authors may explicitly state the "stopper" hypothesis remains empirically
untested by reliable data from this study for higher flows if using credible intervals output
still does not give any further information.

We thank the reviewer for this constructive suggestion. We will include in a public
repository (HydroShare) the full set of metabolism model outputs from streamMetabolizer,
including all GPP, ER, and Ksw estimates, regardless of whether they passed the quality
check. This will allow readers to evaluate the full distribution of outputs, including those
from high-flow events (>100 L s™), and to interpret model behavior beyond the subset of
accepted values.



Following the reviewer’s recommendation, we will also re-run the high-flow events (n =26
days in total) using adjusted model constraints, specifically by setting feasible upper limits
for depth and Keoo based on our empirical data. This approach may allow us to “rescue”
some estimates that were previously rejected due to the uncertainty associated with these
two parameters. From preliminary trials, we have found that for most high-flow days where
the quality checks failed, model outputs remained unreliable even after doing some
adjustments for depth and Ksw (see example figure below). However, in a subset of cases
where the failure was due to Keoo values exceeding 110 d, these adjustments has allowed
the model to converge with credible estimates. In the revised discussion, we plan to include
this exercise to shed some additional light on our saturation hypothesis.

Fig R1. Temporal patterns of dissolved oxygen dynamics during a period including three
consecutive high-flow days (Q > 100 L/s). The panels show (top) dissolved oxygen
concentration (DO, mg/L), (middle) DO saturation (%), and (bottom) the rate of change in
DO (dDOv/dt, mg/L/d). Bold lines represent observed values, while lighter lines indicate
model predictions generated using StreamMetabolizer. The figure illustrates both the
general agreement and discrepancies between observed and modeled values under
high-discharge conditions.
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Line 174: "did not passed" -> did not pass
Thanks for noticing.

Line 155 and 175: Add a brief example of AER calculation with negative ER. This is quite
confusing when saying to increase or decrease ER while the ER is negative.



We will add a clarifying sentence (and a simple example) in the Methods section to explain
that ER values are negative by convention, and that an increase in ER (i.e., more negative)
indicates a stimulation of respiration.

Line 270-275: Consistent adding AMET/AGPP/AER definition. Better clarifying axis labels
in Figs 5 & 6.

We will ensure consistent use and clear definitions of AGPP, and AER as the changes in
gross primary production and ecosystem respiration during storm events relative to
baseflow conditions in the main text and the caption of both figures 5 and 6.

Line 55/88: Clarify "recovery time" vs. River Network Saturation.

Thanks, this distinction is important. In the revised manuscript, we will make clear that the
River Network Saturation concept relates to the potential limit of the system to process
materials during high flows—essentially a matter of how much metabolism changes can
occur in response to disturbance. In contrast, the recovery time refers to how long it takes
for the system to return to baseline metabolic conditions after a storm, which is related to
the resilience of the system. In both cases, we can observe asymptotic behaviour but the
mechanisms are different in each case.

Line 352: "ER recovery times at ca. 6 days (Fig. 5a)" -> it should be Fig. 5d

Thanks for noticing.
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